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Abstract

In this paper, we establish structural properties for the class of complement reducible graphs or
cographs, which enable us to describe efficient parallel algorithms for recognizing cographs and for
constructing the cotree of a graph ifitis a cograph; if the input graph is not a cograph, both algorithms
return an induced,. For a graph on vertices andn edges, both our cograph recognition and cotree
construction algorithms run in@g? n) time and require Qn +m)/ logn) processors on the EREW
PRAM model of computation. Our algorithms are motivated by the work of Dahlhaus (Discrete Appl.
Math. 57 (1995) 29-44) and take advantage of the optim@da)-time computation of the co-
connected components of a general graph (Theory Comput. Systems 37 (2004) 527-546) and of an
optimal Olog n)-time parallel algorithm for computing the connected components of a cograph, which
we present. Our results improve upon the previously known linear-processor parallel algorithms for
the problems (Discrete Appl. Math. 57 (1995) 29—44; J. Algorithms 15 (1993) 284-313): we achieve
a better time-processor product using a weaker model of computation and we provide a certificate (an
inducedP,) whenever our algorithms decide that the input graphs are not cographs.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The complement reducible graphalso known asographs are defined as the class
of graphs formed from a single vertex under the closure of the operations of union and
complementation. More precisely, the class of cographs is defined recursively as follows:
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(i) a single-vertex graph is a cograph, (ii) the disjoint union of cographs is a cograph and
(iii) the complement of a cograph is a cograph.

Cographs have arisen in many disparate areas of applied mathematics and computer sci-
ence and have been independently rediscovered by various researchers under various names
such asD*-graphs[16], P4 restricted graphf8,9], 2-parity graphs and Hereditary Dacey
graphs or HD-graph4]. Cographs are perfect and in fact form a proper subclass of per-
mutation graphs and distance hereditary graphs; they contain the class of quasi-threshold
graphs and, thus, the class of threshold grgpHsl]. Furthermore, cographs are precisely
the graphs which contain no induced subgraph isomorphicip(ahordless path on four
vertices).

Cographs were introduced in the early 1970s by LeftBfwho studied their structural
and algorithmic properties. Along with other properties, Lerchs has shown that the class
of cographs coincides with the class®f restricted graphs, and that the cographs admit a
unique tree representation, up to isomorphism, calledteee The cotree of a cograpti
is a rooted tree such that:

(i) each internal node, except possibly for the root, has at least two children;
(i) the internal nodes are labelled by either On@de3 or 1 (1-nodey; the children of a
1-node (0-node resp.) are 0-nodes (1-nodes, resp.), i.e., 1- and 0-nodes alternate along
every path from the root to any node of the cotree;
(i) the leaves of the cotree are in a 1-to-1 correspondence with the verticesaoid two
verticesy;, v; are adjacent il if and only if the least common ancestor of the leaves
corresponding te; andv; is a 1-node.

Lerchs’ definition required that the root of a cotree be a 1-node; if, however, we relax
this condition and allow the root to be a 0-node as well, then we obtain cotrees whose
internal nodes all have at least two children, and whose root is a 1-node if and only if the
corresponding cograph is connected.

There are several recognition algorithms for the class of cographs. Sequentially, linear-
time algorithms for recognizing cographs were give[8i]. In a parallel setting, cographs
can be efficiently (but not optimally) recognized in polylogarithmic time using a polynomial
number of processors. Adhar and Péhjydescribed a parallel algorithm for this problem
which, on a graph om vertices andn edges, runs in @og?n) time and uses @um)
processors on the CRCW PRAM model of computation. Another recognition algorithm
was developed by Kirkpatrick and Przytycks7], which requires @og? ) time with
O(n®/log? n) processors on the CREW PRAM model. Lin and Ol4fi] proposed an
algorithm for the recognition and cotree construction problem which requitteg @) time
and Q(n® 4 nm)/ logn) processors on the EREW PRAM model. Recently, Dahlfiadls
proposed a nearly optimal parallel algorithm for the same problem which runéaga)
time with O(n 4+ m) processors on the CREW PRAM model. Another cograph recognition
and cotree construction algorithm was presented bjiBE it requires Qlog? n) time and
O® + m) processors on the CRCW PRAM model.

Since the cographs are perfect, many interesting optimization problems in graph the-
ory, which are NP-complete in general graphs, have polynomial sequential solutions and
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admit efficient or even optimal parallel algorithms in the case of cographs. Such problems,
with a large spectrum of practical applications, include the maximum clique, minimum
coloring, minimum domination, Hamiltonian path (cycle), minimum path cover, and iso-
morphism testing5,11]. In particular, for the problem of determining the minimum path
cover for a cograph, Lin et aJ21] presented an optimal sequential algorithm, which can
be used to produce a Hamiltonian cycle or path, if such a structure exists. Bodlaender and
Méhring [4] proved that the pathwidth of a cograph equals its treewidth and proposed a
linear-time algorithm to determine the pathwidth of a cograph. In a parallel environment,
many of the above problems are solved in polylogarithmic time with a linear number of
processors for cographs, assuming that the cotree of the cograph is given g%, Rpuf

for example, the minimum path cover problem is solved {fo@n) time with O(n/ logn)
processor§22].

The cotree of a cograph is constructed ida@?») time with O(n + m) processors
[10,12], or in O(logn) time with O((n? +nm)/ logn) processorfl9], and, thus, the cotree
construction dominates the time and/or processor complexity of the parallel algorithms for
solving all the previously stated optimization problems on cographs. It follows that these
parallel algorithms need, in total, eithetl6y? n) time or Q((n2 + nm)/ logn) processors,
since they require the cotree as input instead of the standard adjacency-list representation
of the input cograph.

In this paper, we establish structural properties of cographs (based on the fact that a
cograph contains no induced subgraph isomorphic R f18]), which enable us to ob-
tain efficient parallel algorithms for recognizing whether a given graph is a cograph and
for constructing the cotree of a graph if it is a cograph. More precisely, for a graph on
n vertices andn edges, our algorithms run in(@g?n) time using QG(n + m)/ logn)
processors on the EREW PRAM model of computation, an improvement on both the
time-processor product and the model of computation over the previously known paral-
lel algorithms for these problems. The algorithms work in a fashion similar to that used
in [10] and take advantage of the optimal parallel algorithm for computing the connected
components of the complement of a graph describdd@]imand an optimal @ogn)-time
and Q(n 4+ m)/logn)-processor EREW-algorithm which computes the connected com-
ponents of a graph or detects that it containBsathe latter algorithm is interesting in
its own right as it constitutes an optimal parallel connectivity algorithm for cographs, and
can be extended to yield an optimal parallel connectivity algorithm for graphs with con-
stant diameter (note that no optimal parallel connectivity algorithm is currently available
for general graphs). Finally, we note that all our algorithms produce an indRcetien-
ever they decide that the input graph is not a cograph, thus providing a certificate for their
decision.

The paper is organized as follows. In Section 2, we present the notation and related
terminology and we establish results which are the basis of our algorithms. In Section 3, we
present the optimal parallel algorithm that either computes the connected components of
the input graph or detects that the graph contaifig as an induced subgraph. The cograph
recognition and the cotree construction algorithms are described and analyzed in Sections
4 and 5, respectively. Finally, Section 6 concludes the paper with a summary of our results
and some open problems.
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2. Theoretical framework

We consider finite undirected graphs with no loops or multiple edges. For a grapé
denote byV (G) and E(G) the vertex set and edge set®@f respectively. LeS be a subset
of the vertex seV (G) of a graphG. Then, the subgraph @ induced bys is denoted by
G[S].

The neighborhoodV (x) of a vertexx of the graphG is the set of all the vertices @
which are adjacent te. Theclosed neighborhoodf x is defined asV[x] := N(x) U {x}.
The neighborhood of a subsgbf vertices is defined a¥ (S) := (|, .gN (x)) — S and its
closed neighborhood a¢[S] := N (S) U S. Thedegreeof a vertexx in G, denotedlegx),
is the number of vertices adjacentitan G; thus,degx) = |N(x)]|. If two verticesx and
y are adjacent ii;, we say that seesy otherwise we say that missesy. We extend this
notion to vertex setsV; C V(G) sees (misses)y; € V(G) if and only if every vertex
x € V; sees (misses) every vertex V;.

A pathin the graphG is a sequence of verticagvs . .. vx such thatv;v;11 € E(G)
fori =1,2,...,k — 1; we say that this is a path from to v; and that itdengthis k.

A path is calledsimpleif none of its vertices occurs more than once; it is catiedal if

its length is equal to 0. A simple paiivy.. . vt is chordlessf v;v; ¢ E(G) for any two
non-consecutive verticag, v; in the path. Throughout the paper, the chordless path on
vertices is denoted b¥y; in particular, a chordless path on 4 vertices is denoteé&pyn

a P4 abcd the vertices andc are themidpointsand the vertices andd the endpointsof
the P4. The edge connecting the midpoints oPais itsrib, whereas the other two edges
(which are incident on the endpoints) are #iags for example, the edgecis the rib and
the edgesib andcd are the wings of the?, abced

If the graphG contains a path from a vertexto a vertexy, we say that is connected to
y. The graphG is connectedf x is connected tg for every pair of vertices, y € V(G).
The connected componenfsr componenfsof G are the equivalence classes of the “is
connected to” relation on the vertex SétG) of G. The co-connected componen(sr
co-componen)f G are the connected components of the complerGeot G.

An important tool in both our cograph recognition and cotree construction algorithms
is to consider for a vertex of a graphG the partition of the subgraphS[N (v)] and
G[V(G)—N[v]]into co-components and connected components, respectively. In particular,
we define:

Definition 2.1. Let G be a graph and a vertex ofG. We define thesomponent-partition
of G with respect taw, denoted by(v; €1, €2, ..., 6; €1, 62..., €1), as the partition of
the vertex seV (G)

VG) ={v)+ 1+ %2+ -+ G+ b1+ G2+ + G,

where%, €5, ..., %, are the co-connected componentsaiiV (v)] andé1, o, . .., i
are the connected componentsHfV (G) — N[v]].

Since the cographs do not contaias, we are especially interested in component-
partitions such that there is ney with vertices in bothN[v] and V(G) — N[v], which



S.D. Nikolopoulos, L. Palios/Discrete Applied Mathematiaginan) 1i—in 5

are the only type ofP4s with not all its vertices in the same co—compon@rﬂtor in the
same componerd ;; note that anyP4 with all its vertices inN[v] has all its vertices in the
same co-component @f[N (v)], and anyP4 with all its vertices inV (G) — N[v] has all
its vertices in the same component®fV (G) — N[v]].

