
1

Distributed Systems, Spring 2004 1

Communication

Distributed Systems, Spring 2004 2

Inter-process communication is at the heart of all
distributed systems

Based on low-level message passing offered by the underlying
network

Protocols: rules for communicating processes
structured in layers

Four widely-used models:
Remote Procedure Call (RPC)
Remote Method Invocation (RMI)
Message-Oriented Middleware (MOM)
Streams

Introduction

Distributed Systems, Spring 2004 3

Topics to be covered

PART 1
Layered Protocols
Remote Procedure Call (RPC)
Remote Method Invocation (RMI)

PART 2
Message-Oriented Middleware (MOM)
Streams

Distributed Systems, Spring 2004 4

Layered Protocols

Low-Level
Transport

Application
Middleware

Distributed Systems, Spring 2004 5

Layered Protocols

General Structure

Based on low-level message passing

A wants to communicate with B
A builds a message in its own address space

A executes a call to the OS to send the message

Need to agree on the meaning of the bits being sent

Distributed Systems, Spring 2004 6

Layered Protocols

Processes define and adhere to rules (protocols) to
communicate

Protocols are structured into layers – each layer deals with a
specific aspect of communication

Each layer uses the services of the layer below it – an
interface specifies the services provided by the lower layer
to the upper layers

The upper layer sees the lower layer as a black box
(benefitd?)

2

Distributed Systems, Spring 2004 7

Layered Protocols

Protocol suite or protocol stack: collection of protocols used in a
particular system

Each protocol adds a header

Physical Medium

Layer 2

Layer 5

Layer 3

Layer 4

Layer 1

Layer 4/5 interface

Layer 3/4 interface

Layer 2/3interface

Layer 1/2 interface

Host 1

Layer 2

Layer 5

Layer 3

Layer 4

Layer 1

Layer 4/5 interface

Layer 3/4 interface

Layer 2/3interface

Layer 1/2 interface

Host 2Layer 5 Protocol

Layer 4 Protocol

Layer 3 Protocol

Layer 2 Protocol

Layer 1 Protocol

Layer n on machine 1 talks with layer n on machine 1 based on the
Layer n protocol

Distributed Systems, Spring 2004 8

The OSI Model

The ISO OSI or the OSI model

Designed to allow open systems to communicate

Two general type of protocols:

Connection-oriented: before exchanging data, the sender and the
receiver must establish a connection (e.g., telephone), possibly negotiate
the protocols to be used, release the connection when done

Connectionless: no setup in advance (e.g., sending an email)

Distributed Systems, Spring 2004 9

The OSI Model

Each layer provides an interface to the one above

Message send (downwards) Message received (upwards) example
Each layer adds a header

Distributed Systems, Spring 2004 10

The OSI Model

• The information in the layer n header is used for the layer n protocol

• Independence among layers

• OSI protocols not so popular, instead Internet protocols (e.g., TCP and IP)

• reference model (not an actual implementation)

Distributed Systems, Spring 2004 11

Lower-level

implemented by the routers (intermediate machines
that forward the messages)

Low-level Layers

These layers implement the basic functions of a computer network

Distributed Systems, Spring 2004 12

Low-level Layers: The Physical Layer

Physical layer:

Concerns with transmitting 0s and 1s
Standardizing the electrical, mechanical and signaling interfaces so that
when A sends a 0 bit, it is received as a 0

Issues
How many volts to use for 0 and 1
How many bits per sec (data rates)
Whether to transmit in both direction (duplex/simplex)

Example standard: RS-232-C for serial communication lines

the specification and implementation of bits, and their transmission between sender
and receiver

3

Distributed Systems, Spring 2004 13

Low-level Layers: The Data Link Layer

Data link layer:

Group bits into frames and sees that each frame is correctly received

Puts a special bit pattern at the start and end of each frame (to mark
them) as well as a checksum
If checksums differ, requests a retransmission

Frames are assigned sequence numbers

prescribes the transmission of a series of bits into a frame to allow for error and
flow control

Distributed Systems, Spring 2004 14

Low-level Layers: The Data Link Layer

Discussion between a receiver and a sender in the data link layer.
A tries to sends two messages, 0 and 1, to B

Distributed Systems, Spring 2004 15

Low-level Layers: The Network Layer
Network layer:

Deals with the fact that communication might require multi-hops
At each hop, through which link to forward the packet

Routing: choose the best (“delay-wise”) path

Example protocol at this layer: connectionless IP (part of the Internet
protocol suite)

IP packets: each one is routed to its destination independent of all others.
No internal path is selected or remembered

describes how packets in a network of computers are to be routed.

