
On the Recognition of P4-Comparability Graphs

Stavros D. Nikolopoulos and Leonidas Palios

Department of Computer Science, University of Ioannina
GR-45110 Ioannina, Greece

{stavros,palios}@cs.uoi.gr

Abstract. We consider the problem of recognizing whether a simple
undirected graph is a P4-comparability graph. This problem has been
considered by Hoàng and Reed who described an O(n4)-time algorithm
for its solution, where n is the number of vertices of the given graph.
Faster algorithms have recently been presented by Raschle and Simon
and by Nikolopoulos and Palios; the time complexity of both algorithms
is O(n + m2), where m is the number of edges of the graph.
In this paper, we describe an O(n m)-time, O(n+m)-space algorithm for
the recognition of P4-comparability graphs. The algorithm computes the
P4s of the input graph G by means of the BFS-trees of the complement of
G rooted at each of its vertices, without however explicitly computing the
complement of G. Our algorithm is simple, uses simple data structures,
and leads to an O(n m)-time algorithm for computing an acyclic P4-
transitive orientation of a P4-comparability graph.

Keywords: Perfectly orderable graph, comparability graph, P4-compa-
rability graph, recognition, P4-component, P4-transitive orientation.

1 Introduction

We consider simple non-trivial undirected graphs. Let G = (V, E) be such a
graph. An orientation of G is an antisymmetric directed graph obtained from G
by assigning a direction to each edge of G. An orientation (V, F) of G is called
transitive if it satisfies the following condition: −→ab ∈ F and −→bc ∈ F imply

−→
ac∈ F ,

for all a, b, c ∈ V , where by
−→
uv or

←−
vu we denote an edge directed from u to v

[8]. An orientation of a graph G is called P4-transitive if it is transitive when
restricted to any P4 (chordless path on 4 vertices) of G; an orientation of such a
path abcd is transitive if and only if the path’s edges are oriented in one of the
following two ways: −→ab, ←−bc and −→cd, or ←−ab, −→bc and ←−cd.

A graph which admits an acyclic transitive orientation is called a compara-
bility graph [7,8,9]; Figure 1(a) depicts a comparability graph. A graph is a P4-
comparability graph if it admits an acyclic P4-transitive orientation [11,12]. In
light of these definitions, every comparability graph is a P4-comparability graph.
However, the converse is not always true; the graph depicted in Figure 1(b) is a
P4-comparability graph but it is not a comparability graph (it is often referred to
as a pyramid). The graph shown in Figure 1(c) is not a P4-comparability graph.
The class of P4-comparability graphs was introduced by Hoàng and Reed, along

L. Kučera (Ed.): WG 2002, LNCS 2573, pp. 355–366, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

356 Stavros D. Nikolopoulos and Leonidas Palios

(a) (b) (c)

Fig. 1. (a) a comparability graph; (b) a P4-comparability graph (which is not compa-
rability); (c) a graph which is not P4-comparability.

with the classes of the P4-indifference, the P4-simplicial, and the Raspail graphs,
and all four classes were shown to be perfectly orderable [12].

The class of perfectly orderable graphs was introduced by Chvátal in the
early 1980s [4]; it is a very important class of graphs since a number of prob-
lems which are NP-complete in general can be solved in polynomial time on its
members [2,8,10]; unfortunately, it is NP-complete to decide whether a graph
is perfectly orderable [15]. Chvátal showed that the class of perfectly order-
able graphs contains the comparability and the triangulated graphs [4]. It also
contains a number of other classes of perfect graphs which are characterized
by important algorithmic and structural properties, such as, the classes of 2-
threshold, brittle, co-chordal, weak bipolarizable, distance hereditary, Meyniel ∩
co-Meyniel, P4-sparse, etc. [3,8]. Finally, since every perfectly orderable graph is
strongly perfect [4], the class of perfectly orderable graphs is a subclass of the
well-known class of perfect graphs.