Definition 2.2. LetG be agraphy avertex ofG, and(v; (%1, f%g, A (%g; €1, 62, ...,%6%)
the component-partition @ with respect ta. We say that this component-partitiorgisod
if and only if G contains naP4 with vertices in bothV[v] andV (G) — N[v].

Clearly, if the component-partitiotv; %1, 2, . .., €¢; €1, 6o, . .., ) of a graphG
with respect to a vertex is good and if the grapls contains aP; as an induced sub-
graph, then thisP, entirely belongs either to one of the co-compone‘%ﬁs(lgi <9)
of the subgraphG[N (v)] or to one of the components; (1< j<k) of the subgraph
G[V(G) — N[v]]; recall that noP4 with its vertices inN (v) has vertices belonging to two
or more co-components 6f[ N (v)], and noP4 with its vertices inV (G) — N[v] has vertices
belonging to two or more components@fV (G) — N[v]].

In Lemma 2.1 we establish necessary and sufficient conditions for a component-partition
to be good.

Lemma 2.1. Let G be a graphv a vertex of Gand (v; €1, €2, . .., €, €1, €, . .., Cr)
the component-partition of G with respectioThen the component-partition of G with
respect tow is good if and only if the following two conditions hold

(i) every co-componef; either sees or misses every comporientand

(ii) if, for each co-componerif;, 1<i <¢, we define the sel = {j | ; sees 4}, then
the co-components @ [N (v)] have the following monotonicity property; | < |fj|
implies that/; < ;.

Proof. (=) We assume that the component-partitioit;okith respect t is good, i.e., the
graphG does not contain &4 with vertices in bothV[v] andV (G) — N[v]; we will show
that conditions (i) and (i) hold. If condition (i) did not hold, then there would be a vertex
of some%; which would be adjacent to a vertgxn some%'; but non-adjacent to a vertex
z of ¢;; then, the pathxyz would be aP4 with vertices in bothv[v] andV (G) — N[v], a
contradiction. Therefore, condition (i) must hold. .

Suppose now that condition (ii) does not hold; then, there would exist co-compd@fients
and%; such that/;| <|I;| andl; ¢ I;. Then, there existse i; — I;, which implies that;
seest, whereass ; missest,. Additionally, since|/;| < |/;| andt € I; — I}, there exists
t' € I; — I;, which in tumn implies tha# ; sees6,, whereass; missesé, . But then, any
four verticess, b, ¢, d, such thati € 4;, b € %, c € 4;, andd € %, induce aP4 abcdin
G; a contradiction.

(<) We assume that the conditions (i) and (ii) hold; we will show that the gaploes
not contain aP4 with vertices in bothW[v] andV (G) — N[v]. Suppose for contradiction
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thatG contained such &4. We distinguish the following cases:

@)

(b)

v participates in theP,: Sincev is adjacent to all the vertices N (v), such aP4 can
either be of the formxyw with x € N(v) andy, w € V(G) — N[v] (seeFig. 1(a)),

or of the formzvxy with x,z € N(v) andy € V(G) — N[v] (seeFig. 1(b)). In the
former casey, w belong to the same connected componentpf (G) — N[v]] and

x sees exactly one of them, while, in the latterz belong to the same co-component
of G[N (v)] andy sees exactly one of them; in either case, condition (i) does not hold,
which leads to a contradiction.

v does not participate in th@,: Then, theP4 contains vertices fron¥ (G) — {v} and

at least one edge, sayy, with x € N(v) andy € V(G) — N[v]. The edgery cannot
extend to aP3 xyzof the P4: if it did, thenz € N (v), for otherwisey, z would belong
to the same connected componen&Gél (G) — N[v]] andx would see exactly one of
them, in contradiction to condition (i); sinaez € N (v), the P4 would be (without loss
of generality)xyzw which violates condition (i) no matter whether e N (v) (then,

x, w belong to the same co-component and N(x) — N(w)) orw € V(G) — N[v]
(then,x, z belong to the same co-component and N(z) — N(x)). Hence, if a vertex
of the P, which belongs toV (G) — N[v] is adjacent in theP4 to a vertex inN (v),

it cannot be a midpoint of th@,. This implies that no vertex i¥ (G) — N[v] is a
midpoint of thePs; thus, the only possible cases are:

e the P4 is abxywherea, b € N(v): Then, the patlavxy is a P4, which as in case (a)
contradicts the fact that condition (i) holds.

e the P4iswzxy wherez € N(v) andw € V(G) — N[v]: Since condition (i) holds, it
must be the case that the vertiaeg belong to different co-componentsGi{ N (v)]
and the vertices, w belong to different components 6f[V (G) — N[v]] (seeFig.
1(c)). Letx € %,z € %p, wherei # p, and suppose without loss of generality
that|/;| < |,]. Then, condition (ii) implies tha; < 7,,. Moreover, ify € %, from
condition (i) we have that € I;. Sincel; < I, we getthayj € I,, which contradicts
the fact that the verticesandz are not adjacent (se® wzxy).

In all cases, we reached a contradiction; therefore, the géapannot contain &4 with
vertices in bothV[v] andV (G) — N[v], that is, the component-partition 6f with respect
tovisgood. O
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From the proof of Lemma 2.1, we see thatifcontains anyP, with vertices in both
N[v] andV(G) — N[v] which is of a general form other than those showfrig. 1, then
G contains aP, of the form ofFig. 1(a) or Fig. 1(b). Thus, condition (ii) of Lemma 2.1
guarantees that ng, of the form ofFig. 1(c) exists, while condition (i) guarantees that no
other P4 exists with vertices in bottV[v] andV (G) — N[v]. In fact, condition (ii) can be
phrased in another equivalent way, as given in the following corollary.

Corollary 2.1. LetG be agraphv avertex ofG,and(v; @1, 62, ..., ¢ ; 61, 6o, . .., €x)
the component-partition aff with respect tav. Then the component-partition of with
respect tow is good if and only if the following two conditions hold

(i) Every co- componeﬁf either sees or misses every compor‘iépt

(i) Suppose that the ordering of the co- compon%_t,s(gg, ..., %, corresponds to their
ordering by non-decreasing;|, where [; = {;j | %; seeggj}. If we associate each
components;, 1<i <k, with the setl; = {j | 6; seeg%j}, then the components of
G[V(G) — N[v]] have the following propertyf I; # ¢ and h is the minimum element
of I;,thenl; ={h,h +1,...,¢}.

Proof. It suffices to show that condition (ii) of Lemma 2.1 and condition (ii) of Corollary
2.1 are equivalent.

(=) Suppose that condition (ii) of Lemma 2.1 holds; we will show that condition (ii)
of Corollary 2.1 holds. For any componéegit such thatl; # ¢, it suffices to show that if
h € I; thenV, > h, %; seest ;. Consider any sucl; sinceh < j, it holds that| 7| <|1;],
which according to condition (ii) of Lemma 2.1 yields thatc fj. Sinceh € I;, we have
that%; sees), or equivalently tha®), seess;; thatis,i € I,. Sincel, C I}, theni € I,
i.e.,€; see§%j.

(«) Suppose that condition (ii) of Corollary 2.1 holds; we will show that condition (ii) of
Lemma 2.1 holds. Let us consider two co—compon@r;,tand‘%q, and suppose without loss
of generality that/,| <|I,|. We need to show thdi, C ,. Lets e I,; this is equivalent
to the fact that the componeft; sees(%p. But then,p € I, and in factg € I, since the
inequality|f | < |f | implies thatp < ¢ in the ordering of the co- components(GtN(v)]
by non-decreasingy;|. Therefore; I Since this holds for any € Ip, we have that
I,, - Iq, as desired. O

Consider the partition of the set of co- compone{rﬁ%& %o, .. (65} of the subgraph
G[N (v)] into a collection of sets where any two co- compone‘ms% belong to the
same set if and only if; = I, i.e., € and(@ see the same components of the subgraph
G[V(G) — N[v]]. Let us denote these partition séts S, . .., Sy, where, for every, j
such that Ki < j < ¢/, and everys, € §; and%; € $;, it holds that, c I;; the valuet’
is equal to the number of distinct values of ths, and thus each sé; is non-empty. Itis
not difficult to see that the partition sefs, So, . .., S have the following properties:
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Observation 2.1. LetG be agraphv avertex of Gand Sy, So, .. S[/ be the partition of

the set of co- componen{l%l, (62, .. fée} of the subgrapIG[N(v)] as described above.
Moreover suppose that cond|t|0(1) of Lemma2.1 holds. The definition of the partition
setsS1, S, ..., Sy easily implies the following

e If a connected componef# of the subgraphG[V (G) — N[v]] sees a co-component
% € 8}, then% sees all the co-componentsSp.

e Let us consider the ordering of the co-componefts, 2. ..., ¢} consisting of an
arbitrary orderlng of the elements of the sitfollowed by an arbltrary orderlng of the
elements o, and so on up to the s&f . In this ordering the co- componen%l ,1<i <,
are ordered by non-decreasing value| Hf.

In light of the above observations and due to condition (ii) of Corollary 2.1, in a good
component-partition of a grapfi with respect ta, we can partition the set of connected
component§%1, 6o, ..., 6x} of the subgraplG[V (G) — N[v]] into setsSo, S1, ..., S¢
as follows:

S1=1{%;|V% € 51, €, see<)},
Si =1{%; |V(% €S and? e Si_1, € see¥ but does not se’%/} 2<ige),
So={%1.%2....6— |J S

The definition of the set§;, j=1,2,..., ¢, impliesthats; # ¢ foralli =2,3,...,¢
However,Sp and S1 may be empty. In particulatp is empty if and only if the graply is
connected; in fact§p contains the connected component&axcept for the component to
which v belongsFig. 2illustrates the partitions of the set of co-components and of the set
of components described above and their adjacencies in a good component-partition of the
graphG with respect to vertex; the dotted ovals indicate the partition sets, and the circles
inside the ovals indicate the components or co-components belonging to the partition set.
In terms of the partitions into setsy, S, ..., Si and S, S1, ..., Sy, the cotree of a
cographG has a very special structure, which is described in the following lemma (clearly,
the component-partition of a cograph with respect to any of its vertices is good so that the
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conditions (i) and (ii) of Lemma 2.1 and Corollary 2.1 hold and the $gts>, . .., S and
So, S1, ..., S¢r are well defined).