Distributed Systems, Spring 2004 16

Low-level Layers

Physical Layer: specification and implementation of bits, transmission
between sender and receiver

Data Link Layer: groups bits into frames, error and flow control

Network Layer: routes packets

NOTE
For many distributed systems, the lowest level interface is
that of the network layer.

Distributed Systems, Spring 2004 17

Transport Protocols

Turns the underlying network into something that an application
developer can use

Distributed Systems, Spring 2004 18

Transport Layer

Reliable connection

The transport layer provides the actual communication facilities for
most distributed systems.

Breaks a message received by the application layer into packets and
assigns each one of them a sequence number and send them all

Header: which packets have been sent, received, there is room for,
need to be retransmitted

Reliable connection-oriented transport connections built on top of
connection-oriented (all packets arrive in the correct sequence, if
they arrive at all) or connectionless network services

4

Distributed Systems, Spring 2004 19

Transport Layer

Standard (transport-layer) Internet protocols:

• Transmission Control Protocol (TCP): connection-oriented, reliable, stream-
oriented communication (TCP/IP)

• Universal Datagram Protocol (UDP): connectionless, unreliable (best-effort)
datagram communication (just IP with minor additions)

TCP vs UDP

Works reliably over any network
Considerable overhead

use UDP + additional error and flow control for a specific application

Distributed Systems, Spring 2004 20

Transport Layer: Client-Server TCP

a) Normal operation of TCP.
b) Transactional TCP (T/TCP) enhancement

3-way handshake:

To reach an
agreement on

sequence
numbering

Distributed Systems, Spring 2004 21

Higher-level

Higher-level Layers

In practice, only the application layer is used

Distributed Systems, Spring 2004 22

Upper Layers

Session Layer

Maintain “logical” sessions using as many transport connections as
necessary

Presentation Layer

Deals with non-uniform data representation (describing the messages
in a platform-independent format and sending the descriptions along
with data) and with compression and encryption

Distributed Systems, Spring 2004 23

Application Layer

Intended to contain a collection of standard network applications,
such as those for email, file transfer, etc

From the OSI reference model, all distributed systems just
applications

Many application protocols are directly implemented on top of
transport protocols, doing a lot of application-independent work.

Distributed Systems, Spring 2004 24

OSI vs TCP/IP Model

Internet

Host-to-network

Transport

Not Present

Application

OSI reference model

TCP/IP not an official reference model (many details regarding the
interfaces left open to implementation) – but the de facto Internet
communication protocol

5

Distributed Systems, Spring 2004 25

Service Primitives

LISTEN: block waiting for an incoming connection

CONNECT: establish a connection with a waiting host

RECEIVE: block waiting for an incoming message

SEND: send a message to a host

DISCONNECT: terminate a connection

Distributed Systems, Spring 2004 26

Middleware Layer

Middleware is invented to provide common services and
protocols that can be used by many rich set of communication
protocols, but which allow different applications to
communicate

• Marshaling and unmarshaling of data, necessary for
integrated systems
• Naming protocols, so that different applications can
easily share resources
• Security protocols, to allow different applications to
communicate in a secure way
• Scaling mechanisms, such as support for replication and
caching
• Authentication protocols, authorization
• Atomicity

Distributed Systems, Spring 2004 27

Middleware Protocols

An adapted reference model for networked communication.

