Available online at www.sciencedirect.com

science d direct \circ

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 17 (2004) 229-235

www.elsevier.com/locate/endm

On the Strongly Connected and Biconnected Components of the Complement of Graphs

Stavros D. Nikolopoulos¹ Leonidas Palios²

Department of Computer Science, University of Ioannina, P.O.Box 1186, GR-45110 Ioannina, Greece

Abstract

In this paper, we consider the problems of computing the strongly connected components and the biconnected components of the complement of a given graph. In particular, for a directed graph G on n vertices and m edges, we present a simple algorithm for computing the strongly connected components of \overline{G} which runs in optimal O(n + m) time. The algorithm can be parallelized to yield an $O(\log^2 n)$ -time and $O(m^{1.188}/\log n)$ -processor solution. As a byproduct, we obtain a very simple optimal parallel co-connectivity algorithm.

Additionally, we establish properties which, for an undirected graph on n vertices and m edges, enable us to describe an O(n+m)-time algorithm for computing the biconnected components of \overline{G} , which can be parallelized resulting in an algorithm that runs in $O(\log n)$ time using $O((n+m)/\log n)$ processors.

1 Theoretical Framework

We consider finite (directed) undirected graphs with no (directed) loops or (directed) multiple edges. Let G be an undirected graph; then, V(G) and E(G) denote the set of vertices and of edges of G respectively.

Lemma 1.1.

(i) Let G be an undirected graph on n vertices and m edges. If v is a vertex of G of minimum degree, then the degree of v does not exceed $\sqrt{2m}$.

¹ Email: stavros@cs.uoi.gr

² Email: palios@cs.uoi.gr

 $^{1571\}mathchar`left 1571\mathchar`left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathch$

(ii) Let G be a directed graph on n vertices and m edges. If v is a vertex of G of minimum sum of indegree and outdegree, then the sum of indegree and outdegree of v does not exceed $2\sqrt{m}$.

Let G be a graph. We say that a set $E \subseteq E(G)$ of cardinality ≥ 2 has the *biconnectivity property in* G if, for every pair of edges $e, e' \in E$, the subgraph of G spanned by the edges in E contains a simple cycle that passes through both e and e' [7].

Lemma 1.2. Let G be an undirected graph, let set $E \subseteq E(G)$ having the biconnectivity property in G and let V(E) be the set of vertices incident to at least one edge in E. Then,

- (i) the edge set of the subgraph of G induced by V(E) also has the biconnectivity property;
- (ii) for every edge $e \in E$ and any two vertices $x, y \in V(E)$, the subgraph of G spanned by the edges in E contains a simple path from x to y that passes along e.

Due to the transitivity of the relation "to have the biconnectivity property" [7], it follows that if two edge sets E_1 and E_2 have the biconnectivity property and are not disjoint then the set $E_1 \cup E_2$ also has the biconnectivity property.

Lemma 1.3. Let G be an undirected graph, let $E_1, E_2 \subseteq E(G)$ be disjoint sets of edges having the biconnectivity property in G, and let $V(E_1), V(E_2)$ be the sets of vertices incident to at least one edge in E_1 and E_2 respectively.

- (i) If $V(E_1) \cap V(E_2) = \emptyset$ and there exist distinct vertices $u, v \in V(E_1)$ and $x, y \in V(E_2)$ such that $ux \in E(G)$ and $vy \in E(G)$, then the edge set of the subgraph of G induced by $V(E_1) \cup V(E_2)$ has the biconnectivity property.
- (ii) Suppose that $V(E_1) \cap V(E_2) = \{v\}.$
 - a) If there exist vertices $x \in V(E_1) \{v\}$ and $y \in V(E_2) \{v\}$ such that $xy \in E(G)$, then the edge set of the subgraph of G induced by $V(E_1) \cup V(E_2)$ has the biconnectivity property;
 - b) If there exist vertices $x \in V(E_1) \{v\}$, $y \in V(E_2) \{v\}$, and vertex $z \in V(G) (V(E_1) \cup V(E_2))$ such that $xz, yz \in E(G)$, then the edge set of the subgraph of G induced by $V(E_1) \cup V(E_2) \cup \{z\}$ has the biconnectivity property;
 - c) If there exist vertices $x \in V(E_1) \{v\}$ and $y \in V(E_2) \{v\}$, and edge set $E_3 \subseteq E(G)$ for which E_3 has the biconnectivity property and $V(E_3) \cap$ $(V(E_1) \cap V(E_2))\emptyset$ such that $xa, yb \in E(G)$ for two distinct vertices $a, b \in$ $V(E_3)$, then the edge set of the subgraph of G induced by $V(E_1) \cup V(E_2) \cup$

