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Abstract

In this paper, we establish structural properties for the class of complement reducible graphs or
cographs, which enable us to describe efficient parallel algorithms for recognizing cographs and for
constructing the cotree of a graph if it is a cograph; if the input graph is not a cograph, both algorithms
return an inducedP4. For a graph onn vertices andm edges, both our cograph recognition and cotree
construction algorithms run in O(log2 n) time and require O((n+m)/ logn) processors on the EREW
PRAMmodel of computation. Our algorithms are motivated by the work of Dahlhaus (DiscreteAppl.
Math. 57 (1995) 29–44) and take advantage of the optimal O(logn)-time computation of the co-
connected components of a general graph (Theory Comput. Systems 37 (2004) 527–546) and of an
optimalO(logn)-timeparallel algorithm for computing theconnectedcomponentsof acograph,which
we present. Our results improve upon the previously known linear-processor parallel algorithms for
the problems (Discrete Appl. Math. 57 (1995) 29–44; J. Algorithms 15 (1993) 284–313): we achieve
a better time-processor product using a weaker model of computation and we provide a certificate (an
inducedP4) whenever our algorithms decide that the input graphs are not cographs.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The complement reducible graphs, also known ascographs, are defined as the class
of graphs formed from a single vertex under the closure of the operations of union and
complementation. More precisely, the class of cographs is defined recursively as follows:
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(i) a single-vertex graph is a cograph, (ii) the disjoint union of cographs is a cograph and
(iii) the complement of a cograph is a cograph.
Cographs have arisen in many disparate areas of applied mathematics and computer sci-

ence and have been independently rediscovered by various researchers under various names
such asD∗-graphs[16], P4 restricted graphs[8,9], 2-parity graphs and Hereditary Dacey
graphs or HD-graphs[24]. Cographs are perfect and in fact form a proper subclass of per-
mutation graphs and distance hereditary graphs; they contain the class of quasi-threshold
graphs and, thus, the class of threshold graphs[5,11]. Furthermore, cographs are precisely
the graphs which contain no induced subgraph isomorphic to aP4 (chordless path on four
vertices).
Cographs were introduced in the early 1970s by Lerchs[18] who studied their structural

and algorithmic properties. Along with other properties, Lerchs has shown that the class
of cographs coincides with the class ofP4 restricted graphs, and that the cographs admit a
unique tree representation, up to isomorphism, called acotree. The cotree of a cographG
is a rooted tree such that:

(i) each internal node, except possibly for the root, has at least two children;
(ii) the internal nodes are labelled by either 0 (0-nodes) or 1 (1-nodes); the children of a

1-node (0-node resp.) are 0-nodes (1-nodes, resp.), i.e., 1- and 0-nodes alternate along
every path from the root to any node of the cotree;

(iii) the leaves of the cotree are in a 1-to-1 correspondence with the vertices ofG, and two
verticesvi , vj are adjacent inG if and only if the least common ancestor of the leaves
corresponding tovi andvj is a 1-node.

Lerchs’ definition required that the root of a cotree be a 1-node; if, however, we relax
this condition and allow the root to be a 0-node as well, then we obtain cotrees whose
internal nodes all have at least two children, and whose root is a 1-node if and only if the
corresponding cograph is connected.
There are several recognition algorithms for the class of cographs. Sequentially, linear-

time algorithms for recognizing cographs were given in[9,6]. In a parallel setting, cographs
can be efficiently (but not optimally) recognized in polylogarithmic time using a polynomial
number of processors. Adhar and Peng[1] described a parallel algorithm for this problem
which, on a graph onn vertices andm edges, runs in O(log2 n) time and uses O(nm)
processors on the CRCW PRAM model of computation. Another recognition algorithm
was developed by Kirkpatrick and Przytycka[17], which requires O(log2 n) time with
O(n3/log2 n) processors on the CREW PRAM model. Lin and Olariu[19] proposed an
algorithm for the recognition and cotree construction problemwhich requires O(logn) time
and O((n2+ nm)/ logn) processors on the EREW PRAMmodel. Recently, Dahlhaus[10]
proposed a nearly optimal parallel algorithm for the same problem which runs in O(log2 n)
time with O(n+m) processors on the CREW PRAMmodel. Another cograph recognition
and cotree construction algorithm was presented by He[12]; it requires O(log2 n) time and
O(n+m) processors on the CRCW PRAM model.
Since the cographs are perfect, many interesting optimization problems in graph the-

ory, which are NP-complete in general graphs, have polynomial sequential solutions and
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admit efficient or even optimal parallel algorithms in the case of cographs. Such problems,
with a large spectrum of practical applications, include the maximum clique, minimum
coloring, minimum domination, Hamiltonian path (cycle), minimum path cover, and iso-
morphism testing[5,11]. In particular, for the problem of determining the minimum path
cover for a cograph, Lin et al.[21] presented an optimal sequential algorithm, which can
be used to produce a Hamiltonian cycle or path, if such a structure exists. Bodlaender and
Möhring [4] proved that the pathwidth of a cograph equals its treewidth and proposed a
linear-time algorithm to determine the pathwidth of a cograph. In a parallel environment,
many of the above problems are solved in polylogarithmic time with a linear number of
processors for cographs, assuming that the cotree of the cograph is given as input[1,2,17];
for example, the minimum path cover problem is solved in O(logn) time with O(n/ logn)
processors[22].
The cotree of a cograph is constructed in O(log2 n) time with O(n + m) processors

[10,12], or in O(logn) time with O((n2+nm)/ logn) processors[19], and, thus, the cotree
construction dominates the time and/or processor complexity of the parallel algorithms for
solving all the previously stated optimization problems on cographs. It follows that these
parallel algorithms need, in total, either O(log2 n) time or O((n2+ nm)/ logn) processors,
since they require the cotree as input instead of the standard adjacency-list representation
of the input cograph.
In this paper, we establish structural properties of cographs (based on the fact that a

cograph contains no induced subgraph isomorphic to aP4 [18]), which enable us to ob-
tain efficient parallel algorithms for recognizing whether a given graph is a cograph and
for constructing the cotree of a graph if it is a cograph. More precisely, for a graph on
n vertices andm edges, our algorithms run in O(log2 n) time using O((n + m)/ logn)
processors on the EREW PRAM model of computation, an improvement on both the
time-processor product and the model of computation over the previously known paral-
lel algorithms for these problems. The algorithms work in a fashion similar to that used
in [10] and take advantage of the optimal parallel algorithm for computing the connected
components of the complement of a graph described in[7] and an optimal O(logn)-time
and O((n + m)/ logn)-processor EREW-algorithm which computes the connected com-
ponents of a graph or detects that it contains aP4; the latter algorithm is interesting in
its own right as it constitutes an optimal parallel connectivity algorithm for cographs, and
can be extended to yield an optimal parallel connectivity algorithm for graphs with con-
stant diameter (note that no optimal parallel connectivity algorithm is currently available
for general graphs). Finally, we note that all our algorithms produce an inducedP4 when-
ever they decide that the input graph is not a cograph, thus providing a certificate for their
decision.
The paper is organized as follows. In Section 2, we present the notation and related

terminology and we establish results which are the basis of our algorithms. In Section 3, we
present the optimal parallel algorithm that either computes the connected components of
the input graph or detects that the graph contains aP4 as an induced subgraph. The cograph
recognition and the cotree construction algorithms are described and analyzed in Sections
4 and 5, respectively. Finally, Section 6 concludes the paper with a summary of our results
and some open problems.
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2. Theoretical framework

We consider finite undirected graphs with no loops or multiple edges. For a graphG, we
denote byV (G) andE(G) the vertex set and edge set ofG, respectively. LetS be a subset
of the vertex setV (G) of a graphG. Then, the subgraph ofG induced byS is denoted by
G[S].
TheneighborhoodN(x) of a vertexx of the graphG is the set of all the vertices ofG

which are adjacent tox. Theclosed neighborhoodof x is defined asN [x] := N(x) ∪ {x}.
The neighborhood of a subsetS of vertices is defined asN(S) := (

⋃
x∈SN(x))− S and its

closed neighborhood asN [S] := N(S)∪ S. Thedegreeof a vertexx inG, denoteddeg(x),
is the number of vertices adjacent tox in G; thus,deg(x) = |N(x)|. If two verticesx and
y are adjacent inG, we say thatx seesy otherwise we say thatx missesy. We extend this
notion to vertex sets:Vi ⊆ V (G) sees (misses)Vj ⊆ V (G) if and only if every vertex
x ∈ Vi sees (misses) every vertexy ∈ Vj .
A path in the graphG is a sequence of verticesv1v2 . . . vk such thatvivi+1 ∈ E(G)

for i = 1,2, . . . , k − 1; we say that this is a path fromv1 to vk and that itslength is k.
A path is calledsimpleif none of its vertices occurs more than once; it is calledtrivial if
its length is equal to 0. A simple pathv1v2 . . . vk is chordlessif vivj /∈E(G) for any two
non-consecutive verticesvi, vj in the path. Throughout the paper, the chordless path onk

vertices is denoted byPk; in particular, a chordless path on 4 vertices is denoted byP4. In
aP4 abcd, the verticesb andc are themidpointsand the verticesa andd theendpointsof
theP4. The edge connecting the midpoints of aP4 is its rib, whereas the other two edges
(which are incident on the endpoints) are thewings; for example, the edgebc is the rib and
the edgesabandcdare the wings of theP4 abcd.
If the graphG contains a path from a vertexx to a vertexy, we say thatx is connected to

y. The graphG is connectedif x is connected toy for every pair of verticesx, y ∈ V (G).
The connected components(or components) of G are the equivalence classes of the “is
connected to” relation on the vertex setV (G) of G. The co-connected components(or
co-components) of G are the connected components of the complementḠ of G.
An important tool in both our cograph recognition and cotree construction algorithms

is to consider for a vertexv of a graphG the partition of the subgraphsG[N(v)] and
G[V (G)−N [v]] into co-componentsandconnectedcomponents, respectively. In particular,
we define:

Definition 2.1. LetG be a graph andv a vertex ofG. We define thecomponent-partition
ofG with respect tov, denoted by(v; Ĉ1, Ĉ2, . . . , Ĉ�;C1,C2 . . . ,Ck), as the partition of
the vertex setV (G)

V (G)= {v} + Ĉ1 + Ĉ2 + · · · + Ĉ� + C1 + C2 + · · · + Ck,

whereĈ1, Ĉ2, . . . , Ĉ� are the co-connected components ofG[N(v)] andC1,C2, . . . ,Ck

are the connected components ofG[V (G)−N [v]].

Since the cographs do not containP4s, we are especially interested in component-
partitions such that there is noP4 with vertices in bothN [v] andV (G) − N [v], which
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are the only type ofP4s with not all its vertices in the same co-componentĈi or in the
same componentCj ; note that anyP4 with all its vertices inN [v] has all its vertices in the
same co-component ofG[N(v)], and anyP4 with all its vertices inV (G) − N [v] has all
its vertices in the same component ofG[V (G)−N [v]].

Definition 2.2. LetGbeagraph,v avertexofG, and(v; Ĉ1, Ĉ2, . . . , Ĉ�;C1,C2, . . . ,Ck)

the component-partition ofGwith respect tov.We say that this component-partition isgood
if and only ifG contains noP4 with vertices in bothN [v] andV (G)−N [v].