Algorithms for many different problems on almost all the subclasses of per-
fectly orderable graphs are available in the literature. The comparability graphs
in particular have been the focus of much research which culminated into ef-
ficient recognition and orientation algorithms [3,8,14]. On the other hand, the
P4-comparability graphs have not received as much attention, despite the fact
that the definition of the P4-comparability graphs is a direct extension of the
definition of comparability graphs [6,11,12,17].

Our main objective in this paper is to study the recognition problem on
the class of P4-comparability graphs. This problem along with the problem of
producing an acyclic P4-transitive orientation have been addressed by Hoàng
and Reed who described an O(n4)- and an O(n5)-time algorithm respectively
for their solution [11,12], where n is the number of vertices of the input graph.
Improved results on these problems were provided by Raschle and Simon [17].
Their algorithms work along the same lines, but focus on the P4-components
of the graph; both algorithms run in O(n + m2), where m is the number of
edges of the input graph. Recently, Nikolopoulos and Palios described different
O(n+m2)-time algorithms for these problems [16]. Their approach relies on the
construction of the P4-components by means of BFS-trees of the input graph.

On the Recognition of P4-Comparability Graphs 357

In this paper, we present an O(n m)-time recognition algorithm for P4-com-
parability graphs, where n and m are the number of vertices and edges of the
input graph. The algorithm computes the P4s of the input graph G by means
of the BFS-trees of the complement of G rooted at each of its vertices, without
however explicitly computing the complement of G. Instrumental for the algo-
rithm are the observations that the complement of a P4 is also a P4 and that for
a graph G, the number of vertices in all the levels, but the 0th and the 1st, of
the BFS-tree of the complement of G rooted at a vertex v does not exceed the
degree of v in G. The proposed recognition algorithm is simple, uses simple data
structures and requires O(n + m) space. Along with the result in [16], it leads
to an O(n m)-time algorithm for computing an acyclic P4-transitive orientation
of a P4-comparability graph.

2 Theoretical Framework

We consider simple non-trivial undirected graphs. Let G = (V, E) be such a
graph. A path in G is a sequence of vertices (v0, v1, . . . , vk) such that vi−1vi ∈ E
for i = 1, 2, . . . , k; we say that this is a path from v0 to vk and that its length
is k. A path is called simple if none of its vertices occurs more than once; it is
called trivial if its length is equal to 0. A simple path (v0, v1, . . . , vk) is chordless
if vivj /∈ E for any two non-consecutive vertices vi, vj in the path. Throughout
the paper, the chordless path on n vertices is denoted by Pn. In particular, a
chordless path on 4 vertices is denoted by P4.

Two P4s are called adjacent if they have an edge in common. The transitive
closure of the adjacency relation is an equivalence relation on the set of P4s of a
graph G; the subgraphs of G spanned by the edges of the P4s in the equivalence
classes are the P4-components of G. With slight abuse of terminology, we consider
that an edge which does not belong to any P4 belongs to a P4-component by
itself; such a component is called trivial. A P4-component which is not trivial is
called non-trivial; clearly a non-trivial P4-component contains at least one P4.

The definition of a P4-comparability graph requires that such a graph admits
an acyclic P4-transitive orientation. However, Hoàng and Reed [12] showed that
in order to determine whether a graph is a P4-comparability graph one can
restrict one’s attention to the P4-components of the graph. What they proved
([12], Theorem 3.1) can be paraphrased in terms of the P4-components as follows:

Lemma 1. [12] Let G be a graph such that each of its P4-components admits
an acyclic P4-transitive orientation. Then G is a P4-comparability graph.

Our recognition algorithm relies on the following important lemma in order
to achieve its stated time complexity.

Lemma 2. Let G be an undirected graph and let TG(v) be the BFS-tree of the
complement G of G rooted at a vertex v. Then, the number of vertices in all the
levels of TG(v), except for the 0th and the 1st, does not exceed the degree of v
in G.

358 Stavros D. Nikolopoulos and Leonidas Palios

Proof. Clearly true, since the vertices in all the levels of TG(v), except for the
0th and the 1st, are vertices which are not adjacent to v in G.

