)

invent

Speculative Routing and Update Propagation:
A Kundali Centric Approach

Aditya Mohant', Vana Kalogeraki
Intelligent Enterprise Systems L aboratory
HP Laboratories Palo Alto
HPL-2002-237

August 22" | 2002+

E-mail: a@cs.brown.edu, vana@hpl.hpl.com

routing, Peer-to-peer networks have gained much attention due to their attractive
update features of sdf-organization, scalability and decentralized control. The
propagation, key challenge in these networks is how to efficiently locate and retrieve
bloom filters, the correct data. Techniques for efficient searching in peer-to-peer

networks have been recently proposed; however, these handle location
and routing as a single problem and impose a structure in the network by
mapping the data to particular nodes. In this paper, we propose
propagation and routing agorithms for a fully decentralized, self-
organizing network. Our goal is to maximize the probability of finding the
data, minimize peer access latencies and balance the workload among
many peers. Central to our approach is the Kundali data structure that
represents the set of data maintained by the peers and drives the smart
routing of the search requests (queries). Kundali, for each peer, maintains
aBloom Filter based set of synopsis of the data expected to be present at
each routing direction. Requests that cannot be answered locally, are
propagated only to those immediately connect peers whose synopsis
depict the closest match. We have implemented our algorithms in the
context of afully decentralized Internet caching service in our internal HP
network. Our mechanism is inexpensive, highly scalable, resilient to node
failures and with no administration cost. Experimental results validate our
algorithms and show that they have good performance results.

peer-to-peer

* Internal Accession Date Only Approved for External Publication
! Department of Computer Science, Brown University, RI, 02912
a Copyright Hewlett-Packard Company 2002

Speculative Routing and Update Propagation: A Kundali Centric Approach

Aditya Mohan
Department of Computer Science, Brown University, RI, USA 02912

a@cs.brown.edu

Vana Kalogeraki
HP Labs, 1510 Page Mill Road, Palo Alto, CA 94304
vana@hpl.hp.com

Abstract - Peer-to-peer networks have gained much attention
due to their attractive features of self-organization, scalability
and decentralized control. The key challenge in these networks
is how to efficiently locate and retrieve the correct data.
Techniques for efficient searching in peer-to-peer networks have
been recently proposed; however, these handle location and
routing as a single problem and impose a structure in the
network by mapping the data to particular nodes. In this paper,
we propose propagation and routing algorithms for a fully
decentralized, self-organizing network. Our goal is to maximize
the probability of finding the data, minimize peer access
latencies and balance the workload among many peers. Central
to our approach is the Kundali data structure that represents
the set of data maintained by the peers and drives the smart
routing of the search requests (queries). Kundali, for each peer,
maintains a Bloom Filter based set of synopsis of the data
expected to be present at each routing direction. Requests that
cannot be answered locally, are propagated only to those
immediately connect peers whose synopsis depict the closest
match. We have implemented our algorithms in the context of a
fully decentralized Internet caching service in our internal HP
network. Our mechanism is inexpensive, highly scalable,
resilient to node failures and with no administration cost.
Experimental results validate our algorithms and show that they
have good performance results.

Keywords: peer-to-peer networks, self-organizing networks,
routing, update propagation, bloom filters.

I. INTRODUCTION

As computers become more pervasive and
communication technologies advance, a new generation of
peer-to-peer (P2P) networks are increasingly becoming
popular for real-time communication, ad-hoc collaboration
and resource sharing in a large-scale distributed environment.
P2P networks create virtual (logical) networks with their own
location and routing mechanisms that allow individual
computers to share data (e.g., files) and resources (CPU,
storage, etc.) directly, without the need for dedicated servers.

The topology of these networks and the routing
mechanisms used, have been the focus of much research
recently [14,17]. The challenge is, given the exact reference
of an object of interest, how can you efficiently retrieve the
correct object from a fully decentralized, self-organizing

network? The location, intermittent connectivity, autonomy,
and organization of the peers have a significant impact on the
scalability, efficiency and performance of the distributed
applications.

