
1

Distributed Systems, Spring 2003
1

Basics

Distributed Systems, Spring 2003
2

Topics to be covered

Definitions and Examples
Goals
Models (architectural, fundamental)
Hardware and Software Concepts
The Client-Server Model

Distributed Systems, Spring 2003
3

Historical

Two developments from mid 50s

• 100 million dollars -- 1 instr per sec

1000 dollars -- 10 million instr per sec

1012 price/performance gain

Rolls Royce cost 1 dollar -- a billion miles per gallon
(200-page manual to open the door)

• Local and Wide Area networks (LANs)

Distributed Systems, Spring 2003
4

Definition of a Distributed System

A distributed system is:

A collection of independent computers
that appears to its users as a single
coherent system

Two aspects:

(1) Independent computers

(2) Single system ⇒ middleware

Distributed Systems, Spring 2003
5

Definition of a Distributed System

Issues

(1) Concurrency

(2) No global clock

(3) Independent failures

Characteristics

(1) Heterogeneity hidden

(2) Interact with a consistent and uniform way

(3) Availability

(4) Scale

Distributed Systems, Spring 2003
6

A Distributed System as Middleware

Note that the middleware layer extends over multiple machines.

1.1

2

Distributed Systems, Spring 2003
7

Examples of Distributed Systems

The Internet
Intranets
Mobile and Ubiquitous Computing
The Web
p2p systems (such as Napster)
File systems (SUN, CODA, Adrews)
Storage Systems (Occean)
Object-based Systems (CORBA, DCOM, etc)
Groupware

Distributed Systems, Spring 2003
8

intranet

ISP

desktop computer:

backbone

satellite link

server:
network link:

A typical portion of the Internet

ISPs: Internet Service Providers

Backbone links the Intranets together

Distributed Systems, Spring 2003
9

A Typical Intranet

the rest of

email server

Web server

Desktop
computers

File server

router/firewall

print and other servers

other servers

print

Local area
network

email server

the Internet

• A portion of the Internet separately administrated

• Several LANs linked by backbone connections

• Connected to the Internet via a router

• Firewalls protects an intranet by preventing unauthorized messages
leaving or entering; implementing by filtering messages

Distributed Systems, Spring 2003
10

Portable and handheld devices in a distributed system

Laptop

Mobile

Printer
Camera

Internet

Host intranet Home intranetWAP
Wireless LAN

phone

gateway

Host site

• Devices: laptop computers, handheld devices (e.g., PDAs, video cameras),
wearable devices, devices embedded in appliances

• Mobile computing, ubiquitous computing, location-aware computing

• In the figure above: 3 different forms of wireless connections: wireless
LAN, mobile phone through WAP, infra-red link

Distributed Systems, Spring 2003
11

Resource sharing on the Web

Internet

BrowsersWeb servers

www.google.com

www.cdk3.net

www.w3c.org

Protocols

Activity.html

http://www.w3c.org/Protocols/Activity.html

http://www.google.comlsearch?q=kindberg

http://www.cdk3.net/

File system of
www.w3c.org

• WWW a system for publishing and accessing resources and services
across the Internet
• Web browsers act as client
• Request resources (e.g., web pages) from web servers
• CERN , 1989
• Hypertext structure among documents

Distributed Systems, Spring 2003
12

Computers in the Internet

Date Computers Web servers

1979, Dec. 188 0

1989, July 130,000 0
1999, July 56,218,000 5,560,866

3

Distributed Systems, Spring 2003
13

Computers vs. Web servers in the Internet

Date Computers Web servers Percentage

1993, July 1,776,000 130 0.008

1995, July 6,642,000 23,500 0.4
1997, July 19,540,000 1,203,096 6
1999, July 56,218,000 6,598,697 12

Distributed Systems, Spring 2003
14

Goals

1. Connecting Users and Resources

2. Transparency

3. Openness

4. Scalability

Distributed Systems, Spring 2003
15

Connecting Users and Resources

Why sharing?