3 Recognition of P4-Comparability Graphs

The algorithm works by constructing and orienting the P4-components of the
given graph, say, G, and then by checking whether they are acyclic (Lemma 1).
The P4-components are constructed as follows: the algorithm considers initially
m (partial) P4-components, one for each edge of G; then, it locates the P3s of all
the P4s of G, and whenever the edges of such a P3 belong to different (partial)
P4-components it unions and appropriately orients these P4-components. Since
we are interested in a P4-transitive orientation of each P4-component, the edges
of such a P3 need to be oriented either towards their common endpoint or away
from it.

As stated earlier, the P4s of the
graph G are computed by means of
processing the BFS-trees of the com-
plement G of G rooted at each of
its vertices. It is important to observe
that if abcd is a P4 then its comple-
ment is the P4 bdac and it belongs to
the complement G of G. Let us con-
sider the BFS-tree TG(b) of G rooted
at b. Since bdac is a P4 of G, the ver-
tices b, d, and a have to belong to the
0th, 1st, and 2nd level of TG(b) respec-
tively; the vertex c belongs to the 2nd
or 3rd level, but not to the 1st, since

b

dd

aa c

c

Level 1

2

3

Fig. 2. The two positions of the P4 bdac
in the BFS-tree T

G
(b).

c is not adjacent to b in G. These two cases are shown in Figure 2.
The algorithm is described in more detail below. We consider that the input

graph is connected; the case of disconnected graphs is addressed in Section 3.3.
Additionally, we assume that initially each edge of G belongs to a P4-component
by itself and is assigned an arbitrary orientation.

P4-comparability Graph Recognition Algorithm. Input: a connected graph G
on n vertices and m edges. Output: yes, if G is a P4-comparability graph;
otherwise, no.

1. Initialize to 0 all the entries of an array M [] which is of size n;
2. For each vertex v of the graph G, do

2.1 compute the sets L1, L2, and L3 of vertices in the 1st, 2nd, and 3rd level
respectively of the BFS-tree of the complement G rooted at v;

2.2 partition the set L2 into subsets of vertices so that two vertices belong
to the same subset iff they have (in G) the same neighbors in L1;

2.3 for each vertex x in L2, do

On the Recognition of P4-Comparability Graphs 359

2.3.1 for each vertex w adjacent to x in G, do
M [w]← 1; {mark in M [] the neighbors of x in G}

2.3.2 for each vertex y in L3 do
if M [y] = 0
then {xvy is a P3 in a P4 of G}

If the edges xv and vy belong to the same P4-component and
do not both point towards v or away from it, then the P4-
component cannot admit a P4-transitive orientation and we
conclude that the graph G is not a P4-comparability graph.
If the edges xv and vy belong to different P4-components, then
we union these components into a single component and if the
edges do not both point towards v or away from it, we invert
(during the unioning) the orientation of all the edges of the
unioned P4-component with the fewest edges.

2.3.3 for each vertex y in L2 do
if M [y] = 0 and the vertices x and y belong to different partition
sets of L2 (see Step 2.2)
then {xvy is a P3 in a P4 of G}

process the edges xv and vy as in Step 2.3.2;
2.3.4 for each vertex w adjacent to x in G, do

M [w]← 0; {clear M []}
3. After all the vertices have been processed, we apply topological sorting

on the directed graph spanned by the directed edges associated with each
of the non-trivial P4-components; if the topological sorting succeeds then
the component is acyclic, otherwise there is a directed cycle. If any of
the P4-components contains a directed cycle, then the graph is not a P4-
comparability graph.

For each P4-component, we maintain a linked list of the records of the edges in
the component, and the total number of these edges. Each edge record contains a
pointer to the header record of the component to which the edge belongs; in this
way, we can determine in constant time the component to which an edge belongs
and the component’s size. Unioning two P4-components is done by updating the
edge records of the smallest component and by linking them to the edge list of
the largest one, which implies that the union operation takes time linear in the
size of the smallest component. As mentioned above, in the process of unioning,
we may have to invert the orientation in the edge records that we link, if the
current orientations are not compatible.