The importance of these problems has been recognized by
recent P2P systems such as Oceanstore[8,11], Pastry[12], and
Chord[13] that employ distribution and lookup protocols
dictated by a consistent mapping between an object key and a
hosting node. Location and routing is handled as a single
problem, which is typically restricted by the frequent node
arrivals and departures in the network. Early peer-to-peer
systems such as Napster [15] and Morpheus [16] use
centralized indexing server for the contents of the peers. Each
peer that joins the network uploads the list of its files to the
central server. Freenet [6] and Gnutella [7] on the other hand,
are completely self-organizing; a node joins the network of
peers by establishing an arbitrary and ad-hoc connection with
at least one node in the network. Search is performed
independently of the search query or the peers that can
answer it. As a result, the messages travel a large number of
hops from one node to another until the results are found. As
measured in [2], the amount of bandwidth incurred by
relaying transmission of 83' bytes in a network with an
average of 8 connections per peer and where each message is
propagated a maximum of 8 times, is 1,275,942,400 bytes.

Our approach builds upon the notion of immutable data
objects [5] to produce references that uniquely characterize
the data objects in the network. The distribution of the objects
is driven by decisions made by the individual peers based
only on the stored information available locally. Central to
our approach is the smart routing of the queries and the
dissemination of the updates. Each node creates and
maintains a set of data synopsis for each of the direction
where it can forward a query. This set of data synopsis, which
we are calling Kundali, is the key component of our system.
A data synopsis represents a summary of the data objects
maintained by that peer. When the request cannot be served
locally at the node, the node compares it with the summaries
of its peers and sends the query message only to those peers

1
IP header = 20 bytes, TCP header = 20 bytes, Gnutella header = 23 bytes,
Minimum speed 1 byte, Search string 19 bytes (typical load)

whose summaries show promising results. Individual object
operations (e.g., object create, object delete) are grouped into
group_update operations and the incremental updates are
propagated to the peers. Under our approach, the memory
requirements as well as the processing and network
bandwidth for routing and wupdate propagation are
significantly reduced.

Our mechanism has the following advantages:

e Maximizes the probability of finding the data as it routes
the request messages (search requests) directly to those
nodes that show promising results.

e Reduces the number of messages in the network and also
the number of peers that process and propagate the
messages.

e Balances the load in the network and reduces query
latency by distributing the requests over multiple peers.

e Scales well with respect to the number of peers as it
generates synopsis of data and periodically disseminates
them to the peers.

Our routing and update propagation algorithms using
Kundali, are used to build a fully decentralized Internet
caching service. The cache is organized as a network of
peers, each maintaining a set of files. There are no centralized
servers or dedicated hardware to hold the files. The files are
kept at the individual user’s machines. Peers export their
local caches to other nodes and cooperate to provide a wide-
area caching functionality. Our mechanism guarantees that
the requests are routed efficiently to the correct peers with the
advantages of being inexpensive, highly scalable, resilient to
node failures and requiring little administration.

The rest of the paper is organized as follows. Section 2
presents an overview of our system and Section 3 describes
the Bloom Filter mechanism. In Sections 4, 5 & 6 we propose
our routing and update propagation algorithms and in Section
7 we present our experimental results. Section 8 concludes
the paper.

II. SYSTEM MODEL

We assume a logical network of nodes (peers) in which
each node maintains connections with other nodes. The
number of connections is typically limited by resources at the
peer and is updated dynamically based on the peers’ interests.

The network is self-organizing; peers use their own
incentive-based policies to decide to which peers to connect
to or to query in the system. A node searches in the network
by sending request (Query) messages to its peers. The Query

message contains a constraint that will be evaluated locally in
each node to determine what results to return. When a node
discovers that a peer frequently produces good results to its
requests, it attempts to move closer to it in the network by
connecting directly to that peer. A more detailed description
of our self-organization algorithm is presented in [10].

Each peer is associated with a local store for the
repository of the data objects (files). Files are uniquely
identified by the means of intrinsic references [5], which are
generated when the files are inserted in the system. Intrinsic
references are based on the hash digest of the actual contents
of the files rather than their name or location and allow us to
create persistent, state-independent and immutable storage.
Each file is characterized by meta-data such as title, fetch
date, expiry date, etc. When a new file is inserted or existing
files are updated or deleted from the repository, the node also
updates the corresponding meta-data.

Each node builds a synopsis of the files in its store and
sends it to its direct peers. The node uses its peers’ synopsis
to decide where to route the request next. When a search
request arrives at the node, the node evaluates the request
locally (searches through its local store) and if the request
cannot be served locally, it then routes the request only to
those of each peers whose synopsis have the closest match.
The synopses are produced using the Bloom Filter approach,
as described in the next section.