Lemma 2.2. LetG be a cographv a vertex of Gand Sy, S, ..., Si andSo, S1, . .., Se,
respectivelythe partitions of the co-connected components[af (v)] and of the connected
components of;[V (G) — N[v]] as described above. Then

(i) if S1 =9, the cotree of G has the general form depicted in Big;
(ii) if S1 #£ @, the cotree of G has the general form depicted in Bigp).

In either casethe dashed part appears in the tree if and onlgf:~ @.

The circular nodes labelled wiita O or a 1 inFig. 3 are 0- and 1-nodes, respectively,
whereas the shaded node is a leaf node; the triangles denote the cotrees of the corresponding
connected components or co-components. Lemma 2.2 gives us a way of constructing the
cotree of an input cograpt: we compute the partitionsy, . . ., Si andSo, S1, ..., S} we
recursively construct the cotrees of the elements of each of the above partition sets; we link
these cotrees as indicatedRrig. 3. By carefully selecting the vertex we can guarantee
that the cotree construction takeg @y n) time, wheren is the number of vertices @ .

The good selection of the vert@ased on which we compute the co-components of the
subgraphG[N (v)] and the components of the subgrapl’ (G) — N[v]] is crucial both for
the cograph recognition and the cotree construction. We will follow the selection principle
used by DahlhauflL0], although we will be more concrete in our choices. If the number
of vertices of the grapl& is n, we define the sets, M, andH of the low-, middle-, and
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high-degree vertices d@f, respectively, as follows:

{x € V(G) | degree oftinG < n},

x € V(G)| 2 n<degree ofcinG<3n},
7} 7

= {x € V(G)|degree of inG > 3n}.

L
M
H

Clearly, the setd., M, and H partition the vertex se¥ (G) of G. Then, we can show the
following results:

Observation 2.2. Let G be a graph om vertices and leb € V(G). If v € M, then
the cardinality of each co-compone%;, 1<i <¢, of the subgraphG[N (v)] and of each
connected component’;, 1< j<k, of the subgraphG[V(G) — N[v]] does not
exceedt n.

Proof. The definition of the sew implies that n <|N (v)| < 3 n, from which the obser-
vation follows. [J

Lemma 2.3. Let G be a graph om vertices the set L as defined abge a connected
subgraph of G such that every vertex of F belongs.fbHen if the number q of vertices of
Fisat Ieast% n, the subgraph F is not a cograph and in particular its component-partition
with respect to any of its vertices is not good

Proof. Letv be an arbitrary vertex af, and suppose for contradiction that the component-
partition of F' with respect tov is good, that isF contains noP4 with vertices in both
N[v] andV (F) — N[v]. Then, from Corollary 2.1, conditions (i) and (ii) hold. Assuming
that the ordering of the co-componeﬁ&s, 562, e (%g of F[N(v)] corresponds to their
ordering by non—decreasimé | (see Corollary 2.1), let us consider any vertar %,. Then,

x seesv and all the vertices IV (F) — N[v]; since|V(F) — N[v]| =q — (1 + deg(v))
wheredeqv) is the degree ob in F, the degrealegx) of x in F isdegx)>1+ g —
(14 deg(v)) =q — deg(v). If we solve forg, we get:qg <deg(x) + deg(v). Since all the
vertices of F belong toL, their degrees are less thém, and thus we have that< %n; a
contradiction. [J

Lemma 2.3 can be used to prove Lemma ¢168f in a different way. More importantly,
however, for a subgraph as described in Lemma 2.3 which has at I€agertices, it gives
us the location of &;; this proves very useful in our certificate producing step. Moreover,
thanks to Lemma 2.3, we establish in Lemma 2.4 an extension of a result giy&01];in
Lemma 2.4 has a simpler proof than the prooflil] and also gives us a way of locating a
P4 whenever the grapty is not a cograph.

Lemma 2.4. LetG be a graph om vertices such that the set M is empty. L&k the vertex
inthe set L which has the maximum number of neighbors inthe seitHet% 1, €, . . ., €&
be the connected componentsV (G) — N[v]]. If there exists a componeft; such that
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|€;| > %n and the cardinality of a co—componehérl,»,j of the graphG[%;] is at Ieast% n,
then G is not a cograph and the component-partitiorGo%’; ] with respect to any of its
vertices or the component-partition 6f{.Z; ;1 with respect to any of its vertices is not
good

Proof. Observe that every vertex e H — %; is adjacent to at least one vertex®f; if
not, then the degree afwould be at most equal o — |%;| < %n, which contradicts the
definition of the setd. But then, from Lemma 2.1 condition (i), such a veriezees the
entire®;; this follows from the fact that belongs to a co-component6{ N (v)], sincex is
adjacent to a vertex if; and it does not belong t6;. If €; contains no high-degree vertex,
it would be a connected subgraph@fwhose vertices all belong t and then, according
to Lemma 2.3G[%;] is not a cograph and more specifically the component-partition of
G[%;] with respect to any of its vertices is not good.

Suppose now thaf; contains at least one high-degree vertex. We showdhabntains
no low-degree vertices. Suppose that there existed such a ye®éxce%; is connected
and contains a high-degree vertex, there would exist a pathAftortihat high-degree vertex
in G[%;]; sinceM = ¢, such a path would contain an edge connecting a low-degree vertex,
say,w, to a high-degree vertex. Then,is adjacent to at least one high-degree vertex;in
and to all the high-degree verticesfih— %; because every vertex itf — ¢; sees the entire
%;. Sinced N N(v) € H — %, this contradicts the choice ofas the low-degree vertex
that has the maximum number of neighborginTherefore#; contains only high-degree
vertices. Then, in the complement@f the vertices of; belong to the low-degree vertex
setL’ of G and the co-components 61%; ] would be subsets of the connected components
of G[L']; Lemma 2.3 implies that if the cardinality of such a co—compom;én}» is at least
% n, the subgrapkj}[;?/i,j] is not a cograph and its component-partition with respect to any
of its vertices is not good. [

Finally, for any vertex of a graphG, the following observation holds for the number of
co-connected components of the subgrépphv (v)]:

Observation 2.3. Let G be a graph omm vertices andn edges v a vertex of G and
€1,%>, ..., % the co-connected componentsHiN (v)]. Then ¢ < «/2m.

Proof. The definition of%;s (1<i <¢) implies that every vertex of; sees every vertex
of ¢, for everyj # i. Thus, there exist at least

12 161 Y 1%51 | 21/2) (16| - (€ — 1) > — 1)/2
i ji i

edges connecting vertices in different co-components[af (v)]. SinceG contains a total
of m edges and there are at leéstdges connecting to its neighbors, we conclude that
m>20+0(4—1)/2> 62/2, from which the observation follows.[]
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3. Finding connected components or detecting &4

In this section, we present a parallel algorithm which takes as input a graph and computes
its connected components or detects that the graph cont&nasan induced subgraph; in
Section 3.1, we also show how to augment the algorithm to ret@ywvehenever it detects
such a subgraph in the input graph.

Let G be an undirected graph envertices andn edges, and suppose without loss of
generality tha¥’ (G)={1, 2, ..., n}. We define the functioif : V(G) — V(G) as follows:
f()=min{u |u € N[v]}. The functionf is well defined since, for any vertex N[v] # @;
additionally, the following properties hold:

(P1) For any vertex € V(G), f(v) is the minimum-index vertex at distance at most 1
fromv.
(P2) Let us defing’® (v) as follows: f D (v) = f(v), fP ) = F(f% D (v)). Then, for
any vertexv € V(G), f® (v) is the minimum-index vertex at distance at mofiom
v, or equivalentlyf ® (v) = min{u |u € N[N[... N[v]...]]}.
— ——

k
(P3) Any two vertices, v € V(G), for which f (u) = f(v), belong to the same connected
component ofG.
(P4) Ifu, v, w are distinct vertices aff such thatf () =v and f (v) = w, then the vertices
u, v, winduce aP3 uvw in G.

Property P1 follows trivially from the definition gf (v); Property P2 is easily established by
induction onk. Property P3 is a consequence of Property P2, whereas Property P4 follows
from Property P1 and the fact that in such a caseu < w.

Lemma 3.1. LetG be anundirected graply the function defined aboyandVy, Vo, ..., Vi
the partition ofV (G) such that any two vertices y belong to the same patrtition set if and
only if f(f(x)) = f(f(»)). Then the following statements hald

(i) Allthe vertices in eacl¥; belong to the same connected component
(i) If there exists an edgey € E(G) such thatx € V;,y € V;, andi # j, then G
contains aP4 as an induced subgrapln particular, if f(f(x)) < f(f(y)) thenG
contains aP, abxy whereas iff (f(x)) > f(f(y)) then G contains &4 abyx
(iii) If the length of every induced path in G does not ex&¢lde setsVy, Vo, ..., V; are
the connected components@®@f

Proof. (i) Clearly true, since, by Property P2, for all verticesy € V(G) such that
f(f(x)=f(f(y)) =z, G contains paths (of length at most 2) franto z and fromy to z.

(ii) Suppose that there exists such an edgeand assume without loss of generality that
f(f(x))> f(f(y)=z.Then, Property P2 implies thate N[N[y]] and Property P1 that
z ¢ N[N[x]], which in turn implies that ¢ N[y]. Sincez € N[N[y]] andz ¢ N[y], there
exists avertexo € N(y) suchthat, w, zinduce aPz ywzin G. Then, the fact that neither
z norw are adjacent ta (otherwisez € N[N[x]]) implies that the graplé: contains the
P4 xywz as an induced subgraph.
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(iii) If every induced path inG has length at most 2, then, for every veriex V(G),
the setN[N[x]] coincides with the vertex set of the connected compone6tiofwhichx
belongs. Thatis, for every vertexn a connected compone#it of G, f(f (x))=min{u |u €
%, }; the truth of statement (iii) follows. [J

Our connected components algorithm relies on Lemma 3.1. It computes, for each vertex
v of the input graph, the value gf( f (v)), and then checks whether there exist two adjacent
verticesv andu such thatf (f(v)) # f(f(u)); if yes, it reports that the graph contains a
P4, otherwise, based on the valuesfaff (), it generates an output arragmp[] of size
n such thatomp(v] is equal to a representative of the connected component containing
The algorithm uses two auxiliary array$] and B[] of size equal to the number of vertices
of the input graph which store the values ) and 1 (f()), respectively. Throughout the
section, we assume that the vertexiséet;) of the input graplG equalsthe s€d, 2, .. ., n},
wheren is the number of vertices af.