Correctness of the Recognition algorithm. The correctness of the algo-
rithm follows (i) from the fact that in Steps 2.3.2 and 2.3.3 it processes precisely
the P3s participating in P4s of the input graph G (Lemmata 3 and 4) and that it
assigns correct orientations on the edges of these P3s, (ii) from the correct con-
struction of the P4-components by unioning partial P4-components whenever a
P3 is processed whose edges belong to more than one such partial components,
and (iii) from Lemma 1 in conjunction with Step 2 of the algorithm.

360 Stavros D. Nikolopoulos and Leonidas Palios

Note that the initial assignment of 0 to all the entries of the array M [] and
the clearing of all the set entries at Step 2.3.4 of the algorithm guarantee that
the only entries of the array which are set at any iteration are precisely those
corresponding to the vertices adjacent in G to the vertex processed at Step 2.3.

Lemma 3. Every P3 in a P4 of the input graph G is considered at Steps 2.3.2
or 2.3.3 of the recognition algorithm.

Proof. Let abcd be a P4 of the graph G; we will show that the P3 abc is considered
at Step 2.3.2 or 2.3.3 of the recognition algorithm. Since the algorithm processes
each vertex v of G in Step 2 and considers the BFS-tree of G rooted at v, it
will process b, it will consider the BFS-tree TG(b) of G rooted at b, and it will
compute the sets L1, L2, and L3 of vertices in the 1st, 2nd, and 3rd level of
TG(b) respectively. Let us consider the two cases of Figure 2. In the first case,
the vertices a and c belong to the 2nd and 3rd level of TG(b) respectively and
they are adjacent in G. Thus, a ∈ L2 and c ∈ L3. Moreover, since a and c are
adjacent in G, then a and c are not adjacent in G. Hence, M [c] = 0 when x = a
in Step 2.3. Therefore, the P3 abc is considered in Step 2.3.2 when x = a and
y = c. In the second case of Figure 2, the vertices a and c belong to the 2nd level
of TG(b), they are adjacent in G, and a is adjacent to d ∈ L1 in G whereas c is
not. Thus, a ∈ L2, c ∈ L2 and M [c] = 0 when x = a in Step 2.3, and the vertices
a and c belong to different sets in the partition of the vertices in L2 depending
on the vertices in L1 to which they are adjacent in G. Therefore, the P3 abc is
considered in Step 2.3.3 when x = a and y = c.

Lemma 4. The sequence (x, v, y) of vertices considered at Steps 2.3.2 and 2.3.3
of the recognition algorithm is a P3 in a P4 of the input graph G.

Proof. Let us first consider Step 2.3.2; in this case, the vertices x and y are in
the 2nd and 3rd level of TG(v) respectively. Then, the path vpxxy is a P4 in G,
where px is the parent of x in TG(v). This implies that xvypx is a P4 in G and
xvy is a P3 in a P4 of G. Let us now consider Step 2.3.3. Then, the vertices x
and y are in the 2nd level of the BFS-tree TG(v) of G rooted at v. Moreover,
since M [y] = 0, then x and y are not adjacent in G, that is, they are adjacent in
G. Finally, the fact that x and y do not belong to the same partition set of L2,
implies that there is a vertex in the 1st level of TG(v) which is adjacent to one
of them in G and not to the other one. Suppose that this vertex is z and that it
is adjacent to x; the case where z is adjacent to y and not to x is similar. Then,
the path vzxy is a P4 in G, which implies that xvyz is a P4 in G. Clearly, xvy
is a P3 in a P4 of G.

Before analyzing the complexity of the recognition algorithm, we explain in
more detail how Steps 2.1 and 2.2 are carried out.

3.1 Computing the Vertex Sets L1, L2, and L3

The computation of these sets can be done by means of the algorithms of
Dahlhaus et al. [5] and Ito and Yokoyama [13] for computing the BFS-tree of the

On the Recognition of P4-Comparability Graphs 361

complement of a graph in time linear in the size of the given graph. Both algo-
rithms require the construction of a special representation of the graph. However,
we will be using another algorithm which computes the vertices in each level
of the BFS-tree of the complement of a graph (i.e., it effectively implements
breadth-first search on the complement) in the above stated time complexity.
The algorithm is very simple and uses the standard adjacency list representa-
tion of a graph. It works by constructing each level Li+1 from the previous one,
Li, based on the following lemma.

