
ompi translator internals

VVD and the ompi team

Nov. 2010

Dec. 2009

Nov. 2007

Abstract

We describe briefly some of the internals of ompi’s translator, for anybody interested in
altering it and possibly providing new functionality.

1 Introduction

This document is about ompi’s translator, used in versions ≥ 1.0.0. It is a source-to-source
compiler written entirely in C, uses an abstract s yntax tree (ast) to represent the parsed
source code and implements a number of transformation optimizations on the code it outputs.
It understands fully the C99 grammar plus OpenMP V.3.0 pragmas (with the single exception
of the “collapse” clause).

The most important source files comprising the translator are the following:

1. ompi.c

File ompi.c is the main driver which, among others, calls the parsing and transformation
routines.

2. scanner.l, parser.y

The scanner is implemented through flex and the parser through bison. The grammar is
defined in parser.y and this is where the ast is built up, too.

3. ast.c, symtab.c

They contain the fundamental ast and symbol table routines.

4. ast show.c, ast print.c, ast free.c, ast copy.c

These files take the ast and print it to stdout or to a string, they free it and they produce
copies of it.

5. ast xform.c

This is the main file that drives all OpenMP transformation actions. It also implements a
few of them, the shortest ones.

6. x parallel.c, x single.c, x sections.c, x for.c, x thrpriv.c, x task.c

These files implement the 6 construct transformations which are not included in ast xform.c.

7. ast vars.c, x clauses.c

These are necessary for the analysis and transformation of variables in any piece of code
and in OpenMP clauses.

8. x types.c

It handles user-defined types and declarations which include struct/union/enum entities.

1

2 The AST structure

The ast is built based on the structures and routines in ast.c. It contains 7 types of nodes:
astexpr, astspec, astdecl, aststmt, ompcon, ompdir and ompclause, used correspondingly for ex-
pressions, the specifier part of a declaration, the declarator part of a declaration (see below),
statements, OpenMP constructs, OpenMP directives and OpenMP clauses. Note that all those
types are actually pointers to the associated structures defined in ast.h, as pointers are handy
when building the ast.

ast.c contains only routines that create nodes of the tree; all other functionality is imple-
mented elsewhere, e.g. free()ing of the nodes is done in ast free.c, copying/duplicating trees
is done in ast copy.c.

The data stored at each node is beyond the scope of this document and can be discovered
by looking in ast.c and following the grammar in parser.y. The root of the original ast is a
statement node, usually a BlockList (see the “translation unit” rule in parser.y).

Only two things need to be mentioned:

• The tree has downward pointers, from the root down towards the leaves and tree traversals
occur in this direction, too. However, later stages (e.g. transformations) sometimes need to
traverse the tree upwards, i.e. from lower level nodes back up towards the root of the tree.
This is why each statement node (aststmt) has a ‘parent’ field that is initially NULL. Each
statement node can store there a pointer to its parent in the tree. The initial setup of those
fields occurs right after the ast is built by the parser, through a call to ast parentize()
(in ompi.c). Whenever portions of the tree change, calls to ast stmt parentize() correctly
parentize the affected statement nodes.

• A declaration consists of two parts: the specifier and the declarator. The first holds the
“type” and the second holds the identifier, along with various attributes (pointer, array,
etc.). For example, in the following declaration:

static long int *a[10], b = 1;

“static long int” is the specifier and the declarator is actually a ‘declarator list’ with two
declarators: ‘*a[10]’ and ‘b = 1’. The latter is a declarator with an initializer. Both
declarators here share the same specifier.

3 Scanning, parsing & building the AST

Scanner.l does not contain many mysteries. It is a relatively straightforward lex/flex scanner
which assumes that the file it scans is already preprocessed. It can identify line number informa-
tion (# <line no> <filename>) and upon meeting an unknown word it uses the symbol table
(“stab”, see below) to decide whether it is a variable (identifier) or a typename.

Parsing is done through parse file(), which is called in ompi.c. Parser.y also builds the
abstract syntax tree (ast), the root of which is returned by parse file(). However, except parsing
the source file, we need to parse stored strings later on when we transform the ast. Thus the
parser should be able to parse strings as well and moreover the starting rule may be different
each time. In particular, the starting rule is:

• “translation unit”, when parsing the source file

• “expression” or “block item list” when parsing strings, depending on what the string con-
tains.