Algorithm Components-eP4

Input an undirected grapt.

Output either a message tha&tcontains aP4 as an induced subgraph or an
arraycomp|] .

1. Foreach vertex € V(G) do in parallel
Alv] < v.
2. For each vertex € V(G) do in parallel
Alv] < min{A[u]|u € N[v]};
B[v] < min{A[u]|u € N[v]}.
3. Foreachedgev € E(G) doin parallel
if Blu] # B[v]
then mark the edgev  {G contains aP4 with wing uv}
if there exists a marked edge 6f
then print thatG contains aP4 as an induced subgraph; return.
4. Foreach vertex € V(G) do in parallel
complv] < B[v];
return the arragomp[] .

The correctness of the algorithm is a direct consequence of Lemma 3.1.

Time and processor complexityext, we analyze the time and processor complexity of the
algorithm; for details on the PRAM techniques mentioned below[3&8,23] We assume
that the input grapl@; is given in adjacency-list representation, i.e., for each varfexe
have a linked list.ist(v) of the neighbors of in G.

Stepl: Clearly, the assignment operation performed in Step 1 can be executddgm®
time using @n/logn) processors on the EREW PRAM model.

Step2: In order to compute the new value &fv] for each vertexw € V(G) avoiding
concurrent read operations, we use for each vertaxauxiliary arrayd, [] of size equal to
the degreelegv) of v in G. We also use another auxiliary arré{] of sizen x n; it must
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be noted that, althought[] hasn? entries, only @m) of these will be processed. Then, the
computation ofA[v] is carried out as follows:

e Foreach vertex € V(G) do in parallel
2.1. for each vertex in the adjacency listist(v) of v do in parallel
compute the rank, (u) of the record of: in List(v);
degv) < max,{r,(u)};
2.2. copy the valud[v] (as initialized in Step 1) to each of tdegv) entries
of Ay[];
2.3. for each vertex in the adjacency listist(v) of v do in parallel
Wlv, u] < Aylry(w)];
Ay[ry(w)] < min{W (v, u], Wu, vl};
2.4. Alv] < min{A,[i]|1<i<deg(v)}.

Clearly, by taking advantage of the “twin” entrig§ v, u] andW[u, v] in Step 2.3, we en-
sure thatA[v] is correctly updated. In Step 2.1, the ranks of the elementistib) and their
maximum can be optimally computed inl@gdeg(v)) time using Qdegv)/ log degv))
processors, or in Mogn) time using Qdegv)/logn) processors, on the EREW PRAM
model. Steps 2.2, 2.3, and 2.4 can also be executed without concurrent read or write op-
erations in Qlogn) time with O(degv)/ logn) processors. Thus, the computation of the
valuesA[v] for all verticesv € V(G) can be done in @ogn) time with O((n + m)/ logn)
processors on the EREW PRAM model. Since the rest of Step 2, i.e., the updating of
the arrayB([], is executed in the very same way, the entire step takésgy®@) time with
O((n + m)/logn) processors on the EREW PRAM model.

Step3: Here, we mark all the edges of G such thatB[u] # B[v]. For an EREW
execution, we use the x n array W[] mentioned in the analysis of Step 2, and for each
vertexv € V(G), two auxiliary arrays3,[] andC,[], each of size equal to the degszy v)
of v.

e Foreach vertex € V(G) do in parallel
3.1. copy the valuB[v] (as computed in Step 2) to each of thexv) entries
of By[l;
3.2. for each vertex in the adjacency listist(v) of v do in parallel
Wlv, u] < By[ry(u)], wherer, () is the rank of the record of in List(v);
if Wlv,u] # Wlu, v]
thenB,[ry,(1)] < O;
Colry(u)] < u;
3.3. letB,[7] be equal to mifB,[i]]| 1<i <deg(v)};
if By[1]=0
then mark the edgew, wherew = C,[1].

Note thatW[v, u] # Wlu, v] iff By[r,(u)] # B,[r,(v)], or equivalently,B[v] # Blu].
Using parallel techniques similar to those used in Step 2, it is easy to see that the entire
step for all vertices € V(G) can be executed in @gn) time with O((n + m)/logn)
processors on the EREW PRAM model.
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Step4: The assignment operations performed in this step are executgtbigrQ time
with O(n/ logn) processors on the EREW PRAM model.

Taking into consideration Lemma 3.1 and the time and processor complexity of each step
of the algorithm, we obtain the following result.

Theorem 3.1. When applied on a graplG on n vertices and m edgesilgorithm
Components-eiP4 either detects that G contains 2 as an induced subgraph or com-
putes Gs connected components@ilogn) time usingO((n + m)/logn) processors on
the EREW PRAM model

It must be noted that the goal of Algorithm Components-or-P4 is not to detect whether
the input graph contains B4. So, in some cases, it terminates without reporting that the
graph contains &, even if this is so; in any such case, however, it correctly reports the
connected components of the given graph.

Finally, itis worth mentioning that the main idea employed by the Algorithm Components-
or-P4 can be used to yield an optimal parallel computation of the connected components
of any graph with constant diameter. For any graph with diameter at most some cahstant
it suffices to replace the body of the for-loop in Step 2 of the algorithm by the sequential
execution ofd computations of the formA[v] <— min{A[u] |u € N[v]}” and ignore Step
3. The resulting algorithm clearly runs in@log n)=0(log n) time using G(n+m)/ logn)
processors on the EREW PRAM.

Corollary 3.1. Let G be a graph on n vertices and m edgebich has constant diameter.
Then the connected components of G can be computed(liog») time usingO((n +
m)/logn) processors on the EREW PRAM model

Remark 3.1. Computing the representatives of the connected comporiezits; be a
graph onn vertices and letd1, 62, ..., ) be its connected components. If the Algo-
rithm Components-or-P4 does not report the existenceRafia G, it computesG’s con-
nected components and stores the information in the @oeyp[] of sizen so that for
eachv € %;, comp[v] is equal to the representative of the connected compdfignn
fact, the representativas, vo, ..., v; of the connected componerits, ¢, ..., ¢, are
such thatv; = min{v € %}, 1<i<k. The representatives can be isolated iio@n)
time using Qn/logn) processors on the EREW PRAM model as follows: we use an ar-
ray R[] of sizen such thatR[v] = v if comp[v] = v and R[v] = O otherwise; then, by
using prefix computation and array packing techniquesRfl we can collect the rep-
resentatives1, vo, . .., v into the firstk positions of the arrayR[]; that is, R[i] = v;
for 1<i <k.

Remark 3.2. Collecting the vertices of each connected compariesttvy, v, ..., v, be

the representatives of the connected compon@at%>, ..., €, of the input graphG,

which have been computed by Algorithm Components-or-P4. We are interested in collecting
the vertices of each connected component.
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First, it is important to observe that if the Algorithm Components-or-P4 has terminated
and reported that it has computed the connected componens thfen every pair of
adjacent vertices of; have the same value df[]. Additionally, in order to ensure that
each vertex will be collected exactly once, during the computatioB[efl in Step 2
of the algorithm, we keep track of the vertex that has contributed the minimum in the
computation ofB[v], and we break ties in favor of the lowest-index vertex; let us denote
this vertex byp(v). Then, the definition of the quantity() implies that the following
hold:

e For each representative, it holds thatp (v;) = v;; for any other vertex, p(v) # v.
e If the quantity p(v) is interpreted as the “parent” of vertex then, the pairgv, p(v))
form a tree in parent-pointer representation.

As in the description of the Algorithm Components-or-P4, we assume that the input
graphG is given in adjacency-list representation, and thiat(v) denotes the adjacency
list of vertexv. We use an auxiliary array[] of sizen x n (as in Step 2 of the Algorithm
Components-or-P4), and, for each vertgxan arrayrl,[] of size equal to the degrelegv)
of v in G. Then, the vertices of each of the connected comporénts<i <k, can be
collected as follows:

1. Foreach vertex € V(G) do in parallel
1.1. for each vertex in the adjacency listist(v) of v do in parallel
compute the rank, (u) of the record of: in List(v);
degv) < max,{ry(u)};
1.2. copy the valug(v) to each of thelegv) entries of7,[];
1.3. for each vertey in the adjacency listist(v) of v do in parallel
Wlv, u] < Ty[ry(w)];
p < Wlu,v]; {p=pw)}
if p#£v
then mark the record of as useless;
else insert the adjacency lisist(x) of u right after the record af in
List(v).
2. For each vertex representative 1 <i <k, do in parallel
compute the ranks of the vertex records in the (augmented) adjacencylist of
copy the contents of the adjacency list to an array;
pack the array while ignoring vertices that have been marked as useless.

For 1<i <k, the resulting packed array associated with vettegontains each of the
vertices iné; — {v;} exactly once; adding an entry foy yields the entire set of vertices
of the connected compone#t. It is easy to see that the above computation can be carried
out using standard and simple parallel techniques(ing:) time with O((n + m)/ logn)
processors on the EREW PRAM model.

Having computed the vertices of each connected compotients, ..., ¢ of the
graphG, we can also compute the adjacency-list representation of each induced subgraph
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G[%1], G[62], ..., G[€)] within the same time and processor bounds using the same
model of computation.

3.1. Finding aP4

The algorithm Components-or-P4 can be easily augmented so that it finds and prints a
Py of the input graphG whenever it decides tha&f contains aPs. To do that, we replace
Step 3 of the algorithm by

3. For each edgev € E(G) do in parallel
if B[u]> B[v]
then mark the edgev with the vertex-paiu, v);
else if B[u] < B[v]
then mark the edgev with the vertex-pai(v, u);
if there exists an edge which is marked with a pair andxed) be this pair
then call Subroutin&ind-P4(G, (x, y)); return;

where Subroutine Find-Ré&, (x, y)) finds and prints aP, xypqof G; its description is
given below. The correctness of the augmented Step 3 follows from Lemma 3.1, statement
(i), and from the correctness of the subroutine Find-P4. From a complexity point of view,
the augmented Step 3 is nearly identical to the original Step 3; since a call of the subroutine
Find-P4 on a graph omvertices andn edges takes @ogn) time using G(n + m)/logn)
processors onthe EREW PRAM, the augmented algorithm Components-or-P4 has the same
time and processor complexity.

The subroutine Find-P4 works very similarly to the algorithm Components-or-P4; it
involves the following steps.

Subroutine FindP4
Input agraphG and a pair of vertice&, y) such thatG contains aP4 of the formxypq
Output a P4 of G with wing xy.

