
An efficient shape-based approach to image retrieval

Ioannis Fudos *, Leonidas Palios

Department of Computer Science, University of Ioannina, P.O. Box 1186, GR45110 Ioannina, Greece

Abstract

We consider the problem of finding the best match for a given query shape among candidate shapes stored in a shape

base. This is central to a wide range of applications, such as, digital libraries, digital film databases, environmental

sciences, and satellite image repositories. We present an efficient matching algorithm built around a novel similarity

criterion and based on shape normalization about the shape’s diameter, which reduces the effects of noise or limited

accuracy during the shape extraction procedure. Ourmatching algorithmworks by gradually ‘‘fattening’’ the query shape

until the best match is discovered. The algorithm exhibits poly-logarithmic time behavior assuming uniform distribu-

tion of the shape vertices in the locus of their normalized positions. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The last few years, there is an emerging need to
organize and efficiently use large pools of images
that have been collected over the last decades and
contain information potentially useful to areas
such as medicine, journalism, weather prediction,
environmental sciences, art, fashion and industry.
It is estimated that there are more than 20 million
pages containing hundreds of millions of images
on world wide web pages alone (Carson and Ogle,
1996). Traditionally, images were retrieved by
their filename, other technical characteristics such
as date and size or through text keywords, in the
case of manually annotated images. Manual an-
notation, except for being a time consuming and

not real-time process, can describe only a very
small percentage of the information that an image
contains.

Recently, there is an increasing effort to orga-
nize and retrieve images by content based on
characteristics such as color, texture, and shape. A
number of methods in the literature perform in-
dexing and retrieval based on global image char-
acteristics such as color, texture, layout, or their
combinations. QBIC (Flickner et al., 1995; IBM),
a system developed at IBM Almaden supports
retrieval by color histograms, texture samples
(based on coarseness, contrast and directionality),
and shape. QBIC uses R� trees to process queries
based on low-dimensionality features, such as,
average color and texture. Shape matching is
supported using either dimensionality reduction,
which is sensitive to rotation, translation and
scaling (Niblack et al., 1993), or by clustering
using nonlinear elastic matching (Fagin and
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Stockmeyer, 1998; Del Bimbo and Pala, 1997),
which requires a significant amount of work per
shape and some derived starting points as a
matching guide. QBIC also supports video queries.

Ankerst et al. (1998) present a pixel-based shape
similarity retrieval method that allows only minor
rotation and translation. Their similarity criterion
assumes a very high dimension (linear to the
number of pixels in the image), therefore dimen-
sionality reduction is performed.

Mehrotra and Gary (1995) and Gary and Me-
hrotra (1995, 1993) present a shape-based method,
which stores each shape multiple times. More
specifically, the shape is positioned by normalizing
each of its edges. The space requirements of this
method impose a significant overhead. The method
is quite susceptible to noise, thus the authors pre-
sent a sophisticated preprocessing phase to elimi-
nate the noise effects. Finally, the method favors
those shapes of the shape base, which have almost
the same number of vertices as the query shape.

Hierarchical chamfer matching (see Borgefors,
1988) for hierarchical chamfer matching and
(Barrow et al., 1977; Borgefors, 1984) for chamfer
matching) creates a distance image using infor-
mation from the edges, and then tries to minimize
the root mean square average of the values in the
distance map that a contour hit. Hierarchical
chamfer matching gives quite accurate results ra-
ther insensitive to random noise, but involves
lengthy computations on every extracted contour
per query. In the hierarchical version a resolution
pyramid is used to improve the performance of the
matching algorithm.

Cohen and Guibas (1997) present an image re-
trieval method based on geometric hashing. This
method calculates the hash signature of the shape
based on the contributing line segments. The
method has been applied to retrieve Chinese
characters and is sensitive to rotation and trans-
lation. The geometric hashing described in (Cohen
and Guibas, 1997) is not related to the geometric
hashing presented in Section 3.6.