Clearly, if the component-partition(v; Ĉ1, Ĉ2, . . . , Ĉ�;C1,C2, . . . ,Ck) of a graphG
with respect to a vertexv is good and if the graphG contains aP4 as an induced sub-
graph, then thisP4 entirely belongs either to one of the co-componentsĈi (1� i��)

of the subgraphG[N(v)] or to one of the componentsCj (1�j�k) of the subgraph
G[V (G)−N [v]]; recall that noP4 with its vertices inN(v) has vertices belonging to two
ormore co-components ofG[N(v)], and noP4 with its vertices inV (G)−N [v] has vertices
belonging to two or more components ofG[V (G)−N [v]].
In Lemma 2.1 we establish necessary and sufficient conditions for a component-partition

to be good.

Lemma 2.1. Let G be a graph, v a vertex of G, and(v; Ĉ1, Ĉ2, . . . , Ĉ�;C1,C2, . . . ,Ck)

the component-partition of G with respect tov. Then, the component-partition of G with
respect tov is good if and only if the following two conditions hold:

(i) every co-component̂Ci either sees or misses every componentCj , and

(ii) if, for each co-component̂Ci ,1� i��, we define the set̂Ii = {j | Ĉi seesCj }, then
the co-components ofG[N(v)] have the following monotonicity property: |Îi |� |Îj |
implies thatÎi ⊆ Îj .

Proof. (⇒)Weassume that the component-partition ofGwith respect tov is good, i.e., the
graphG does not contain aP4 with vertices in bothN [v] andV (G)−N [v]; we will show
that conditions (i) and (ii) hold. If condition (i) did not hold, then there would be a vertexx

of someĈi which would be adjacent to a vertexy in someCj but non-adjacent to a vertex
z of Cj ; then, the pathvxyz would be aP4 with vertices in bothN [v] andV (G)−N [v], a
contradiction. Therefore, condition (i) must hold.
Suppose now that condition (ii) does not hold; then, there would exist co-componentsĈi

andĈj such that|Îi |� |Îj | andÎi�Îj . Then, there existst ∈ Îi − Îj , which implies that̂Ci

seesCt whereasĈj missesCt . Additionally, since|Îi |� |Îj | andt ∈ Îi − Îj , there exists

t ′ ∈ Îj − Îi , which in turn implies that̂Cj seesCt ′ whereasĈi missesCt ′ . But then, any

four verticesa, b, c, d, such thata ∈ Ct , b ∈ Ĉi , c ∈ Ĉj , andd ∈ Ct ′ , induce aP4 abcdin
G; a contradiction.
(⇐)We assume that the conditions (i) and (ii) hold; we will show that the graphG does

not contain aP4 with vertices in bothN [v] andV (G) − N [v]. Suppose for contradiction
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Fig. 1.

thatG contained such aP4. We distinguish the following cases:

(a) v participates in theP4: Sincev is adjacent to all the vertices inN(v), such aP4 can
either be of the formvxyw with x ∈ N(v) andy,w ∈ V (G) − N [v] (seeFig. 1(a)),
or of the formzvxy with x, z ∈ N(v) andy ∈ V (G) − N [v] (seeFig. 1(b)). In the
former case,y,w belong to the same connected component ofG[V (G) − N [v]] and
x sees exactly one of them, while, in the latter,x, z belong to the same co-component
of G[N(v)] andy sees exactly one of them; in either case, condition (i) does not hold,
which leads to a contradiction.

(b) v does not participate in theP4: Then, theP4 contains vertices fromV (G)− {v} and
at least one edge, say,xy, with x ∈ N(v) andy ∈ V (G)− N [v]. The edgexy cannot
extend to aP3 xyzof theP4: if it did, thenz ∈ N(v), for otherwisey, z would belong
to the same connected component ofG[V (G)−N [v]] andx would see exactly one of
them, in contradiction to condition (i); sincex, z ∈ N(v), theP4 would be (without loss
of generality)xyzw which violates condition (i) no matter whetherw ∈ N(v) (then,
x,w belong to the same co-component andy ∈ N(x)−N(w)) orw ∈ V (G)−N [v]
(then,x, z belong to the same co-component andw ∈ N(z)−N(x)). Hence, if a vertex
of theP4 which belongs toV (G) − N [v] is adjacent in theP4 to a vertex inN(v),
it cannot be a midpoint of theP4. This implies that no vertex inV (G) − N [v] is a
midpoint of theP4; thus, the only possible cases are:

• theP4 is abxywherea, b ∈ N(v): Then, the pathavxy is aP4, which as in case (a)
contradicts the fact that condition (i) holds.

• theP4 iswzxy wherez ∈ N(v) andw ∈ V (G)−N [v]: Since condition (i) holds, it
must be the case that the verticesx, z belong to different co-components ofG[N(v)]
and the verticesy,w belong to different components ofG[V (G)− N [v]] (seeFig.
1(c)). Let x ∈ Ĉi , z ∈ Ĉp, wherei �= p, and suppose without loss of generality
that|Îi |< |Îp|. Then, condition (ii) implies that̂Ii ⊆ Îp. Moreover, ify ∈ Cj , from
condition (i) we have thatj ∈ Îi . SinceÎi ⊆ Îp, we get thatj ∈ Îp, which contradicts
the fact that the verticesy andz are not adjacent (seeP4 wzxy).

In all cases, we reached a contradiction; therefore, the graphG cannot contain aP4 with
vertices in bothN [v] andV (G)−N [v], that is, the component-partition ofG with respect
to v is good. �
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From the proof of Lemma 2.1, we see that ifG contains anyP4 with vertices in both
N [v] andV (G) − N [v] which is of a general form other than those shown inFig. 1, then
G contains aP4 of the form ofFig. 1(a) orFig. 1(b). Thus, condition (ii) of Lemma 2.1
guarantees that noP4 of the form ofFig. 1(c) exists, while condition (i) guarantees that no
otherP4 exists with vertices in bothN [v] andV (G)− N [v]. In fact, condition (ii) can be
phrased in another equivalent way, as given in the following corollary.

Corollary 2.1. LetGbe a graph,v a vertex ofG,and(v; Ĉ1, Ĉ2, . . . , Ĉ�;C1,C2, . . . ,Ck)

the component-partition ofG with respect tov. Then, the component-partition ofG with
respect tov is good if and only if the following two conditions hold:

(i) Every co-component̂Ci either sees or misses every componentCj ;

(ii) Suppose that the ordering of the co-componentsĈ1, Ĉ2, . . . , Ĉ� corresponds to their
ordering by non-decreasing|Îi |, where Îi = {j | Ĉi seesCj }. If we associate each

componentCi ,1� i�k, with the setIi = {j |Ci seeŝCj }, then the components of
G[V (G)−N [v]] have the following property: if Ii �= ∅ and h is the minimum element
of Ii , thenIi = {h, h+ 1, . . . , �}.

Proof. It suffices to show that condition (ii) of Lemma 2.1 and condition (ii) of Corollary
2.1 are equivalent.
(⇒) Suppose that condition (ii) of Lemma 2.1 holds; we will show that condition (ii)

of Corollary 2.1 holds. For any componentCi such thatIi �= ∅, it suffices to show that if
h ∈ Ii then∀j >h,Ci seesĈj . Consider any suchj ; sinceh< j , it holds that|Îh|� |Îj |,
which according to condition (ii) of Lemma 2.1 yields thatÎh ⊆ Îj . Sinceh ∈ Ii , we have

thatCi seesĈh, or equivalently that̂Ch seesCi ; that is,i ∈ Îh. SinceÎh ⊆ Îj , theni ∈ Îj ,

i.e.,Ci seesĈj .
(⇐)Suppose that condition (ii) of Corollary 2.1 holds; wewill show that condition (ii) of

Lemma 2.1 holds. Let us consider two co-componentsĈp andĈq , and supposewithout loss
of generality that|Îp|� |Îq |. We need to show that̂Ip ⊆ Îq . Let t ∈ Îp; this is equivalent

to the fact that the componentCt seesĈp. But then,p ∈ It and in factq ∈ It , since the
inequality|Îp|� |Îq | implies thatp<q in the ordering of the co-components ofG[N(v)]
by non-decreasing|Îi |. Therefore,t ∈ Îq . Since this holds for anyt ∈ Îp, we have that
Îp ⊆ Îq , as desired. �

Consider the partition of the set of co-components{Ĉ1, Ĉ2, . . . , Ĉ�} of the subgraph
G[N(v)] into a collection of sets where any two co-componentsĈi , Ĉj belong to the

same set if and only if̂Ii = Îj , i.e., Ĉi andĈj see the same components of the subgraph
G[V (G) − N [v]]. Let us denote these partition setsŜ1, Ŝ2, . . . , Ŝ�′ , where, for everyi, j
such that 1� i < j��′, and everyĈr ∈ Ŝi andĈs ∈ Ŝj , it holds thatÎr ⊂ Îs ; the value�′
is equal to the number of distinct values of theÎis, and thus each setŜj is non-empty. It is
not difficult to see that the partition setsŜ1, Ŝ2, . . . , Ŝ�′ have the following properties:
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Fig. 2.

Observation 2.1. LetG be a graph, v a vertex of G, andŜ1, Ŝ2, . . . , Ŝ�′ be the partition of
the set of co-components{Ĉ1, Ĉ2, . . . , Ĉ�} of the subgraphG[N(v)] as described above.
Moreover, suppose that condition(i) of Lemma2.1 holds. The definition of the partition
setsŜ1, Ŝ2, . . . , Ŝ�′ easily implies the following:

• If a connected componentC of the subgraphG[V (G) − N [v]] sees a co-component
Ĉi ∈ Ŝj , thenC sees all the co-components inŜj .

• Let us consider the ordering of the co-components{Ĉ1, Ĉ2, . . . , Ĉ�} consisting of an
arbitrary ordering of the elements of the setŜ1 followed by an arbitrary ordering of the
elements of̂S2and so on up to the setŜ�′ . In this ordering, the co-componentŝCi ,1� i��,
are ordered by non-decreasing value of|Îi |.

In light of the above observations and due to condition (ii) of Corollary 2.1, in a good
component-partition of a graphG with respect tov, we can partition the set of connected
components{C1,C2, . . . ,Ck} of the subgraphG[V (G) − N [v]] into setsS0, S1, . . . , S�′
as follows:

S1 = {Cj | ∀Ĉ ∈ Ŝ1, Cj seeŝC},
Si = {Cj | ∀Ĉ ∈ Ŝi andĈ

′ ∈ Ŝi−1,Cj seeŝCbut does not seêC
′} (2� i��′),

S0 = {C1,C2, . . . ,Ck} −
⋃

i=1,...,�′
Si .

The definition of the setŝSj , j = 1,2, . . . , �′, implies thatSi �= ∅ for all i = 2,3, . . . , �′.
However,S0 andS1 may be empty. In particular,S0 is empty if and only if the graphG is
connected; in fact,S0 contains the connected components ofG except for the component to
whichv belongs.Fig. 2 illustrates the partitions of the set of co-components and of the set
of components described above and their adjacencies in a good component-partition of the
graphG with respect to vertexv; the dotted ovals indicate the partition sets, and the circles
inside the ovals indicate the components or co-components belonging to the partition set.
In terms of the partitions into setŝS1, Ŝ2, . . . , Ŝ�′ andS0, S1, . . . , S�′ , the cotree of a

cographG has a very special structure, which is described in the following lemma (clearly,
the component-partition of a cograph with respect to any of its vertices is good so that the
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Fig. 3.

conditions (i) and (ii) of Lemma 2.1 and Corollary 2.1 hold and the setsŜ1, Ŝ2, . . . , Ŝ�′ and
S0, S1, . . . , S�′ are well defined).