To achieve this, we use the trick described in Bison’s manual which looks like this:

%start start_trick;

%%

start_trick:

translation_unit { pastree = $1; }

2

| START_SYMBOL_EXPRESSION expression { pastree_expr = $2; }

| START_SYMBOL_BLOCKLIST block_item_list { pastree_stmt = $2; }

;

Of course, the scanner provides calls to force generation of the two dummy tokens so as to
trigger the corresponding rule. All is taken care by the two functions provided in parser.y

(parse expression string() and parse blocklist string()).
When parsing the source file, a thorough check for unknown/undeclared variables is per-

formed; every new declaration puts the variable in the symbol table (“stab”—declared in ompi.c)
keeping track of all scopes. At the end of parsing, the symbol table is emptied and the ast is
successfully built. Everything related to symbols and symbol tables is implemented in symtab.c.

There are only two other things going on in parser.y:

1. The replacement of the “main()” function in the source code (if such a function exists).
In particular, if this function exists it gets renamed to “ original main” (the name is
defined as MAIN NEWNAME in ompi.c). The parser also intercepts any call to main()
and replaces it with a call to original main(). In ompi.c, after building the ast, a new
main() is generated, which starts by performing some ompi-specific initializations and
concludes with calling original main(). Finally, the original main() function is forced to
have the two standard (argc, argv) arguments.1

2. The replacement of threadprivate variables with pointers to them, all over the code. This
makes it smoother for later stages (when transforming) to handle threadprivate variables
BUT it surely leaves the ast in an incorrect semantic state, which is good to remember.

What should be made clear is that the final ast does not contain any information about
scopes and variables ; for example, there is no link between a variable and its declaration. All
such information which is implemented through the symbol table (which is empty when the ast
built up is complete) must be re-created later, when traversing the tree.2

4 Symbols and symbol tables

Because compiling involves a lot of name (string) processing, and string operations are expensive,
each name discovered by the parser is converted to a symbol, which is just a pointer that points
to the actual string. Symbols are handled in symtab.c and are stored in a hash table (called
“allsymbols”) so as to locate them easily. Given a string X, a call to Symbol(X) uses a hash
function operating on X and returns the position in the hash table where the symbol can be
found. If the symbol is not there, a new entry is created for X.

The real value of symbols comes when manipulating names such as identifier names. A
symbol table holds identifiers. It does not hold the actual strings but their symbols. It is, too, a
hash table only now the hash function is calculated from the symbol, not from the name (which
is quite faster). Among other things, for each identifier the following information is held at each
symbol table entry (‘stentry’):

• name space—Many different entities in a program are considered identifiers, e.g. variables,
user types, labels and so on. The ‘space’ field is for holding the type (or ‘namespace’) of the
identifier in question. The C language defines various name spaces, such as variables (ID-
NAME), user types (TYPENAME), structs/unions (SUNAME), enums (ENUMNAME),
labels (LABELNAME), functions (FUNCNAME).

• scopelevel—Each symbol also has a scope it belongs to. A new scope starts whenever a
compound statement (beginning with {) is met in the parsed code and ends when the

1If ompi is passed the “--nomain” option then the new function is actually named “ ompi main()”, instead
of “main()”. This is needed in order to accommodate special runtime libraries that provide their own main()
function.

2Actually, the parser does not leave the symbol table completely empty after building the ast; the symbol
table still contains all global declarations. This is the reason for the symtab drain(stab) call in ompi.c after the
call to parse file().

3

closing brace (}) is met. Scopes are numbered starting with scope 0, which is the global
scope, containing all global identifiers. A scope i is nested within scope i− 1; all identifiers
up to and including scope i − 1 are visible in scope i. Whenever a scope closes, all its
identifiers are removed from the symbol table.

• isarray, isthrpriv—They flag whether an identifier is non-scalar or threadprivate.

• spec, decl, idecl—These are pointers to the parts of the ast where the specifier and the
declarator of the identifier’s declaration lie. These are needed so as to be able to clone
an identifier in various places when transforming the ast. It must be noted that if the
original declarator is combined with an initializer, ‘decl’ does not point to the initializer;
it points to the bare declarator (and because there is no ‘parent’ pointer for non-statement
ast nodes, there is no way of accessing the initializer from the ‘decl’ field). The ‘idecl’ field
points to the full initdeclarator node, so it provides access to both the bare declarator and
the initializer. Although ‘idecl’ would be enough, the bare declarator is needed in 99,9%
of the cases and this is why ‘decl’ is a handy field to have. If there is no initializer, ‘idecl’
is NULL.