Typical resources

Printers, computers, storage facilities,
data, files

Economics

Collaboration, Information Exchange
(groupware)

Problems with sharing

Security

Unwanted Communication

Distributed Systems, Spring 2003
16

Transparency in a Distributed System

access transparency

Hide differences in data representation and how
a resource is accessed

Intel (little endian format)/Sun SPARC (big endian) (order of
bytes)

OS with different file name conversions

Distributed Systems, Spring 2003
17

Transparency in a Distributed System

location transparency

Hide where a resource is located
importance of naming, e.g., URLs

migration transparency

Hide that a resource may move to another location

relocation transparency

Hide that a resource may move to another location
while in use

example, mobile users

Distributed Systems, Spring 2003
18

Transparency in a Distributed System

replication transparency

Hide that a resource is replicated
subsumes that all replicas have the same name
(and thus location transparency)

concurrency transparency

Hide that a resource may be shared by several
competitive users

leave the resource in a consistent state
more refined mechanism: transactions

4

Distributed Systems, Spring 2003
19

Transparency in a Distributed System

failure transparency

Hide the failure and recovery of a resource

persistent transparency

Hide whether a (software) resource is in memory or
disk

L. Lamport: You know you have one [distributed system] when
the crash of a computer you ‘ve never heard of stops you for
getting any work done

Important problem: inability to distinguish between a
dead resource and a painfully slow one

Distributed Systems, Spring 2003
20

Different Forms of Transparency in a
Distributed System (summary)

Hide whether a (software) resource is in memory or on
diskPersistence

Hide the failure and recovery of a resourceFailure

Hide that a resource may be shared by several
competitive usersConcurrency

Hide that a resource may be shared by several
competitive usersReplication

Hide that a resource may be moved to another
location while in useRelocation

Hide that a resource may move to another locationMigration

Hide where a resource is locatedLocation

Hide differences in data representation and how a
resource is accessedAccess

DescriptionTransparency

Distributed Systems, Spring 2003
21

(Coulouris et. al.)
Access transparency: enables local and remote resources to be accessed using
identical operations. (same)

Location transparency: enables resources to be accessed without knowledge of
their location. (same) – also migration and relocation
Mobility transparency: allows the movement of resources and clients within a
system without affecting the operation of users or programs.

Replication transparency: enables multiple instances of resources to be used to
increase reliability and performance without knowledge of the replicas by users or
application programmers.
Concurrency transparency: enables several processes to operate concurrently
using shared resources without interference between them.

Failure transparency: enables the concealment of faults, allowing users and
application programs to complete their tasks despite the failure of hardware or
software components. – also persistent transparency

Performance transparency: allows the system to be reconfigured to improve
performance as loads vary.
Scaling transparency: allows the system and applications to expand in scale
without change to the system structure or the application algorithms.

Distributed Systems, Spring 2003
22

Degree of Transparency

Not always desirable

Examples?

Trade-off between a high degree of transparency
and the performance of a system

Users located in different continents
(contex-aware)

Not always possible

Examples?
Hiding failures (you can distinguish a slow computer from
a failing one/whether an action was performed)

Keep web caches exactly up-to-date

Immediately flushing write operations to disk

Retry to access a web page to mask a failure

Distributed Systems, Spring 2003
23

Goals

1. Connecting Users and Resources

2. Transparency

3. Openness

4. Scalability

Distributed Systems, Spring 2003
24

Openness
Open distributed system

Be able to interact with services from other open systems,
irrespectively of the underlying environment

Offers services according to standard rules that describe the
syntax and the semantics of these services

• Rules formalized in protocols

• Services specified through interfaces (described in an Interface
Definition Language (IDL) (but only the syntax part)

• Neutral and complete specifications (with regards to a potential
implementation)

5

Distributed Systems, Spring 2003
25

Openness

• Interoperability: to what extend can work together

• Portability: to what extend an application developed for A
can be executed on B that implements the same interface
with A

Distributed Systems, Spring 2003
26

Openness

• Separate Policy from Mechanism

• A system organized as a collection of relatively small and easily
replaceable or adaptable components

•Provide definitions of the internal parts of the system as well

A distributed system provides only mechanisms

Policies specified by applications and users

Example policies:

• What level of consistency do we require for client-cached data?

• Which operations do we allow downloaded code to perform?

• Which QoS requirements do we adjust in the face of varying
bandwidth?

• What level of secrecy do we require for communication?