Lemma 2.2. LetG be a cograph, v a vertex of G, andŜ1, Ŝ2, . . . , Ŝ�′ andS0, S1, . . . , S�′ ,
respectively, the partitions of the co-connected components ofG[N(v)] and of the connected
components ofG[V (G)−N [v]] as described above. Then,

(i) if S1 = ∅, the cotree of G has the general form depicted in Fig.3(a);
(ii) if S1 �= ∅, the cotree of G has the general form depicted in Fig.3(b).

In either case, the dashed part appears in the tree if and only ifS0 �= ∅.

The circular nodes labelled with a 0 or a 1 inFig. 3 are 0- and 1-nodes, respectively,
whereas the shaded node is a leaf node; the triangles denote the cotrees of the corresponding
connected components or co-components. Lemma 2.2 gives us a way of constructing the
cotree of an input cographG: we compute the partitionŝS1, . . . , Ŝ�′ andS0, S1, . . . , S�′ ; we
recursively construct the cotrees of the elements of each of the above partition sets; we link
these cotrees as indicated inFig. 3. By carefully selecting the vertexv, we can guarantee
that the cotree construction takes O(log2 n) time, wheren is the number of vertices ofG.
The good selection of the vertexv based on which we compute the co-components of the

subgraphG[N(v)] and the components of the subgraphG[V (G)−N [v]] is crucial both for
the cograph recognition and the cotree construction. We will follow the selection principle
used by Dahlhaus[10], although we will be more concrete in our choices. If the number
of vertices of the graphG is n, we define the setsL,M, andH of the low-, middle-, and
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high-degree vertices ofG, respectively, as follows:

L= {
x ∈ V (G) |degree ofx inG< 1

4 n
}
,

M = {
x ∈ V (G) | 14 n�degree ofx inG� 3

4 n
}
,

H = {
x ∈ V (G) |degree ofx inG> 3

4 n
}
.

Clearly, the setsL,M, andH partition the vertex setV (G) of G. Then, we can show the
following results:

Observation 2.2. Let G be a graph onn vertices and letv ∈ V (G). If v ∈ M, then
the cardinality of each co-componentĈi ,1� i��, of the subgraphG[N(v)] and of each
connected componentCj , 1�j�k, of the subgraphG[V (G) − N [v]] does not
exceed34 n.

Proof. The definition of the setM implies that14 n� |N(v)|� 3
4 n, from which the obser-

vation follows. �

Lemma 2.3. LetG be a graph onn vertices, the set L as defined above, F a connected
subgraph of G such that every vertex of F belongs to L. Then, if the number q of vertices of
F is at least12 n, the subgraph F is not a cograph and in particular its component-partition
with respect to any of its vertices is not good.

Proof. Letv be an arbitrary vertex ofF , and suppose for contradiction that the component-
partition ofF with respect tov is good, that is,F contains noP4 with vertices in both
N [v] andV (F) − N [v]. Then, from Corollary 2.1, conditions (i) and (ii) hold. Assuming
that the ordering of the co-componentsĈ1, Ĉ2, . . . , Ĉ� of F [N(v)] corresponds to their
ordering by non-decreasing|Îi | (seeCorollary 2.1), let us consider any vertexx in Ĉ�. Then,
x seesv and all the vertices inV (F) − N [v]; since|V (F) − N [v]| = q − (1+ deg(v))

wheredeg(v) is the degree ofv in F , the degreedeg(x) of x in F is deg(x)�1 + q −
(1+ deg(v))= q − deg(v). If we solve forq, we get:q�deg(x)+ deg(v). Since all the
vertices ofF belong toL, their degrees are less than14 n, and thus we have thatq <

2
4 n; a

contradiction. �

Lemma 2.3 can be used to prove Lemma 6 of[10] in a different way. More importantly,
however, for a subgraphF as described in Lemma 2.3 which has at leastn

2 vertices, it gives
us the location of aP4; this proves very useful in our certificate producing step. Moreover,
thanks to Lemma 2.3, we establish in Lemma 2.4 an extension of a result given in[10];
Lemma 2.4 has a simpler proof than the proof in[10] and also gives us a way of locating a
P4 whenever the graphG is not a cograph.

Lemma 2.4. LetG be a graph onn vertices such that the set M is empty. Letv be the vertex
in the set L which has the maximum number of neighbors in the set H,and letC1,C2, . . . ,Ck

be the connected components ofG[V (G)−N [v]]. If there exists a componentCi such that
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|Ci |> 3
4 n and the cardinality of a co-componentÂi,j of the graphG[Ci] is at least12 n,

then G is not a cograph and the component-partition ofG[Ci] with respect to any of its
vertices or the component-partition ofG[Âi,j ] with respect to any of its vertices is not
good.

Proof. Observe that every vertexx ∈ H − Ci is adjacent to at least one vertex ofCi ; if
not, then the degree ofx would be at most equal ton − |Ci |< 1

4 n, which contradicts the
definition of the setH . But then, from Lemma 2.1 condition (i), such a vertexx sees the
entireCi ; this follows from the fact thatx belongs to a co-component ofG[N(v)], sincex is
adjacent to a vertex inCi and it does not belong toCi . If Ci contains no high-degree vertex,
it would be a connected subgraph ofG whose vertices all belong toL and then, according
to Lemma 2.3,G[Ci] is not a cograph and more specifically the component-partition of
G[Ci] with respect to any of its vertices is not good.
Suppose now thatCi contains at least one high-degree vertex. We show thatCi contains

no low-degree vertices. Suppose that there existed such a vertexz. SinceCi is connected
and contains a high-degree vertex, there would exist a path fromz to that high-degree vertex
inG[Ci]; sinceM = ∅, such a path would contain an edge connecting a low-degree vertex,
say,w, to a high-degree vertex. Then,w is adjacent to at least one high-degree vertex inCi

and to all the high-degree vertices inH −Ci because every vertex inH −Ci sees the entire
Ci . SinceH ∩ N(v) ⊆ H − Ci , this contradicts the choice ofv as the low-degree vertex
that has the maximum number of neighbors inH . Therefore,Ci contains only high-degree
vertices. Then, in the complement ofG, the vertices ofCi belong to the low-degree vertex
setL′ of Ḡ and the co-components ofG[Ci]would be subsets of the connected components
of Ḡ[L′]; Lemma 2.3 implies that if the cardinality of such a co-componentÂi,j is at least
1
2 n, the subgraphG[Âi,j ] is not a cograph and its component-partition with respect to any
of its vertices is not good.�

Finally, for any vertexv of a graphG, the following observation holds for the number of
co-connected components of the subgraphG[N(v)]:

Observation 2.3. Let G be a graph onn vertices andm edges, v a vertex of G, and
Ĉ1, Ĉ2, . . . , Ĉ� the co-connected components ofG[N(v)]. Then, �<

√
2m.

Proof. The definition ofĈis (1� i��) implies that every vertex of̂Ci sees every vertex
of Ĉj , for everyj �= i. Thus, there exist at least

1/2
∑
i

|Ĉi | ·
∑
j �=i

|Ĉj |
 �1/2

∑
i

(|Ĉi | · (�− 1))��(�− 1)/2

edges connecting vertices in different co-components ofG[N(v)]. SinceG contains a total
of m edges and there are at least� edges connectingv to its neighbors, we conclude that
m��+ �(�− 1)/2>�2/2, from which the observation follows.�
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3. Finding connected components or detecting aP4

In this section, we present a parallel algorithmwhich takes as input a graph and computes
its connected components or detects that the graph contains aP4 as an induced subgraph; in
Section 3.1, we also show how to augment the algorithm to return aP4 whenever it detects
such a subgraph in the input graph.
Let G be an undirected graph onn vertices andm edges, and suppose without loss of

generality thatV (G)={1,2, . . . , n}.We define the functionf : V (G) → V (G) as follows:
f (v)=min{u |u ∈ N [v]}. The functionf is well defined since, for any vertexv,N [v] �= ∅;
additionally, the following properties hold:

(P1) For any vertexv ∈ V (G), f (v) is the minimum-index vertex at distance at most 1
from v.

(P2) Let us definef (k)(v) as follows:f (1)(v)= f (v), f (k)(v)= f (f (k−1)(v)). Then, for
any vertexv ∈ V (G), f (k)(v) is the minimum-index vertex at distance at mostk from
v, or equivalentlyf (k)(v)=min{u |u ∈ N [N [. . . N[︸ ︷︷ ︸

k

v] . . .]]}.

(P3) Any two verticesu, v ∈ V (G), for whichf (u)=f (v), belong to the same connected
component ofG.

(P4) Ifu, v,w are distinct vertices ofG such thatf (u)=v andf (v)=w, then the vertices
u, v,w induce aP3 uvw in G.

Property P1 follows trivially from the definition off (v); Property P2 is easily established by
induction onk. Property P3 is a consequence of Property P2, whereas Property P4 follows
from Property P1 and the fact that in such a casev <u<w.

Lemma 3.1. LetGbe an undirected graph,f the function defined above,andV1, V2, . . . , Vk
the partition ofV (G) such that any two verticesx, y belong to the same partition set if and
only if f (f (x))= f (f (y)). Then, the following statements hold:

(i) All the vertices in eachVi belong to the same connected component.
(ii) If there exists an edgexy ∈ E(G) such thatx ∈ Vi, y ∈ Vj , and i �= j , then G

contains aP4 as an induced subgraph; in particular, if f (f (x))<f (f (y)) thenG
contains aP4 abxy whereas iff (f (x))>f (f (y)) then G contains aP4 abyx.

(iii) If the length of every induced path in G does not exceed2, the setsV1, V2, . . . , Vk are
the connected components ofG.

Proof. (i) Clearly true, since, by Property P2, for all verticesx, y ∈ V (G) such that
f (f (x))=f (f (y))= z,G contains paths (of length at most 2) fromx to z and fromy to z.
(ii) Suppose that there exists such an edgexy, and assume without loss of generality that

f (f (x))>f (f (y))= z. Then, Property P2 implies thatz ∈ N [N [y]] and Property P1 that
z /∈N [N [x]], which in turn implies thatz /∈N [y]. Sincez ∈ N [N [y]] andz /∈N [y], there
exists a vertexw ∈ N(y) such thaty,w, z induce aP3 ywz inG. Then, the fact that neither
z norw are adjacent tox (otherwise,z ∈ N [N [x]]) implies that the graphG contains the
P4 xywz as an induced subgraph.
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(iii) If every induced path inG has length at most 2, then, for every vertexx ∈ V (G),
the setN [N [x]] coincides with the vertex set of the connected component ofG to whichx
belongs.That is, foreveryvertexx inaconnectedcomponentCi ofG, f (f (x))=min{u |u ∈
Ci}; the truth of statement (iii) follows. �

Our connected components algorithm relies on Lemma 3.1. It computes, for each vertex
v of the input graph, the value off (f (v)), and then checks whether there exist two adjacent
verticesv andu such thatf (f (v)) �= f (f (u)); if yes, it reports that the graph contains a
P4, otherwise, based on the values off (f ()), it generates an output arraycomp[] of size
n such thatcomp[v] is equal to a representative of the connected component containingv.
The algorithm uses two auxiliary arraysA[] andB[] of size equal to the number of vertices
of the input graph which store the values off () andf (f ()), respectively. Throughout the
section, we assume that the vertex setV (G) of the input graphG equals the set{1,2, . . . , n},
wheren is the number of vertices ofG.