In this work, we present a shape-based method,
where information regarding the boundary of ob-
jects is automatically extracted and organized to
support a poly-logarithmic (in the number of
shape vertices) algorithm based on a novel simi-

larity criterion. Specifically, this paper makes the
following technical contributions:
• introduces a new similarity criterion for shapes,

which works better in the context of image re-
trieval than traditional similarity criteria;

• describes a novel way of storing shapes which is
tolerant to distortion;

• presents an efficient algorithm for finding the
closest match to a given query shape; its time
complexity is poly-logarithmic in the number
of vertices of the shape base assuming uniform
distribution of the vertices in the locus of their
possible locations. Introduces a new geometric
hashing technique compatible with our match-
ing algorithm.

The algorithm can be easily extended to retrieve
the k best matches instead of the single best match.

The rest of this paper is organized as follows.
Section 2 presents our similarity criterion for
shapes and compares it with existing criteria.
Section 3 describes the organization of the data
describing the shapes, and the algorithm to re-
trieve the best match of a query shape. Section 4
presents some experimental results, while Section 5
concludes the paper and discusses future work.

2. Similarity criteria

The Hausdorff distance is a well studied simi-
larity measure between two point sets A and B.
The directed Hausdorff distance h and the Haus-
dorff distance H are defined as follows:

hðA;BÞ ¼ max
a2A

min
b2B

dða; bÞ; ð1Þ

HðA;BÞ ¼ maxðhðA;BÞ; hðB;AÞÞ; ð2Þ
where d is a point-wise measure, such as, the Eu-
clidean distance. An inherent problem with the
Hausdorff distance is that a point in A that is
farthest from any point in B dominates the dis-
tance. To overcome this problem, Huttenlocher
and Rucklidge have defined a generalized discrete
Hausdorff distance (see, e.g., Huttenlocher and
Rucklidge, 1992), given by the kth largest distance
rather than the maximum

hkðA;BÞ ¼ ktha2A min
b2B

dða; bÞ; ð3Þ

HkðA;BÞ ¼ maxðhðA;BÞ; hðB;AÞÞ: ð4Þ
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This metric eliminates somehow the farthest-point
domination disadvantage of the Hausdorff metric,
but works only for a finite set of points (it is
mainly used for k ¼ m=2, where m is the size of the
point set). The generalized Hausdorff distance does
not obey the metric properties.

An interesting alternative measure, called non-
linear elastic matching, is presented in (Fagin and
Stockmeyer, 1998). This measure does not obey
the traditional metric properties but a relaxed set
of metric properties instead. In practice, this pro-
vides the same advantages as any metric, and
therefore can be used for clustering. However, the
arbitrary number of points distributed on the
edges, the need of determining certain starting
matching points and the complexity of computing
such a match (OðmnÞ using dynamic programming
(Arkin et al., 1997)) makes this measure inappro-
priate for very large data sets.

In our algorithm we use a new similarity crite-
rion based on the average of minimum point dis-
tances, which is derived by adapting (1) as follows:

havgðA;BÞ ¼ averagea2A min
b2B

dða; bÞ: ð5Þ

This measure behaves nicely (gives intuitive re-
sults) and it can be computed quite efficiently, as is
shown in the next section. The metric properties
do not hold for this measure either, but in some
sense they hold for a representative average set of
points probably different from the original point
set. Fig. 1 illustrates an example where, using
Hausdorff distance, the shape Q is matched with A
instead of B (B is intuitively the closest match).
According to the similarity measure used in our

work, B is indeed closer to Q than A, because the
small peak of B is alleviated by the rest of B which
is indeed very close to Q.