=

Compute the subgrapti of G by deleting the edges: for all z € N(x) — {y}.
2. For each vertex € V(G) do in parallel
Alv] < 1;
Assign the value 0 tal[x], that is,A[x] < O.
3. Foreach vertex € V(G) do in parallel
Alv] < min{A[u]|u € N[v]};
Bl[v] < min{A[u]|u € N[v]}.
4. For each edgev € E(G) doin parallel
if Blu]> B[v]
then mark the edgev with the vertex-paiu, v) {Ps xyvu}
else if B[u] < B[v]
then mark the edgev with the vertex-paiv, u) {P4 xyuv}
if there exists an edge which is marked with a pair anddeb) be this pair
then print theP, xyba
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Given a grapl; and a pair of verticeée, y) suchthatG contains &4 xypq the subroutine
Find-P4 removes all the edges incidentwn G except for the edgey (Step 1), and works
on the resulting subgraph. Because of this, if a vertex of G, other thant andy, ends
up with B[w] = 0 at the end of Step 3, thenis adjacent ty and non-adjacent to in G;
moreover, if a vertexv” ends up withB[w'] # 0, thenB[w'] = 1 andw’ is adjacent neither
tox nor toy. Thus, sinces contains aP4 of the formxypq a P4 is guaranteed to be found.
Then, the correctness of the subroutine Find-P4 follows from Lemma 3.1, statement (ii).

It is important to note that it is necessary for the subroutine Find-P4 to work on the
subgraphH which results from the input grapti after the removal of the edges incident
on x except forxy: if the soughtP, participates in a chordless cycle on 5 vertices or is the
top of a “house” (a simple cycle on 5 vertices with exactly one chord), then applying Steps
2—4 of subroutine Find-P4 on the entire graphwvould not produce anys.

Steps 2—4 are very similar to Steps 1-3 of the augmented algorithm Components-or-P4
and can all be executed in(logn) time using Q(n + m)/ logn) processors on the EREW
PRAM, wheren andm are the numbers of vertices and edges of the input géagtep 1
can be executed by computing the subgraplohduced by the vertices i (G) — {x}
and then by adding and making it adjacent only tg; the former can be easily done
in O(logn) time using @(n + m)/ log n) processors on the EREW PRAM by removing
from the adjacency-list representation@the adjacency list af and any records storing
x; the latter can be done in constant sequential time. Therefore, we obtain the following
result.

Theorem 3.2. Subroutine FindP4 runs inO(logn) time usingO((n +m)/ log n) proces-
sors on the EREW PRAM model

4. Checking whether a component-partition is good

In this section we present a parallel algorithm which takes as input a grajpld a vertex
v € V(G) and checks whether the component-partitiod-ofiith respect ta is good (see
Definition 2.2); if so, the algorithm returns an appropriate message, otherwise it returns a
P4 using Subroutine Find-P4. The input gra@ghs assumed to be given in adjacency-list
representation. We also assume that for each 2dgé G, the two records in the adjacency
lists of u andv are linked together; this helps us re-index the vertices in subgraphs of the
given graph fast. We give next the detailed description of the algorithm.

Algorithm Good-Partition-or-P4

Input agraphG and a vertex € V(G).

Output a message that the component-partitiol;ofvith respect ta is good, or an
inducedP4 with vertices in bothV[v] andV (G) — N[v].

1. Compute the following induced subgraptis and G, of the graphG:
G1=G[NW)];
G2 =G[V(G) — N[v]]. A

2.  Compute the co-compone@s, @0, ... ‘%g of the graphG.
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3. Use AlgorithmComponents-eiP4 on the graplG, in order either to compute its
connected components, >, ..., € or to detect and return B4 using Subrou-
tine Find- Py;
if a P4 is returned then stop and return this.

4. Foreach co—componeﬁt, 1<i<¢, of Gy doin parallel

check if there exist two non-adjacent verticey € ‘%,- suchthafiz € V(G) —
N[v] which is adjacent to and is not adjacent to;
if there exists such a vertex
then mark vertex  {G contains the P4 xvyz}

if there exists a marked vertex

then call Subroutin&ind- P4 on the graplG and the vertex-paifx, v);

stop and return th&, that Subroutine Find-P4 returned.
5. For each connected componéht 1<i <k, of G, do in parallel

check if there exist two adjacent verticesy € %; such thaz € N(v)
which is adjacent tg and is not adjacent to;
if there exist such vertices, y
then mark the vertex-pair, y) {G contains the Py xyzv}

if there exists a marked vertex-pair, y)

then call Subroutiné’ind- P4 on the graplG and the vertex-paigx, y);
stop and return th@, that Subroutine Find-P4 returned.

6. Sort the co-components, %>, ..., %, of the graphG1 in non-decreasing
number of the connected components of the gi@plthat each co-component
sees;

let 8 = (@), Gr(2). - - . » Guiey) be the sorted list.
7. If there exist two consecutive co-componefstg;, and @i+ in S, where
1<i<¥, such thaté ;) sees a connected componénbf the graphG> which

~

@ r(i+1) Misses
then{G contains an induced, as shown inFig. 1(c)}
select a vertex from % and a vertex from %)
call Subrouting=ind- P4 on the graphG and the vertex-paifx, y);
stop and return th&, that Subroutine Find-P4 returned.
8. Return the message that the component-partitiagh with respect ta is good.

In Steps 1-3, the algorithm constructs the component-partition. Then, it checks whether
condition (i) and condition (ii) of Corollary 2.1 hold in Steps 4-5 and Steps 6—7, respectively.

CorrectnessFor the correctness of Step 4, we note that if a co-compo?fﬁg—:'nmc G =

G[N (v)] contains two verticeg, b which do not have the same neighbordi(G) — N[v],

then it contains two non-adjacent such vertices; it suffices to consider the pairs of consecutive
vertices along a path id?[(%i] from a to b. Similarly, for the correctness of Step 5, if a
componen; of Go = G[V (G) — N[v]] contains two vertices which do not have the same
neighbors inN (v), then it contains two adjacent such vertices. Then, the correctness of
Algorithm Good-Partition-or-P4 follows from Corollary 2.1.
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Time and processor complexifyhe analysis of Algorithm Good-Partition-or-P4 is done on
the PRAM model of computation; for details on the PRAM technigques mentioned below,
seg[3,13,23] Letn andm be the number of vertices and edges of the input graptecall
that the graplG is assumed to be given in adjacency-list representation where addition-
ally for each edgerv of G, the two records in the adjacency listsiofindv are linked
together.

Stepl: Let List(v) be the adjacency list of the vertex and letr,(u) denote the rank
of the vertexu in the listList(v). For each vertex € V(G), we use two auxiliary arrays
A,[] and B[], each of size equal to the degmeyv) of v in G. Then, the adjacency-list
representation of the graghy = G[N (v)] is computed, as follows:

e Foreachvertex € V(G) doin parallel
1.1. for each vertey in the adjacency listist(x) of x do in parallel
Axlrs(M] < ¥,
1.2. if the vertexx belongs tav (v)
then copy the value 1 to each of thegx) entries ofB,[];
else copy the value 0 to each of tthegx) entries ofB,[].
e For each vertexv in the adjacency listist(v) of v do in parallel
1.3. fori=12,...,deg(w)doin parallel
u <« Aylil;
if B,[r,(w)] =0 then mark the entry,,[r, ()];
1.4. store the unmarked elements of the argy] in consecutive locations, and,
then, constructalist of these vertices and associate it with verteX/ (G1).

SinceB,[r,(w)] =0 if and only ifu ¢ N (v), it is not difficult to see that the resulting lists
for all the verticesv € N (v) form an adjacency-list representation of the induced subgraph
G1 (onng vertices andnj edges). Using standard and simple parallel techniques, such as
interval broadcasting and array packing, itis easy to see that the linked list representation of
G1 can be computed in@gn1) time with O((n1+m1)/logn1) processors orin Qogn)
time using Q(n1 + m1)/logn) = O((n + m)/logn) processors, on the EREW PRAM
model. The computation of the linked list representation of the induced subgrajh
done in a fashion similar to that previously described and in the same time and processor
complexity.

Step2: The computation of the co-components of the grd@phcan be optimally
done in Qlogn1) time using Q(rn1 + m1)/logni) processors, or in Qogn) time us-
ing O((ny + m1)/logn) = O((n + m)/logn) processors, on the EREW PRAM
model[7].

Step3: Here, we use Algorithm Components-or-P4 that we have presented in Section 3,
and either compute the connected compon@niséo, ..., € of the graphG, or detect
that the graphG, contains aP4 as an induced subgraph. Thus, if the number of vertices
of G2 is ny and its number of edges iy, the step is executed in(@gny) time using
O((n2 +m2)/ logny) processors or in @logn) time using Q(nz +m2)/logn) = O((n +
m)/logn) processors on the EREW PRAM model.
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Step4: In this step, we check whether for each ﬁé,irfgj, the co—componerﬁ?i either
sees or misses the connected compofsgnivhere 1<i < ¢ and 1< j <k. To do that, we
first construct a subgrapti* of the graphG as follows:

V(G =V(G) —{v};

E(G*)={xy € E(G)|x € N(v),y € V(G) — N[v]};

we will use the graplé;* in the execution of Step 5 as well. An adjacency-list representation
of G* can easily be constructed from the grapln O(logn) time with O((n + m)/ logn)
processors on the EREW PRAM model (see Step 1). By taking advantage of the graph
G*, for each co- componelfdl, we will check whether there exist two verticesy € fg
which are non-adjacent it such thatdz € V(G) — N[v] which is adjacent toy and

is not adjacent ta: in G*. To do that for a co-componeft;, 1<i <¢, we work in two
phases: first, we check whether there exist two verticese %: which are not adjacent

in G and have different number of neighborsdi; next, if all the vertices of the co-
componen%i have the same number of neighborsif, then we check whether there exist
two verticesy, y € %; which are not adjacent i and have no identical neighborhoods
in G*. It is important to note that if there exists any such pair of vertices, thenG
contains aP, of the formxvyz if ded'(x) <ded'(y), or of the formyvxz otherwise, where

z€ V(G) — N[v].