Distributed Systems, Spring 2004 28

RPC

Basic RPC Model
Parameter Passing

Variations

Distributed Systems, Spring 2004 29

Remote Procedure Call (RPC)

Some issues:

Calling and called procedures in different address
spaces
Parameter passing
Crash of each machine

Basic idea:

Allow programs to call procedures located on other
machines

Distributed Systems, Spring 2004 30

Conventional Procedure Call

Principle: “communication”
with local procedure is
handled by copying
data to/from the
stack (with a few
exceptions)

Local procedure call: count = read(fd, buf, nbytes)
1: Caller: Push parameter values of the procedure on a stack + return address
2: Called procedure takes control
3: Called proc: Use stack for local variables, executes, pop local variables, save in
cache return result, use return address
4: Caller: Pop results (in parameters)

Example: incr(i, i), (adds 1 to
each parameter)

initially i = 0

Call-by-Value, i = 0

Call-by-Reference, (push the
address of the variable), i = 2

Call-by-Copy/Restore

The value is copied in the stack
as in call-by-value, and then
copied back by the called
procedure, i = 1

6

Distributed Systems, Spring 2004 31

Client and Server Stubs
RPC supports location transparency (the calling procedure does not know that
the called procedure is remote)

Client stub:

local version of the called procedure

called using the “stack” sequence

it packs the parameters into a message and requests this message to be
sent to the server (calls send)

it calls receive and blocks till the reply comes back

When the message arrives, the server OS passes it to the server stub

Server Stub:

typically waits on receive

it transforms the request into a local procedure call

after the call is completed, it packs the results, calls send

it calls receive again and blocks

Distributed Systems, Spring 2004 32

Client and Server Stubs
call to procedure x -> call client stub for procedure x
client stub calls send and blocks –

upon receipt, the server stub gets control –

the server stub calls the local procedure x
after procedure x ends, control returns to the server stub

server stub calls send, and then receive again and blocks

the client OS, passes it to the client stub, copies it to the caller and returns

Distributed Systems, Spring 2004 33

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Distributed Systems, Spring 2004 34

Parameter Passing
Remote procedure add(i, j)

A server stub may handle more than one remote procedure

Two issues with parameter passing:
Marshalling

Reference Parameters

Distributed Systems, Spring 2004 35

Parameter Passing
Parameter marshaling: There is more than just wrapping
parameters into a message:

• Client and server machines may have different data
representations (think of byte ordering)

• Wrapping a parameter means transforming a value into a
sequence of bytes

• Client and server have to agree on the same encoding:
- How are basic data values represented (integers,
floats, characters)
- How are complex data values represented (arrays,
unions)

• Client and server need to properly interpret messages,
transforming them into machine-dependent representations.

Distributed Systems, Spring 2004 36

Passing Value Parameters

a) Original message on the Pentium (right-to-left)
b) The message after receipt on the SPARC (left-to-right)
c) The message after being inverted, ok with integers, problem

with strings

The little numbers in boxes indicate the address of each byte

An integer (one 32-bit word), and a four-character string (one 32-bit word)

Example, integer 5 and string JILL

7

Distributed Systems, Spring 2004 37

Passing Reference Parameters
Pointer refers to the address space of the process it is being used

Solutions:

Forbid pointers and reference parameters in general

Use copy in/copy out semantics: while procedure is executed,
nothing can be assumed about parameter values (only Ada supports
this model).

RPC assumes all data that is to be operated on is passed by
parameters. Excludes passing references to (global) data.

One optimization, if the stubs know which are parameters are input
and output parameters -> eliminate copying

What about pointers to complex (arbitrary) data structures?

Distributed Systems, Spring 2004 38

Parameter Specification and Stub Generation

Need to agree on:

Encoding rules (message
format, representation of
simple data structures)

Actual exchange of
messages (e.g., TCP/IP)

Implement the stubs!

Stubs for the same
protocol and different
procedures differ only in
their interfaces to the
applications

Interface Definition
Language (IDL)

Distributed Systems, Spring 2004 39

Extensions

Calls to local procedures

Asynchronous RPC

Distributed Systems, Spring 2004 40

Doors
Try to use the RPC mechanism as the only mechanism for interprocess
communication (IPC).