3. Efficient retrieval of similar shapes

The algorithm is based on two key ideas
• to efficiently handle the noise effects and to en-
sure rotation, translation and scale invariance
we normalize a shape about its diameter and

• to efficiently implement the matching based on
the average distance measure (5) presented in
Section 2 we use the notion of the �-envelope.
Normalizing about the diameter. In order to

match a query shape to the shapes in the database,
some kind of ‘‘normalization’’ is applied so that
the matching is translation-, rotation- and scaling-
independent. In (Gary and Mehrotra, 1995), Me-
hrotra and Gary normalize each shape about each
of its edges: they translate, rotate, and scale the
shape so that the edge is positioned at
ðð0; 0Þ; ð1; 0ÞÞ. Although this approach gives good
results in many cases, it would fail to retrieve the
distorted shape on the right of Fig. 2, if the shape
on the left of the figure was used as the query
shape. In our retrieval system, instead of normal-
izing about the edges, we normalize about the di-
ameter of the shape, i.e., by translating, rotating,
and scaling so that the pair of shape vertices that
are farthest apart are positioned at ð0; 0Þ and
ð1; 0Þ. This ensures better results, because the di-
ameter is less susceptible to local distortion (like
the one shown in Fig. 2), which is very common in
shapes extracted via automated image processing
techniques.

B

A
Q

Fig. 1. Depending on the similarity criterion, the query shape Q

may be matched with A or B.

(a) (b)

Fig. 2. (a) The query shape; (b) a distorted shape extracted

from an image.
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The �-envelope. The algorithm works by con-
sidering a ‘‘fattened’’ version of the query shape
which is computed by taking lines parallel to the
query shape edges at some distance � on either
side; we call this fattened shape the �-envelope. The
good matches are expected to fall inside or at least
have most of their vertices inside the �-envelope
even for small �. Therefore, if we start by using a
small initial value of � and keep increasing it, we
expect to collect the good matches after a few it-
erations of this procedure.

The �-envelope can be seen as a collection of
trapezoids of height 2�, one for each edge of the
query shape. (For simplicity, we assume that � is
such that no two trapezoids are overlapping; the
method can be extended to handle overlapping
trapezoids.)

3.1. Populating the shape database

Populating the database of shapes is done by
processing each available shape, a polygon or
polyline extracted from an image, as follows. First,
we compute the diameter of the shape, i.e., the pair
of vertices that exhibit the longest Euclidean dis-
tance. In order to achieve even better tolerance to
distortion, we will not simply normalize the shape
about its diameter, as we alluded earlier; instead,
we will normalize it about all its a-diameters, i.e.,
all pairs of vertices whose distance is at least 1� a
times the length of the diameter (06 a < 1). For
each a-diameter, we scale, rotate, and translate the
shape so that the a-diameter is positioned at
(ð0; 0Þ, ð1; 0Þ); each shape is stored twice for each
a-diameter by taking both ways to match the two
vertices defining the a-diameter to the points ð0; 0Þ
and ð1; 0Þ. All these ‘‘normalized’’ copies of the
shape constitute the shape base, the database of
shapes.

Of course, a shape with s vertices may have
XðnÞ a-diameters, which would effectively result in
an Oðn2Þ-size database to store shapes of OðnÞ
total size. However, this happens to fairly regular
shapes; shapes extracted via automated image
processing techniques are unlikely to be regular. In
fact, experiments have indicated that for a ¼ 0:15
the number of copies of each shape is about 12 on
the average, including the doubling due to the

double storage of a shape for a given a-diameter
(the average number of edges per shape in the test
set was 20).

3.2. Outline of the matching algorithm

The algorithm works by considering �-enve-
lopes of the query shape for (appropriately) in-
creasing values of �; for each such �, the polygons
that have most of their vertices inside the �-enve-
lope are determined and for each of them the value
of the similarity measure to the query shape is
computed. The algorithm stops whenever the best
match has been found, or � has grown ‘‘too large’’
implying that no good matches exist in the shape
base. In the latter case, we revert to an alternative
but compatible geometric hashing method which
we outline in Section 3.6.

In more detail, the basic steps of the algorithm
for the retrieval of the database shape that best
matches the query shape are
1. We compute an initial value �1 ¼ �s such that

the �1-envelope is likely to contain at least one
shape of the shape base (see Section 3.3). We
set �0 ¼ 0 and we signal that we are in the first
iteration by assigning i ¼ 1.

