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Abstract

In this paper, we consider the problems of computing the strongly connected components and the
biconnected components of the complement of a given graph. In particular, for a directed graph G
on n vertices and m edges, we present a simple algorithm for computing the strongly connected
components of G which runs in optimal O(n + m) time. The algorithm can be parallelized to
yield an O(log2 n)-time and O(m1.188/ log n)-processor solution. As a byproduct, we obtain a very
simple optimal parallel co-connectivity algorithm.
Additionally, we establish properties which, for an undirected graph on n vertices and m edges,
enable us to describe an O(n+m)-time algorithm for computing the biconnected components of G,
which can be parallelized resulting in an algorithm that runs in O(log n) time using O((n+m)/ log n)
processors.

1 Theoretical Framework

We consider finite (directed) undirected graphs with no (directed) loops or
(directed) multiple edges. Let G be an undirected graph; then, V (G) and
E(G) denote the set of vertices and of edges of G respectively.

Lemma 1.1.

(i) Let G be an undirected graph on n vertices and m edges. If v is a vertex of
G of minimum degree, then the degree of v does not exceed

√
2m.
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(ii) Let G be a directed graph on n vertices and m edges. If v is a vertex of G
of minimum sum of indegree and outdegree, then the sum of indegree and
outdegree of v does not exceed 2

√
m.

Let G be a graph. We say that a set E ⊆ E(G) of cardinality ≥ 2 has the
biconnectivity property in G if, for every pair of edges e, e′ ∈ E, the subgraph
of G spanned by the edges in E contains a simple cycle that passes through
both e and e′ [7].

Lemma 1.2. Let G be an undirected graph, let set E ⊆ E(G) having the
biconnectivity property in G and let V (E) be the set of vertices incident to at
least one edge in E. Then,

(i) the edge set of the subgraph of G induced by V (E) also has the biconnectivity
property;

(ii) for every edge e ∈ E and any two vertices x, y ∈ V (E), the subgraph of G
spanned by the edges in E contains a simple path from x to y that passes
along e.

Due to the transitivity of the relation “to have the biconnectivity property”
[7], it follows that if two edge sets E1 and E2 have the biconnectivity property
and are not disjoint then the set E1 ∪E2 also has the biconnectivity property.

Lemma 1.3. Let G be an undirected graph, let E1, E2 ⊆ E(G) be disjoint
sets of edges having the biconnectivity property in G, and let V (E1), V (E2) be
the sets of vertices incident to at least one edge in E1 and E2 respectively.

(i) If V (E1) ∩ V (E2) = ∅ and there exist distinct vertices u, v ∈ V (E1) and
x, y ∈ V (E2) such that ux ∈ E(G) and vy ∈ E(G), then the edge set of the
subgraph of G induced by V (E1) ∪ V (E2) has the biconnectivity property.

(ii) Suppose that V (E1) ∩ V (E2) = {v}.
a) If there exist vertices x ∈ V (E1)−{v} and y ∈ V (E2)−{v} such that xy ∈

E(G), then the edge set of the subgraph of G induced by V (E1) ∪ V (E2)
has the biconnectivity property;

b) If there exist vertices x ∈ V (E1) − {v}, y ∈ V (E2) − {v}, and vertex z ∈
V (G) − (V (E1) ∪ V (E2)) such that xz, yz ∈ E(G), then the edge set of
the subgraph of G induced by V (E1) ∪ V (E2) ∪ {z} has the biconnectivity
property;

c) If there exist vertices x ∈ V (E1) − {v} and y ∈ V (E2) − {v}, and edge
set E3 ⊆ E(G) for which E3 has the biconnectivity property and V (E3) ∩
(V (E1)∩ V (E2))∅ such that xa, yb ∈ E(G) for two distinct vertices a, b ∈
V (E3), then the edge set of the subgraph of G induced by V (E1)∪V (E2)∪
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V (E3) has the biconnectivity property.

(iii) If |V (E1) ∩ V (E2)| ≥ 2, then the edge set of the subgraph of G induced by
V (E1) ∪ V (E2) has the biconnectivity property.

2 Strongly Connected Components of the Complement
of a Graph

Next, we present a simple optimal algorithm for computing the strongly
connected components (s.c.c, for short) of the complement G of a directed
graph G.

Lemma 2.1. Let G be a directed graph, and let v be a vertex of G.

(i) Vertex v and the vertices x such that neither vx nor xv belongs to E(G)
belong to the same s.c.c of G.