A. Messages in the Peer to Peer Network

The peers in the network communicate by exchanging the
following messages:

. Ping/pong: A node sends a ping message to connect to
the network of peers. A peer that accepts the
connection replies with a pong message that includes
the IP address of the sender node.

. Query: This is the primary mechanism for searching in
the network and includes a constraint that will carry
the search operation. If the peer node has a reply, it
responds with a QueryHit message.

. QueryHit: Used as a reply to the Query message and
includes information so that the recipient can acquire
the corresponding data.

. Update: A node generates a new data synopsis when
files are added, deleted or updated in the local
repository, or when new peers join the network. It then
uses the Update message to send the synopsis to its
direct peers.

III. BLOOM FILTER BACKGROUND

Bloom Filters [1] are memory efficient randomized data
structures whose functionality is to test the cardinality of a
member in a group. The Bloom Filter data structure gives a

compact representation of the group by using an array of bits;
each takes a binary one or a zero value. The cardinality of a
contender is checked by comparing the bit array generated by
hashing the contender by multiple hash functions, to the bit
array of the Bloom Filter. This with certain errors gives a
probabilistic answer to whether the contender is in the group
or not. Even if the bits generated by hashing the contender
has all the corresponding bits set in the Bloom Filter, there is
a non-zero probability that the element may not be in the
group. This is referred to as false positives. On the other hand
if there is a bit in the contender’s hashed bits that is not set in
the Bloom Filter, we can certainly say that the contender
element is not there in the group. Hence there is a non-zero
probability of a false positive but a zero probability of a false
negative. This fact makes the Bloom Filter approach highly
suitable for a wide variety of distributed network
applications.

A. Mathematics

The reduction in memory requirement for representing the
membership information in a group is accomplished by
exploiting the possibility that a small number of false
positives may not greatly affect the system performance.
There is a direct relation between the probability of a false
positive and the number of bits one use for representation of
the Bloom Filter.

Assume a group of »n elements given by the set
S'={a,,a,,...,a,} . The Bloom filter that represents the set
S is described by a bit array BF of length m, all initially set to
0. We assume k hash functions, h,,h,,....h, with

h; : X — {1..m} . Each hash function maps each element of
the set S to a value between {l..m}in a totally random
fashion. For each element s € S, the bits at position

h,(8),h,(s),...h, (s)are set to 1. Note though, that, a bit

may be set to 1 multiple times. To determine whether a
certain element x is in S, we check whether all the bits given

by h,(x),h,(x),...n, (x)are set to 1. If any of them is 0,
then we are certain that the element x is not in the set S. If all
hy(x),h,(x),...h, (x) are set to 1, we conclude that x is in

S, although there is a certain probability that we are wrong
(this is the case that a Bloom Filter may yield a false
positive).

After inserting n elements into a Bloom filter of size m using
k hash functions, the probability p,, that a specific bit is still
0 is given by:

(1)

1" S
TR
m

Hence, the probability of a false positive, that is, the
probability that all £ bits have been previously set is:

poetear o o]

Given m and n, our goal is to optimize the number of hash
functions k to minimize the false positive probability p_ .

2)

From (2), we derive that p,,, is minimized for k = — In2 .
n

This is also a global minimum. Thus for an optimal solution:

m

(1/2)* = (0.6185)" 3)

In practice, to reduce the computational complexity, a small
value for £ is preferred.

B. Economics - Memory, Computational Complexity and
Bandwidth

As shown in formula (3), there is a trade off between the
number of hash functions to use (k), the size of the bloom
filter (m) and the number of elements (n) in the network.
Hence the performance of the Bloom Filter mechanism in a
network is affected by the following factors:

e The computational overhead to lookup a value - number
of hash functions to use

o The memory requirement - Bloom Filter size

e The bandwidth requirement - Bloom Filter size

e Error rate - false positives

Among these, the performance can greatly degrade if the
error rate is high. This is the case where a query is propagated
among peers that do not have the object in their repositories.
To get an optimal solution, £ and m need to satisfy formula
(3). Furthermore, to reduce the computational complexity, k&
needs to be small. These force us to make the Bloom Filter
size (m) large. This to some extent can makes things difficult
for a peer, which may just be a PDA with 16MB of memory.
But we believe that this is a reasonable requirement. For
example, maintaining a Bloom filter of 128 bits size for each
neighboring peer and assuming an average number of 5
connections per peer, the total memory requirement comes
out to be 80 bytes, which is quite reasonable even for
machines with strict resource requirements.