• vval, ival—These are just extra fields that are only for saving ad-hoc info. The only situ-
ation where these fields are used is when analyzing the variables in OpenMP data clauses
where for each variable ival holds the type (private, firstprivate, etc, see x clauses.c) and
vval holds the operator in the case of a reduction clause.

All identifiers met during parsing are entered in the symbol table of ompi, called ‘stab’. Each
identifier joins at the current scope, which is kept as stab→scopelevel. Now, given a symbol
and its name space, a call to symtab get() returns the most recent identifier (i.e. the identifier
that appears in the most recent scope), if any. This is because the hash table buckets are LIFO
structures. If two identifiers have the same symbol, the most recent one is the last to enter the
bucket.

A basic problem arises when the current scope, say scope i closes (a } was met in the parsed
code) and all symbols in the scope must be removed. To avoid searching all table entries for
symbols whose scope level is equal to i, the symbols are also chained, forming a stack whose
top is the most recently met symbol (field stab→stacknext). Whenever a new scope is started
(scope start()) a special symbol is inserted in the table (called ‘scopemark’). To remove all
symbols of current scope, (scope end()) we start from the stack’s top and remove all symbols
following the stacknext links until scopemark is met.

Remember that the ast is not annotated, so for example identifiers met inside expressions
do not have any link to their declarations. The connection among identifiers, their declarations
and scopes is only available through the symbol table. ompi’s symbol table is dynamic and
scopes cause the addition and deletions of identifier symbols. This means that after parsing is
complete, the symbol table has lost all its information about identifiers, scopes and declarations
(only the global scope is still there and gets drained afterwards). In compiler jargon, ompi’s
symbol table is ‘imperative’, or non-persistent (non-functional). Consequently, if one needs to
examine, analyze, alter and/or transform the ast, there is no way of having the information
needed unless the symbol table is recreated while traversing the ast, exactly the same way it was
built-up when parsing the file. This is exactly was occurs in ast xform.c.

5 Analyzing variables

When transforming the ast, it is sometimes necessary to analyze the nature and the usage of
variables in certain parts of the tree. For example, we may need to discover all the global or
threadprivate variables used within a function. Such requirements are covered by the functions
in ast_vars.c. In particular, the following functions:

ast_paracon_find_sng_vars()

ast_find_gtp_vars()

ast_find_sgl_vars()

ast_find_allg_vars()

4

discover, correspondingly, all shared non-global, all global threadprivate, all shared global and
all global variables in a given subtree. They traverse the tree and visit every node in order to
find occurrences of variables that are of the given type. There is a flag that can be passed to
these functions: if it is set to 1, then all complying variables are treated as if they were pointers
to the original variables, i.e. x is replaced everywhere by (*x). See later (Sections 6.5 and 7) for
the reason behind this.

The above functions record all discovered variables in one of the following symbol tables:

sng_vars, gtp_vars, sgl_vars

Symbol tables are the preferred data structures because they allow fast insertions and lookups.
A variable is assumed to be utilized if it appears in any expression, in any scope, unless it is

shadowed at a nested scope. Thus, for example, in the following piece of code, x will be recorded
by ast find allg vars() if it is called to examine the ast at point A, while it won’t be recorded if
it is called to examine the ast at point B.

int x;

f() {

x = 1; // A

{

int x;

x = 2; // B

}

}

Variables that are referenced in OpenMP data clauses within the examined portion of the
ast are treated accordingly (ast omp dataclause vars()). In particular they are not considered
at all when they appear in a private clause, because as we will see in the next section, local
copies of those variables are used instead of the original ones.

Function ast paracon find sng vars() is only called when transforming parallel constructs
(Section 6.5), ast find gtp vars() is called when transforming threadprivate variables (Section 7)
and ast find sgl vars() is used when compiling for the process model (Section 9.1).

6 Transforming the AST

After building the ast, and if there exist OpenMP pragmas in the code, the ast is transformed
through ast xform(), called from ompi.c and implemented in ast xform.c. Just before this call,
there are some necessary definitions (e.g. runtime-library definitions) inserted in the ast because
generated code depends on them.