Algorithm Components-or-P4
Input: an undirected graphG.
Output: either a message thatG contains aP4 as an induced subgraph or an

arraycomp[] .

1. For each vertexv ∈ V (G) do in parallel
A[v] ← v.

2. For each vertexv ∈ V (G) do in parallel
A[v] ← min{A[u] |u ∈ N [v]};
B[v] ← min{A[u] |u ∈ N [v]}.

3. For each edgeuv ∈ E(G) do in parallel
if B[u] �= B[v]
then mark the edgeuv {G contains aP4 with winguv}

if there exists a marked edge ofG
then print thatG contains aP4 as an induced subgraph; return.

4. For each vertexv ∈ V (G) do in parallel
comp[v] ← B[v];

return the arraycomp[] .

The correctness of the algorithm is a direct consequence of Lemma 3.1.

Time and processor complexity: Next, we analyze the time and processor complexity of the
algorithm; for details on the PRAM techniques mentioned below, see[3,13,23].We assume
that the input graphG is given in adjacency-list representation, i.e., for each vertexv, we
have a linked listList(v) of the neighbors ofv in G.

Step1: Clearly, the assignment operation performed in Step 1 can be executed inO(logn)
time using O(n/ logn) processors on the EREW PRAM model.

Step2: In order to compute the new value ofA[v] for each vertexv ∈ V (G) avoiding
concurrent read operations, we use for each vertexv an auxiliary arrayAv[] of size equal to
the degreedeg(v) of v inG. We also use another auxiliary arrayW [] of sizen× n; it must
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be noted that, althoughW [] hasn2 entries, only O(m) of these will be processed. Then, the
computation ofA[v] is carried out as follows:

• For each vertexv ∈ V (G) do in parallel
2.1. for each vertexu in the adjacency listList(v) of v do in parallel

compute the rankrv(u) of the record ofu in List(v);
deg(v) ← maxu{rv(u)};

2.2. copy the valueA[v] (as initialized in Step 1) to each of thedeg(v) entries
of Av[];

2.3. for each vertexu in the adjacency listList(v) of v do in parallel
W [v, u] ← Av[rv(u)];
Av[rv(u)] ← min{W [v, u],W [u, v]};

2.4. A[v] ← min{Av[i] |1� i�deg(v)}.

Clearly, by taking advantage of the “twin” entriesW [v, u] andW [u, v] in Step 2.3, we en-
sure thatA[v] is correctly updated. In Step 2.1, the ranks of the elements ofList(v) and their
maximum can be optimally computed in O(logdeg(v)) time using O(deg(v)/ log deg(v))
processors, or in O(logn) time using O(deg(v)/ logn) processors, on the EREW PRAM
model. Steps 2.2, 2.3, and 2.4 can also be executed without concurrent read or write op-
erations in O(logn) time with O(deg(v)/ logn) processors. Thus, the computation of the
valuesA[v] for all verticesv ∈ V (G) can be done in O(logn) time with O((n+m)/ logn)
processors on the EREW PRAM model. Since the rest of Step 2, i.e., the updating of
the arrayB[], is executed in the very same way, the entire step takes O(logn) time with
O((n+m)/ logn) processors on the EREW PRAM model.

Step3: Here, we mark all the edgesuv of G such thatB[u] �= B[v]. For an EREW
execution, we use then × n arrayW [] mentioned in the analysis of Step 2, and for each
vertexv ∈ V (G), two auxiliary arraysBv[] andCv[], each of size equal to the degreedeg(v)
of v.

• For each vertexv ∈ V (G) do in parallel
3.1. copy the valueB[v] (as computed in Step 2) to each of thedeg(v) entries

of Bv[];
3.2. for each vertexu in the adjacency listList(v) of v do in parallel

W [v, u] ← Bv[rv(u)], whererv(u) is the rank of the record ofu in List(v);
if W [v, u] �= W [u, v]
thenBv[rv(u)] ← 0;
Cv[rv(u)] ← u;

3.3. letBv[™̂] be equal to min{Bv[i] |1� i�deg(v)};
if Bv[™̂] = 0
then mark the edgevw, wherew = Cv[™̂].

Note thatW [v, u] �= W [u, v] iff Bv[rv(u)] �= Bu[ru(v)], or equivalently,B[v] �= B[u].
Using parallel techniques similar to those used in Step 2, it is easy to see that the entire
step for all verticesv ∈ V (G) can be executed in O(logn) time with O((n + m)/ logn)
processors on the EREW PRAM model.
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Step4: The assignment operations performed in this step are executed in O(logn) time
with O(n/ logn) processors on the EREW PRAM model.
Taking into consideration Lemma 3.1 and the time and processor complexity of each step

of the algorithm, we obtain the following result.

Theorem 3.1.When applied on a graphG on n vertices and m edges, Algorithm
Components-or-P4 either detects that G contains aP4 as an induced subgraph or com-
putes G’s connected components inO(logn) time usingO((n + m)/ logn) processors on
the EREW PRAM model.

It must be noted that the goal of Algorithm Components-or-P4 is not to detect whether
the input graph contains aP4. So, in some cases, it terminates without reporting that the
graph contains aP4 even if this is so; in any such case, however, it correctly reports the
connected components of the given graph.
Finally, it isworthmentioning that themain ideaemployedby theAlgorithmComponents-

or-P4 can be used to yield an optimal parallel computation of the connected components
of any graph with constant diameter. For any graph with diameter at most some constantd,
it suffices to replace the body of the for-loop in Step 2 of the algorithm by the sequential
execution ofd computations of the form “A[v] ← min{A[u] |u ∈ N [v]}” and ignore Step
3.The resulting algorithmclearly runs inO(d logn)=O(logn) timeusingO((n+m)/ logn)
processors on the EREW PRAM.

Corollary 3.1. Let G be a graph on n vertices and m edges, which has constant diameter.
Then, the connected components of G can be computed inO(logn) time usingO((n +
m)/ logn) processors on the EREW PRAM model.

Remark 3.1. Computing the representatives of the connected components. Let G be a
graph onn vertices and letC1,C2, . . . ,Ck be its connected components. If the Algo-
rithm Components-or-P4 does not report the existence of aP4 in G, it computesG’s con-
nected components and stores the information in the arraycomp[] of sizen so that for
eachv ∈ Ci , comp[v] is equal to the representative of the connected componentCi ; in
fact, the representativesv1, v2, . . . , vk of the connected componentsC1,C2, . . . ,Ck are
such thatvi = min{v ∈ Ci},1� i�k. The representatives can be isolated in O(logn)
time using O(n/ logn) processors on the EREW PRAM model as follows: we use an ar-
ray R[] of sizen such thatR[v] = v if comp[v] = v andR[v] = 0 otherwise; then, by
using prefix computation and array packing techniques onR[], we can collect the rep-
resentativesv1, v2, . . . , vk into the firstk positions of the arrayR[]; that is,R[i] = vi
for 1� i�k.

Remark 3.2. Collecting the vertices of each connected component. Let v1, v2, . . . , vk be
the representatives of the connected componentsC1,C2, . . . ,Ck of the input graphG,
which have been computed byAlgorithmComponents-or-P4.Weare interested in collecting
the vertices of each connected component.
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First, it is important to observe that if the Algorithm Components-or-P4 has terminated
and reported that it has computed the connected components ofG, then every pair of
adjacent vertices ofG have the same value ofB[]. Additionally, in order to ensure that
each vertex will be collected exactly once, during the computation ofB[v] in Step 2
of the algorithm, we keep track of the vertex that has contributed the minimum in the
computation ofB[v], and we break ties in favor of the lowest-index vertex; let us denote
this vertex byp(v). Then, the definition of the quantityp() implies that the following
hold:

• For each representativevi , it holds thatp(vi)= vi ; for any other vertexv, p(v) �= v.
• If the quantityp(v) is interpreted as the “parent” of vertexv, then, the pairs(v, p(v))
form a tree in parent-pointer representation.

As in the description of the Algorithm Components-or-P4, we assume that the input
graphG is given in adjacency-list representation, and thatList(v) denotes the adjacency
list of vertexv. We use an auxiliary arrayW [] of sizen× n (as in Step 2 of the Algorithm
Components-or-P4), and, for each vertexv, an arrayTv[] of size equal to the degreedeg(v)
of v in G. Then, the vertices of each of the connected componentsCi ,1� i�k, can be
collected as follows:

1. For each vertexv ∈ V (G) do in parallel
1.1. for each vertexu in the adjacency listList(v) of v do in parallel

compute the rankrv(u) of the record ofu in List(v);
deg(v) ← maxu{rv(u)};

1.2. copy the valuep(v) to each of thedeg(v) entries ofTv[];
1.3. for each vertexu in the adjacency listList(v) of v do in parallel

W [v, u] ← Tv[rv(u)];
p ← W [u, v]; {p = p(u)}
if p �= v

then mark the record ofu as useless;
else insert the adjacency listList(u) of u right after the record ofu in

List(v).
2. For each vertex representativevi,1� i�k, do in parallel

compute the ranks of the vertex records in the (augmented) adjacency list ofvi ;
copy the contents of the adjacency list to an array;
pack the array while ignoring vertices that have been marked as useless.

For 1� i�k, the resulting packed array associated with vertexvi contains each of the
vertices inCi − {vi} exactly once; adding an entry forvi yields the entire set of vertices
of the connected componentCi . It is easy to see that the above computation can be carried
out using standard and simple parallel techniques in O(logn) time with O((n+m)/ logn)
processors on the EREW PRAM model.
Having computed the vertices of each connected componentC1,C2, . . . ,Ck of the

graphG, we can also compute the adjacency-list representation of each induced subgraph
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G[C1],G[C2], . . . ,G[Ck] within the same time and processor bounds using the same
model of computation.

3.1. Finding aP4

The algorithm Components-or-P4 can be easily augmented so that it finds and prints a
P4 of the input graphG whenever it decides thatG contains aP4. To do that, we replace
Step 3 of the algorithm by

3. For each edgeuv ∈ E(G) do in parallel
if B[u]>B[v]
then mark the edgeuv with the vertex-pair(u, v);
else ifB[u]<B[v]

then mark the edgeuv with the vertex-pair(v, u);
if there exists an edge which is marked with a pair and let(x, y) be this pair
then call SubroutineFind-P4(G, (x, y)); return;

where Subroutine Find-P4(G, (x, y)) finds and prints aP4 xypqof G; its description is
given below. The correctness of the augmented Step 3 follows from Lemma 3.1, statement
(ii), and from the correctness of the subroutine Find-P4. From a complexity point of view,
the augmented Step 3 is nearly identical to the original Step 3; since a call of the subroutine
Find-P4 on a graph onn vertices andm edges takes O(logn) time using O((n+m)/ logn)
processors on theEREWPRAM, the augmented algorithmComponents-or-P4 has the same
time and processor complexity.
The subroutine Find-P4 works very similarly to the algorithm Components-or-P4; it

involves the following steps.