2. We collect the vertices of the database shapes
that fall in the difference (�i-envelope – �i�1-en-
velope); this can be achieved by partitioning this
difference into triangles and preprocessing the
vertices so that inclusion in a query triangle
can be answered fast (simplex range searching).
(If no vertices are found then the difference
�i � �i�1 is increased geometrically.) Addition-
ally, each time we find that a vertex of some
shape is inside the above envelope difference,
we increase a counter associated with that shape
that holds the number of its vertices that are in-
side the �i-envelope.

3. If no shape of the shape base has at least a frac-
tion 1� b of its vertices inside the �i-envelope
(for a parameter b such that 06 b < 1), a new
larger � is computed (Section 3.5) and we go
to step 5.

4. If there are shapes of the shape base that have
at least a fraction 1� b of their vertices inside
the �i-envelope (these are the candidate shapes),
we process them as described in Section 3.4.
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During the processing, we may either conclude
that the best match has been found, in which
case it is reported to the user and the execution
is complete, or a new larger value of � is com-
puted.

5. We increment i and set �i ¼ �. If �i does not ex-
ceed ðA=2plQÞ log3 n, we go to step 2 and repeat
the procedure (A is the area of the locus of the
normalized shapes (Section 3.3), p is the number
of shapes in the shape base, n is the total num-
ber of vertices of the p shapes, and lQ is the
length of the perimeter of Q); otherwise, we re-
port the best match so far (if any) and exit. If no
match has been found, we employ geometric
hashing. The method converges and if there ex-
ist similar shapes it retrieves the best match.

3.3. Computing the initial width 2�s of the �-envelope

We first compute an initial estimate �̂� of the
width of the �-envelope based on an estimate ~KK�̂� of
the number of vertices that fall inside the envelope.
Then, we calculate the actual number K�̂� of vertices
of the database shapes. If K�̂� is at least half and no
more than twice ~KK�̂�, we set �s ¼ �̂�; otherwise, we
adjust � by performing binary search in the values
of K�.

The computation of �̂� is done as follows. Let
us compute the area A of the locus of the vertices
of the normalized shapes. If the shapes were
normalized with respect to their diameter only,
then all the vertices would fall in the lune defined
by two circles of radius 1 whose centers are at
distance 1 apart. Since we store copies of each
shape normalized for all pairs of vertices whose
distance is at least 1� a times the length of the
diameter (06 a < 1), the area A is equal to the
area of the lune defined by two circles of radius
1=1� a whose centers are at distance 1 apart.
This implies that

A ¼ 2

ð1� aÞ2
cos�1 1� a

2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1� aÞ2
� 1

4

s
:

By assuming uniform distribution of the vertices
inside this lune, the average number of vertices
inside an �-envelope around the query shape Q is
estimated to

�KK� ¼
2�lQ
A

n; ð6Þ

where lQ and n are the length of the perimeter of
the query shape Q and the total number of vertices
of all the shapes of the shape base, respectively.

In order that the initial �̂�-envelope contains at
least enough vertices for a candidate shape (at least
a fraction 1� b of its vertices lie inside the enve-
lope), we derive that

�KK�̂� P ð1� bÞ n
p
; ð7Þ

where p is the total number of shapes in the shape
base.

Estimate (7) may yield the necessary number of
vertices, but the probability that all of them belong
to the same shape is very small. So, we determine
experimentally a cðnÞ, and set ~KK�̂� ¼ ð1� bÞncðnÞ=p
which implies that �KK�̂� ¼ ~KK�̂� ¼ ð1� bÞncðnÞ=p )

�̂� ¼ ð1� bÞA
2plQ

cðnÞ: ð8Þ

Through experimentation, we have determined
that a good choice for cðnÞ for relatively small
shape bases (see Section 4) is: cðnÞ ¼ 5 log n.