 $V(E_3)$ has the biconnectivity property.

(iii) If $|V(E_1) \cap V(E_2)| \ge 2$, then the edge set of the subgraph of G induced by $V(E_1) \cup V(E_2)$ has the biconnectivity property.

2 Strongly Connected Components of the Complement of a Graph

Next, we present a simple optimal algorithm for computing the strongly connected components (s.c.c, for short) of the complement \overline{G} of a directed graph G.

Lemma 2.1. Let G be a directed graph, and let v be a vertex of G.

- (i) Vertex v and the vertices x such that neither vx nor xv belongs to E(G) belong to the same s.c.c of \overline{G} .
- (ii) Let G'_v be the directed graph where $V(G'_v) = \{v\} \cup \{x \mid vx \in E(G) \text{ or } xv \in E(G)\};$ $E(G'_v) = \{xy \mid x, y \in V(G'_v) - \{v\} \text{ and } xy \in E(G)\}$ $\cup \{vx \mid x \in V(G'_v) - \{v\} \text{ and } \forall z \in V(G) - (V(G'_v) - \{v\}), \ zx \in E(G)\}$ $\cup \{yv \mid y \in V(G'_v) - \{v\} \text{ and } \forall z \in V(G) - (V(G'_v) - \{v\}), \ yz \in E(G)\}.$ Then, two vertices $x, y \in V(G'_v)$ belong to the same s.c.c of \overline{G} iff they belong to the same s.c.c of $\overline{G'_v}.$

The algorithm takes advantage of Lemma 1.1(ii) and Lemma 2.1. It uses an array sccc[] of size equal to the number of vertices of the input graph Gin which it records the s.c.c of \overline{G} ; in particular, sccc[a] = sccc[b] iff a, bbelong to the same s.c.c of \overline{G} . In more detail, the algorithm works as follows:

Algorithm Strong_Co-components

- 1. $v \leftarrow$ a vertex of G of minimum degree (sum of indegree and outdegree);
- 2. if the indegree and outdegree of v are both equal to 0
 then {G is trivial or a disconnected graph; G is strongly connected} for each vertex w of G do
 sccc[w] ← v; {v: representative of the s.c.c of G}; stop;
- 3. construct the auxiliary graph G'_v defined in Lemma 2.1 and, from that, its complement;
- 4. compute the strongly connected components of the graph $\overline{G'_v}$ and store them in the standard representative-based representation in an array c[];
- 5. for each vertex w in $V(G'_v)$ do $\operatorname{sccc}[w] \leftarrow \operatorname{c}[w];$ for each vertex w in $V(G) - V(G'_v)$ do $\operatorname{sccc}[w] \leftarrow \operatorname{c}[v];$

The above algorithm gives us a very simple s.c.co-components algorithm, which is also optimal. Indeed, because of Lemma 1.1(ii) (which implies that $\overline{G'_v}$ has $O(\sqrt{m})$ vertices, where m is the number of edges of G) and the fact that the strongly connected components of a graph can be computed in time linear in the size of the graph, it is not difficult to see that:

Theorem 2.1. Let G be a directed graph on n vertices and m edges. Then, the algorithm Strong_Co-components computes the strongly connected components of \overline{G} in O(n + m) time.

Using standard parallel algorithmic techniques and the CREW algorithm for computing the strongly connected components of a graph on N vertices in $O(\log^2 N)$ time using $O(N^{2.376}/\log N)$ processors [1,13,15], we have:

Theorem 2.2. Let G be a directed graph on n vertices and m edges. Then, the strongly connected components of \overline{G} can be computed in $O(\log^2 n)$ time using $O(m^{1.188}/\log n)$ processors on the CREW PRAM.