In ast xform.c, ast stmt xform() really does almost nothing for normal tree nodes. All it
takes care of is correctly recreate the symbol table scopes whenever meeting any declarations
(see, though, Section 6.8). It only takes some real action when it meets OpenMP construct
nodes (ast omp xform()).

ast xform.c also keeps two other trees that transformation functions may utilize: newglobals
and newtail. The first (second) one will hold statements that are generated by some transfor-
mation functions and have to be placed at the top (bottom) of the generated code, such as e.g.
new global variable declarations. The function newglobalvar() takes a declaration tree, adds it
to the newglobals tree and in addition declares the new global variable by inserting it in the
global scope of the symbol table (using symtab insert global()).

All OpenMP constructs except parallel, for, sections and single are transformed within
ast xform.c, through ast omp xform(). The transformation is quite simple and involves re-
moving the subtree rooted at the node in question and replacing it with a new tree of code.
Before each such transformation xc validate clauses() (implemented in x clauses.c) is called to
check the validity of construct clauses.

Most constructs contain an implicit barrier. However, if there are two such constructs nested
within each other, it may be the case that not both barriers are needed; one could be enough,
avoiding thus unnecessary runtime overhead. The function xform implicit barrier is needed()

5

discovers such situations and is used just before actually placing the barrier call in the trans-
formed tree. What it does is check whether the construct is the last statement in the body of
another construct which does have a barrier.

The transformation of the other four constructs is handled in files x_parallel.c, x_single.c,
x_sections.c and x_for.c. For those constructs, the body of the construct is first transformed,
through xform ompcon body(), before the corresponding transformation function is called. In
order to transform the body, however, the correct environment must first be created, since the
four OpenMP directives may change the visibility of variables through data clauses such as pri-
vate, firstprivate, etc. Thus, what xform ompcon body() does is first open a new scope, correctly
declare those variables that must be privatized, and then call ast stmt xform() to transform the
body. The scope closes immediately after that, and the directive’s transformation function can
be called with an already-transformed body.

The major complication with these four constructs (lets call them C4) results from the
existence of data clauses (shared, private, firstprivate, lastprivate, reduction, copyin and copy-
private). Data clauses require some variables to be shared or privatized, and possibly initialized
from other variables, etc. Consequently, when transforming C4, there are usually new declara-
tions inserted in the top of the construct’s body plus possibly new initialization statements. We
may also need to insert statements at the bottom of the construct’s body (e.g. for lastprivate
variables).

Consequently, C4 transformations begin by collecting and analyzing all data clause variables,
producing declaration and initialization statements if needed. There are two ways to do this,
both of which are actually used. The first is to take each data clause in turn and for every vari-
able it contains, perform the appropriate action. The other is to do it in two steps: first gather
all data clause variables in a set, remembering what clause each variable appears in, and then
perform the actions using this set. The first method is simpler and is used when transforming a
single construct (a call to xc ompdir declarations() from xform single()) but the second is more
powerful and is used when transforming the other three constructs (collect all variables with
xc validate store dataclause vars() and declare as needed with xc stored vars declarations()).
More on this in a while.

In case there are firstprivate variables present, one more complication arises because such
variables must be initialized with the value of the original variable. If such a variable is scalar,
the initialization can easily by included within the new declaration. This cannot be done, though,
if it is an array variable. Its initialization is explicitly performed through memcpy() statements
which are inserted at the top of the construct’s body. All those statements are generated by
xc ompdir fiparray initializers() (implemented in x_clauses.c).

In what follows we discuss briefly the C4 transformations. For a full treatment, the reader
is supposed to study the corresponding files and run ompicc with the -k argument on simple
input programs so as to see what exactly the transformations produce.

6.1 Privatizing variables

As already mentioned, variables that appear in most data clauses are redeclared as local ones
within the scope of the construct. For example,

extern int x;

#pragma omp <whatever> private(x)

x = 1;

yields code as follows:

extern int x;

{ int x;

...

x = 1;

...

}

This involves cloning of declarations (xform clone declaration() in ast_xform.c), which copies
the specifier and the declarator part of the declaration of the original variable. Notice that the

6

specifier is copied using ast spec copy nosc() (see ast_copy.c), so that it leaves out all storage
class specifiers (extern, static, auto, register).