Each of the phases involves three substeps which are executed separately on each of
the co-components @1 and three substeps which are executed on all the co-components
together; note that any two vertices from different co-components are adjacéntlim
detail, Step 4 is as follows:

e Foreach co-componefffb, 1<i<¢, doin parallel
4.1. compute a linked list C; containing the vertices if&i;
4.2, for each vertex € LC;, compute the degresed’(x) of x in G*;
4.3. find a vertex: with minimum degree irG* and, then, partition the vertices
of the co-componerﬁ?i into two vertex sets; 1 andsS; 2 as follows:
Si1={x € %;|ded (x) = ded' ()}, and
Si2=%i — Si1.
e Check if there exist two vertices, y such thatvy ¢ E(G) andx € S; 1 and
y € S;2 (then,x, y belong to the same co-component®{f, and inG* they
have different number of neighbors belongingt6G) — N[v]);
4.4. compute the vertex sefs = Ule Sii1andSs = Ulesi,z;
compute the grapG =G[V (G) — S»] and the degregeg; (x) of each vertex
xinG;
4.5. for each vertex € S1, do in parallel
if deg; (x) < degs(x) + |S2|
then{x is not adjacent inG to a vertex in S1}
mark the vertex;
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4.6. ifthere exists a marked vertex
then select any such vertex
call Subroutine FindP4 on the graplG and the vertex-paifx, v);
stop and return th@, that Subroutine Find-P4 returned.

In case Step 4.6 finds no marked vertices, then we proceed to the second phase where
we check whether all the vertices of each co-compo@enlg i <¢, have identical neigh-
borhoods inG*. Let 01, 02, ..., 0¢ andny, ni2, ..., ng be the representatives and the num-
ber of vertices, respectively, of the co-componefits %5, . . ., ¢, of the graphG1. For
each co-componelf&i, 1<i <4, we use an auxiliary arra®p;[] of sizen; — 1, and arrays
Pl P11 (A< j<n; — 1), andM; ] (x € f%,- — {9;}), each of size equal to the degree
dedf (v;) of the representativé in G*. We proceed as follows:

e Foreach co-componeﬁﬂi, 1<i<¢, doin parallel
4.7.  copy the neighbors &f in G* in the arrayP;[1..ded (0;)];
4.8. makei; — 1 copiesP; 1[], ..., P; 4,_1[] of the arrayP;[];
4.9, S,',l <~ {f),'}; Sj__z <~ W
for each vertex € LC; — {9;}, do in parallel
o  copy the neighbors of in G* in the arrayM; ,[];
o if M <[1= Pi, ], wherer;(x) is the rank ofx in LC; — {0;},
then insert vertex in the sets; 1;
else insert vertex in the sets; ».

e Check if there exist two vertices, y such thatcy ¢ E(G) andx € S; 1 and
y € Si2 (then,x, y belong to the same co-component®f, and inG* they
have different neighborhoods), by executing Steps 4.4-4.6 for thé;sedsd
Si.2 computed in Step 4.9;

Forthe correctness of the computation, observe thatif the conddep {x) < degs (x)+
|S2|”in Step 4.4 is true, them is not adjacent to a vertex 8. Then, for the setS; 1 andS; »
computed in Step 4.3, this is equivalent to the existence of a versexh thatcy ¢ E(G)
andded'(y) > degd'(x) or equivalently|N(y) — N[v]| > |[N(x) — N[v]|; for the setsS; 1
andS; » computed in Step 4.9, this is equivalent to the existence of a verteich that
xy ¢ E(G), IN(y) — N[v]| = [N(x) — N[v]|, andN(y) — N[v] # N(x) — N[v]. In ei-
ther case, there exists a vertexs V(G) — N[v] such thatyz € E(G) andxz ¢ E(G);
this implies that the grapty contains theP, xvyz as reported by the algorithm thanks to
Subroutine Find-P4.

We next compute the time and processor complexity of Step 4 of Algorithm Good-
Partition-or-P4 by analyzing Steps 4.1-4.8.

Having computed the vertices of each co-compoﬁ?emlg i </, we can easily construct
the linked listLC; (Step 4.1) in Qlogn) time with O((n + m)/logn) processors on the
EREW PRAM model.

The computation of the degrekeg(x) of a vertexx of the graphG* can be done by
applying list ranking on the adjacency listofn G* and by taking the maximum rank; this
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can be done in Qogn) time using Qded (x)/logn) processors on the EREW PRAM.
Since the grapl&™* hasn — 1 vertices and On) edges, the computation for all the vertices
takes Qlogn) time and Q(n + m)/ logn) processors on the same model of computation.
Additionally, finding a vertex of; of minimum degree ilG* can be easily done optimally.

For the construction of the sefs; ands; 2, we use two auxiliary arrays of sizg each, in

which we first set the entries of the vertices of each set equal to the respective vertex and
then use array packing to collect these vertices together. Thus, all the operations in Steps 4.2
and 4.3 can be executed inl@g») time with O((n + m)/ logn) processors on the EREW
PRAM model.

Forming the setss; and S is done in a fashion similar to forming the sefs; and
Si 2, hence, in @ogn) time and Qn/logn) processors on the EREW PRAM model. The
computation of the adjacency-list representation of the induced subGreabe computed
using standard and simple parallel techniques, such as list ranking, interval broadcasting,
and array packin{B,13,23] see Step 1. IfV(G)| = 7 and|E(G)| = i, this computation
can be done in Qogn) time with O((2 + m)/log#n) processors or in @ogn) time with
O((n+m)/ logn)=0((n+m)/ logn) processors onthe EREW PRAM model. Moreover, the
degrees of all the vertices @i can also be computed in®g») time with O((n+m) / logn)
processors on the EREW PRAM model.

In order to avoid concurrent read operations while checking the if-condition in Step 4.5,
we maken; copies of the valuéS,| in an auxiliary arrayQ;[1..n;]; this computation can
be easily done in Qogn) time with O((n + m)/logn) processors on the EREW PRAM
model.

Since the number of marked verticess less thak, the selection of a marked vertex in
Step 4.6 can be done in(fogn) time with O(n/logn) processors on the EREW PRAM
model. Additionally, from Theorem 3.2, Subroutine Find-P4 has the same time and processor
complexity on the EREW PRAM model.

If the algorithm does not return in Step 4.6, then, for every vertex %, ded'(x) =
ded (v;). Sinceded' (x) is less than the degreexin G, it follows thath=1 (n;-ded (v;))=
O@m), and thus Steps 4.7 and 4.8 can be executedlimg@) time with O((n + m)/ logn)
processors on the EREW PRAM model.

The size of both the array; ,,)[] and the arrayM; .[] is equal toded (x) and the
if-statement can be easily checked ifld® ded'(x)) time with O(ded"(x)/ log ded'(x))
processors, or in @ogn) time with O(ded (x)/logn) processors, on the EREW PRAM
model by means of an auxiliary arr&y . [] of sizeded (x) aswell: forj=1, 2, . . ., degd(x),
if M;x[jl# Pir,ljlthenB; [j] < 1elseB; .[j] < 0;next, we compute the maximum
element ofB; x[1, and M; ,[1 # Pi ) [] iff the maximum is equal to 1. Thus, Step 4.9
is executed in @ogn) time with O((n + m)/logn) processors on the EREW PRAM
model.

From the above time-processor analysis, we conclude that we can check whether all the
vertices of each co-component have identical neighborhoods iim O(logn) time with
O((n + m)/logn) processors on the EREW PRAM model. If not, then in the same time
and processor complexity we find an indudegdoby means of Subroutine Find-P4.

Step5: Processing the vertices of the connected comporénts<i <k, is done in a
similar fashion using the grapti*: we look for an edgery of G, wherex, y € é; such
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that eitherded' (x) < ded'(y) or deg*(x) = ded'(y) and the vertices, y have no identical
neighborhoods i&*. Such an edgey is awing of aP4 xyav in G, wherea € N (v). Based

on the time and processor complexity of Steps 4.1-4.9, we can show that the execution of
Step 5 takes Qogn) time and requires @n +m)/logn) processors on the EREW PRAM
model as well.

Stepb: Here, we sort the co-componefts, %>, . . . , €, in non-decreasing number of the
connected components, 4>, ..., €, that each co-component sees. (&t ap, ..., ar)

be the list such that; is the number of the connected components theatees; thery; is
equal to the degree of the representativef %, inthe subgraph of the gragh* induced by
the representatives of the co-componéﬁ,tslgige, and the components;, 1< j <k.
Thus, theg;s can be computed in@gn») time with O((n + m)/logn) processors on the
EREW PRAM model. Since the numbeépf co-components is Q/m) (Observation 2.3),
sorting thes; s can be executed in(@gn) time with O((n + m)/logn) processors on the
EREW PRAM model; note that logj= O(logm) = O(logn), and that if,/m < logn then
/m = 0O(n/logn), whereas if,/m > logn then/m = O(m/ logn).

Step7: For simplicity, we assume thaif%l, 6%2, o (%g) is the sorted list of the co-
components of the graptiy, i.e., n(i) =i fori =1,2,...,¢ (see Step 6 in the de-
scription of the algorithm). In a way similar to the one we used in order to compute
the list (a1, az, ..., a¢) in the previous step, we compute the ligt, bo, ..., by) where
bj, 1< j<k, is the number of co-components of the graphthat the connected compo-
nent%; sees. Then, we implement Step 7 as follows:

e For each connected componéft, 1< j <k, doin parallel
7.1. find the co-component; with the minimum index that the representative
of ¥; sees,
7.2. ifbj#FL—i+1
then select a vertex from ¢ ; and a vertex from %i;
call Subroutine FindP4 on the graplG and the vertex-paitx, y);
stop and return th@4 that Subroutine Find-P4 returned.

The correctness of the computation follows from Corollary 2.1, condition (ii): note that if
bj # ¢ —i+1,thenthere exists a co—componétj,twherep > i such that#’; does not see

% ,. Sincep > i, we have thati,| >|I;|, and sincej € I; — I,, there existg € I, — I;;
thus,G contains aP,4 of the form shown irFig. 1(c), which proves the correctness of the
computation.

The computation of the lighs, by, . . ., by) takes Qlogn) time using Q(n +m)/logn)
processors on the EREW PRAM model. Moreover, it is easy to see that the representative
of the minimum-index co-component that each compofgnéees, can also be computed
within the same time and processor bounds. Thus, Step 7 is executédgn®time with
O((n + m)/logn) processors on the EREW PRAM model.

Step8: In this step, the algorithm returns in(D sequential time the message that the
component-partition of the input graghwith respectta € V(G) is good, i.e.G contains
no P4 with vertices in bothV[v] andV (G) — N[v].
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Taking into consideration the time and processor complexity of each step of the algorithm
Good-Partition-or-P4, we obtain the following result.