Distributed Systems, Spring 2003
27

Scalability

• size (number of users and/or processes)

• geographical (maximum distance between nodes)

• administrative (number of administrative
domains)

Along three different dimensions:

The (non) solution: powerful servers

Distributed Systems, Spring 2003
28

Scalability Problems

Decentralized algorithms

• No complete information about the system state

• Make decision only on local information

• Failure of one machine does not ruin the algorithm

• No assumption of a global clock

Doing routing based on complete informationCentralized algorithms

A single on-line telephone bookCentralized data

A single server for all usersCentralized services

ExampleConcept

Distributed Systems, Spring 2003
29

Scalability

Synchronous communication
In WAN, Unreliable and point-to-point

Geographical scalability:

How to scale a distributed system across multiple, independent
administrative domains: conflicting policies with respect to
resource usage (and payment), management and security

Expand to a new domain

• Protect itself against malicious attacks from the new
domain

• The new domain has to protect itself against malicious
attacks from the distributed system

Distributed Systems, Spring 2003
30

Scaling Techniques

• hiding communication latencies

• distribution

• replication

Three techniques:

6

Distributed Systems, Spring 2003
31

Scaling Techniques

try to avoid waiting for responses to remote service
requests as much as possible

• asynchronous communication (do something else)

• moving part of the computation to the client
process

Hiding communication latencies

Distributed Systems, Spring 2003
32

Scaling Techniques

The difference between letting:

a) a server or

b) a client check forms as they are being filled

Distributed Systems, Spring 2003
33

Scaling Techniques

Taking a component, splitting into
smaller parts, and spreading these
parts across the system

Distribution

Example:

(1) The World Wide Web

(2) Domain Name Service (DNS)

hierarchically organized into a tree of domains

Each domain divided into non overlapping zones

The names in each domain handled by a single name server

Distributed Systems, Spring 2003
34

Scaling Techniques

An example of dividing the DNS name space into zones.

nl.vu.cs.flits

Distributed Systems, Spring 2003
35

Scaling Techniques

• increase availability

• balance the load

• reduce communication latency

• but, consistency problems

Replication

Caching (client-driven)

Distributed Systems, Spring 2003
36

Models

7

Distributed Systems, Spring 2003
37

System Models

Examples include the client-server model and the p2p model

An architectural model of a distributed system is
concerned with the placement of its parts and the
relationships between them

• determine the distribution of data and computational tasks
amongst the physical nodes of the system

• useful when evaluating the performance, reliability, scalability
and other properties of distributed systems

1. Architectural models

2. Fundamental models

Distributed Systems, Spring 2003
38

System Models

Fundamental models are concerned with a more formal description
of the properties that are common in all of the architectural models

Models:

• Interaction model deals with performance and with the difficulty
of setting time limits in distributed systems, for example for
message delivery

• Failure model gives a precise specification of the faults that can
be exhibited by processes and communication channels. Defines
reliable communication and correct processes.

• Security model discusses the possible threats to processes and
communication channels.

Distributed Systems, Spring 2003
39

Interaction Model

• Distributed systems are composed of multiple interacting
processes

• Their behavior and state can be described by a distributed
algorithm: a definition of the steps to be taken by each
process including the transmission of messages between
them

• Messages are transmitted between processes to transfer
information among them and to coordinate their activity

Distributed Systems, Spring 2003
40

Interaction Model

Communication performance characteristics:

Latency: delay between sending a message by one process and
its receipt by another

Bandwidth of a computer network: total amount of information
that can be transmitted over it in a given time

Jitter: the variation in the time taken to deliver a series of
messages

Computer clocks:

Clock drift rate: relative amount that a computer clock differs
from a perfect reference clock

Distributed Systems, Spring 2003
41

Variants of the Interaction Model

Based on whether they set time limits (lower and upper bounds)
on:

• Process execution speeds

• Message transmission delays

• Clock drift rates

Synchronous distributed systems (can set timeouts, can be built)

Asynchronous distributed systems (e.g., Internet, web)

Despite the lack of accurate clocks, the execution of a system
can be described in terms of events and their ordering

Distributed Systems, Spring 2003
42

Failure Model

Classification of failures:

•Omission failures:

when a process or communication channel fails to perform
actions that is supposed to do

Process omission failure: crash

Fail-stop crash is other processes can detect certainly
that the process has crashed

8

Distributed Systems, Spring 2003
43

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffe

receivem

Communication omission failures: send-omission, channel-
omission, and receive omission

Failure Model

Distributed Systems, Spring 2003
44

Failure Model

Classification of failures:

• Arbitrary or Byzantine failures

Arbitrary failures of processes and channels

Distributed Systems, Spring 2003
45

Omission and arbitrary failures

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send,but the message is not put
in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Distributed Systems, Spring 2003
46

Timing failures

Class of Failure Affects Description
Clock Process Process’s local clock exceeds the bounds on its

rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the
stated bound.