Lemma 5. Let G be an undirected graph and let Li be the set of vertices in the
i-th level of a BFS-tree of G. Consider a vertex w which does not appear in any
of the levels from the 0th up to the k-th. Then w is a vertex of the (k + 1)-st
level if and only if there exists at least one vertex of Lk which is not adjacent to
w in G.

Proof. The vertex w is a vertex of the (k +1)-st level if and only if it is adjacent
in G to at least one vertex in Lk. The lemma follows.

We give below the description of the algorithm.

Algorithm for computing the BFS-tree of a vertex v in the complement of a given
graph G.

1. Initialize to 0 all the entries of the array Adj[] which is of size n;
2. Construct a list L0 containing a single record associated with the vertex v

and a list S containing a record for each of the vertices of G except for v;
3. i← 0;

While the list Li is not empty, do
3.1 initialize the list Li+1 to the empty list;
3.2 for each vertex u in Li do

for each vertex w adjacent to u in G do
increment Adj[w] by 1;

3.3 for each vertex s in S do
if Adj[s] < |Li|
then remove s from S and add it to the list Li+1
else Adj[s]← 0;

3.4 increment i by 1;

The correctness of the algorithm follows from Lemma 5. Note that the set S
contains the vertices which, until the current iteration, have not appeared in any
of the computed levels. Moreover, because of Steps 1 and 3.3, the entries of the
array Adj[] corresponding to the vertices in S are equal to 0 at the beginning of
each iteration of the while loop in Step 3. In this way, the test “Adj[s] < |Li|”
correctly tests the number of vertices of Li which are adjacent to the vertex s
in G against the size of Li. Finally, it must be noted that when the while loop
of Step 3 terminates, the list S may very well be non-empty; this happens when
the graph G is disconnected.

362 Stavros D. Nikolopoulos and Leonidas Palios

Suppose that the input graph G has n vertices and m edges. Clearly, Steps
1 and 2 take O(n) time. In each iteration of the while loop of Step 3, Steps 3.1
and 3.4 take constant time, while Step 3.2 takes O(

∑
u∈Li

dG(u)) time, where
dG(u) denotes the degree of the vertex u in G. Step 3.3 takes time linear in the
current size of the list S; the elements of S can be partitioned into two sets:
(i) the vertices which end up belonging to Li+1, and (ii) the vertices for which
the corresponding entries of the array Adj[] are equal to |Li|. The number of
elements of S in the former set does not exceed |Li+1|, while the number of
elements in the latter set does not exceed the sum of the degrees (in G) of the
vertices in Li. Thus, Step 3.3 takes O(|Li+1|+

∑
u∈Li

dG(u)) time.
Therefore, the time taken by the algorithm is

O(n) +
∑

i

(
O(1) + O

(
|Li+1|+

∑
u∈Li

dG(u)
))

= O(n) + O

(∑
i

(
1 + |Li+1|

))
+ O

(∑
i

∑
u∈Li

dG(u)
)

= O(n) + O(n) + O(m).

The inequalities
∑

i |Li| ≤ n and
∑

i

∑
u∈Li

dG(u) ≤ ∑
u dG(u) = 2m hold

because each vertex belongs to at most one level of the BFS-tree. Moreover, the
space needed is O(n + m). Consequently, we have:

Theorem 1. Let G be an undirected graph on n vertices and m edges, and v
be a vertex of G. Then, the above algorithm computes the vertices in the levels
of the BFS-tree of the complement G of G rooted at v in O(n + m) time and
O(n + m) space.