Moreover, in light of the fact that the connected components of a graph G are identical to the strongly connected components of the directed graph that results by replacing each undirected edge by two oppositely directed edges, a result similar to Lemma 2.1(ii) holds for an appropriate auxiliary graph on $O(\sqrt{m})$ vertices. Then, an algorithm similar to Strong_Co-components, along with the algorithm of Chong *et al.* [4] for computing the connected components of a graph on N vertices in $O(\log N)$ time using $O(N^2/\log N)$ processors on the EREW PRAM, yield an optimal parallel co-connectivity algorithm simpler than the one in [6].

Corollary 2.1. Let G be an undirected graph on n vertices and m edges. Then, the connected components of \overline{G} can be computed in $O(\log n)$ time using $O((n+m)/\log n)$ processors on the EREW PRAM.

3 Biconnected Components of the Complement of a Graph

We next present an O(n + m)-time algorithm for computing the biconnected components of \overline{G} , which can be parallelized resulting in an algorithm that runs in $O(\log n)$ time using $O((n + m)/\log n)$ processors.

Lemma 3.1. Let G be an undirected graph on m edges and x be any of its vertices. If C_1, C_2, \ldots, C_k are the connected components of the sub-graph $\overline{G}[M(x)]$ induced by the set M(x) of non-neighbors of x in G, then

- (i) the vertex sets C_1, C_2, \ldots, C_k are disjoint;
- (ii) their number k does not exceed $2\sqrt{m}$;
- (iii) for each C_i , the edge set of the subgraph $\overline{G}[C_i \cup \{x\}]$ has the biconnectivity property in \overline{G} .

Lemma 3.2. Let G be an undirected graph, v a vertex of G, E_1, E_2, \ldots, E_ℓ the biconnected components of $\overline{G}[N(v)]$ with vertex sets $V(E_1), \ldots, V(E_\ell)$ respectively, and C_1, C_2, \ldots, C_k the connected components of $\overline{G}[M(v)]$.

- (i) If $|E(G) \cap \{xy \mid x \in V(E_i), y \in M(v)\}| = |V(E_i)| \cdot |M(v)| 1$, then the two vertices $u \in V(E_i)$ and $w \in M(v)$ which are not adjacent in G define a potential bridge in \overline{G} .
- (ii) If there exists a vertex $w \in M(v)$ such that $\{xy \mid x \in V(E_i), y \in M(v) \{w\}\} \subseteq E(G)$ and $|\{xw \mid x \in V(E_i) \text{ and } xw \notin E(G)\}| \ge 2$, then the edge set $E_i \cup \{xw \mid x \in V(E_i) \text{ and } xw \notin E(G)\}$ has the biconnectivity property in \overline{G} and vertex w is a potential articulation point in \overline{G} .
- (iii) If there exists a vertex $u \in V(E_i)$ such that $\{xy \mid x \in V(E_i) \{u\}, y \in M(v)\} \subseteq E(G)$ and $|\{uy \mid y \in M(v) \text{ and } uy \notin E(G)\}| \ge 2$, then the edge set of the subgraph of \overline{G} induced by $\{v, u\} \cup \{\mathcal{C}_j \mid \exists y \in \mathcal{C}_j : uy \notin E(G)\}$ has the biconnectivity property in \overline{G} and vertex u is a potential articulation point in \overline{G} .
- (iv) If there exist vertices $u, u' \in V(E_i)$ and $w, w' \in M(v)$ such that $uw, u'w' \notin E(G)$, then the edge set of the subgraph of \overline{G} induced by $\{v\} \cup V(E_i) \cup \{\mathcal{C}_j \mid \exists x \in V(E_i) \text{ and } y \in \mathcal{C}_j : xy \notin E(G)\}$ has the biconnectivity property in \overline{G} .

