
Assignment 6

Georgia Koloniari
Salteas-Kalogeras Panagiotis

1. We do not want to set the clock back to the right time, because some applications use the

current clock value to stamp events, on the assumption that clocks always advance.
 We use E to refer to the clock that reads 10:27:54.0 (the wrong time) when the real time
 is 10:27:50, (4 secs before). We adjust our software clock S to tick at rate chosen so that
 it will be correct after 8 seconds, as follows:
 S = c(E - Tskew) + Tskew, where Tskew = 10 : 27 : 54 and c is to be found.
 But S = Tskew + 4 (the correct time) when E = Tskew + 8,
 So Tskew+4 = c(Tskew+8-Tskew)+Tskew, and c is 0.5.
 Finally, S = 0.5(E-Tskew)+Tskew (when Tskew ≤ E ≤ Tskew + 8).

2. The client should choose the minimum round-trip time of 20 ms = 0.02 s. It then
estimates the current time to be 10:54:28.342 + 0.02/2 = 10:54:28.352. The accuracy is
+/- 10 ms.

 If the minimum message transfer time is known to be 8 ms, then the setting remains the
 same but the accuracy improves to +/- 2 ms.

3. Proof by induction
 – Basis Case: zero messages exchanged in e → e’ . e and e’ are in a single
 process pj. e→ j e’ holds. Lamport timestamp rule LC1 implies that L(e) < L(e’)
 – Induction Hypothesis: For up to k messages exchanged, e → e’ implies L(e) < L(e’).
 – Induction Step: For k+1 messages exchanged (= k messages and then 1 more message)
 • e …k f …1 e’
 • e → f (using induction hypothesis) implies L(e) < L(f). Apply rule LC2 to f and e’ to
 get L(f) < L(e’). Combining the two, L(e) < L(e’).

4. There is a typo and the relationship to be proved is: Vj[i]≤Vi[i] .
 a) Rule VC2 tells us that pi is the ‘source’ of increments to Vi[i], which it makes just
 before it sends each message; and that pj increments only as it receives messages
 containing timestamps with larger entries for pi, that is when it receives a timestamp T
 with T[i]> Vj[i]. The relationship Vj[i] ≤ Vi[i] follows immediately.

 b) Let e and e’ be concurrent and let e occur at pi and e’ at pj. Because the events are
 concurrent (not related by happened-before) we know that no message sent from pi at or
 after event e has propagated its timestamp to pj by the time e’ occurs at pj , and vice versa.
 By the reasoning for (a), it follows that Vj[i]<Vi[i] and Vi[j]<Vj[j] (strict inequalities) and
 therefore that neither V(e) ≤ V(e’) nor V(e’) ≤ V(e).
 Therefore if V(e)<V(e’) the two events are not concurrent – they must be related by
 happened-before. Of the two possibilities, it obviously must be that e→e’.

5. No, it is sufficient to multicast any other type of message, as long as that message has a

timestamp larger than the received message. The condition for delivering a message m to
the application is that another message has been received from each other process with a
large timestamp. This guarantees that there are no more messages underway with a lower
timestamp. However, if another message is not multi-casted, we have no such guarantee.

Then, sending an acknowledgement ensures that another message has been received from
each other process.

6. The algorithm can be modified as follows: When a process that has started an election

itself, receives an ELECTION message without its own id in the list, it compares the id of
the initiator of this message with its own id. If its id is bigger then it kills this message, it
does not forward it further. Thus, only one ELECTION message is circulating through
the ring.

7. If s = synchronization delay and m = minimum time spent in a critical section by any

process, then the maximum throughput is 1/(s + m)  critical-section-entries per second.

8. Two-phase locking in a distributed transaction requires that it cannot acquire a lock at
any server after it has released a lock at any server. A client transaction will not request
commit or abort at the coordinator, until after it has made all its requests and had replies
from the various servers involved, by which time all the locks will have been acquired.
After that, the coordinator sends on the commit or abort to the other servers which release
the locks. Thus all locks are acquired first and then they are all released, which is two-
phase locking.