(ii) Let G′
v be the directed graph where

V (G′
v) = {v} ∪ {x | vx ∈ E(G) or xv ∈ E(G) };

E(G′
v) = {xy | x, y ∈ V (G′

v) − {v} and xy ∈ E(G) }
∪ { vx |x ∈ V (G′

v)−{v} and ∀z ∈ V (G)−(V (G′
v)−{v}), zx ∈ E(G) }

∪ { yv | y ∈ V (G′
v)−{v} and ∀z ∈ V (G)−(V (G′

v)−{v}), yz ∈ E(G) }.
Then, two vertices x, y ∈ V (G′

v) belong to the same s.c.c of G iff they belong
to the same s.c.c of G′

v.

The algorithm takes advantage of Lemma 1.1(ii) and Lemma 2.1. It uses
an array sccc[ ] of size equal to the number of vertices of the input graph G
in which it records the s.c.c of G; in particular, sccc[a] = sccc[b] iff a, b
belong to the same s.c.c of G. In more detail, the algorithm works as follows:

Algorithm Strong Co-components

1. v ← a vertex of G of minimum degree (sum of indegree and outdegree);

2. if the indegree and outdegree of v are both equal to 0
then {G is trivial or a disconnected graph; G is strongly connected}

for each vertex w of G do
sccc[w] ← v; {v: representative of the s.c.c of G}; stop;

3. construct the auxiliary graph G′
v defined in Lemma 2.1 and, from that,

its complement;

4. compute the strongly connected components of the graph G′
v and store

them in the standard representative-based representation in an array c[ ];

5. for each vertex w in V (G′
v) do sccc[w] ← c[w];

for each vertex w in V (G) − V (G′
v) do sccc[w] ← c[v];
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The above algorithm gives us a very simple s.c.co-components algorithm,
which is also optimal. Indeed, because of Lemma 1.1(ii) (which implies that
G′

v has O(
√

m) vertices, where m is the number of edges of G) and the fact
that the strongly connected components of a graph can be computed in time
linear in the size of the graph, it is not difficult to see that:

Theorem 2.1. Let G be a directed graph on n vertices and m edges.
Then, the algorithm Strong Co-components computes the strongly connected
components of G in O(n + m) time.

Using standard parallel algorithmic techniques and the CREW algorithm
for computing the strongly connected components of a graph on N vertices in
O(log2 N) time using O(N 2.376/ log N) processors [1,13,15], we have:

Theorem 2.2. Let G be a directed graph on n vertices and m edges.
Then, the strongly connected components of G can be computed in O(log2 n)
time using O(m1.188/ log n) processors on the CREW PRAM.

Moreover, in light of the fact that the connected components of a graph G
are identical to the strongly connected components of the directed graph that
results by replacing each undirected edge by two oppositely directed edges,
a result similar to Lemma 2.1(ii) holds for an appropriate auxiliary graph
on O(

√
m) vertices. Then, an algorithm similar to Strong Co-components,

along with the algorithm of Chong et al. [4] for computing the connected
components of a graph on N vertices in O(log N) time using O(N 2/ log N)
processors on the EREW PRAM, yield an optimal parallel co-connectivity
algorithm simpler than the one in [6].

Corollary 2.1. Let G be an undirected graph on n vertices and m edges.
Then, the connected components of G can be computed in O(log n) time using
O((n + m)/ log n) processors on the EREW PRAM.

3 Biconnected Components of the Complement of a
Graph

We next present an O(n + m)-time algorithm for computing the biconnected
components of G, which can be parallelized resulting in an algorithm that
runs in O(log n) time using O((n + m)/ log n) processors.

Lemma 3.1. Let G be an undirected graph on m edges and x be any
of its vertices. If C1, C2, . . . , Ck are the connected components of the sub-
graph G[M(x)] induced by the set M(x) of non-neighbors of x in G, then
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(i) the vertex sets C1, C2, . . . , Ck are disjoint;

(ii) their number k does not exceed 2
√

m;

(iii) for each Ci, the edge set of the subgraph G[Ci ∪ {x}] has the biconnectivity
property in G.

Lemma 3.2. Let G be an undirected graph, v a vertex of G, E1, E2, . . . , E�

the biconnected components of G[N(v)] with vertex sets V (E1), . . . , V (E�) re-
spectively, and C1, C2, . . . , Ck the connected components of G[M(v)].

(i) If |E(G) ∩ {xy | x ∈ V (Ei), y ∈ M(v) }| = |V (Ei)| · |M(v)| − 1, then the
two vertices u ∈ V (Ei) and w ∈ M(v) which are not adjacent in G define a
potential bridge in G.