Another important consideration is the bandwidth
consumption to propagate the bloom filter updates among the
peers. [2] for example, compress the Bloom filter array
before transmission by cleverly closing a combination of &
and m so as to reduce the probability that a bit is 1 to 1/3, at
the expense of introducing some extra computational
complexity. To minimize the traffic in the network, our
approach generates updates only when there is a change in
the peer’s local Bloom filters or when new peers join the
network. The size of each Bloom filter message is just a few
bytes. Furthermore, by grouping individual Bloom filter
updates into group updates we can further reduce the
bandwidth consumption while maintaining reasonable
performance. However, with the key provision that soon
peers will be connected via low-latency, high-bandwidth
networks, even peers running on wireless devices will be able
to get a good quality of service.

Hence, in practice, with a reasonable size for the Bloom
Filter m and a small number of hash functions %, the
bandwidth consumption can be kept low while having
minimal computational complexity.

IV. KUNDALI ARCHITECTURE

Our mechanism builds a novel data structure called
Kundali, based on a modified version of the conventional
Bloom Filter approach. Each peer maintains two sets of
Bloom Filters; the Local Bloom Filter (LBF) that represents
the objects (files) in the local repository, and Remote Bloom
Filters (RBF) obtained from its immediate’ peers. A Remote
Bloom Filter is computed as the sum (OR) of the Bloom
Filters maintained by that peer and therefore represents the
view of that peer. Essentially, this gives us an indication of
which data objects are reachable through that immediate peer.
Hence, the set of local Remote Bloom Filters gives the
approximate direction in which the queries should travel in
order to maximize the probability of finding a particular
object. By appropriately choosing the size of the Bloom
Filter, we minimize the probability of false positives while
maximizing the probability that the query makes its way to
the exact location of the object.

Figure 1 illustrates the Kundali data structure maintained
by each peer. It is important to note that the Remote Bloom
Filter RBF(c) that node b maintains for ¢ is not equal to
node’s ¢ LBF(c). The reason is that, RBF(c) is essentially a
summary of all the files that reside in node’s ¢ sub-network
and computed as RBF(c) = LBF(b) + RBF(b) + RBF(d).

We represent a Local Bloom Filter by a 128-bit array
where each bit is associated with a counter. The counter is

? Two peers are called immediate, if they share a direct open
connection.

responsible for maintaining the consistency of the Local

=%

0101001000100
0101001000010

[y

[0101000000010 |
0101001000010 | d
0101001000010 | ©
0111111100010 | f

0101001000010 | a

b~| 0101000100000
0000100000000
0101011010000

=%

0101000000000
0010100100010

=%

o

0100000100010

d | 0101001111010

Fig. 1. Kundali update propagation when a new
node (‘a”) joins the network

Bloom Filter when there is a change in the status of the local
repository. When a file is added in the local repository, the
corresponding bits in the filter are set to 1 and the associated
counters are also initialized to 1. For each additional bit set in
the Local Bloom Filter, the corresponding counter is
incremented by 1. When a file is deleted, the corresponding
counters are decremented. If a counter reaches zero, the
corresponding bit in the Local Bloom Filter is reset to zero.
This ensures that the Local Bloom Filter is able to give a
reliable view of the local file repository.

V. ROUTING USING KUNDALI

This section describes our routing algorithm using the
Kundali data structure.

A node searches in the network by sending Query
messages to its peers. The Query message contains a
constraint (the file’s intrinsic reference and possibly some
meta-data) that will be evaluated locally at each peer to
decide what results to return. If the Query message cannot be
served locally, the node has to decide to which of its peers to
propagate the message next. The node sends the request to
those peers whose Bloom Filters are among the k numerically
closest to the object’s id (intrinsic reference). The results are
ranked based on the goodness of the comparison and the
Query message is propagated only to a certain percentage of
peers with highest ranks.

The rank is defined and updated dynamically by each
peer. Hence, at each hop the Query is probabilistically routed
closer to the correct destination. Essentially, if we propagate
the message only to the highest ranked peer we perform a
directed walk in the network. The advantage is that we reduce
the resource consumption but at a much slower update rate, at
the expense of potentially getting in-correct results. Our
experimental results demonstrate that if we route the request
to only one peer, we are almost always able to find an answer
to our query. (For details, see Section 7).