3.2 Partitioning the Vertices in L2

It is not difficult to see that the partition of the vertices in L2 depending on their
neighbors in G which are in L1 is identical to the partition of the vertices in L2
depending on their neighbors in G which are in L1. This is indeed so, because the
subset of vertices in L1 which are adjacent (in G) to a vertex x ∈ L2 is L1−Nx,
where Nx is the subset of L1 containing vertices which are adjacent (in G) to x.
But then, if for two vertices x and y the sets Nx and Ny are equal then so do
the sets L1 − Nx and L1 − Ny, whereas if Nx �= Ny then L1 − Nx �= L1 − Ny.
Therefore, in the algorithm we will be working with neighbors in G instead of
neighbors in G.

The algorithm initially considers a single set (list) which contains all the
vertices of the set L2. It then processes each vertex, say, u, of the set L1 as
follows: For each set of the current partition, we check if none, all, or only some
of its elements are neighbors of u in G; in the first and second case, the set is
not modified, in the third case, it is split into the subset of neighbors of u in G
and the subset of non-neighbors of u in G. After all the vertices of L1 have been
processed, the resulting partition is the desired partition.

On the Recognition of P4-Comparability Graphs 363

Algorithm for partitioning the set L2 in terms of adjacency to elements of the
set L1.

1. Initialize to 0 the entries of the arrays M [] and size[] which are of size n;
insert all the vertices in L2 in the list LSet[1] and set size[1]← |L2|;
k ← 1; {k holds the number of sets}

2. for each vertex u in L1 do
2.1 for each vertex w adjacent to u in G do

M [w]← 1; {mark in M [] the neighbors of u in G}
2.2 k0 ← k;

for each list LSet[i], i = 1, 2, . . . , k0, do
2.2.1 traverse the list LSet[i] and count the number of its vertices which

are neighbors of u in G (use the array M []); let � be the number of
these vertices;

2.2.2 if � > 0 and � < size[i]
then {split LSet[i]; create a new set}

increment k by 1;
traverse the list LSet[i] and for each of its vertices w which is
a neighbor of u in G (use M []), delete w from LSet[i] and
insert it in LSet[k];
size[k]← �;
decrease size[i] by �;

2.3 for each vertex w adjacent to u in G do
M [w]← 0; {clear M []}

3. for each list LSet[i], i = 1, 2, . . . , k, do
traverse the list LSet[i] and for each of its vertices set the corresponding
entry of the array Set[] equal to i;

Note that thanks to the array Set[], checking whether two vertices x and
y belong to the same partition set of L2 reduces to testing whether the entries
Set[x] and Set[y] are equal.

The correctness of the algorithm follows from induction on the number of the
processed vertices in L1. At the basis step, when no vertices from the set L1 have
been processed, all the elements of the set L2 belong to the same set, as desired.
Suppose that after processing i ≥ 0 vertices from L1, the resulting partition of L2
is correct with respect to the processed vertices. Let us consider the processing
of the next vertex, say, u, from L1: then, only the sets which contain at least
one vertex which is adjacent (in G) to u and at least one vertex which is not
adjacent (in G) to u should be split, and indeed these are the only ones that
are split; the splitting produces a subset of neighbors of u in G and a subset of
non-neighbors of u (Step 2.2.2). Note that because of Steps 1, 2.1, and 2.3, the
array M [] is clear at the beginning of each iteration of the for loop in Step 2,
so that in Step 2.2 the marked entries are precisely those corresponding to the
neighbors of the current vertex u in G.

Step 1 of the algorithm clearly takes O(n) time. Steps 2.1 and 2.3 take
O(dG(u)) time, where dG(u) is equal to the degree of u in G. Step 2.2.1 takes

364 Stavros D. Nikolopoulos and Leonidas Palios

O(|LSet(i)|) time and so does Step 2.2.2, since deleting an entry from and in-
serting an entry in a list can be done in constant time, and the remaining op-
erations take constant time. Therefore, Step 2.2 takes time linear in the total
size of the lists LSet[i] which existed when u started being processed; since
the lists contained the vertices in L2 and none of these lists was empty, we
conclude that Step 2.2 takes O(|L2|) time. Then, Step 2 can be executed in
O(

∑
u(dG(u) + |L2|)) = O(m + n|L2|) time. Step 3 takes time linear in the to-

tal size of the final lists LSet[i], i.e., O(|L2|) time. Thus the entire partitioning
algorithm takes O(m+n |L2|) time. Since all the initialized lists LSet[i] contain
at least one vertex from L2 and since these lists do not share vertices, then the
space complexity is O(n + |L2|) = O(n).