Subroutine Find-P4
Input: a graphGandapair of vertices(x, y) such thatGcontainsaP4 of the formxypq.
Output: aP4 of G with wing xy.

1. Compute the subgraphH of G by deleting the edgesxz for all z ∈ N(x)− {y}.
2. For each vertexv ∈ V (G) do in parallel

A[v] ← 1;
Assign the value 0 toA[x], that is,A[x] ← 0.

3. For each vertexv ∈ V (G) do in parallel
A[v] ← min{A[u] |u ∈ N [v]};
B[v] ← min{A[u] |u ∈ N [v]}.

4. For each edgeuv ∈ E(G) do in parallel
if B[u]>B[v]
then mark the edgeuv with the vertex-pair(u, v) {P4 xyvu}

else ifB[u]<B[v]
then mark the edgeuv with the vertex-pair(v, u) {P4 xyuv}

if there exists an edge which is marked with a pair and let(a, b) be this pair
then print theP4 xyba.
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GivenagraphGandapair of vertices(x, y) such thatG containsaP4 xypq, the subroutine
Find-P4 removes all the edges incident onx inG except for the edgexy(Step 1), and works
on the resulting subgraphH . Because of this, if a vertexw of G, other thanx andy, ends
up withB[w] = 0 at the end of Step 3, thenw is adjacent toy and non-adjacent tox in G;
moreover, if a vertexw′ ends up withB[w′] �= 0, thenB[w′] =1 andw′ is adjacent neither
to x nor toy. Thus, sinceG contains aP4 of the formxypq, aP4 is guaranteed to be found.
Then, the correctness of the subroutine Find-P4 follows from Lemma 3.1, statement (ii).
It is important to note that it is necessary for the subroutine Find-P4 to work on the

subgraphH which results from the input graphG after the removal of the edges incident
onx except forxy: if the soughtP4 participates in a chordless cycle on 5 vertices or is the
top of a “house” (a simple cycle on 5 vertices with exactly one chord), then applying Steps
2–4 of subroutine Find-P4 on the entire graphG would not produce anyP4.
Steps 2–4 are very similar to Steps 1–3 of the augmented algorithm Components-or-P4

and can all be executed in O(logn) time using O((n+m)/ logn) processors on the EREW
PRAM, wheren andm are the numbers of vertices and edges of the input graphG. Step 1
can be executed by computing the subgraph ofG induced by the vertices inV (G) − {x}
and then by addingx and making it adjacent only toy; the former can be easily done
in O(logn) time using O((n + m)/ log n) processors on the EREW PRAM by removing
from the adjacency-list representation ofG the adjacency list ofx and any records storing
x; the latter can be done in constant sequential time. Therefore, we obtain the following
result.

Theorem 3.2. Subroutine Find-P4 runs inO(logn) time usingO((n+m)/ log n) proces-
sors on the EREW PRAM model.

4. Checking whether a component-partition is good

In this section we present a parallel algorithmwhich takes as input a graphG and a vertex
v ∈ V (G) and checks whether the component-partition ofG with respect tov is good (see
Definition 2.2); if so, the algorithm returns an appropriate message, otherwise it returns a
P4 using Subroutine Find-P4. The input graphG is assumed to be given in adjacency-list
representation.We also assume that for each edgeuv ofG, the two records in the adjacency
lists of u andv are linked together; this helps us re-index the vertices in subgraphs of the
given graph fast. We give next the detailed description of the algorithm.

Algorithm Good-Partition-or-P4
Input: a graphG and a vertexv ∈ V (G).
Output: a message that the component-partition ofG with respect tov is good, or an

inducedP4 with vertices in bothN [v] andV (G)−N [v].
1. Compute the following induced subgraphsG1 andG2 of the graphG:

G1 =G[N(v)];
G2 =G[V (G)−N [v]].

2. Compute the co-componentsĈ1, Ĉ2, . . . Ĉ� of the graphG1.
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3. UseAlgorithmComponents-or-P4 on the graphG2 in order either to compute its
connected componentsC1,C2, . . . ,Ck or to detect and return aP4 using Subrou-
tineFind-P4;
if a P4 is returned then stop and return thisP4.

4. For each co-componentĈi ,1� i��, ofG1 do in parallel
check if there exist two non-adjacent verticesx, y ∈ Ĉi such that∃z ∈ V (G)−
N [v] which is adjacent toy and is not adjacent tox;
if there exists such a vertexx
then mark vertexx {Gcontains the P4 xvyz}

if there exists a marked vertexx
then call SubroutineFind-P4 on the graphG and the vertex-pair(x, v);

stop and return theP4 that Subroutine Find-P4 returned.
5. For each connected componentCi ,1� i�k, ofG2 do in parallel

check if there exist two adjacent verticesx, y ∈ Ci such that∃z ∈ N(v)

which is adjacent toy and is not adjacent tox;
if there exist such verticesx, y
then mark the vertex-pair(x, y) {G contains the P4 xyzv}

if there exists a marked vertex-pair(x, y)
then call SubroutineFind-P4 on the graphG and the vertex-pair(x, y);

stop and return theP4 that Subroutine Find-P4 returned.
6. Sort the co-componentŝC1, Ĉ2, . . . , Ĉ� of the graphG1 in non-decreasing

number of the connected components of the graphG2 that each co-component
sees;
let Ŝ = (Ĉ�(1), Ĉ�(2), . . . , Ĉ�(�)) be the sorted list.

7. If there exist two consecutive co-componentsĈ�(i) and Ĉ�(i+1) in Ŝ, where
1� i��, such thatĈ�(i) sees a connected componentC of the graphG2 which
Ĉ�(i+1) misses
then{G contains an inducedP4 as shown inFig. 1(c)}

select a vertexx fromC and a vertexy from Ĉ�(i);
call SubroutineFind-P4 on the graphG and the vertex-pair(x, y);
stop and return theP4 that Subroutine Find-P4 returned.

8. Return the message that the component-partition ofG with respect tov is good.

In Steps 1–3, the algorithm constructs the component-partition. Then, it checks whether
condition (i) and condition (ii) ofCorollary 2.1 hold inSteps4–5andSteps6–7, respectively.

Correctness: For the correctness of Step 4, we note that if a co-componentĈi of G1 =
G[N(v)] contains two verticesa, b which do not have the same neighbors inV (G)−N [v],
then it contains twonon-adjacent suchvertices; it suffices to consider thepairs of consecutive
vertices along a path in̄G[Ĉi] from a to b. Similarly, for the correctness of Step 5, if a
componentCi ofG2=G[V (G)−N [v]] contains two vertices which do not have the same
neighbors inN(v), then it contains two adjacent such vertices. Then, the correctness of
Algorithm Good-Partition-or-P4 follows from Corollary 2.1.
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Time and processor complexity: The analysis ofAlgorithmGood-Partition-or-P4 is done on
the PRAM model of computation; for details on the PRAM techniques mentioned below,
see[3,13,23]. Letn andm be the number of vertices and edges of the input graphG; recall
that the graphG is assumed to be given in adjacency-list representation where addition-
ally for each edgeuv of G, the two records in the adjacency lists ofu andv are linked
together.

Step1: Let List(v) be the adjacency list of the vertexv, and letrv(u) denote the rank
of the vertexu in the listList(v). For each vertexv ∈ V (G), we use two auxiliary arrays
Av[] andBv[], each of size equal to the degreedeg(v) of v in G. Then, the adjacency-list
representation of the graphG1 =G[N(v)] is computed, as follows:

• For each vertexx ∈ V (G) do in parallel
1.1. for each vertexy in the adjacency listList(x) of x do in parallel

Ax[rx(y)] ← y;
1.2. if the vertexx belongs toN(v)

then copy the value 1 to each of thedeg(x) entries ofBx[];
else copy the value 0 to each of thedeg(x) entries ofBx[].

• For each vertexw in the adjacency listList(v) of v do in parallel
1.3. fori = 1,2, . . . , deg(w) do in parallel

u ← Aw[i];
if Bu[ru(w)] = 0 then mark the entryAw[rw(u)];

1.4. store the unmarked elements of the arrayAw[] in consecutive locations, and,
then, construct a list of thesevertices and associate it with vertexw ∈ V (G1).

SinceBu[ru(w)] = 0 if and only ifu /∈N(v), it is not difficult to see that the resulting lists
for all the verticesw ∈ N(v) form an adjacency-list representation of the induced subgraph
G1 (onn1 vertices andm1 edges). Using standard and simple parallel techniques, such as
interval broadcasting and array packing, it is easy to see that the linked list representation of
G1 can be computed in O(logn1) time with O((n1+m1)/ logn1) processors or in O(logn)
time using O((n1 + m1)/ logn) = O((n + m)/ logn) processors, on the EREW PRAM
model. The computation of the linked list representation of the induced subgraphG2 is
done in a fashion similar to that previously described and in the same time and processor
complexity.

Step2: The computation of the co-components of the graphG1 can be optimally
done in O(logn1) time using O((n1 + m1)/ logn1) processors, or in O(logn) time us-
ing O((n1 + m1)/ logn) = O((n + m)/ logn) processors, on the EREW PRAM
model[7].

Step3: Here, we use Algorithm Components-or-P4 that we have presented in Section 3,
and either compute the connected componentsC1,C2, . . . ,Ck of the graphG2 or detect
that the graphG2 contains aP4 as an induced subgraph. Thus, if the number of vertices
of G2 is n2 and its number of edges ism2, the step is executed in O(logn2) time using
O((n2+m2)/ logn2) processors or in O/(logn) time using O((n2+m2)/ logn)=O((n+
m)/ logn) processors on the EREW PRAM model.
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Step4: In this step, we check whether for each pairĈi ,Cj , the co-component̂Ci either
sees or misses the connected componentCj , where 1� i�� and 1�j�k. To do that, we
first construct a subgraphG∗ of the graphG as follows:

V (G∗)= V (G)− {v};
E(G∗)= {xy ∈ E(G) | x ∈ N(v), y ∈ V (G)−N [v]};

we will use the graphG∗ in the execution of Step 5 as well.An adjacency-list representation
ofG∗ can easily be constructed from the graphG in O(logn) time with O((n+m)/ logn)
processors on the EREW PRAM model (see Step 1). By taking advantage of the graph
G∗, for each co-component̂Ci , we will check whether there exist two verticesx, y ∈ Ĉi

which are non-adjacent inG such that∃z ∈ V (G) − N [v] which is adjacent toy and
is not adjacent tox in G∗. To do that for a co-component̂Ci ,1� i��, we work in two
phases: first, we check whether there exist two verticesx, y ∈ Ĉi which are not adjacent
in G and have different number of neighbors inG∗; next, if all the vertices of the co-
component̂Ci have the same number of neighbors inG∗, then we check whether there exist
two verticesx, y ∈ Ĉi which are not adjacent inG and have no identical neighborhoods
in G∗. It is important to note that if there exists any such pair of verticesx, y, thenG
contains aP4 of the formxvyz if deg∗(x)�deg∗(y), or of the formyvxz otherwise, where
z ∈ V (G)−N [v].
Each of the phases involves three substeps which are executed separately on each of

the co-components ofG1 and three substeps which are executed on all the co-components
together; note that any two vertices from different co-components are adjacent inG. In
detail, Step 4 is as follows:

• For each co-componentĈi ,1� i��, do in parallel
4.1. compute a linked listLCi containing the vertices in̂Ci ;
4.2. for each vertexx ∈ LCi , compute the degreedeg∗(x) of x in G∗;
4.3. find a vertexu with minimum degree inG∗ and, then, partition the vertices

of the co-component̂Ci into two vertex setsSi,1 andSi,2 as follows:
Si,1 = {x ∈ Ĉi | deg∗(x)= deg∗(u)}, and
Si,2 = Ĉi − Si,1.