The same happens for firstprivate variables, only in this case a new temporary variable is also
created so as to initialize the cloned variable from the original one (xc firstprivate declaration()
in x_clauses.c). Thus:

int x;

#pragma omp <whatever> firstprivate(x)

x++;

yields code as follows:

int x;

{ int _fip_x = x, x = _fip_x;

...

x++;

...

}

For arrays, as already mentioned, special precautions are needed since there cannot be an ini-
tializer included in the declaration:

int x[10];

#pragma omp <whatever> firstprivate(x)

x[0] = 1;

yields code as follows:

int x[10];

{ int (*_fip_x)[10] = &x, x[10];

memcpy(x, _fip_x, sizeof(x));

...

x[0] = 1;

...

}

Exactly the same procedure is followed for lastprivate variables, only now the temporary
ones are prefixed with _lap_ instead of _fip_ and, of course, there are no initializations needed
(there will however be assignments back to the original variable inserted in appropriate places
of the produced code).

Finally, reduction variables are treated in the same way, using a temporary variable prefixed
with _red_ (xc reduction declaration() in x_clauses.c). However, reductions require additional
code for (i) performing the reduction operation on the original variable and (ii) declaring a global
lock on which the code of (i) is based (xc ompdir reduction code()).

6.2 Transforming a single construct

This is the simplest of them all. The original code:

#pragma omp single private(..) firstprivate(..) copyprivate(..)

<body>

gets replaced by:

1 if (ort_my_single(W)) {

2 <declarations from private/firstprivate>

3 <firstprivate arrayinitializers>

4 <body>

5 ort_broadcast_private()

6 }

7 ort_leaving_single()

8 ort_barrier_me()

9 ort_copy_private()

7

where W is 0 if the implicit barrier must be used. In this case, one more barrier call is added after
line 9. W becomes 1 if there is an explicit nowait clause present or xform implicit barrier is needed()
returns false.

Basically, all variables from the private and firstprivate clauses get declared (line 2, through
xc ompdir declarations()), with firstprivate ones initialized in-place. If there are array firstpri-
vate variables, memcpy() statements are needed for their initializations as explained above (line
3, through xc ompdir fiparray initializers()). Finally, if there are no copyprivate variables, lines
5, 8 and 9 are not generated.

6.3 Transforming a sections construct

The transformation for sections is based on the following scheme: each section becomes a case
in a switch statement and the switch statement becomes the body of a loop that asks for the
next section to execute. Thus:

#pragma omp sections private(..) firstprivate(..) lastprivate(..) reduction(..)

{

<body0>

#pragma omp section

<body1>

#pragma omp section

<body2>

...

}

gets transformed to:

{

<declarations from private,firstprivate,lastprivate,reduction>

int caseid_ = -1, inpar_;

<firstprivate arrayinitializers>

if ((inpar_ = (omp_in_parallel() && omp_get_num_threads() > 1)) != 0)

ort_entering_sections(W,N);

for (;;)

{

if (inpar_) { if ((caseid_=ort_get_section()) < 0) break; }

else { if ((++caseid_) >= N) break; }

switch (caseid_)

{

case 0: <body0> break;

case 1: <body1> break;

case 2: <body2> break;

...

}

)

}

<reduction code>

if (inpar_) ort_leaving_sections();

}

where N is the total number of sections and W, as in single, becomes 0 when the implicit barrier
must be used. The inpar variable is 0 when there is only 1 thread to execute the region. In
such a case, the thread loops incrementing caseid by 1 each time, thereby executing the cases
of the switch one by one till the last one.

The cases of the switch statement are generated by sections cases(). Note also that at
the last case of the switch, there are extra instructions inserted if there are any lastprivate
variables used (xc ompdir lastprivate assignments()). In addition, a synchronization call to

8

ort wait all entered() is emitted if a variable is both firstprivate and lastprivate; this is to en-
sure that the thread which executes the lastprivate assignment won’t do so before all the other
threads have initialized their own firstprivate variables.