When the file is found in the network, the Query message
is no longer forwarded. To provide a termination condition so
that messages are not propagated indefinitely in the network
when no files are found, each message is associated with a
time_to live (TTL) field that represents the maximum
number of times the message can be propagated in the
network. The TTL value is decremented each time the
message reaches a peer. A node that receives a message with
TTL zero, stops forwarding the message. The pseudo-code
for the Query Routing algorithm is illustrated in Figure 2.

V1. UPDATE PROPAGATION

In our network, we consider that nodes decide
individually what files to store at their local repositories. This
regulates the rate at which updates are propagated to the
peers. Typically, updates are generated when files are
inserted, updated or deleted from the repository or when new
peers join the network. Individual file updates are typically
grouped into group updates to further reduce the bandwidth
consumption. The focal point of the update propagation
algorithm is to try to propagate the local updates in such a
way that the total amount of traffic in the network is kept to a
minimal.

Per receipt of an Update message, the node checks
whether the message corresponds to one of its immediate
peers, in order to update its Remote Bloom Filter entry in the
Kundali data structure. Otherwise, it creates a new entry for
the new peer. Then, it computes the synopsis of its local
Kundali and propagates the synopsis to its immediate peers.
The algorithm ensures that peers with the same interests,
which have a direct connection with that node, will get
notified for the update with minimal latency. To avoid loops
in update propagation, our algorithm detects duplicates, and
stops disseminating the updates further.

Lets consider what happens when a node joins the
network. As shown in Figure 1, node a connects to the
network via peer b. Initially node a will have it Kundali
initialized to just its local Bloom Filter. Node a will send its
LBF(a) to node b, which will add this to its Remote Bloom
Filter List. Node b then calculates a synopsis of all the filters
in its Kundali, but excluding each time the filter for that

HandleQuery (QueryRequest Query) {
Results = doLocalSearch(QueryBloomFilter, LocalRepository);
if (Results !=null)
return Results;
else { // need to forward the query to other peers
RankedList = getRank(ImmediatePeerList,
QueryBloomFilter, BloomFilterPlus);
// ' Will send to a fraction of the immediate peers only
ToSendList = getList(RankedList, PRate);
sendQuery(ToSendList, Query);
}
}

getRank (BloomFilter QueryBloomFilter,
BloomFilterList BloomFilterPlus){
init RankedList to 0;
do {
Rank =0;
for (k=0 until BloomFilterWidth) {
Bit = (QueryBloomFilter[k]) XOR (BloomFilterPlus.filter[k]);
Bit = NEG(Bit);
Rank = Rank + Bit;

}
BloomFilterPlus.filter = BloomFilterPlus.next;
add Rank to RankedList;
} // untill (have covered all bloomfilters in BloomFilterPlus)
return RankedList;

}

Fig. 2. Pseudo code for Query Routing using Kundali

particular direction in which the synopsis will be sent. Hence
the synopsis Bloom Filter to be sent to peer d will not contain
Bloom Filter that b had for direction of d. This is done in all
directions including the direction from which the original
Bloom Filter update came from. Synopsis is simply
calculated by doing an OR of the bits from various Bloom
Filter bit arrays. This is shown in Figure 1.

VII. IMPLEMENTATION

We used two scenarios to observe the working of our
algorithm in the peer-to-peer network. In the first scenario,
we evaluated the efficiency of our Kundali data structure by
determining how accurately and quickly a peer can find the
files in the network. In the second, we measured the reduction
in the number of messages.

A. Network Setup

We conducted a real experiment using a network of 25
peers over 100 Mbit/s Ethernet and using the TCP/IP protocol
in our local HP network. We used the Gnutella protocol [7]
for establishing the connections among the peers and
searching for files in the network. To construct the Kundali
data structure, we implemented new update messages that
propagate the RemoteBloom filters to the peers. The peers
were implemented in the Java version 1.1.4 language.

The peers were organized in a bi-directional graph
topology. The TTL parameter was set to 7. Each peer was
connected to either 2 or 3 peers. This made it possible for us
to trace the path of each query and check if the Kundali was
directing the queries to the right nodes towards the
destination. Moreover this also enabled us to the check the
routing accuracy of Kundali.

B. Kundali Prototype

To minimize the probability of false positives in the
network, our first objective was to determine optimal values
for the m, k, and n parameters.