• Check if there exist two verticesx, y such thatxy /∈E(G) andx ∈ Si,1 and
y ∈ Si,2 (then,x, y belong to the same co-component ofG1, and inG∗ they
have different number of neighbors belonging toV (G)−N [v]);
4.4. compute the vertex setsS1 = ⋃�

i=1 Si,1 andS2 = ⋃�
i=1Si,2;

compute the graph̃G=G[V (G)−S2] and the degreedeg̃G(x) of each vertex
x in G̃;

4.5. for each vertexx ∈ S1, do in parallel
if degG(x)<deg̃G(x)+ |S2|
then{x is not adjacent inG to a vertex in S1}

mark the vertexx;
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4.6. if there exists a marked vertex
then select any such vertexx;

call Subroutine Find-P4 on the graphG and the vertex-pair(x, v);
stop and return theP4 that Subroutine Find-P4 returned.

In case Step 4.6 finds no marked vertices, then we proceed to the second phase where
we check whether all the vertices of each co-componentĈi ,1� i��, have identical neigh-
borhoods inG∗. Let v̂1, v̂2, . . . , v̂� andn̂1, n̂2, . . . , n̂� be the representatives and the num-
ber of vertices, respectively, of the co-componentsĈ1, Ĉ2, . . . , Ĉ� of the graphG1. For
each co-component̂Ci ,1� i��, we use an auxiliary arrayDi[] of sizen̂i − 1, and arrays
Pi[], Pi,j [] (1�j� n̂i − 1), andMi,x[] (x ∈ Ĉi − {v̂i}), each of size equal to the degree
deg∗(v̂i) of the representativêvi in G∗. We proceed as follows:

• For each co-componentĈi ,1� i��, do in parallel
4.7. copy the neighbors ofv̂i in G∗ in the arrayPi[1..deg∗(v̂i)];
4.8. maken̂i − 1 copiesPi,1[], . . . , Pi,n̂i−1[] of the arrayPi[];
4.9. Si,1 ← {v̂i}; S1,2 ← ∅;

for each vertexx ∈ LCi − {v̂i}, do in parallel
◦ copy the neighbors ofx in G∗ in the arrayMi,x[];
◦ if Mi,x[] = Pi,ri (x)[], whereri(x) is the rank ofx in LCi − {v̂i},

then insert vertexx in the setSi,1;
else insert vertexx in the setSi,2.

• Check if there exist two verticesx, y such thatxy /∈E(G) andx ∈ Si,1 and
y ∈ Si,2 (then,x, y belong to the same co-component ofG1, and inG∗ they
have different neighborhoods), by executing Steps 4.4–4.6 for the setsSi,1 and
Si,2 computed in Step 4.9;

For thecorrectnessof thecomputation,observe that if thecondition “degG(x)<deg
G̃
(x)+

|S2|” in Step 4.4 is true, thenx is not adjacent to a vertex inS2. Then, for the setsSi,1 andSi,2
computed in Step 4.3, this is equivalent to the existence of a vertexy such thatxy /∈E(G)
anddeg∗(y)>deg∗(x) or equivalently|N(y) − N [v]|> |N(x) − N [v]|; for the setsSi,1
andSi,2 computed in Step 4.9, this is equivalent to the existence of a vertexy such that
xy /∈E(G), |N(y) − N [v]| = |N(x) − N [v]|, andN(y) − N [v] �= N(x) − N [v]. In ei-
ther case, there exists a vertexz ∈ V (G) − N [v] such thatyz ∈ E(G) andxz /∈E(G);
this implies that the graphG contains theP4 xvyz as reported by the algorithm thanks to
Subroutine Find-P4.
We next compute the time and processor complexity of Step 4 of Algorithm Good-

Partition-or-P4 by analyzing Steps 4.1–4.8.
Having computed the verticesof each co-componentĈi ,1� i��, we caneasily construct

the linked listLCi (Step 4.1) in O(logn) time with O((n + m)/ logn) processors on the
EREW PRAM model.
The computation of the degreedeg∗(x) of a vertexx of the graphG∗ can be done by

applying list ranking on the adjacency list ofx inG∗ and by taking the maximum rank; this
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can be done in O(logn) time using O(deg∗(x)/ logn) processors on the EREW PRAM.
Since the graphG∗ hasn− 1 vertices and O(m) edges, the computation for all the vertices
takes O(logn) time and O((n+m)/ logn) processors on the same model of computation.
Additionally, finding a vertex of̂Ci of minimum degree inG∗ can be easily done optimally.
For the construction of the setsSi,1 andSi,2, we use two auxiliary arrays of sizêni each, in
which we first set the entries of the vertices of each set equal to the respective vertex and
then use array packing to collect these vertices together. Thus, all the operations in Steps 4.2
and 4.3 can be executed in O(logn) time with O((n+m)/ logn) processors on the EREW
PRAM model.
Forming the setsS1 andS2 is done in a fashion similar to forming the setsSi,1 and

Si,2, hence, in O(logn) time and O(n/ logn) processors on the EREW PRAM model. The
computationof theadjacency-list representationof the inducedsubgraphG̃canbecomputed
using standard and simple parallel techniques, such as list ranking, interval broadcasting,
and array packing[3,13,23]; see Step 1. If|V (G̃)| = ñ and|E(G̃)| = m̃, this computation
can be done in O(log ñ) time with O((ñ + m̃)/ log ñ) processors or in O(logn) time with
O((ñ+m̃)/ logn)=O((n+m)/ logn)processorson theEREWPRAMmodel.Moreover, the
degrees of all the vertices iñG can also be computed inO(logn) timewithO((n+m)/ logn)
processors on the EREW PRAM model.
In order to avoid concurrent read operations while checking the if-condition in Step 4.5,

we maken̂i copies of the value|S2| in an auxiliary arrayQi[1..n̂i]; this computation can
be easily done in O(logn) time with O((n + m)/ logn) processors on the EREW PRAM
model.
Since the number of marked verticesx is less thatn, the selection of a marked vertex in

Step 4.6 can be done in O(logn) time with O(n/ logn) processors on the EREW PRAM
model.Additionally, fromTheorem3.2,SubroutineFind-P4has thesame timeandprocessor
complexity on the EREW PRAM model.
If the algorithm does not return in Step 4.6, then, for every vertexx ∈ Ĉi ,deg∗(x) =

deg∗(v̂i). Sincedeg∗(x) is less than thedegreeofx inG, it follows that
∑�

i=1 (n̂i ·deg∗(v̂i))=
O(m), and thus Steps 4.7 and 4.8 can be executed in O(logn) time with O((n+m)/ logn)
processors on the EREW PRAM model.
The size of both the arrayPi,ri (x)[] and the arrayMi,x[] is equal todeg∗(x) and the

if-statement can be easily checked in O(log deg∗(x)) time with O(deg∗(x)/ log deg∗(x))
processors, or in O(logn) time with O(deg∗(x)/ logn) processors, on the EREW PRAM
model bymeansof anauxiliary arrayBi,x[]of sizedeg∗(x)aswell: forj=1,2, . . . ,deg∗(x),
if Mi,x[j ] �= Pi,ri (x)[j ] thenBi,x[j ] ← 1 elseBi,x[j ] ← 0; next, we compute themaximum
element ofBi,x[], andMi,x[] �= Pi,ri (x)[] iff the maximum is equal to 1. Thus, Step 4.9
is executed in O(logn) time with O((n + m)/ logn) processors on the EREW PRAM
model.
From the above time-processor analysis, we conclude that we can check whether all the

vertices of each co-component have identical neighborhoods inG∗ in O(logn) time with
O((n + m)/ logn) processors on the EREW PRAM model. If not, then in the same time
and processor complexity we find an inducedP4 by means of Subroutine Find-P4.

Step5: Processing the vertices of the connected componentsCi ,1� i�k, is done in a
similar fashion using the graphG∗: we look for an edgexy of G, wherex, y ∈ Ci such
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that eitherdeg∗(x)<deg∗(y) or deg∗(x)= deg∗(y) and the verticesx, y have no identical
neighborhoods inG∗. Such an edgexy is a wing of aP4 xyav inG, wherea ∈ N(v). Based
on the time and processor complexity of Steps 4.1–4.9, we can show that the execution of
Step 5 takes O(logn) time and requires O((n+m)/ logn) processors on the EREWPRAM
model as well.

Step6:Here, we sort the co-componentsĈ1, Ĉ2, . . . , Ĉ� in non-decreasing number of the
connected componentsC1,C2, . . . ,Ck that each co-component sees. Let(a1, a2, . . . , a�)

be the list such thatai is the number of the connected components thatĈi sees; then,ai is
equal to the degree of the representativev̂i of Ĉi in the subgraph of the graphG∗ induced by
the representatives of the co-componentsĈi ,1� i��, and the componentsCj ,1�j�k.
Thus, theais can be computed in O(logn) time with O((n+m)/ logn) processors on the
EREW PRAM model. Since the number� of co-components is O(

√
m) (Observation 2.3),

sorting theais can be executed in O(logn) time with O((n+m)/ logn) processors on the
EREW PRAM model; note that log�= O(logm)= O(logn), and that if

√
m< logn then√

m=O(n/ logn), whereas if
√
m� logn then

√
m=O(m/ logn).

Step7: For simplicity, we assume that(Ĉ1, Ĉ2, . . . , Ĉ�) is the sorted list of the co-
components of the graphG1, i.e., �(i) = i for i = 1,2, . . . , � (see Step 6 in the de-
scription of the algorithm). In a way similar to the one we used in order to compute
the list (a1, a2, . . . , a�) in the previous step, we compute the list(b1, b2, . . . , bk) where
bj ,1�j�k, is the number of co-components of the graphG1 that the connected compo-
nentCj sees. Then, we implement Step 7 as follows:

• For each connected componentCj ,1�j�k, do in parallel
7.1. find the co-component̂Ci with the minimum index that the representativevj

of Cj sees;
7.2. if bj �= �− i + 1

then select a vertexx fromCj and a vertexy from Ĉi ;
call Subroutine Find-P4 on the graphG and the vertex-pair(x, y);
stop and return theP4 that Subroutine Find-P4 returned.

The correctness of the computation follows from Corollary 2.1, condition (ii): note that if
bj �= �− i+1, then there exists a co-componentĈp wherep> i such thatCj does not see

Ĉp. Sincep> i, we have that|Îp|� |Îi |, and sincej ∈ Îi − Îp, there existsq ∈ Îp − Îi ;
thus,G contains aP4 of the form shown inFig. 1(c), which proves the correctness of the
computation.
The computation of the list(b1, b2, . . . , bk) takes O(logn) time using O((n+m)/ logn)

processors on the EREW PRAM model. Moreover, it is easy to see that the representative
of the minimum-index co-component that each componentCj sees, can also be computed
within the same time and processor bounds. Thus, Step 7 is executed in O(logn) time with
O((n+m)/ logn) processors on the EREW PRAM model.