3.4. Processing the shapes

We first process all the new candidate shapes,
that is, the shapes that have more than a fraction
1� b of their vertices inside the current �-envelope
but did not do so in the previous envelopes. For
each such shape Pj, we compute the value of the
similarity criterion of Pj with respect to the query
shape Q, which we will call the cost cj of Pj:
cj ¼ averagea2Pj minb2Q dða; bÞ )

cj ¼
R
a2Pj minb2Q dða; bÞ

lengthðPjÞ
; ð9Þ

where by lengthðPÞ we denote the length of the
perimeter of P. The computation is done by in-
tersecting each edge of Pj with the Voronoi dia-
gram of Q; the boundary of Pj is thus split into
segments that are close to either a vertex or an
edge of Q. The contribution of each such segment s
in

R
a2s minb2Q dða; bÞ can then be easily com-

puted
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• if s is in the Voronoi region of an edge e of Q
and s does not cross e, then the contribution
of s is equal to cðsÞ ¼ ððd1 þ d2Þ=2ÞlengthðsÞ,
where d1 and d2 are the distances of the end-
points of s from e;

• if s is in the Voronoi region of an edge e of Q
and s crosses e, then the contribution of s is
equal to

cðsÞ ¼ d2
1 þ d2

2

2ðd1 þ d2Þ
lengthðsÞ;

where d1 and d2 are the distances of the end-
points of s from e;

• if s is in the Voronoi region of a vertex v of Q,
then the contribution cðsÞ is given by a more
complicated expression, which (of course) only
depends on the coordinates of the endpoints of
s and of the vertex v.

Then,

cj ¼
P

s cðsÞ
lengthðPjÞ

: ð10Þ

If cj is less than the cost cmax of the best match so
far, then Pj becomes the current best match and
cmax is set equal to cj.

Next, we process all the shapes that are not yet
candidates (and have at least a vertex other than
ð0; 0Þ and ð1; 0Þ in the current �-envelope), in order
to determine whether we have found the best
matches, and if not to produce a new larger � for
the �-envelope. So, for each of these shapes, say,
Sj, we compute the contribution

R
a2e minb2Q dða; bÞ

of each of its edges e that has at least one endpoint
inside the �-envelope. Let the sum of all these
contributions be tj and let the total length of all
these edges be dj. We check whether

1

lengthðSjÞ
ðtj þ �

2
ðlengthðSjÞ � djÞÞ > cmax:

If yes, the cost of Sj will not be less than cmax; this
is so, because the edges of Sj with at least one
endpoint in the current �-envelope contribute tj inR
a2e minb2Q dða; bÞ, whereas the remaining edges
will contribute more than �=2 times their length
(each edge has both endpoints at distance larger
than � away from Q). So, if the above inequality
holds, we ignore Sj from now on. Otherwise, we
compute

�j ¼
2ðlengthðSjÞcmax � tjÞ

lengthðSjÞ � dj

which turns the previous inequality into equality.
Note that �j is larger than the current width � of
the envelope.

After all the Sj’s have been processed, we con-
sider the set of collected �j’s. If the set is empty,
then we have found the best match and we stop.
Otherwise, we select the smallest element of the set
and we use it as the new width � of the envelope.

3.5. Increasing � when there are no candidate shapes

In this case, all the shapes of our shape base
have less than a fraction 1� b of their vertices
inside the current �i-envelope. Then for each of the
shapes that have a vertex other than ð0; 0Þ and
ð1; 0Þ in the envelope, we do the following. Let Pj
be such a shape with nj vertices and let Vj be the set
of its vertices that are inside the envelope. Con-
sider the set V 0

j of vertices of Pj that are adjacent to
vertices in Vj; for each vertex vk in V 0

j � Vj, we
compute the shortest distance dQðvkÞ of vk from the
query shape Q. If the total number of vertices in
Vj [ V 0

j exceeds ð1� bÞnj (i.e., there are more than
a fraction 1� b of Pj’s vertices in Vj [ V 0

j ), then we
set �0j equal to the ðð1� bÞnj � jVjjÞth smallest
distance dQðvkÞ; this implies that Pj will be a can-
didate shape in the �0j-envelope. In the case that the
total number of vertices in Vj [ V 0

j does not exceed
ð1� bÞnj, then we set �0j equal to ðð1� bÞnj=jVjjÞ�
(i.e., we use linear interpolation in order to esti-
mate the width of the envelope for which Pj will be
a candidate shape).

After all these �0js have been computed, we
collect the smallest among them and use it as the
new � of the envelope.