Here, the data clause variables are declared using the two-step method: all variables are
collected with xc validate store dataclause vars() and are declared as needed with xc stored vars-
declarations(). The reason for this is the presence of both firstprivate and lastprivate clauses.
If a variable appears in both clauses (allowed in OpenMP) then the xc ompdir declarations()
call that was used in xform single(), would result in duplicate declarations. Thus variables are
collected first from all clauses and checks are being made for variables that appear in both
firsprivate and lastprivate clauses. These variables are marked as ‘firstlastprivate’.

xc validate store dataclause vars() stores the variables in a symbol table—this is used purely
because it is a very handy data structure and allows fast insertions and lookups. The type of
clause each variable appears in is stored in the ‘ival’ field of the entry (see Section 4). In case of
reduction variables, one must also remember the operator involved; the ‘value’ field of the entry
is used for that.

6.4 Transforming a for construct

File x_for.c works almost exactly as x_sections.c as far as data clauses are concerned; it is
lengthier mostly because is generates a lot of new code.

First, the loop index, the initial value, the upper bound and the increment are extracted from
the for statement node (analyze for()). All this is done for each associated loop if a collapse()
clause is presented. Also, the schedule type and chunksize are discovered (if given). Based
on that, the iteration chunks that will be given to each thread can be determined. We won’t
expand more on this here; the reader is referred to the “OMPi’s runtime-library interface for
FOR directives” document. We only note that different code is produced whenever a static
schedule is requested; this is because in such a case the iteration space for each thread can be
predetermined and does not require repeated calls to the runtime library.

6.5 Transforming a parallel construct

This is the most crucial and most complicated transformation. The idea is to remove the body
of the construct and place it in a new function and then create threads that will execute this
function. This technique is known as outlining and would be pretty straightforward, if it weren’t
for data clauses and especially shared, non-global (sng) variables.

Shared variables need no special treatment if they are global; this is because global variables
are by nature shared among threads. Hence, within the new function they can be used as is.
However this is no longer possible if a variable is shared but does not belong to the global scope.
It is a variable that exists in the private stack of a running thread, which is about to spawn new
threads. In order for this sng variable to be shared and accessed from all spawned threads, there
must be explicit pointers passed to them that point to the original variable. This also means
that the body of the construct must be modified: all appearances of the sng variable must be
replaced with pointers that point to the original variable.

Because of the peculiarities of this construct, data clause variables are not handled through
x_clauses.c but through similar facilities within x_parallel.c. All data clause variables are
collected using xp store dataclause vars(), similarly to xc validate store dataclause vars().

Then all used sng variables are discovered by examining the body of the construct, us-
ing ast paracon find sng vars() (see Section 5). The call to ast paracon find sng vars() is made
with the transform flag set to 1 so that all appearances of the sng variables are treated as
pointers (var is replaced by (*var)). Consequently, the body is correctly modified, in antic-
ipation of pointer declarations that will point to the original variables. The discovered vari-
ables are cross-checked against the data clause variables collected by xp store dataclause vars()
(xp parallel check shared()); this is because, according to OpenMP, all shared variables should
be explicitly enlisted in shared() clauses if the default(none) clause is also present.

Given all sng variables, pointers to them are made available to the threads as follows: a C
struct named _shvars is created, whose fields will contain pointers to the sng variables. The

9

struct is initialized with the address of the sng variables (xp parstruct initializer()) and is then
given to the threads through the runtime library call ort execute parallel. This function has
three arguments: the first is the number of threads to be created, the second is the function to
be called by the threads and the third is _shvars. Each thread gets access to the structure by
calling ort get shared vars from within the function they execute. Then, using the fields of the
structure they get access to the original sng variables. The code that is produced for:

#pragma omp parallel

<body>

is roughly as follows:

/* pragma replaced as follows: */ /* thread function created */

{ void *_thrFunc_(void *_arg)

<_shvars struct> {

ort_execute_parallel(-1,_thrFunc_,&_shvars); <struct specifier> *_shvars =

} ort_get_shared_vars();

<body with sngs treated as pointers>

}

The -1 in ort execute parallel means that no specific number of threads is requested; it is replaced
by the num threads clause expression, if present.

Because there may exist many parallel regions, the name of the thread function should
be unique, so its name is actually “ thrFuncN ” where N is a counter incremented by 1 for
each parallel region met (see new thrfunc() and thrfuncname()). Because the user program may
consist of multiple translation units, each one possibly having its own parallel regions, the thread
functions are declared with static storage class, avoiding thus name clashes. Finally, due to the
possibility of recursion, a thread function must be inserted after the function that contains the
parallel construct while its declaration should lie above that function (see below how this is
achieved).