To keep the computational complexity low we used 3
hash functions. On an average each peer was connected to 3
more peers; and therefore the number of Remote Bloom
Filters per peer was 3. A minimal false positive error is

achieved by using k = — In2 .Hence, by choosing a size
n

of 128 bits per Bloom filter, we were able to represent about
800 unique files in our network distributed among the peers.
These files could be further replicated at multiple peers.
These numbers give us very few chances of getting false
positives.

C. Performance metrics

We evaluated the accuracy of our Kundali data structure
using the following metrics:

e Propagation Rate (PRate): defined as the percentage
of peers to which to forward the request (Query) per
hop. A PRate of 100% denotes that the Query
message is propagated to all the immediate peers
(the typical Gnutella search mechanism), while a
PRate of 30% denotes that the Query is forwarded
only to 30% of the immediate peers.

e Popularity: this represents the percentage of peers
having a particular file and is computed as:

numPeersHaveFile

Popularity = *100

totalPeers
® Redundancy: defined as the percentage of excessive
results returned (objects found) per search request.
We assume that some redundancy is required, but it
should be minimal. This distinguishes are system
from others systems. Most of the existing system
focuses on finding multiple responses for a request.
But our goal is to obtain only few copies of the
object. This goal is directed by the fact that we know
the exact reference for that object. Hence the extra
copies of the object returned are considered as
‘redundant’ in our system. If the object is found, the

gotBloomFilter (BloomFilter ReceivedBloomPFilter,
HostAddress remotehost){
if (remotehost in ImmediatePeerList)
update <ReceivedBloomPFilter, remotehost> in BloomFilterPlus;
else
new <ReceivedBloomFilter, remotehost> in BloomFilterPlus;

BloomPFilterToSend = calculateSynopsis(BloomFilterPlus,
LocalBloomFilter, remotehost);
send BloomFilterToSend to all peers in ImmediatePeerList;

}

calculateSynopsis(BloomFilterPlus, LocalBloomFilter, remotehost){
do {
HostAddress = ImmediatePeerList.address;
bf = get(bloomfilter for HostAddress from BloomFilterPlus);
if ((HostAddress != remotehost) && (bf != null)) {
for (j=0 until BloomFilterWidth)

synopsis[j] = synopsis[j] OR bfj];

} untill (all peers in ImmediatePeerList covered)
//OR with local bloomfilter
for (j=0 till BloomFilterWidth){
synopsis[j] = synopsis[j] OR LocalBloomFilter[j];

return synopsis;

Fig. 3. Pseudo code for Update Propagation using
Kundali
request is not forwarded further in the network.
Redundancy is computed as:

redundancy = numkFilesFound £100

totalNumkFilesNetwork

We studied the effect of our algorithms for the following
three object allocation scenarios (related to how close the
files are to the requesting peers):

e Clustered: The objects were located close to each
other in the network.

® Random::Close to Sender: The objects were
scattered randomly in the network, but were only
few hops away from the origin of the query.

® Random::Far from Sender: The objects were
scattered randomly in the network, with most of the
objects far away from the origin of the query.

The above scenarios allowed us to demonstrate the efficiency

of our Kundali mechanism for different distributions of the
files in the network.

D. Analysis

In the first set of experiments we evaluated the accuracy
of our Kundali data structure by measuring the percentage of

data objects we find in the network in each of the three
different allocation strategies described above.

Figure 4 shows the redundancy of the objects as a
function of their popularity in the Clustered allocation
scenario. Each graph in the figure represents a different
propagation rate at the peers. For example, 30% indicates that
the node sends the Query to only about one third of the peers,
which in our case was 1 out of an average of 3 peers. Our
first observation is that our mechanism was able to discover
the objects at the peers efficiently in most of the cases. When
the PRate is high (100%, 70%) the objects are always
retrieved. When the PRate was 30% and at low popularity
ratio, there was a case when we did not get any responses at
all. That was because of false positives. The Kundali chose to
follow the wrong path and could not retrieve the object. Over
time, and as more peers cache or replicate the objects, the
objects get closer to the requested peers, and therefore, the
accuracy of our Kundali mechanism increases.

The Random::Close to Sender allocation strategy depicts
similar results, as shown in Figure 5. In this experiment we
were able to find the objects at all propagation rates even
though the error probability was non-zero. With a PRate of
30%, the Redundancy was 30% i.e we were able to find on an
average about 30% of the objects in the network. For the
70% and the 100% case this number becomes 57%.