(ii) If there exists a vertex w ∈ M(v) such that {xy | x ∈ V (Ei), y ∈ M(v) −
{w} } ⊆ E(G) and |{xw | x ∈ V (Ei) and xw /∈ E(G) }| ≥ 2, then the edge
set Ei ∪ {xw | x ∈ V (Ei) and xw /∈ E(G) } has the biconnectivity property
in G and vertex w is a potential articulation point in G.

(iii) If there exists a vertex u ∈ V (Ei) such that {xy | x ∈ V (Ei) − {u}, y ∈
M(v) } ⊆ E(G) and |{uy | y ∈ M(v) and uy /∈ E(G) }| ≥ 2, then the edge
set of the subgraph of G induced by {v, u} ∪ { Cj | ∃y ∈ Cj : uy /∈ E(G) }
has the biconnectivity property in G and vertex u is a potential articulation
point in G.

(iv) If there exist vertices u, u′ ∈ V (Ei) and w,w′ ∈ M(v) such that uw, u′w′ /∈
E(G), then the edge set of the subgraph of G induced by {v} ∪ V (Ei) ∪
{Cj | ∃x ∈ V (Ei) and y ∈ Cj : xy /∈ E(G) } has the biconnectivity property
in G.

In general terms, the algorithm works as follows: It finds a minimum-
index vertex of G; let it be v. Next, it computes the biconnected components
of G[N(v)] and the connected components of G[M(v)]; recall that the edge set
of the subgraph of G induced by each of the latter components and v has the
biconnectivity property in G (Lemma 3.1). Next, the algorithm takes advan-
tage of Lemma 3.2 in order to do a first round of merging of the collected edge
sets; to do that, it constructs a graph ˜G in which the connected components
indicate the sets to be merged. Additionally, it has collected potential artic-
ulation points and bridge endpoints of G, from which it constructs another
auxiliary graph ̂G; the biconnected components of ̂G determine which edge
sets will be merged in the second and final round of merging, which yields the
biconnected components of G.

The above algorithm gives us an optimal biconnected co-components al-
gorithm, in light of Lemmas 1.1(i), 3.1, and 3.2 (which imply that the graphs
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G[N(v)], ˜G, and ̂G have O(
√

m) vertices) and the fact that the connected and
the biconnected components of a graph can be computed in time linear in the
size of the graph. Thus, we have:

Theorem 3.1. Let G be an undirected graph on n vertices and m edges.
Then, the algorithm Biconnected Co-components computes the biconnected com-
ponents of G in O(n + m) time.

Using standard parallel algorithmic techniques, the CREW algorithm for
computing the biconnected components of a graph on N vertices in O(log N)
time using O(N 2/ log N) processors [1,13,15], and the optimal co-connectivity
algorithm of [6] (see also Corollary 2.1), we have the following theorem.

Theorem 3.2. Let G be an undirected graph on n vertices and m edges.
Then, the biconnected components of G can be computed in O(log n) time
using O((n + m)/ log n) processors on the CREW PRAM.

References

[1] S.G. Akl, Parallel Computation: Models and Methods, Prentice Hall, 1997.

[2] B. Awerbuch and Y. Shiloach, New connectivity and MSF algorithms for ultra-computer and
PRAM, IEEE Trans. Computers 36 (1987) 1258–1263.

[3] F.Y. Chin, J. Lam, and I. Chen, Efficient parallel algorithms for some graph problems,
Communications of the ACM 25 (1982) 659–665.

[4] K.W. Chong, Y. Han, Y. Igarashi, and T.W. Lam, Improving the efficiency of parallel minimum
spanning tree algorithms, Discrete Applied Math. 126 (2003) 33–54.

[5] K.W. Chong, Y. Han, and T.W. Lam, Concurrent threads and optimal parallel minimum
spanning trees algorithm, J. ACM 48 (2001) 297–323.

[6] K.W. Chong, S.D. Nikolopoulos, and L. Palios, An optimal parallel co-connectivity algorithm,
to appear in Theory of Computing Systems, 2004.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms (2nd
edition), MIT Press, Inc., 2001.

[8] E. Dahlhaus, J. Gustedt, and R.M. McConnell, Partially complemented representation of
digraphs, Descrete Math. and Theoret. Comput. Science 5 (2002) 147–168.

[9] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[10] D.S. Hirschberg, Parallel algorithms for the transitive closure and the connected components
problems, Proc. 8th ACM Symp. on Theory of Computing (STOC’76), 55–57, 1976.

[11] D.S. Hirschberg, A.K. Chandra and D.V. Sarwate, Computing connected components on
parallel computers, Communications of the ACM 22 (1979) 461–464.

[12] H. Ito and M. Yokoyama, Linear time algorithms for graph search and connectivity
determination on complement graphs, Inform. Process. Letters 66 (1998) 209–213.
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