The results of the paragraph are summarized in the following theorem.

Theorem 2. Let G be an undirected graph on n vertices and m edges, and let
L1 and L2 be two disjoint sets of vertices. Then, the above algorithm partitions
the vertices in L2 depending on their neighbors in G which belong to L1 in
O(m + n |L2|) time and O(n) space.

Time and Space Complexity of the Recognition algorithm. Clearly,
Step 1 of the algorithm takes O(n) time. In accordance with Theorems 1 and 2,
Steps 2.1 and 2.2 take O(n+m) = O(m) and O(m+n |L2|) time respectively in
the processing of each one of the vertices of G, while Steps 2.3.1 and 2.3.4 take
O(n) time. If we ignore the cost of unioning P4-components, then Steps 2.3.2 and
2.3.3 require O(1) time per vertex in L3 and L2 respectively; recall that testing
whether two vertices belong to the same partition set of L2 takes constant time.
If we take into account Lemma 2, we have that |L2| ≤ dG(v) and |L3| ≤ dG(v)
where dG(u) denotes the degree of vertex u in G. Therefore, if we ignore P4-
component unioning, the time complexity of Step 2 of the algorithm is

T2 =
∑

v

(
O

(
m + n dG(v)

)
+

∑
x

O
(
dG(v) + dG(x)

))
.

If we observe that x belongs to L2, we conclude that x assumes at most dG(v)
different values. Thus,

T2 = O

(∑
v

m + n
∑

v

dG(v)
)

+ O

(∑
v

∑
x

(
dG(v) + dG(x)

))

= O(nm) + O(nm) + O

(∑
v

(
d2

G(v) +
∑

x

dG(x)
))

= O(nm) + O

(∑
v

d2
G(v)

)
+ O

(∑
v

∑
x

dG(x)
)

= O(nm)

since
∑

v d2
G(v) ≤ n

∑
v dG(v) = O(nm) and

∑
v

∑
x dG(x) ≤ ∑

v 2m = 2nm.
Now, the time required for all the P4-component union operations during the

On the Recognition of P4-Comparability Graphs 365

processing of all the vertices is O(m log m) [1]; there cannot be more than m− 1
such operations (we start with m P4-components and we may end up with only
one), and each one of them takes time linear in the size of the smallest of the
two components that are unioned.

Finally, constructing the directed graph from the edges associated with a
non-trivial P4-component and checking whether it is acyclic takes O(n + mi),
where mi is the number of edges of the component. Thus, the total time taken by
Step 2 is O

(∑
i(n+mi)

)
= O(nm), since there are at most m P4-components and∑

i mi = m. Thus, the overall time complexity is O(n + nm + m log m + nm) =
O(nm); note that log m ≤ 2 log n = O(n).

The space complexity is linear in the size of the graph G: the array M [] takes
linear space, both Steps 2.1 and 2.2 require linear space (Theorems 1 and 2), the
set L1 is represented as a list of O(n) size, the sets L2 and L3 are represented as
lists having O(dG(v)) size each, and the handling of the P4-components requires
one record per edge and one record per component. Thus, the space required is
O(n + m).

Therefore, we have proven the following result:

Theorem 3. It can be decided whether a connected undirected graph on n ver-
tices and m edges is a P4-comparability graph in O(nm) time and O(n + m)
space.

3.3 The Case of Disconnected Input Graphs

If the input graph is disconnected, we compute its connected components and
work on each one of them as indicated above. In light of Theorem 3 and since
the connected components of a graph can be computed in time and space linear
in the size of the graph by means of depth-first search [1], we conclude that
the overall time complexity is O(n + m) +

∑
i O(ni mi) = O(n

∑
mi) = O(nm)

and the space is O(n + m) +
∑

i O(ni + mi) = O(n + m) since
∑

i ni = n and∑
i mi = m.