3.6. Geometric hashing

When a match cannot be found and the enve-
lope is large enough, suggesting that the matching
algorithm has become inefficient, we revert to the
geometric hashing method outlined in this section.

This method uses a finite family of curves which
cover uniformly the locus of the vertices of the
shapes normalized about their diameter, i.e., the
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lune defined by two circles with radius 1 centered
at ð0; 0Þ and ð1; 0Þ. Because the shapes in the shape
base have been normalized about their a-diame-
ters, some vertices fall outside this lune; these
vertices are treated as if they are located on the
boundary of the lune for the purpose of this sec-
tion.

We consider the partition of the lune in the four
quarters Q1;Q2;Q3 and Q4 as is illustrated in Fig. 3
(left). The uniform coverage of each quarter is
achieved by requiring equal areas between consec-
utive curves of the family. We have considered dif-
ferent families of conic curves, trying to increase the
retrieval accuracy, while minimizing the computa-
tional complexity of finding the curve closest to a
given shape. An interesting family is the family of
circles of constant radius 1 which pass through
ð0; 0Þ for Q1 and Q3 and through ð1; 0Þ for Q2 and
Q4. In particular, to partition the upper left quarter
Q1 into k regions of equal area, we use k cyclic arcs
that belong to circles whose centers lie on a circle of
radius 1 centered at ð0; 0Þ; the ith arc is derived from
a circle of radius 1 with center ðxi; �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2i

p
Þ,

where xi is obtained for each i ¼ 1; . . . ; k by
solving the following equation for x ¼ xi: EðxÞ ¼Rminð2x;1=2Þ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðt � xÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p� �
dt )

EðxÞ ¼ A0

4

i
k
; ð11Þ

where A0 is the area of the lune. It turns out that
EðxÞ and hE=hx are both continuous in ½0; 1�
(Fig. 4). Thus, fast gradient-based numerical
methods can be used to determine xi from the

above equation. For k ¼ 50, Fig. 3 (right) illus-
trates the 50 arcs that were derived by means of the
above method.

The hashing works as follows: For each shape
of our shape base, we partition its vertices in four
sets depending on whether they fall in Q1; . . . ;Q4.
Then, for each such set, we compute the hash
curve C of the corresponding quarter that mini-
mizes the average distance of these vertices from
C. The average distance exhibits only one local
minimum (which is also the only local extreme) in
the continuous space of curves. To find the closest
curve segment we may either perform a binary
search in the discrete space of curves that partition
our space or we may find the minimum in the
continuous space by using a numerical method
and then select the discrete neighbor that lies
closest to our polygon. The above procedure ap-
plied to each of the four quarters results in having
each shape associated with one hash curve in each
of Q1; Q2; Q3 and Q4.

By increasing the number of curves, we are
able to have a small, on the average, number of
shapes associated with each hash curve. Shapes
that are close to each other will be associated
with the same or neighboring curves; neighboring
curves may however be associated with dissimilar
shapes.

To retrieve a good match for a given query
shape, we apply the hashing procedure to the
query shape: we partition its vertices, compute the
corresponding curves in each of Q1; Q2; Q3; Q4,
and collect the shapes of the shape base associated
with these curves. Finally, we apply the similarity

Fig. 3. (Left) the four quarters of the lune; (right) hash curves

for the upper left quarter.
Fig. 4. (Left) graph of EðxÞ; (right) graph of #EðxÞ=#x.
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measure between each of the collected shapes and
our query shape and report the shape that exhibits
the lowest cost. Given that we expect to have a
constant number of associated shapes per hash
curve, finding the closest match takes time loga-
rithmic in the number of curves in the family.

3.7. Time complexity of the matching algorithm

Before analyzing the time complexities of each
of the steps of the algorithm, we recall that in
order to compute the similarity measure, we make
use of the Voronoi diagram of the query shape Q.
This can be computed in Oðm logmÞ time, where m
is the size of Q.