Theorem 4.1. Algorithm Good-Partition-orP4runs inO(log n) time usingO((n+m)/ logn)
processors on the EREW PRAM model

5. The recognition algorithm

In this section, we present a parallel algorithm for recognizing whether a given graph
is a cograph, and if it is not, & of G is returned. As in Section 4, the input graghis
assumed to be given in adjacency-list representation where additionally for eaclmedge
of G, the two records in the adjacency listsuodndv are linked together.

Algorithm Recognize-Cograph
Input  an undirected grapy onn vertices andn edges.
Output either a message thétis a cograph or &, of G.

1. Compute the sets, M, and H containing the low-, middle-, and
high-degree vertices af, respectively.

2. f L=¢andM =@ then {eachv € V(G) has degree- %n}

(a) compute the co-componenté,, 72, ..., ./, of G;
(b) if any of the co-componentéfi, 1<i < p, has cardinality at least equal %cn
then{G is not a cograph
callAlgorithmGood-Partition-or P4 onthe graplt;[¢.«Z; ] and an arbitrary
vertexx in .<7;; (the algorithm returns with &, of G)
else compute the subgrapﬁss,;;/l], G[JQ{Q], R G[,;Qf,] of G and
callrecursively AlgorithmRecognize-Cograpbn each ofthese subgraphs;
(c) gotoStep?7.

.M £0
thenv < an arbitrary vertex oM
elsev <« the vertex inL with the maximum number of neighbors ki {note:
L # 0}

4. Call AlgorithmGood-Partition-or P4 on the graplG and the vertex;
if the algorithm returns &, then go to Step 7.

5. Compute the induced subgraphigs;] andG[% ], where%;, 1<i <, are the
co-components of the subgraptiN (v)], and%;, 1< j <k, are the connected
components oG [V (G) — N[v]].

6. Call recursively AlgorithniRecognize-Cograpbn eachG[%:] (1<i<¢), and
on eachG[%] (1< j <k) such thal®,|< 2 n;
if there exists &; such tha{®;| > %n then
(&) compute the co—componer:rfys,l, 5%,;2, e Q/i,h of G[¥%;];

(b) ifanyofthe co—componentéf,-,,-, 1< j <h, has cardinality at least equal %01
then{G is not a cograph}
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call Algorithm Good-Partition-or P4 on the graphG[%;] and an
arbitraryy in €;;
call Algorithm Good-Partition-or P4 on the graptG[tng{,-,j] and an
arbitrary vertex in 43{,-,]-; (at least one of these calls returns with a
P4 of G)
else compute the subgrapﬁ$§/i,1], G[(sgf,-,z], e G[;Q/i,h] of G and
call recursively AlgorithnmRecognize-Cograpbn each of these subgraphs.
7. If any call to AlgorithmRecognize-Cograpbr Good-Partition-or P4 returns

with a Py

then return such &y;

else return tha€; is a cograph.

It is important to note that the following lemma holds.

Lemma 5.1. If during the execution of Algorithm Recognize-Cograph on a gi@pin n
verticesa recursive call is made on a gragl, thenG’ is a subgraph of G and the number
of vertices ofG’ does not excee§in.

Proof. Recursive calls are executed in Steps 2 and 6 of Algorithm Recognize-Cograph; in
either case, the graphs on which the calls are executed are subgraphs of the inpat.graph
When Recognize-Cograph is called on a subgr@pﬁf‘i] of G in Step 2, then the number

of vertices of the subgraph is less th%m. Moreover, when Recognize-Cograph is called

ona subgraph;[(%i] or a subgrapl&[% ;] such that% ;| < % n in Step 6, then the number
of vertices of these subgraphs does not exc,%eﬁnote thatv belongs to the se¥ or the
setL, and|f%i|< IN(v)| < % n. Finally, if in Step 6 there exists a componéfit such that
|| > %n, then, in light of Observation 2.2,¢ M, which implies thatV = @; but then, by
Lemma 2.4, the cardinality of each co-componenG¢¥;] does not exceeén. O

CorrectnessThe correctness of Step 4 of Algorithm Recognize-Cograph readily follows
from the correctness of Algorithm Good-Partition-or-P4 (see Section 4). The correctness
of Step 2 follows from Lemma 2.3 and the fact that a graph is a cograph iff each of its
co-components is a cograph (note that a graph contain®; math vertices in more than

one co-component). The latter observation also helps establish the correctness of Step 6
along with Corollary 2.1 and Observation 2.2 and Lemma 2.4; note that if there exists a
component; such that%;| > %n, then Observation 2.2 implies thatt M which is true

only if M = ¢ and thus the conditions of Lemma 2.4 hold. Finally, it is important to note
that if the component-partition of a gragh with respect to a vertex is good, thenG
contains aPy iff a co-component o&G[N (v)] or a component of;[V (G) — N[v]] contains

aPy.

Time and processor complexity/e use a step-by-step analysis for computing the time and
processor complexities of each step of Algorithm Recognize-Cograph on the PRAM model
of computation (sef8,13,23).
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Stepl: The computation of the degree depof a vertexv of the graphG can be
done by applying list ranking on the adjacency listwofind by taking the maximum
rank; this can be done in@gn) time using @degv)/logn) processors on the EREW
PRAM. The computation for all the vertices takegl@dr) time and Q(n + m)/logn)
processors on the same model of computation. Locating the low-degree vertices of the
graphg, i.e., all the vertice € V(G) such thatdegv) < %n, can be done in Qdogn)
time using @n/logn) processors on the EREW PRAM model: we use an auxiliary ar-
ray Low{] of sizen and we set.owfv] = v if the vertexv has degreelegv) < %n and
Low{v] = 0 otherwise; then, the low-degree vertices@fcan be collected by means
of array packing orLow{] using prefix computation. The middle- and the high-degree
vertices of G can be collected in a similar fashion within the same time-processor
bound.

Step2: Since we use an array representation for each of the vertek sétsandH, we
can check whether such a set contains a vertex (or it is an empty set) in constant sequential
time. The co-components ¢f can be computed in @gn) time with O((n + m)/ logn)
processors on the EREW PRAM modé], and so can the subgraphs®induced by each
of these co-components. Additionally, sinﬁe,sgii] has at least/2 and no more than
vertices and Qn) edges, the execution of Algorithm Good-Partition-or-P4 tak@ed)
time using Q(n + m)/logn) processors on the EREW PRAM model. Thus, if we ignore
the time for any recursive calls to Algorithm Recognize-Cograph, Step 2 taleg©)
time and Q(n + m)/ logn) processors on the EREW PRAM model.

Step3: Since each of the vertex sétsM, andH is given in array representation, this step
is clearly executed in constant sequential tim#it£ @: we takev <— M[1]. If M =@, itis
executed in @ogn) time with O((n + m)/logn) processors on the EREW PRAM model:
for each vertexw in L, we mark the high-degree verticesirs adjacency list and compute
the number of marked vertices; then, we compute the maximum of these numbers over all
vertices inL and select as a vertex whose number of marked vertices in its adjacency list
equals the maximum.

Step4: The step takes @bgn) time using Q(n + m)/logn) processors on the EREW
PRAM model (Theorem 4.1). .

Step5: The induced subgraplts[%;1, 1<i <¢, andG[% ], 1< j <k, can be computed
in O(logn) time using @(n + m)/logn) processors on the EREW PRAM model.

Step6: The processing of a componefit such thai%;| > ;3{n is identical to the pro-
cessing in Step 2. Thus, if we ignore the time for any recursive calls to Algorithm Recognize-
Cograph, Step 6 takes (Iogn) time and Q(n + m)/logn) processors on the
EREW PRAM.

Step7: Since the calls to Algorithms Recognize-Cograph and Good-Partition-or-P4 are
executed on subgraphs of the gra@hwhich are vertex disjoint, we can use an array of
sizen (initialized to 0) where the different calls store their result®e0f G if a P4 was
found, or 0 otherwise. Then, packing this array so that the 0-entries are suppressed suffices
for checking whether &4 has been returned and if yes, for obtaining sucPyaThus,

Step 7 can be completed in(logn) time using Gn/logn) processors on the EREW
PRAM model.

Taking into consideration the time and processor complexity of each step of Algorithm

Recognize-Cograph and the recursive calls, we have that the time comfléxity:) and
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processor complexity (n, m) of the algorithm when applied on a graphmorertices and
m edges satisfy the following equalities:

T (n,m) = O(logn) + max{T (n;, m;)},

P(n,m) = max{O((n +m)/logn), Y P(ni,m) ¢,

1

wheren; andm; are the numbers of vertices and edges of the subgraphs on which Al-
gorithm Recognize-Cograpfs recursively called. Sincé, n; <n, ) ; m; <m, and for
eachi, n; <3n/4 (see Lemma 5.1), the equalities fB(n, m) and P (n, m) admit the so-
lution: T'(n, m) = O(log? n), P(n, m) = O((n + m)/ logn). Thus, we obtain the following
results.

Theorem 5.1. Algorithm Recognize-Cograph runs@ilog? ) time usingd((n+m)/ logn)
processors on the EREW PRAM model

Corollary 5.1. Cographs can be recognized ®(log?n) time with O((n + m)/logn)
processors on the EREW PRAM model of computation

6. Constructing the cotree or finding a P4

Given a graph, we give below a parallel algorithm which constructs its cotree if the input
graph is a cograph, or otherwise prints an indu®gdThe algorithm first calls Algorithm
Recognize-Cograph on the input graph to determine whether it is a cograph and to provide
a P, ifitis not. If the graph is a cograph, then the algorithm constructs its cotree by taking
advantage of Lemma 2.2 which gives the structure of the cotree of a cograph in terms
of the graph’s component-partition with respect to any of its vertices. In particular, the
algorithm selects an appropriate vertexf the input graphG, recursively computes the
cotrees of the subgraphs induced by the co-components of the suligiajih)] and the
connected components of the subgréfilv (G) — N[v]], and then uses Lemma 2.2 to link
these cotrees in order to form the cotreethfAs in the case of the cograph recognition
algorithm, we assume that the input graph is given in adjacency-list representation where
additionally for each edgev of G, the two records in the adjacency lists«dEndv are linked
together.

Algorithm Cotree-orP4

Input an undirected graph.

Output the root-node of the cotree of the input graph if it is a cograph, or an induced
Py4 otherwise.
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1. Execute AlgorithnmRecognize-Cograpbn the input graph.
2. If Algorithm Recognize-Cograpteturns aP,
then return thisPy;
else{the input graph is a cograph
execute Subroutin€onstruct-Cotre®n the input graph and return the root of
the cotree that it has constructed,

where the description of Subroutine Construct-Cotree is given below.