Theorem 4. It can be decided whether an undirected graph on n vertices and
m edges is a P4-comparability graph in O(n m) time and O(n + m) space.

4 Concluding Remarks

In this paper, we presented an O(n m)-time and linear space algorithm to rec-
ognize whether a graph on n vertices and m edges is a P4-comparability graph.
The algorithm exhibits the currently best time and space complexity to the best
of our knowledge, and is simple enough to be easily used in practice. Along with
the work of [16], it leads to an O(n m)-time algorithm for computing an acyclic
P4-transitive orientation of a P4-comparability graph, thus improving the upper
bound on the time complexity for this problem as well. We also described a
simple algorithm to compute the levels of the BFS-tree of the complement G of
a graph G in time and space linear in the size of G.

366 Stavros D. Nikolopoulos and Leonidas Palios

The obvious open question is whether the P4-comparability graphs can be
recognized and/or oriented in o(n m) time. Moreover, it is worth investigating
whether taking advantage of properties of the complement of the input graph
can help establish improved algorithmic solutions for other problems as well;
note that breadth-first and depth-first search on the complement of a graph can
be executed in time linear in the size of the graph.

References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

2. S.R. Arikati and U.N. Peled, A polynomial algorithm for the parity path problem
on perfectly orderable graphs, Discrete Appl. Math. 65, 5–20, 1996.

3. A. Brandstädt, V.B. Lê, and J.P. Spinrad, Graph Classes: A Survey, Monographs
on Discrete Mathematics and Applications 3, SIAM, 1999.

4. V. Chvátal, Perfectly ordered graphs, Annals of Discrete Math. 21, 63–65, 1984.
5. E. Dahlhaus, J. Gustedt, and R.M. McConnell, Efficient and practical modular

decomposition, Proc. 8th ACM-SIAM Symp. on Discrete Algorithms (SODA’97),
26–35, 1997.

6. C.M.H. de Figueiredo, J. Gimbel, C.P. Mello, and J.L. Szwarcfiter, Even and odd
pairs in comparability and in P4-comparability graphs, Discrete Appl. Math. 91,
293–297, 1999.

7. P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and
of interval graphs, Canad. J. Math. 16, 539–548, 1964.

8. M.C. Golumbic, Algorithmic graph theory and perfect graphs, Academic Press, Inc.,
New York, 1980.

9. M.C. Golumbic, D. Rotem, and J. Urrutia, Comparability graphs and intersection
graphs, Discrete Math. 43, 37–46, 1983.

10. C.T. Hoàng, Efficient algorithms for minimum weighted colouring of some classes
of perfect graphs, Discrete Appl. Math. 55, 133–143, 1994.

11. C.T. Hoàng and B.A. Reed, Some classes of perfectly orderable graphs, J. Graph
Theory 13, 445–463, 1989.

12. C.T. Hoàng and B.A. Reed, P4-comparability graphs, Discrete Math. 74, 173–200,
1989.

13. H. Ito and M. Yokoyama, Linear time algorithms for graph search and connectivity
determination on complement graphs, Inform. Process. Letters 66, 209–213, 1998.

14. R.M. McConnell and J. Spinrad, Linear-time transitive orientation, Proc. 8th
ACM-SIAM Symp. on Discrete Algorithms (SODA’97), 19–25, 1997.

15. M. Middendorf and F. Pfeiffer, On the complexity of recognizing perfectly orderable
graphs, Discrete Math. 80, 327–333, 1990.

16. S.D. Nikolopoulos and L. Palios, Recognition and orientation algorithms for
P4-comparability graphs, Proc. 12th Symp. on Algorithms and Computation
(ISAAC’01), 320–331, 2001.

17. T. Raschle and K. Simon, On the P4-components of graphs, Discrete Appl. Math.
100, 215–235, 2000.

	1 Introduction
	2 Theoretical Framework
	3 Recognition of P_4-Comparability Graphs
	3.1 Computing the Vertex Sets L_1, L_2, and L_3
	3.2 Partitioning the Vertices in L_2
	3.3 The Case of Disconnected Input Graphs

	4 Concluding Remarks
	References