Putting all the above together, for the following piece of user code,

int a;

f() {

int b, c, d;

#pragma omp parallel private(d)

a = b+c+d;

}

here is what is produced:

int a; /* shared global (sgl): nothing to be done */

static void * _thrFunc0_(void *); /* thread function declaration */

f() {

int b, c, d;

struct __shvt__ { int (*b); int (*c); } _shvars = { &b, &c };

ort_execute_parallel(-1, _thrFunc0_, (void *) &_shvars);

}

static void * _thrFunc0_(void *_arg) {

struct __shvt__ { int (*b); int (*c); }

*_shvars = (struct __shvt__ *) ort_get_shared_vars();

int (*b) = _shvars->b; /* sng var */

int (*c) = _shvars->c; /* sng var */

int d; /* private() var */

a = (*b) + (*c) + d; /* original body with sng pointers */

return (void *) 0; /* dummy return statement */

}

10

There are only a couple more pieces to complete the puzzle. If the construct contains an
‘if(condition)’ clause, the code produced is:

if (condition)

ort_execute_parallel(...);

else

ort_execute_serial(...);

so that the condition is checked at runtime and if false, the library will call the function only
through the encountering thread.

The parallel directive is the only directive to accept a copyin clause; the corresponding
declarations and initializations of pointers to threadprivate variables are handled by xp copyin-
declarations(). For non-global threadprivate variables, pointers to the original ones are provided
through _shvars.

As we have already seen, firstprivate and reduction variables produce local declarations but
also need access to the original variables. In order to avoid the extra temporary variable trick
used in other constructs (_fip_ and _red_ variables in Section 6.1), all original firstprivate
and reduction variables are added to the sng variable collection (xp sharedng add fpredgvars()),
even if they are global. This will provide access to them through the _shvars struct, eliminating
temporary variables.

After the new thread function is fully created, xform parallel() calls xfrom add threadfunc()
(implemented in ast_xform.c) to place the thread function definition (declaration) in the ap-
propriate spot, right below (above) the function that contains the parallel construct (call it F),
as we already mentioned. Because the transformation phase, after finishing with F, will continue
with the next function in the original ast, the newly inserted thread function will never have
the chance to be transformed. For this reason, ast_xform.cmaintains a list of thread functions
(thrfuncs) that will be placed in the ast after the main transformation phase is completed. For
each function, it stores its definition tree plus a pointer to the function (F) it must be placed be-
low. After the transformation of the ast is complete, ast xform() calls xform thread functions()
which transforms all created thread functions and place thread functions() which inserts them
in the right places.

6.6 Transforming combined constructs

The transformation of a combined parallel-for or parallel-sections construct is actually quite
simple. Such situations are handled within ast omp xform() itself as follows: the combined
parallel-sections (-for) construct gets replaced by a new parallel construct which has as it body
a sole sections (for) construct, which in turn has as its body the original body of the combined
statement, e.g.:

#pragma omp parallel for <clauses>

<original body>

gets replaced by:

#pragma omp parallel <some clauses>

#pragma omp for <some clauses>

<original body>

The only thing that has to be taken care of is splitting the clauses between the two new constructs:
xc split combined clauses() (implemented in x_clauses.c) does exactly that. The parallel con-
struct takes all the clauses it can.

6.7 Transforming a task construct

To be written (it is similar in spirit to the transformation of a parallel construct).

11

6.8 Transforming declarations

Normally, declarations need no transformation—one only needs to add the declared identifiers
to the symbol table’s scope. There are only two cases where this is not enough:

• In declarations that utilize user-defined types and/or structs/unions/enums. So all dec-
larations are handled by xt declaration xform() (called in ast xform.c, implemented in
x types.c) and the whole story behind it is described in Section 8.