The Random::Far from Sender allocation strategy depicts
the most interesting results (Figure 6). This is the case where
the objects are scattered randomly in the network, far from
the requesting node. With propagation rates of 100% and
70% we were able to retrieve more than 60% of the objects at
all times, similar to the previous cases. Notice, though, that
the probability of getting false positives increased when the
propagation rate was 30%. This stayed the same, even when
the popularity of the objects was increased. This indicates
that the distribution of the objects along with the topology of
the network greatly affects the routing decisions made by our
algorithm. However, the gradual movement of the objects of
interest closer to the requesting nodes improves the error
probability and maximizes the probability that the objects are
found in the network.

When using Kundali for routing the query (i.e. cases
when PRate was 70% and 30%) as seen from Figure 5 and 6,
the Redundancy value decreases. Note that the query contains
the exact file identifier for the file that we need to search.
Hence even a single successful query hit message will
suffice. For the case where the PRate is 30%, the
Availability is on an average about 20%. This in most cases
should be enough.

As one can notice that some of the points in the graphs
appear to follow a unique curvature compared to rest of the
points. This is due to the way the objects were placed in the
network. Also since we used only 25 peers to test our

]
]

5 3 8 B8
N

N

PN

| |

| |

Redundancy (% of Object Copies Returned)
n
8

o

4 8 12 16 2 2 28 k] %
Popularity (%of Peers having a Particular Object)

Fig. 4. Redundancy vs. Popularity for Different PRate for the case
when Replicas are Clustered.

8

8

8

3

8

8

Redundancy (% of Object Copies Returned)

=)

4 8 12 16 20 2 28 2 %
Popularity (%of Peers having a Particular Object)

Fig. 5. Redundancy vs. Popularity for Different Prate for the case
when Replicas Scattered Randomly but is close to the Query Origin.

8

5 8 8 8

Redundancy (% of Object Copies Returned)
58

o

T T T T T
4 8 12 16 20 24 28 32 36

Popularity (%of Peers having a Particular Object)

Fig. 6. Redundancy vs. Popularity for Different Prate for the case when
Replicas Scattered Randomly but are far from the Query Origin

prototype, the graph curvature is not smooth. Simulation for
testing peer-to-peer network is an option that we did think
about, but reliability of such simulations can sometime vary
considerably from the actual implementation driven from real
applications.

In the second set of experiments we measured the
bandwidth reduction in the network. Figure 10 shows the
percentage of reduction in the total number of messages in
the network using a PRate of 30%, compared to an
exhaustive search (when PRate = 100%). The figure shows
that the total bandwidth reduction is at least 60% in all object
allocation strategies. For the case when the objects are placed
randomly in the network (either close or far from the origin
of the query), the gain in bandwidth reduction is even more —
around 80%. Hence our approach greatly reduces the network
bandwidth without degradation in the performance.

VIIIL. RELATED WORK

The current distributed searches in pure peer-to-peer
networks [7] use a brute force algorithm and broadcast the
search requests to all the peers. This mechanism is not
efficient as the messages have to travel a large number of
hops from one peer to another to find the results and therefore
has the potential of flooding the network. To improve the
effectiveness of the blind searches, Lv et al [9] propose
random walks that reduce the network traffic. Techniques for
efficient searching in P2P networks have been proposed
recently in the literature [14,17]. In these, a node propagates
the query to some of its peers based on aggregated statistics
such as which peer was the last to answer a query. Our
routing mechanism is driven by the actual data stored at the
peers and the wupdates generated by the peers to
probabilistically move the requests closer to the results.

Recent work has studied the single problem of location
and routing in building global-scale persistent storage utility
centers [8, 12, 13]. Similar to our approach, Rhea and
Kubiatowicz [11] propose a probabilistic location protocol
based on attenuated Bloom filters, which improves the
latency of locating files. The difference from our mechanism
is that they locate the files to specific nodes based on some
keys and use these keys to route the requests to the nodes.
Moreover, Aspnes et al [18] have shown that there is no need
for global coordination in the network. Our approach has the
advantage that does not impose any structure; we assume that
the network is self-organizing driven only by local incentive-
based decisions that are made individually by each node.