Step 1 of the algorithm begins with the com-
putation of �̂� which takes Oð1Þ time. Then, the
number of vertices that fall inside the �̂�-envelope is
computed; this can be done in Oðpoly- log nÞ time
using simplex range counting algorithms and
quadratic or near-quadratic space data structures.
If the computed number greatly differs from the
expected number, Oðlog nÞ repetitions of the pre-
vious computation are done, resulting in
Oðpoly- log nÞ total time for this step.

In step 2, we need to compute the vertices of the
shapes in our database that fall in the difference of
the �i-envelope – �i�1-envelope (this ensures that a
vertex will not be processed or counted multiple
times). The difference of the m trapezoids (one for
each of the m edges of the query shape) can be
decomposed into OðmÞ triangles which can be used
with simplex range reporting data structures of
near-quadratic space complexity that take
Oðlog3 nþ jÞ time per query triangle, where n is
the total number of vertices of the shape base and
j is the number of vertices that fall in the triangle
(Goodman and O’Rourke, 1997). (There are also
quadratic-size data structures that allow for
Oðlog nþ jÞ query time by employing fractional
cascading, Chazelle and Guibas, 1986.) Thus
completing the ith iteration of step 2 takes
Oðm log3 nþ KiÞ time in total, where Ki is the
number of vertices in all the query triangles for
that iteration.

The ith iteration of step 3 takes OðmKiÞ time,
where Ki is again the number of vertices between
the �i-envelope and the �i�1-envelope.

Step 4 involves processing the new candidate
shapes and the non-candidate shapes. The former
takes time OðmjPijÞ, where jPij denotes the number
of vertices of Pi. Processing the non-candidate
shapes can be performed in Oð1þ mKiÞ time, by
maintaining the contributions of vertices in previ-
ous envelopes and simply adding the contributions
of vertices between the �i-envelope and the �i�1-
envelope. Step 5 takes constant time.

The overall time complexity after r iterations is
therefore

Oðm logmÞ þOðpoly- log nÞ

þ
Xr

i¼1

Oðpoly- log nþ mKiÞ

¼ Oðm logmÞ þOðr poly- log nÞ þOðmKÞ;

where K is the total number of vertices processed
and since the total number of candidate shapes is
OðKÞ. This is Oðr poly- log nþ KÞ since the size m
of the query shape is constant. Finally, by as-
suming uniform distribution of the vertices inside
the lune and in light of the test for �i in step 5, the
number K of vertices and the number r of itera-
tions is expected to be poly-logarithmic in n, and
therefore the total time complexity is poly-loga-
rithmic in n.

4. A prototype system for shape-based image

retrieval

We have developed a prototype interactive
system that implements the proposed geometric-
similarity approach. The system uses external
storage for the shape base and the auxiliary data
structures. The geometric-similarity algorithm has
been implemented in C and the user interface has
been developed using Tcl/Tk. We currently have a
stable version running on a Sun Solaris platform.
The software is easily portable to other platforms
as well.

GeoSIR provides also utilities for edge extrac-
tion and detection of object boundaries based on
the ipp software (Nelson) and a cluster decompo-
sition algorithm that we have developed. When
adding a new image in the image base we process
the image and extract shapes that describe
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sufficiently the boundary of each object. These
shapes are non-self-intersecting polylines either
open or closed. We first perform image processing
that achieves segment approximation of bound-
aries. We then detect clusters of polylines that
describe the boundary of objects. Each such clus-
ter consists of one or more non-self-intersecting
polylines that share edges or vertices.

In Fig. 5(a) we see an image and in Fig. 5(b) we
see the same image after it has been processed for
segment detection. The result of the cluster detec-
tion is shown in Fig. 6. There are seven clusters of
shapes (A–G). The shapes are approximated by
adequately small line segments, connected in
polylines. Several heuristics may be used to mini-
mize noise. Our method has been designed to be
tolerant to such noise situations. Thus, noise
elimination is important only for reducing the ef-
fective size of the shape base.

After the polyline clusters have been deter-
mined, each cluster is decomposed in a number of
non-self-intersecting polylines. There are several
different decompositions; achieving a good de-
composition is an important issue, but we are not
treating it here. During cluster detection and de-

composition, certain relations are recorded con-
cerning the relative size and positioning of these
shapes with respect to other shapes of the same or
different clusters. The efficient use of this infor-
mation (see, e.g., Nabil et al., 1996) is an impor-
tant direction for future research.