In synchronous systems:

Distributed Systems, Spring 2003
47

Security Model

Securing the processes and the channel and
protecting the objects

Protecting the objects: access rights (specify who is
allowed to perform each operation of an object)

Associate with each invocation and each result the
authority on which it is issued called a principal

Distributed Systems, Spring 2003
48

Security Model

To model security threats, we postulate an enemy (or
adversary)

Send any message to any process and reading/copying any
message between a pair of processes

1. Threats to processes (cannot identify the identity of the
sender: holds for both clients and servers)

2. Threats to communication channels

3. Other possible threats (mobile code, denial of service)

9

Distributed Systems, Spring 2003
49

Hardware Concepts

Distributed Systems, Spring 2003
50

Classification of Multiple CPU Computer Systems

Into two groups:

Multiprocessors (shared memory): there is single physical address
shared by all CPUs

Multicomputers: each machine has its own private memory.
Either Homogeneous or Heterogeneous

Further divided based on the architecture of the interconnection
network:

Bus: a single network that connects all machines

Switch

Distributed Systems, Spring 2003
51

Hardware Concepts

Distributed Systems, Spring 2003
52

Overload the bus ⇒ cache memory
High hit rate drops the amount of bus traffic
But incoherency

Multiprocessors

Scalability

Different method to connect the memory with the CPU ⇒
divide the memory in modules

Distributed Systems, Spring 2003
53

Multiprocessors

n2 crossbar switches Omega network

Problem: many switches between
the CPU and the memory

NUMA machine: some memory is associated with each CPU

Distributed Systems, Spring 2003
54

Homogeneous Multicomputer Systems

CPU-to-CPU communication

aka System Area Networks (SANs)

Bus-based connected through a multi-access network
such as Fast Ethernet, problem?

Switch-based: routed instead of broadcast

Different topologies

10

Distributed Systems, Spring 2003
55

Homogeneous Multicomputer Systems

Grid Hypercube (n-dimensional cube)

4-dimensional

Massively parallel processors (MPPs)

Clusters of Workstations (COWs)

Distributed Systems, Spring 2003
56

Heterogeneous Multicomputer Systems

Heterogeneous machines, interconnection networks

Scale

Lack of global view

transparency is harder

Distributed Systems, Spring 2003
57

Software Concepts

Distributed Systems, Spring 2003
58

Software Concepts

• DOS (Distributed Operating System)
• NOS (Network Operating System)
• Middleware

Provide
distribution
transparency

Additional layer atop of NOS implementing
general-purpose servicesMiddleware

Offer local
services to remote
clients

Loosely-coupled operating system for
heterogeneous multicomputers (LAN and
WAN)

NOS

Hide and manage
hardware
resources

Tightly-coupled operating system for multi-
processors and homogeneous
multicomputers

DOS

Main GoalDescriptionSystem

• Much like an OS (resource managers, hides underlying hardware)

•Tightly-coupled (maintain a global view) – loosely coupled

Distributed Systems, Spring 2003
59

Distributed Operating Systems
• Two types: multiprocessor OS and multicomputer OS

Multi-processor OS

Shared memory

Functionality similar to traditional OSs but handle multiple CPUs

• Aim at supporting high performance through multiple CPUs,
make their number transparent to the application

• Similar to multitasking uniprocessor OS:

o All communication done by manipulating data at shared
memory locations.

o Protection is done through synchronization primitives

Distributed Systems, Spring 2003
60

Multicomputer Operating Systems

Harder than traditional (multiprocessor) OS: Because
memory is not shared

Emphasis shifts to processor communication by message
passing

• OSs on each computer knows about the other computers

• OS on different machines generally the same

• Services are generally (transparently) distributed
across computers

11

Distributed Systems, Spring 2003
61

Multicomputer Operating Systems

General structure

Each node has each own kernel: modules for managing local resources
(memory, local CPU, local disk, etc) + handling interprocess communication
(sending and receiving messages to and from other nodes)

Common layer of software: implements the OS as a virtual machine
supporting parallel and concurrent execution of tasks.