Doors are RPCs implemented for processes on the same machine
A single mechanism for communication: procedure calls (but with doors, it is
not transparent)

Server calls door_create:
registers a door, an id is
returned

fattach: associates a symbolic
name with the id

Client invokes a door using
door_call, the id and any
parameters

The OS does an upcall to the
server

To return the result
door_return

Distributed Systems, Spring 2004 41

Asynchronous RPC
Try to get rid of the strict request-reply behavior, and let the client
continue without waiting for ananswer from the server.

Traditional RPC Asynchronous RPC

Asynchronous RPC: the server immediately sends a reply back to the client the
moment the RPC request is received, after which it calls the requested
procedure

Distributed Systems, Spring 2004 42

Differed Synchronous RPC

Deferred Synchronous RPC: two asynchronous RPCs combined

The client uses asynchronous RPC to call the server

The server uses asynchronous RPC to send the reply

One way RPC: the client does not wait at all (reliability?)

8

Distributed Systems, Spring 2004 43

Performing an RPC

At-most-one semantics: no call is ever carried out more
than once, even in the case of system crashes

Idempotent remote procedure: a call may be repeated
multiple times

Distributed Systems, Spring 2004 44

DCE RPC

Let the developer concentrate on only the client- and server-specific
code; let the RPC system (generators and libraries) do the rest.

Distributed Systems, Spring 2004 45

Writing a Client and a Server

The steps in writing a client and a server in DCE RPC.

IDL permits procedure declarations (similar to function prototypes in C).Type definitions, constant
declarations, etc to provide information to correctly marshal/unmarshal paramters/results. Just the
syntax (no semantics)

A globally unique identifier Generate a
prototype IDL with

a unique id

Edit the IDL, fill in the
names of the remote
procedures and their

parameters

Distributed Systems, Spring 2004 46

Binding a Client to a Server
1. Locate the server machine

2. Locate the server on the machine: need to know an endpoint (port) on the server
machine to which it can send messages

A table of (server, endpoints) is maintained on each server machine by a process
called the DCE daemon

The server asks the OS for an endpoint and registers this endpoint with the DCE

The client asks the DCE daemon at the server’s machine to lookup the endpoint

Distributed Systems, Spring 2004 47

RPCgen
Check out the web page for an example

Programmer writes an example.x file

with the definitions of remote procedures (their prototype) and other variables

RPCgen generates:

example.h (header file, function prototypes)

exampel_svc.c (server stub)

example_clnt.c (client stub)

example_client.c (template, the programmer edits this file, procedure calls)

example_server.c (template, the programmer edits this file)

Distributed Systems, Spring 2004 48

Remote Object Invocation

Distributed Objects
Remote Object Invocation

Parameter Passing

9

Distributed Systems, Spring 2004 49

Distributed Objects

Expand the idea of RPCs to invocations on remote objects

Data (state) and operations on those data encapsulated into an object

Operations are implemented as methods and are accessible through
interfaces

An object offers only its interface to clients.

An object may implement many interfaces;

Given an interface definition, there may be several objects
that offer an implementation for it

An interface and its implementation on different machines

Distributed Systems, Spring 2004 50

Distributed Objects

A client binds to a distributed object: an implementation of the object’s interface,
called a proxy, is loaded into the client’s address space

Proxy (analog to a client stub):

Marshals method invocations into messages & Un-marshals reply messages

Actual object at a server machine: offers the same interface

Skeleton (analog
to server stub)

Un-marshals
requests to
proper method
invocations at the
object’s interface
at the server

Note: the object itself is
not distributed, aka
remote object

Distributed Systems, Spring 2004 51

Distributed Objects

Compile-time objects:
Related to language-level objects (e.g., Java, C++)

Objects defined as instances of a class
Compiling the class definition results in code that allows to instantiate Java
objects
Language-level objects, from which proxy and skeletons are automatically
generated.
Depends on the particular language

Runtime objects: Can be implemented in any language, but require use of an
object adapter that makes the implementation appear as an object.