4.1. User dialogue

The overall user dialogue is illustrated in Fig. 7.
The user is first presented with a workspace where
she/he can draft a query sketch. This sketch is then
decomposed in non-self-intersecting polylines.
Initially, the system attempts to use the incre-
mental ‘‘fattening’’ algorithm to find the best
match(es). If it fails to find a close match, geo-
metric hashing is used for approximate retrieval. If
the user is not satisfied by the returned result(s),
she/he can edit the query sketch, specify certain
polylines (open or closed) that are of special in-
terest and re-apply the retrieval process. Fig. 9
depicts a snapshot of the GUI.

4.2. Experiments

We have performed experiments with around
100 images from an animation database (like the
chapel of Fig. 5) and 350 actual shapes. Each
shape is stored on the average approximately 12

Fig. 5. (a) The original image (converted in grey scale) and

(b) after the edge extraction.

Cluster A

Cluster D

Cluster E

Cluster F

Cluster G

Cluster B

Cluster C

Fig. 6. Seven clusters of shapes (A–G) have been detected.

no candidate
or too many

 
Calculate the similarity 
measure of each candidate 

the query shape
shape with respect to 

cannot find match
ε and    is too large

Decomposition of the query sketch 

selfintersecting polylines

For each polyline

Find candidate shapes

and find candidate shapes

no match

edit initial sketch and/or select
certain parts of it as more 
significant.

Report results to user

Found k best matches

no best match or

Draft a query sketch

Estimate an initial
-envelope. ε 

Refine    appropriatelyε 

in a number of characteristic non-

The match is not satisfactory;

Find image(s) that contain
as many best matches as 
possible and rank them

(k is user defined)

Revert to geometric hashing

Fig. 7. User interaction.
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times resulting in a shape base populated with
3000 normalized shapes. The total number of
vertices was n ¼ 30000. The distribution of the
vertices was not uniform because of the specialized
nature of the images (see Fig. 8).

In the experiments we used a ¼ 0:15; b ¼ 0:15
and cðnÞ ¼ 5 log2 n. The initial estimation of K�

was usually very close to the actual number of
vertices that fell in the envelope. In the case of
Fig. 9, we find a best match with the first iteration
with cost c ¼ 0:079221 since two edges of the
matched shapes are partially outside the envelope.
Note that all shapes are normalized so that their
diameters are have length 1. Thus a cost of this size
roughly denotes an average difference of about 8%
of the query’s actual size between the query and

matched shape. Finally, in Fig. 10 we find a best
match after a second refinement iteration; in this
case, the returned shape for a triangular query
shape is a polygon with 10 vertices that has a cost
around c ¼ 0:0008492, indicating an average dis-
tance of about 0.08% of the query’s actual size.
Even though the vertices are not uniformly dis-
tributed in the lune, the algorithm behaves as ex-
pected in terms of number of iterations and time
complexity.

5. Conclusions and future work

We have presented an efficient noise tolerant
shape-based approach to image retrieval. Our
system combines two powerful methods, an effi-
cient algorithm for retrieving shapes based on a
novel similarity criterion and a geometric hashing
technique, to maximize efficiency and intuitive-
ness. The algorithm currently yields the best
match, but it can be easily extended the k best
matches; in this case, a heap of size k is used to
hold the k current best candidates.

We are currently incorporating this algorithm
in a video retrieval system, which will allow us to
experiment with larger shape bases. Other future
research directions include finding alternative ways
to do the range searching (whose space require-
ment is high), ensuring robust calculations, adding
3D awareness support, and using relative position

Fig. 8. Distribution of the vertices inside the upper part of the

lune; the lower part is symmetric.

Fig. 9. Querying with an orthogonal shape; the door of the

church is the best match.

Fig. 10. The best match to this triangular query is a polygon

with 10 vertices.
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information for allowing more complicated que-
ries such as containment and tangency.
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