Facilities: assigning a task to a processor, providing transparent storage,
general interprocess communication

Distributed Systems, Spring 2003
62

Multicomputer Operating Systems
Processor communication by message passing

• Often no simple global communication

• No simple system-wide synchronization mechanisms

• Virtual (distributed) shared memory requires OS to
maintain global memory map in software (Distributed
Shared Memory (DSM) vs Only message passing

• Inherent distributed resource management: no central
point where allocation decisions can be made

Practice: only very few truly multicomputer OS exist

Distributed Systems, Spring 2003
63

Multicomputer Operating Systems

Semantics of message passing

Buffering of messages at the
sender or the receiver

Four possible synchronization
points:

S1 (block the sender when its
buffer is full)

S2 (message has been send)

S3 (message has arrived at the
receiver)

S4 (message has been delivered to
the receiver)

Distributed Systems, Spring 2003
64

Multicomputer Operating Systems

Semantics of message passing
(continued)

Is the communication reliable?

NecessaryNoBlock sender until message delivered

NecessaryNoBlock sender until message received

Not necessaryNoBlock sender until message sent

Not necessaryYesBlock sender until buffer not full

Reliable comm.
guaranteed?Send bufferSynchronization point

Distributed Systems, Spring 2003
65

Multicomputer Operating Systems

Distributed Shared Memory Systems (DSMs)

The address space is divided up into pages with the
pages being spread over all the processors in the
system

When a processor references an address that is not
present locally, a trap occurs, and the OS fetches
the pafe

Distributed Systems, Spring 2003
66

Network Operating System
Do not assume that the underlying hardware is homogeneous and
that it should be managed as if it were a single system

Provide facilities to allow users to make use of services provided
on a specific machine (rlogin, rcp)

General structure

12

Distributed Systems, Spring 2003
67

Network Operating System

Some provide a shared global file system

Distributed Systems, Spring 2003
68

Network Operating System

Different clients may mount the servers in different places.

Distributed Systems, Spring 2003
69

Network Operating Systems

Some characteristics:

• Each computer has its own OS with networking facilities

• Computers work independently (i.e, they may even have
different OS)

• Services are to individual nodes (ftp, telnet, www)

• Highly file oriented (basically, processors share only
files)

• Compared to distributed OSs

• Lack of transparency (harder to use; need to be
managed independently)

• Easier to add/remove a machine (scalability,
openness)

Distributed Systems, Spring 2003
70

• Middleware itself does not manage an individual mode

• OS on each computer need not know about the other computers

• OS on different computers need not be the same

• Services are generally (transparently) distributed across
computers

Middleware

Distributed Systems, Spring 2003
71

Middleware Models

Based on some model or paradigm, such as:

• all resources are treated as files (UNIX and Plan 9)

• Distributed file systems

• Remote Procedure Calls (RPCs): allow a process to call a
procedure whose implementation is located on a remote
machine

• Distributed objects: transparently invoke objects
residing on remote machines

• Distributed documents

Distributed Systems, Spring 2003
72

Middleware Services

Communication services (offer high-level communication
facilities to hide low-level message passing)

• Procedure calls across networks

• Remote-object method invocation

• Message-queuing systems

• Advanced communication streams

• Event notification service

13

Distributed Systems, Spring 2003
73

Middleware Services

Information system services (help manage data)

• Large scale system-wide naming services

• Advanced directory services (search engines)

• Location services for tracking mobile objects

• Persistent storage facilities

• Data caching and replication

Distributed Systems, Spring 2003
74

Middleware Services

Control services (giving applications control over when,
where and how they access data)

• Code migration

• Distributed transaction processing

Security services

• Authentication and authorization services

• Simple encryption services

• Auditing service

Distributed Systems, Spring 2003
75

Middleware and Openness

In an open middleware-based distributed system, the protocols
used by each middleware layer should be the same, as well as the
interfaces they offer to applications.

Distributed Systems, Spring 2003
76

Comparison between Systems

OpenOpenClosedClosedOpenness

VariesYesModeratelyNoScalability

Per nodePer nodeGlobal,
distributed

Global,
centralResource management

Model specificFilesMessagesShared
memoryBasis for communication

NNN1Number of copies of OS

NoNoYesYesSame OS on all nodes

HighLowHighVery HighDegree of transparency

Multicomp.Multiproc.

Middleware-
based OSNetwork OS

Distributed OS
Item

Distributed Systems, Spring 2003
77

The Client-Server Model

Distributed Systems, Spring 2003
78

Clients and Servers
Process are divided in

Server: implementing a specific service

Client: requesting a service from a server by sending it a
request and subsequent waiting for the server’s reply

Distributed across different machines

Follow a request-reply

14

Distributed Systems, Spring 2003
79

Application Layering

Traditional three-layered view

User-interface layer: programs that allow end users to
interact with the application; differ in their sophistication

Processing layer: contains the functions of an application

Data layer: contains the data that a client wants to
manipulate through the application components

Distributed Systems, Spring 2003
80

Application Layering

The general organization of an Internet search engine into
three different layers

Distributed Systems, Spring 2003
81

Multitiered Architectures

Alternative client-server organizations

Distributed Systems, Spring 2003
82

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

Multitiered Architectures
An example of a server acting as a client.