Step8: In this step, the algorithm returns in O(1) sequential time the message that the
component-partition of the input graphGwith respect tov ∈ V (G) is good, i.e.,G contains
noP4 with vertices in bothN [v] andV (G)−N [v].
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Taking into consideration the time and processor complexity of each step of the algorithm
Good-Partition-or-P4, we obtain the following result.

Theorem 4.1. Algorithm Good-Partition-or-P4runs inO(logn) time usingO((n+m)/ logn)
processors on the EREW PRAM model.

5. The recognition algorithm

In this section, we present a parallel algorithm for recognizing whether a given graphG

is a cograph, and if it is not, aP4 of G is returned. As in Section 4, the input graphG is
assumed to be given in adjacency-list representation where additionally for each edgeuv

of G, the two records in the adjacency lists ofu andv are linked together.

Algorithm Recognize-Cograph
Input: an undirected graphG onn vertices andm edges.
Output: either a message thatG is a cograph or aP4 of G.

1. Compute the setsL,M, andH containing the low-, middle-, and
high-degree vertices ofG, respectively.

2. If L= ∅ andM = ∅ then {eachv ∈ V (G) has degree> 3
4 n}

(a) compute the co-componentsÂ1, Â2, . . . , Âp of G;
(b) if any of the co-componentŝAi ,1� i�p, has cardinality at least equal to12 n

then{G is not a cograph}
callAlgorithmGood-Partition-or-P4onthegraphG[ĉAi]andanarbitrary
vertexx in Âi ; (the algorithm returns with aP4 of G)

else compute the subgraphsG[Â1],G[Â2], . . . ,G[Ât ] of G and
call recursivelyAlgorithmRecognize-Cographoneachofthesesubgraphs;

(c) go to Step 7.
3. If M �= ∅

thenv ← an arbitrary vertex ofM;
elsev ← the vertex inL with the maximum number of neighbors inH {note :
L �= ∅}

4. Call AlgorithmGood-Partition-or-P4 on the graphG and the vertexv;
if the algorithm returns aP4 then go to Step 7.

5. Compute the induced subgraphsG[Ĉi] andG[Cj ], whereĈi ,1� i��, are the
co-components of the subgraphG[N(v)], andCj ,1�j�k, are the connected
components ofG[V (G)−N [v]].

6. Call recursively AlgorithmRecognize-Cographon eachG[Ĉi] (1� i��), and
on eachG[Cj ] (1�j�k) such that|Cj |� 3

4 n;
if there exists aCi such that|Ci |> 3

4 n then
(a) compute the co-componentsÂi,1, Âi,2, . . . , Âi,h of G[Ci];
(b) if anyof theco-componentŝAi,j ,1�j�h, has cardinality at least equal to12 n

then{G is not a cograph}
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call AlgorithmGood-Partition-or-P4 on the graphG[Ci] and an
arbitraryy in Ci ;
callAlgorithmGood-Partition-or-P4 on the graphG[Âi,j ] and an
arbitrary vertexz in Âi,j ; (at least one of these calls returns with a
P4 ofG)

else compute the subgraphsG[Âi,1],G[Âi,2], . . . ,G[Âi,h] of G and
call recursively AlgorithmRecognize-Cographon each of these subgraphs.

7. If any call to AlgorithmRecognize-Cographor Good-Partition-or-P4 returns
with aP4
then return such aP4;
else return thatG is a cograph.

It is important to note that the following lemma holds.

Lemma 5.1. If during the execution of Algorithm Recognize-Cograph on a graphG onn
vertices, a recursive call is made on a graphG′, thenG′ is a subgraph of G and the number
of vertices ofG′ does not exceed34 n.

Proof. Recursive calls are executed in Steps 2 and 6 of Algorithm Recognize-Cograph; in
either case, the graphs on which the calls are executed are subgraphs of the input graphG.
When Recognize-Cograph is called on a subgraphG[Âi] of G in Step 2, then the number
of vertices of the subgraph is less than12 n. Moreover, when Recognize-Cograph is called

on a subgraphG[Ĉi] or a subgraphG[Cj ] such that|Cj |� 3
4 n in Step 6, then the number

of vertices of these subgraphs does not exceed3
4 n; note thatv belongs to the setM or the

setL, and|Ĉi |� |N(v)|� 3
4 n. Finally, if in Step 6 there exists a componentCi such that

|Ci |> 3
4 n, then, in light of Observation 2.2,v /∈M, which implies thatM =∅; but then, by

Lemma 2.4, the cardinality of each co-component ofG[Ci] does not exceed12 n. �

Correctness: The correctness of Step 4 of Algorithm Recognize-Cograph readily follows
from the correctness of Algorithm Good-Partition-or-P4 (see Section 4). The correctness
of Step 2 follows from Lemma 2.3 and the fact that a graph is a cograph iff each of its
co-components is a cograph (note that a graph contains noP4 with vertices in more than
one co-component). The latter observation also helps establish the correctness of Step 6
along with Corollary 2.1 and Observation 2.2 and Lemma 2.4; note that if there exists a
componentCi such that|Ci |> 3

4 n, then Observation 2.2 implies thatv /∈M which is true
only if M = ∅ and thus the conditions of Lemma 2.4 hold. Finally, it is important to note
that if the component-partition of a graphG with respect to a vertexv is good, thenG
contains aP4 iff a co-component ofG[N(v)] or a component ofG[V (G)−N [v]] contains
aP4.

Time and processor complexity: We use a step-by-step analysis for computing the time and
processor complexities of each step ofAlgorithm Recognize-Cograph on the PRAMmodel
of computation (see[3,13,23]).
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Step1: The computation of the degree deg(v) of a vertexv of the graphG can be
done by applying list ranking on the adjacency list ofv and by taking the maximum
rank; this can be done in O(logn) time using O(deg(v)/ logn) processors on the EREW
PRAM. The computation for all the vertices takes O(logn) time and O((n + m)/ logn)
processors on the same model of computation. Locating the low-degree vertices of the
graphG, i.e., all the verticesv ∈ V (G) such thatdeg(v)< 1

4 n, can be done in O(logn)
time using O(n/ logn) processors on the EREW PRAM model: we use an auxiliary ar-
ray Low[] of sizen and we setLow[v] = v if the vertexv has degreedeg(v)< 1

4 n and
Low[v] = 0 otherwise; then, the low-degree vertices ofG can be collected by means
of array packing onLow[] using prefix computation. The middle- and the high-degree
vertices ofG can be collected in a similar fashion within the same time-processor
bound.

Step2: Since we use an array representation for each of the vertex setsL,M, andH , we
can check whether such a set contains a vertex (or it is an empty set) in constant sequential
time. The co-components ofG can be computed in O(logn) time with O((n+m)/ logn)
processors on the EREWPRAMmodel[7], and so can the subgraphs ofG induced by each
of these co-components. Additionally, sinceG[Âi] has at leastn/2 and no more thann
vertices and O(m) edges, the execution of Algorithm Good-Partition-or-P4 takes O(logn)
time using O((n + m)/ logn) processors on the EREW PRAM model. Thus, if we ignore
the time for any recursive calls to Algorithm Recognize-Cograph, Step 2 takes O(logn)
time and O((n+m)/ logn) processors on the EREW PRAM model.

Step3: Since each of the vertex setsL,M, andH is given in array representation, this step
is clearly executed in constant sequential time ifM �= ∅: we takev ← M[1]. If M=∅, it is
executed in O(logn) time with O((n+m)/ logn) processors on the EREW PRAMmodel:
for each vertexw in L, we mark the high-degree vertices inw’s adjacency list and compute
the number of marked vertices; then, we compute the maximum of these numbers over all
vertices inL and select asv a vertex whose number of marked vertices in its adjacency list
equals the maximum.

Step4: The step takes O(logn) time using O((n + m)/ logn) processors on the EREW
PRAM model (Theorem 4.1).

Step5: The induced subgraphsG[Ĉi],1� i��, andG[Cj ],1�j�k, can be computed
in O(logn) time using O((n+m)/ logn) processors on the EREW PRAM model.

Step6: The processing of a componentCi such that|Ci |> 3
4 n is identical to the pro-

cessing inStep 2.Thus, if we ignore the time for any recursive calls toAlgorithmRecognize-
Cograph, Step 6 takes O(logn) time and O((n + m)/ logn) processors on the
EREW PRAM.

Step7: Since the calls to Algorithms Recognize-Cograph and Good-Partition-or-P4 are
executed on subgraphs of the graphG which are vertex disjoint, we can use an array of
sizen (initialized to 0) where the different calls store their results, aP4 of G if a P4 was
found, or 0 otherwise. Then, packing this array so that the 0-entries are suppressed suffices
for checking whether aP4 has been returned and if yes, for obtaining such aP4. Thus,
Step 7 can be completed in O(logn) time using O(n/ logn) processors on the EREW
PRAM model.
Taking into consideration the time and processor complexity of each step of Algorithm

Recognize-Cograph and the recursive calls, we have that the time complexityT (n,m) and
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processor complexityP(n,m) of the algorithm when applied on a graph onn vertices and
m edges satisfy the following equalities:

T (n,m)=O(logn)+max
i

{T (ni,mi)},

P(n,m)=max

{
O((n+m)/ logn),

∑
i

P (ni,mi)

}
,

whereni andmi are the numbers of vertices and edges of the subgraphs on which Al-
gorithm Recognize-Cographis recursively called. Since

∑
i ni�n,

∑
i mi�m, and for

eachi, ni�3n/4 (see Lemma 5.1), the equalities forT (n,m) andP(n,m) admit the so-
lution: T (n,m)=O(log2 n), P (n,m)=O((n+m)/ logn). Thus, we obtain the following
results.

Theorem 5.1. Algorithm Recognize-Cograph runs inO(log2 n) time usingO((n+m)/ logn)
processors on the EREW PRAM model.

Corollary 5.1. Cographs can be recognized inO(log2 n) time withO((n + m)/ logn)
processors on the EREW PRAM model of computation.

6. Constructing the cotree or finding aP4

Given a graph, we give below a parallel algorithm which constructs its cotree if the input
graph is a cograph, or otherwise prints an inducedP4. The algorithm first calls Algorithm
Recognize-Cograph on the input graph to determine whether it is a cograph and to provide
aP4 if it is not. If the graph is a cograph, then the algorithm constructs its cotree by taking
advantage of Lemma 2.2 which gives the structure of the cotree of a cograph in terms
of the graph’s component-partition with respect to any of its vertices. In particular, the
algorithm selects an appropriate vertexv of the input graphG, recursively computes the
cotrees of the subgraphs induced by the co-components of the subgraphG[N(v)] and the
connected components of the subgraphG[V (G)−N [v]], and then uses Lemma 2.2 to link
these cotrees in order to form the cotree ofG. As in the case of the cograph recognition
algorithm, we assume that the input graph is given in adjacency-list representation where
additionally for eachedgeuv ofG, the two records in the adjacency lists ofuandv are linked
together.

Algorithm Cotree-or-P4
Input: an undirected graph.
Output: the root-node of the cotree of the input graph if it is a cograph, or an induced

P4 otherwise.
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1. Execute AlgorithmRecognize-Cographon the input graph.
2. If Algorithm Recognize-Cographreturns aP4

then return thisP4;
else{the input graph is a cograph}

execute SubroutineConstruct-Cotreeon the input graph and return the root of
the cotree that it has constructed,

where the description of Subroutine Construct-Cotree is given below.