Subroutine Construct-Cotree
Input a cographG onn vertices andn edges.
Output the root-node of the cotreB(G) of the graphG.

1. Computethe sefs, M, andH containing the low-, middle-, and high-degree
vertices of the input graply, respectively.
2. f L=y andM =@ then {each v € V(G) has degree deg(v) > %n}.
(a) compute the co-component&s, .75, . .., §/p of the graphG;
(b) construct a 1-node
(c) fori=1,2,..., pdoin parallel
compute the induced subgramf;;/i];
apply recursively Subroutin@onstruct-Cotre®n G[&%]; lets; be
the root-node of the returned tree;
parent(S;) < r;
(d) returng).
3. M #£0
thenv < an arbitrary vertex oM
elsev <« the vertex inL with the maximum number of neighbors iH
{note L # #}.
4. Compute the co-componeﬁ%&i, (;”2, e (;”g of the graphG1 = G[N (v)];
fori=1,2,...,¢doin parallel
compute the induced subgraﬂm‘%i];
apply recursively Subroutin€onstruct-Cotre@n G[(%i]; let7; be the
root-node of the returned tree.
5. Compute the connected componefits %o, ..., € of the graphG, =
G[V(G) — N[v]J;
fori=1,2,...,kdoin parallel
compute the induced subgraph¥;1;
if |6 < 23{ n
then apply recursively Subroutir@onstruct-Cotre®n G[%]; let r; be
the root-node of the returned tree;
else construct a 1-node
compute the co-componenst:si,j, 1< j <h, of the graphG[%;] and the
induced subgraph@[&%’j];
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forj=1,2,...,hdoin parallel
apply recursively Subroutin€onstruct-Cotre@n G[Vo%,j]; let f,-,j be the
root-node of the returned tree;
parent(fi,j) <~ ri.

6. Compute the subgragghof G spanned by the edges incident upon a co-component
representative; (1<i<¢) and a component representative(1< j <k);
compute the degrees of thigs, 1<i <¢, in G, sort them in non-decreasing
order, and locate
the distinct values; led[i], 1<i < ¢/, be the resulting ordered sequence.

7. Compute the entries of an arrays[i], 1<i <¢, such thapos[i] = j if and only
if the degree of); in G is equal tod[ j].

8. Construct a tree-path of alternating 1- and 0-nodes as follows:

(@) construct’ 1-nodes;, 1<i <¢/, and¢’ 0-nodes;, 1< j <¢';
construct a leaf-nodestoringv;
(b) fori=1,...,¢ — 1doin parallel
parent(t;) < f;;
parent(f;) < fi11;
parent(ty) < ty;
if o[1] #0
thenparent(t) < t1;
elseparent(t) < f1; delete node;.
9. Construct and return the following tree:
(a) fori=1,2,...,¢doin parallel
paren[(;i) <~ fpos[i];
(b) fori =1,2, ...,k doin parallel
parent(r;) < t,,, wherep; <~ min{pos[j]|v; is adjacent td); in G);
(c) if there exist component representativein G of degree equal to 0
then construct a 0-node
for each component representativeof degree equal to 0 i do
parent(ri) < r;
parent(fy) < r;
elser « #y;
(d) returng).

The correctness of Steps 2 and 5 follows as in the case of the cograph recognition algorithm
in Section 5, and from the fact that any two co-components of a graph see each other. The
correctness of the rest of the algorithm directly follows from Lemma 2.2: note that, for
i=1,2...,¢,the tree nodé corresponds to the 1-node that is the parent of the roots
of the cotrees of the co-components in the §eand the tree nodg corresponds to the
0-node that is the parent of the roots of the cotrees of the componesit§sreFig. 3);
additionally,6[1] # 0 if and only if S1 # @ (Step 8(b)), while Step 9(c) takes care of the
case whersy # .
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Time and processor complexiyince the execution of Algorithm Recognize-Cograph on a
graph om vertices and: edges takes @og? n) time using Q(n +m)/ logn) processors on

the EREW PRAM (Theorem 5.1), it suffices to compute the time and processor complexities
of each step of Subroutine Construct-Cotree.

Stepsl-5: All the operations performed in these steps are also performed in Steps 1-3,
5, and 6 of Algorithm Recognize-Cograph. Thus, it is easy to see that, if we ignore the
time taken by the recursive calls, the execution of Steps 1-5 of Subroutine Construct-
Cotree takes Qogn) time and requires @n +m)/ logn) processors on the EREW PRAM
model.

Step6: The subgraplG coincides with the subgraph of the grap (see the anal-
ysis of Step 4 of Algorithm Good-Partition-or-P4) induced by the verteX&etoo, . . .,

Vg, V1, V2, ...,

v}, and can be constructed fra@i in a way similar to the one used to obtain the subgraphs
G1 andG> from G in Step 1 of Algorithm Good-Partition-or-P4. ThuS’s construction
takes Qlogn) time and requires Qn+m)/ logn) processors on the EREW PRAM model.
The computation of the degrees of the vertiéesio, . . ., t; in G can be done within the
same time and processor bounds (see Step 1 of Algorithm Recognize-Cograph).

In order to compute the arraj{], we use an auxiliary array[] of size ¢, which we
initialize by assigning to the entw{i] the degree of; in G, 1<i <¢. Since the number
of co-components is Q/m) according to Observation 2.3, the ari@y can be sorted in
O(logn) time with O((n + m)/logn) processors on the EREW PRAM model. Then, it is
easy to see that we can locate the distinct values of the sortedddiraging prefix sums
and array packing techniques. Thus, the afifay, 1< <¢’, can be computed in @gn)
time with O((n 4+ m)/ logn) processors on the EREW PRAM.

Stepr: Letd[] be the sorted array of siZeomputed in Step 6, and le=[n (1), n(2), ...,
n(¢)] be a permutation of the integers2L..., ¢ such thatd[n(i)]<d[n(j)] for every
1<i < j<«.Inorderto avoid concurrent read operations while computing the aergy,
we use an auxiliary array’[] of size ¢; we initialize it by settingd'[i]=1if i = 1 or
d[i] # d[i — 1], andd'[i] = O otherwise, and we subsequently compute prefix sums on
it. Then, pos[i] < d'[=(i)],fori =1,2, ..., £. Thus, the arrapos[] can be computed in
O(logn) time using Qn/ logn) processors on the EREW PRAM model.

Step8: This step involves the construction of) nodes and Qr) pointer assignments.
Since?’ = O(y/m), it is easy to see that the execution of the step takésg@) time and
requires Q(n + m)/ logn) processors on the EREW PRAM model.

Step9: The only operations performed in Steps 9(a) and (c) are the construction of at
most one tree node and @ pointer assignments (the degrees of the vertigémve been
computed in Step 6). Thus, both substeps can be executatbigr0 time with O(n/ logn)
processors on the EREW PRAM model.

Let us now analyze the time-processor complexity of Step 9(b). HeteD(n) pointer
assignments are performed on the root-nagdegherer; is the root-node of the cotree of the
graphG[%;], 1<i <k. In particular, the nodg gets attached as a child of the tree ngge
wherep; is such thaw; is adjacent to the co-component representdtjyen the graphG,
and itis not adjacent to arty; with j < p;. By using an auxiliary array, [] for each vertex
v € V(G) (of size equal to the degree ofin G), and the arrayos[] computed in Step 7,
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we can compute the index for each representative (1<i <k) avoiding concurrent-read
operations as follows:

e For each co-component representafivel <i <¢, do in parallel
9.1. copy the valugos[i] to each entry of [].
e For each component representativel <i <k, do in parallel
9.2. for each vertex adjacent ta; in G do in parallel
{u is a co-component representative}
Ay, [ry; ()] < A,lr,(vi)], wherer, (y) denotes the rank of in the
adjacency list of in G;
9.3. p; < the minimum element of the array,, [].

It is easy to see that the above Steps 9.1-9.3 can be completgtbgvn@time using
O((n + m)/logn) processors on the EREW PRAM model. Thus, the entire Step 9 is
completed within the same time and processor bounds.

If we take into consideration the time and processor complexity of each step of Subroutine
Construct-Cotree and the recursive calls, and work in a fashion similar to the one used in
the analysis of Algorithm Recognize-Cograph, we obtain the following result.

Theorem 6.1. Algorithm Cotree-0rP4 runs in O(log?n) time usingO((n + m)/ logn)
processors on the EREW PRAM model.

Corollary 6.1. Let G be a graph on n vertices and m edges. Thenstructing the cotree
of G if G is a cographor finding an induced?s otherwise can be done ifD(log? ) time
with O((n + m)/logn) processors on the EREW PRAM model

7. Concluding remarks

In this paper, we have presented parallel algorithms for recognizing cographs and for
constructing the cotree of a graph if it is a cograph; if the input graph is not a cograph,
the algorithms return an inducdt. When applied on a graph envertices andn edges,
both algorithms run in Qog? n) time using @(n + m)/ logn) processors on the EREW
PRAM model of computation. Thus, our results improve upon the previously known linear-
processor parallel algorithms for the same probl¢b@s12] Instrumental in our work is
an optimal parallel algorithm which computes the connected components of a graph or
detects that it contains By; this algorithm is interesting in its own right as it provides
an optimal parallel connectivity algorithm for cographs and can be extended to yield an
optimal connectivity algorithm for graphs with constant diameter.

An interesting open question is whether the class of cographs can be optimally recognized
on the EREW PRAM model of computation, i.e., whether there exists @og®)-time
cograph recognition algorithm which runs on the EREW PRAM model and requitastO
m)/logn) processors. Moreover, since cographs form a proper subclass of permutation
graphs, a direction for further research would be to investigate whether a similar technique
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applies for the purpose of recognizing the class of permutation graphs within the same
time-processor bounds.

More general classes of perfect graphs, such as the clasBgseducible and’s-sparse
graphs, also admit unique tree representations up to isomorjh&ib] Recently, Lin
and Olariu presented parallel recognition and tree construction algorithnyfgparse
graphs[20]; for an input graph om vertices andn edges, both the recognition and the
tree construction algorithms run in(l0g») time using @(n2 + nm)/ logn) processors on
the EREW PRAM model of computation. Thus, it would be interesting to see whether the
approach and algorithmic techniques used in this paper can help develop efficient parallel
recognition and tree construction algorithms for these two classes of graphs.
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