Distributed Systems, Spring 2003
83

Multitiered Architectures
An example of a server acting as a client.

Distributed Systems, Spring 2003
84

Alternative Architectures

Vertical distribution: placing logically different components
on different machines

Horizontal distribution: a client or server may be physically
split up into logically equivalent parts; each operating on its
own share of the complete data

15

Distributed Systems, Spring 2003
85

Alternative Architectures

Cooperating servers: service is physically distributed across a
collection of services:

• Traditional multi-tiered architectures

• Replicated files systems

• Network news services

• Large-scale naming systems, etc

Cooperating clients: distributes applications exist by virtue of
client collaboration:

• Teleconferencing

• Publish/subscribe

Distributed Systems, Spring 2003
86

Server

Server

Server

Service

Client

Client

Collaborating servers

Distributed Systems, Spring 2003
87

Modern Architectures

An example of horizontal distribution of a Web service.

Distributed Systems, Spring 2003
88

Extra Slides

Distributed Systems, Spring 2003
89

Uniprocessor Operating Systems

Separating applications from operating system code through
a microkernel.

1.11

Distributed Systems, Spring 2003
90

Multiprocessor Operating Systems

A monitor to protect an integer against concurrent access.

monitor Counter {

private:

int count = 0;

public:

int value() { return count;}

void incr () { count = count + 1;}

void decr() { count = count – 1;}

}

16

Distributed Systems, Spring 2003
91

Multiprocessor Operating Systems

A monitor to protect an integer against concurrent access, but
blocking a process.

monitor Counter {

private:

int count = 0;

int blocked_procs = 0;

condition unblocked;

public:

int value () { return count;}

void incr () {

if (blocked_procs == 0)

count = count + 1;

else

signal (unblocked);

}

void decr() {

if (count ==0) {

blocked_procs = blocked_procs + 1;

wait (unblocked);

blocked_procs = blocked_procs – 1;

}

else

count = count – 1;

}

}

Distributed Systems, Spring 2003
92

Distributed Shared Memory Systems

a) Pages of address
space distributed
among four machines

b) Situation after CPU 1
references page 10

c) Situation if page 10
is read only and
replication is used

Distributed Systems, Spring 2003
93

Distributed Shared Memory Systems

False sharing of a page between two independent processes.

1.18

Distributed Systems, Spring 2003
94

An Example Client and Server (1)

The header.h file used by the client and server.

Distributed Systems, Spring 2003
95

An Example Client and Server (2)

A sample server.

Distributed Systems, Spring 2003
96

An Example Client and Server (3)

A client using the server to copy a file.

1-27 b

17

Distributed Systems, Spring 2003
97

Figure 2.4
Web proxy server

Client

Proxy

Web

server

Web

server

server
Client

Distributed Systems, Spring 2003
98

Figure 2.5
A distributed application based on peer

processes

Coordination

Application

code

Coordination

Application

code

Coordination

Application

code

Distributed Systems, Spring 2003
99

Figure 2.6
Web applets

a) client request results in the downloading of applet code

Web
server

Client
Web
serverApplet

Applet code
Client

b) client interacts with the applet

Distributed Systems, Spring 2003
100

Figure 2.7
Thin clients and compute servers

Thin
Client

Application
Process

Network computer or PC
Compute server

network

Distributed Systems, Spring 2003
101

Figure 2.8
Spontaneous networking in a hotel

Internet

gateway

PDA

service

Music
service

service
Discovery

Alarm

Camera

Guests
devices

LaptopTV/PC

Hotel wireless
network

Distributed Systems, Spring 2003
102

Figure 2.9
Real-time ordering of events

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive
m2

m1

18

Distributed Systems, Spring 2003
103

Figure 2.13
Objects and principals

Network

invocation

result
Client

Server

Principal (user) Principal (server)

ObjectAccess rights

Distributed Systems, Spring 2003
104

Figure 2.14
The enemy

Communication channel

Copy of m

Process p Process qm

The enemy
m’

Distributed Systems, Spring 2003
105

Figure 2.15
Secure channels

Principal A

Secure channelProcess p Process q

Principal B