Adapter: objects defined based on their interfaces
Register an implementation at the adapter

Distributed Systems, Spring 2004 52

Distributed Objects

Transient objects: live only by virtue of a server: if the server
exits, so will the object.

Persistent objects: live independently from a server: if a server
exits, the object’s state and code remain (passively) on disk.

Distributed Systems, Spring 2004 53

Provide system-wide object references, freely passed between
processes on different machines
Reference denotes the server machine plus an endpoint for the object
server, an id of which object

When a process holds an object reference, it must first bind to the
object

Bind: the local proxy (stub) is instantiated and initialized for specific
object – implementing an interface for the object methods

Two ways of binding:
Implicit binding: Invoke methods directly on the referenced object
(requires global references)

Explicit binding: Client must first explicitly bind to object before
invoking it (generally returns a pointer to a proxy that then becomes
locally available)

Binding a Client to an Object

Distributed Systems, Spring 2004 54

Binding a Client to an Object

(a) Example with implicit binding using only global references
(b) Example with explicit binding using global and local references

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(a)

Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)

10

Distributed Systems, Spring 2004 55

Basic RMI
Assume client stub and server skeleton are in place

Client invokes method at stub

Stub marshals request and send it to server

Server ensures referenced object is active

Created separate process to hold object

Load the object into server process

Request is unmarshalled by object’s skeleton, and referenced object
is invoked

If request contained an object reference, invocation is applied
recursively

Result is marshalled and passed back to client

Client stub unmarshals reply and passes result to client application

Distributed Systems, Spring 2004 56

Static vs Dynamic RMI
Remote Method Invocation (RMI)

Static invocation: the interfaces of an object are known when the client
application is being developed

If interfaces change, the client application must be recompiled

Dynamic invocation: the application selects at runtime which method it will
invoke at a remote object

invoke(object, method, input_parameters, output_parameters)

method is a parameter, input_parameters, output_parameters data structures

Static: fobject.append(int)

Dynamic: invoke(fobject, id(append), int)

id(append) returns an id for the method append

Example uses: browsers, batch processing service to handle invocation
requests

Distributed Systems, Spring 2004 57

Object References as Parameters

When invoking a method with an object reference as a parameter, when it
refers to a remote object, the reference is copied and passed as a value
parameter (pass-by-reference)

When the reference refers to a local object (i.e., an object in the same
address space as the client) the referred object is copied as a whole and
passed along with the invocation (pass-by-value)

Distributed Systems, Spring 2004 58

Java RMI

Distributed objects integrated into the language

Remote objects (i.e., state on a single machine, interfaces available to
many) the only form of distributed objects

Interfaces implemented by proxies that appear as a local object

Differences between remote and local objects (violating distribution
transparency)

Cloning

Cloning a local object O results in a new object of the same type as O and
with exactly the same state

Cloning of a remote object O executed only by the server – proxies of the
actual object are not cloned (have to bind to the clone to access it)

Distributed Systems, Spring 2004 59

Java RMI

Differences between remote and local objects (continued)

Java allows objects to be constructed as a monitor by declaring a
method to be synchronized (if two processes simultaneously call a
synchronized method, only one will proceed while the other will be
blocked)

Two ways:

Implement synchronization at the proxy level (block at the client -
hard)

Implement synchronization at the server level (what if a client
fails?)

Java allows concurrent access to synchronized methods from different
proxies (need to use separate techniques)

Distributed Systems, Spring 2004 60

Java RMI

Any serializable object type can be used as a parameter to an RMI

A type is serializable if it can be marshalled

Local objects are passed by value; whereas remote objects are passed by
reference

A remote object is built from two different classes:

server class: implementation of the server-side code

client class: implementation of the proxy (needs the server’s network
address and endpoint)

Proxies are serializable, thus can be marshalled and passed as parameters

(sent over to other processes, which can unmarshall them and use them as
references to remote objects)

11

Distributed Systems, Spring 2004 61

Java RMI

Check out the web page for an implementation