Subroutine Construct-Cotree
Input: a cographG onn vertices andm edges.
Output: the root-node of the cotreeT (G) of the graphG.

1. Compute the setsL,M, andH containing the low-,middle-, andhigh-degree
vertices of the input graphG, respectively.

2. If L= ∅ andM = ∅ then {each v ∈ V (G) has degree deg(v)> 3
4 n}.

(a) compute the co-componentsÂ1, Â2, . . . , Âp of the graphG;
(b) construct a 1-noder;
(c) for i = 1,2, . . . , p do in parallel

compute the induced subgraphG[Âi];
apply recursively SubroutineConstruct-CotreeonG[Âi]; let ŝi be
the root-node of the returned tree;
parent(ŝi ) ← r;

(d) return(r).
3. If M �= ∅

thenv ← an arbitrary vertex ofM;
else v ← the vertex inL with the maximum number of neighbors inH
{note: L �= ∅}.

4. Compute the co-componentsĈ1, Ĉ2, . . . , Ĉ� of the graphG1 =G[N(v)];
for i = 1,2, . . . , � do in parallel

compute the induced subgraphG[Ĉi];
apply recursively SubroutineConstruct-CotreeonG[Ĉi]; let r̂i be the
root-node of the returned tree.

5. Compute the connected componentsC1,C2, . . . ,Ck of the graphG2 =
G[V (G)−N [v]];
for i = 1,2, . . . , k do in parallel

compute the induced subgraphG[Ci];
if |Ci |� 3

4 n

then apply recursively SubroutineConstruct-CotreeonG[Ci]; let ri be
the root-node of the returned tree;

else construct a 1-noderi ;
compute the co-componentŝAi,j ,1�j�h, of the graphG[Ci] and the
induced subgraphsG[Âi,j ];
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for j = 1,2, . . . , h do in parallel
apply recursively SubroutineConstruct-CotreeonG[Âi,j ]; let t̂i,j be the
root-node of the returned tree;

parent(t̂i,j ) ← ri .
6. Compute the subgraph̃G ofG spanned by the edges incident upon a co-component

representativêvi (1� i��) and a component representativevj (1�j�k);
compute the degrees of thev̂is, 1� i��, in G̃, sort them in non-decreasing
order, and locate
the distinct values; let�[i],1� i��′, be the resulting ordered sequence.

7. Compute the entries of an arraypos[i],1� i��, such thatpos[i] = j if and only
if the degree of̂vi in G̃ is equal to�[j ].

8. Construct a tree-path of alternating 1- and 0-nodes as follows:
(a) construct�′ 1-nodeŝti ,1� i��′, and�′ 0-nodestj ,1�j��′;

construct a leaf-nodet storingv;
(b) for i = 1, . . . , �′ − 1 do in parallel

parent(ti) ← t̂i ;
parent(t̂i ) ← ti+1;

parent(t�′) ← t̂�′ ;
if �[1] �= 0
thenparent(t) ← t1;
elseparent(t) ← t̂1; delete nodet1.

9. Construct and return the following tree:
(a) for i = 1,2, . . . , � do in parallel

parent(r̂i ) ← t̂pos[i];
(b) for i = 1,2, . . . , k do in parallel

parent(ri) ← tpi , wherepi ← min{pos[j ] | vi is adjacent tôvj in G̃};
(c) if there exist component representativesvi in G̃ of degree equal to 0

then construct a 0-noder;
for each component representativevi of degree equal to 0 iñG do

parent(ri) ← r;
parent(t̂�′) ← r;

elser ← t̂�′ ;
(d) return(r).

ThecorrectnessofSteps2and5 followsas in thecaseof thecograph recognitionalgorithm
in Section 5, and from the fact that any two co-components of a graph see each other. The
correctness of the rest of the algorithm directly follows from Lemma 2.2: note that, for
i = 1,2, . . . , �′, the tree nodêti corresponds to the 1-node that is the parent of the roots
of the cotrees of the co-components in the setŜi , and the tree nodeti corresponds to the
0-node that is the parent of the roots of the cotrees of the components inSi (seeFig. 3);
additionally,�[1] �= 0 if and only if S1 �= ∅ (Step 8(b)), while Step 9(c) takes care of the
case whenS0 �= ∅.



ARTICLE IN PRESS
S.D. Nikolopoulos, L. Palios / Discrete Applied Mathematics( ) – 31

Time and processor complexity: Since the execution of Algorithm Recognize-Cograph on a
graph onn vertices andm edges takesO(log2 n) time usingO((n+m)/ logn) processors on
theEREWPRAM (Theorem5.1), it suffices to compute the timeand processor complexities
of each step of Subroutine Construct-Cotree.

Steps1–5: All the operations performed in these steps are also performed in Steps 1–3,
5, and 6 of Algorithm Recognize-Cograph. Thus, it is easy to see that, if we ignore the
time taken by the recursive calls, the execution of Steps 1–5 of Subroutine Construct-
Cotree takesO(logn) time and requires O((n+m)/ logn) processors on the EREWPRAM
model.

Step6: The subgraphG̃ coincides with the subgraph of the graphG∗ (see the anal-
ysis of Step 4 of Algorithm Good-Partition-or-P4) induced by the vertex set{v̂1, v̂2, . . . ,
v̂�, v1, v2, . . . ,

vk}, and can be constructed fromG∗ in a way similar to the one used to obtain the subgraphs
G1 andG2 from G in Step 1 of Algorithm Good-Partition-or-P4. Thus,G̃’s construction
takesO(logn) time and requiresO((n+m)/ logn) processors on the EREWPRAMmodel.
The computation of the degrees of the verticesv̂1, v̂2, . . . , v̂� in G̃ can be done within the
same time and processor bounds (see Step 1 of Algorithm Recognize-Cograph).
In order to compute the array�[], we use an auxiliary arrayd[] of size�, which we

initialize by assigning to the entryd[i] the degree of̂vi in G̃,1� i��. Since the number
of co-components is O(

√
m) according to Observation 2.3, the arrayd[] can be sorted in

O(logn) time with O((n+m)/ logn) processors on the EREW PRAM model. Then, it is
easy to see that we can locate the distinct values of the sorted arrayd[] using prefix sums
and array packing techniques. Thus, the array�[i],1� i��′, can be computed in O(logn)
time with O((n+m)/ logn) processors on the EREW PRAM.

Step7: Letd[]be the sortedarray of size� computed inStep6, and let�=[�(1),�(2), . . . ,
�(�)] be a permutation of the integers 1,2, . . . , � such thatd[�(i)]�d[�(j)] for every
1� i < j��. In order to avoid concurrent read operations while computing the arraypos[],
we use an auxiliary arrayd ′[] of size�; we initialize it by settingd ′[i] = 1 if i = 1 or
d[i] �= d[i − 1], andd ′[i] = 0 otherwise, and we subsequently compute prefix sums on
it. Then,pos[i] ← d ′[�(i)], for i = 1,2, . . . , �. Thus, the arraypos[] can be computed in
O(logn) time using O(n/ logn) processors on the EREW PRAM model.

Step8: This step involves the construction of O(�′) nodes and O(n) pointer assignments.
Since�′ = O(

√
m), it is easy to see that the execution of the step takes O(logn) time and

requires O((n+m)/ logn) processors on the EREW PRAM model.
Step9: The only operations performed in Steps 9(a) and (c) are the construction of at

most one tree node and O(n) pointer assignments (the degrees of the verticesvi have been
computed in Step 6). Thus, both substeps can be executed in O(logn) time with O(n/ logn)
processors on the EREW PRAM model.
Let us now analyze the time-processor complexity of Step 9(b). Here,k = O(n) pointer

assignments are performed on the root-nodesri , whereri is the root-node of the cotree of the
graphG[Ci],1� i�k. In particular, the noderi gets attached as a child of the tree nodetpi ,
wherepi is such thatvi is adjacent to the co-component representativev̂pi in the graphG̃,
and it is not adjacent to anŷvj with j <pi . By using an auxiliary arrayAv[] for each vertex
v ∈ V (G̃) (of size equal to the degree ofv in G̃), and the arraypos[] computed in Step 7,
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we can compute the indexpi for each representativevi (1� i�k) avoiding concurrent-read
operations as follows:

• For each co-component representativev̂i ,1� i��, do in parallel
9.1. copy the valuepos[i] to each entry ofAv̂i [].• For each component representativevi,1� i�k, do in parallel
9.2. for each vertexu adjacent tovi in G̃ do in parallel

{u is a co-component representative}
Avi [rvi (u)] ← Au[ru(vi)], whererx(y) denotes the rank ofy in the
adjacency list ofx in G̃;

9.3. pi ← the minimum element of the arrayAvi [].

It is easy to see that the above Steps 9.1–9.3 can be completed in O(logn) time using
O((n + m)/ logn) processors on the EREW PRAM model. Thus, the entire Step 9 is
completed within the same time and processor bounds.
If we take into consideration the timeandprocessor complexity of each step of Subroutine

Construct-Cotree and the recursive calls, and work in a fashion similar to the one used in
the analysis of Algorithm Recognize-Cograph, we obtain the following result.

Theorem 6.1. Algorithm Cotree-or-P4 runs inO(log2 n) time usingO((n + m)/ logn)
processors on the EREW PRAM model.

Corollary 6.1. Let G be a graph on n vertices and m edges. Then, constructing the cotree
of G if G is a cograph, or finding an inducedP4 otherwise, can be done inO(log2 n) time
withO((n+m)/ logn) processors on the EREW PRAM model.

7. Concluding remarks

In this paper, we have presented parallel algorithms for recognizing cographs and for
constructing the cotree of a graph if it is a cograph; if the input graph is not a cograph,
the algorithms return an inducedP4. When applied on a graph onn vertices andm edges,
both algorithms run in O(log2 n) time using O((n + m)/ logn) processors on the EREW
PRAMmodel of computation. Thus, our results improve upon the previously known linear-
processor parallel algorithms for the same problems[10,12]. Instrumental in our work is
an optimal parallel algorithm which computes the connected components of a graph or
detects that it contains aP4; this algorithm is interesting in its own right as it provides
an optimal parallel connectivity algorithm for cographs and can be extended to yield an
optimal connectivity algorithm for graphs with constant diameter.
An interesting open question iswhether the class of cographs can be optimally recognized

on the EREW PRAM model of computation, i.e., whether there exists an O(logn)-time
cograph recognition algorithmwhich runs on the EREWPRAMmodel and requiresO((n+
m)/ logn) processors. Moreover, since cographs form a proper subclass of permutation
graphs, a direction for further research would be to investigate whether a similar technique
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applies for the purpose of recognizing the class of permutation graphs within the same
time-processor bounds.
More general classes of perfect graphs, such as the classes ofP4-reducible andP4-sparse

graphs, also admit unique tree representations up to isomorphism[14,15]. Recently, Lin
and Olariu presented parallel recognition and tree construction algorithms forP4-sparse
graphs[20]; for an input graph onn vertices andm edges, both the recognition and the
tree construction algorithms run in O(logn) time using O((n2+ nm)/ logn) processors on
the EREW PRAM model of computation. Thus, it would be interesting to see whether the
approach and algorithmic techniques used in this paper can help develop efficient parallel
recognition and tree construction algorithms for these two classes of graphs.
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