In general terms, the algorithm works as follows: It finds a minimumindex vertex of G; let it be v. Next, it computes the biconnected components of $\overline{G}[N(v)]$ and the connected components of $\overline{G}[M(v)]$; recall that the edge set of the subgraph of \overline{G} induced by each of the latter components and v has the biconnectivity property in \overline{G} (Lemma 3.1). Next, the algorithm takes advantage of Lemma 3.2 in order to do a first round of merging of the collected edge sets; to do that, it constructs a graph \widetilde{G} in which the connected components indicate the sets to be merged. Additionally, it has collected potential articulation points and bridge endpoints of \overline{G} , from which it constructs another auxiliary graph \widehat{G} ; the biconnected components of \widehat{G} determine which edge sets will be merged in the second and final round of merging, which yields the biconnected components of \overline{G} .

The above algorithm gives us an optimal biconnected co-components algorithm, in light of Lemmas 1.1(i), 3.1, and 3.2 (which imply that the graphs $\overline{G}[N(v)]$, \widetilde{G} , and \widehat{G} have $O(\sqrt{m})$ vertices) and the fact that the connected and the biconnected components of a graph can be computed in time linear in the size of the graph. Thus, we have:

Theorem 3.1. Let G be an undirected graph on n vertices and m edges. Then, the algorithm Biconnected_Co-components computes the biconnected components of \overline{G} in O(n + m) time.

Using standard parallel algorithmic techniques, the CREW algorithm for computing the biconnected components of a graph on N vertices in $O(\log N)$ time using $O(N^2/\log N)$ processors [1,13,15], and the optimal co-connectivity algorithm of [6] (see also Corollary 2.1), we have the following theorem.

Theorem 3.2. Let G be an undirected graph on n vertices and m edges. Then, the biconnected components of \overline{G} can be computed in $O(\log n)$ time using $O((n + m)/\log n)$ processors on the CREW PRAM.

References

- [1] S.G. Akl, Parallel Computation: Models and Methods, Prentice Hall, 1997.
- B. Awerbuch and Y. Shiloach, New connectivity and MSF algorithms for ultra-computer and PRAM, *IEEE Trans. Computers* 36 (1987) 1258–1263.
- [3] F.Y. Chin, J. Lam, and I. Chen, Efficient parallel algorithms for some graph problems, Communications of the ACM 25 (1982) 659–665.
- [4] K.W. Chong, Y. Han, Y. Igarashi, and T.W. Lam, Improving the efficiency of parallel minimum spanning tree algorithms, *Discrete Applied Math.* 126 (2003) 33–54.
- [5] K.W. Chong, Y. Han, and T.W. Lam, Concurrent threads and optimal parallel minimum spanning trees algorithm, J. ACM 48 (2001) 297–323.
- [6] K.W. Chong, S.D. Nikolopoulos, and L. Palios, An optimal parallel co-connectivity algorithm, to appear in *Theory of Computing Systems*, 2004.
- [7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms (2nd edition), MIT Press, Inc., 2001.
- [8] E. Dahlhaus, J. Gustedt, and R.M. McConnell, Partially complemented representation of digraphs, Descrete Math. and Theoret. Comput. Science 5 (2002) 147–168.
- [9] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
- [10] D.S. Hirschberg, Parallel algorithms for the transitive closure and the connected components problems, Proc. 8th ACM Symp. on Theory of Computing (STOC'76), 55–57, 1976.
- [11] D.S. Hirschberg, A.K. Chandra and D.V. Sarwate, Computing connected components on parallel computers, *Communications of the ACM* 22 (1979) 461–464.
- [12] H. Ito and M. Yokoyama, Linear time algorithms for graph search and connectivity determination on complement graphs, *Inform. Process. Letters* 66 (1998) 209–213.
- [13] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.

- [14] D. Nath and S.N. Maheshwari, Parallel algorithms for the connected components and minimal spanning trees, *Inform. Process. Letters* 14 (1982) 7–11.
- [15] J. Reif (ed.), Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, San Mateo, California, 1993.
- [16] Y. Shiloach and U. Vishkin, An $O(\log n)$ parallel connectivity algorithm, J. Algorithms 3 (1982) 57–67.