The Bloom Filter mechanism has also been studied by
Fan et. al. in the context of caching protocols for relieving hot
spots on the WWW [4]. They demonstrate that that Bloom
filter representations are economical and reduce the
bandwidth consumption in the network. Our work builds
upon these results and demonstrates that the Bloom filter
approach can efficiently being used for propagation and
routing in a highly dynamic network subject to frequent node
arrivals and departures.

—A— Clustered
— -0~ - Random::Close to Sender
- - -l - - Random::Far from Sender

3

8
a
-

5]

:‘\
!—"’:’.‘:::E:::

4 8 12 16 20 24 28 32 36

o

Percentage Bandwidth (% messges for PRate of 30%
compared to PRate of 100%)
3

Popularity (%of Peers having a Particular File)

Fig. 7. % Percentage Bandwidth (request + reply) when using Kundali

IX. CONCLUSION AND FUTURE WORK

In this paper we propose routing and update propagation
mechanisms in self-organizing peer-to-peer networks. This
has the important advantages of adaptation and load
balancing, high availability and good performance. Our
mechanism builds bloom filter based synopsis that eliminate
the need to monitor the messages propagated in the network
or to send entire document lists among the peers. The
mechanism has been used and tested in our internal HP peer-
to-peer network. As for future work, we would like to
continue evaluating a network of this sort with more diverse
topologies and applications, and build upon our results to
employ caching techniques that minimize the network traffic
and improve the end-to-end latency.

REFERENCES

[1] B. Bloom, “Space/time trade-offs in hash coding with
allowable errors.,” in Communications of the ACM, July
1970, vol. 13(7), pp. 422-426.

[2] Mitzenmacher, M., Compressed Bloom Filters. in
Twentieth ACM Symposium on Principles of Distributed
Computing (PODC 2001), (Newport, Rhode Island, 2001).

[3] Mohan A., “Distributed Searching in Mobile Peer-to-Peer
Systems”, in “AD-HOC Networks and Wireless (ADHOC-
NOW), Sep. 2002, Toronto, Canada.

[4] Fan, L., Cao, P., Almeida, J. and Broder, A., Summary
Cache: A Scalable Wide-Area Web Cache Sharing Protocol.
in Proceedings of ACM SIGCOMM'98, (Vancouver, Canada,
1998).

[5] K. Eshghi, , Intrinsic References in Distributed Systems,
HP Labs Technical Report, HPL-2002-32 (2002).

[6] Freenet Home Page, http://freenet.sourceforge.com

[7] Gnutella Home Page, http://ww.gnutella.com

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W.
Weimer, C. Wells and B. Zhao, OceanStore: An Architecture
for Global-Scale Persistent Storage, Proceedings of ASPLOS,
Cambridge, MA (2000).

[9] Q. Lv, P. Cao, E. Cohen, K. Li and C. Shenker, Search
and Replication in Unstructured Peer-to-Peer Networks,
Proceedings of the 16" Innternational Conference on
Supercomputing, New York (June 2002).

[10] M. K. Ramanathan, V. Kalogeraki and J. Pruyne ,
Finding Good Peers in Peer-to-Peer Networks,", International

Parallel and Distributed Computing Symposium, Fort
Lauderdale, Florida (April 2002)

[11] S. C. Rhea and J. Kubiatowicz, Probabilistic Location
and Routing, Proceedings of the INFOCOM 2002, New York
(2002)

[12] A. Rowstron and P. Drusche, Storage Management and
Caching in PAST, a Large-scale Persistent Peer-To-Peer
Storage Utility, Proceedings of the 18th SOSP, Toronto,
Canada (2001)

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H.
Balakrishnan, Chord: A scalable peer-to-peer lookup service
for Internet applications, Proceedings of the SIGCOMM’01,
San Diego, CA (August 2001)

[14] B. Yang, H. Garcia-Molina, Efficient Search in Peer-to-
Peer Networks, Proceedings of ICDCS 2002, Vienna, Austria
(July 2002).

[15] Napster home page, http://www.napster.com

[16] Morpeus home page, http://www.musiccity.com

[17] B. Yang, H. Garcia-Molina, Comparing hybrid peer-to-
peer systems, Proceedings of Very Large Databases, Rome,
Italy, September 2001.

[18] J. Aspnes, Z. Diamadi, G. Shah, Fault-tolerance Routing
in Peer-to-Peer Systems, Proceedings of the 21st ACM
Symposium on Principles of Distributed Computing,
Monterey, CA (July 2002).