• In the declaration of function parameters, when transforming function definitions (state-
ments of type funcdef). In such cases, array parameters are substituted with their pointer
equivalents, through xt decl array2pointer(). This is necessary because identifiers (along
with their declarations) may be cloned by the transformation process in many places and
array parameters may cause problems, as e.g. below:

int f(int x[10]) { /* x is array */

#pragma omp parallel shared(x)

x[3] = 1; /* dummy code */

}

As explained above, this will produce a new thread function, while x’s declaration is cloned
in 3 places so as to obtain a pointer to it:

int f(int x[10]) { /* x is array */

{

struct { int (*x)[10]; } _shvars = { &x; };

ort_execute_parallel(-1, _thrFunc1_, &_shvars);

}

}

void *_thrFunc1_(void *_voidarg) {

struct { int (*x)[10]; } _shvars = ort_get_shared_vars();

int (*x)[10] = _shvars->x;

(*x)[3] = 1;

return (void *) 0;

}

Of course, this crashes most systems (see why it is wrong??). So, before transforming, a
function’s array parameters are correctly replaced by their pointer equivalents, as in:

int f(int *x) { /* equivalent to x[10] in this case */

#pragma omp parallel shared(x)

x[3] = 1; /* dummy code */

}

7 Threadprivate (tp) variables

As mentioned earlier, the parser changes every appearance of a threadprivate variable into a
pointer (since it cannot appear in other data clauses such as private(), there will never be a need
to use the original var instead of the pointer). Threadprivate variables are marked in the stab
through the field ‘isthrpriv’. The idea is that the original tp variables will be renamed and that
new pointer variables with the original name will be declared and used.

File x thrpriv.c handles tp variables. Tansforming an OpenMP threadprivate directive
results in a call to xform threadprivate(), which actually renames and creates the pointer decla-
rations needed. Consequently, for every variable X in a threadprivate clause we:

• Rename the original variable to “tp X ”.

12

• Declare a pointer X, which will be initialized to the address of the thread-specific copy of
the original variable (through a call to ort get thrpriv()).

• Declare a global key like “tp X key ” to make the thread-specific storage possible (see the
pthreads manual). Notice though that for non-global tp (ngtp) vars the name of the key
is “tpngN X key ”, where N is a unique numeric id, since there may exist many such vars
with the same name, in different scopes (and all of them would have used the same key).

The second item above is easy for static block-scope variables (ngtp); the declaration is made
in-place. It is tougher for global tp (gtp) vars: the declaration/initialization must be done
in every function that references the gtp variable. This is the reason behind the function
tp fix funcbody gtpvars(). This one takes the body of a function, discovers all (gtp) vars (utiliz-
ing ast find gtp vars() in ast vars.c) and declares pointers to them at the top of the function’s
body. It is called from ast xform.c, when transforming a function definition.

Here are some finer points:

• A subtle detail is that the original var is renamed to “tp X ” (actually, to whatever
tp new name(var) returns) but this is only done in the original declaration. I.e.:

– When cloning the declaration to declare the pointers, one must remember to change
the name in the copy back to the original tp var name

– The symbol table entry is NOT changed. I.e. the variable is still known as “X”; the
new name has never entered the symbol table.

• In x single.c and x parallel.c, the produced code for copyprivate calls, structure ini-
tializations etc use the tp vars as-is (i.e. not through the address operator) since they are
already pointers.

• In x parallel.c, tp vars are handled as follows:

– there is a function to handle the copyin variables (xp copyin declarations()).

– all non-copyin ngtp variables that are used within the body are handled through
xp sharedng declarations() (i.e. like shared non-global) but the produced declarations
contain calls to ort get thrpriv() to properly initialize them

– all non-copyin gtp variables are ignored since they will be appropriately handled
by tp fix funcbody gtpvars() when the new thread function definition is later trans-
formed.

8 User-defined types and struct-like declarations

We face one problem which is solely due to the omp parallel transformation. This is the only
transformation that may move / copy code to new functions, along with all necessary variable
declarations. If variables that were declared in the original scope have to be redeclared in a
different, non-nested scope then if those variables have user-defined types, the corresponding
type definitions must be visible to the new scope. This means that not only variables but also
typedefs and related stuff should also be carried around.

A simple strategy is to make all user-defined types global. This way, there is potentially no
visibility problem. This scheme is certainly far from elegant and in addition it is problematic in
many aspects.

In ompi we follow a different approach (file x types.c): we substitute all user-defined types
with their primitive constituents, so in essence at the end there exist no user-defined types in the
ast. This way, variables have no type dependencies and can move around (almost) freely. The
substitutions occur through xt declaration xform(), which is implemented in x types.c and is
called from ast xform.c whenever a declaration is met. For example, this:

typedef int type1;

typedef type1 *type2;

static type2 x, *y;

13

is transformed to this:

static int *x;

static int *(*y);

i.e. all user types are (recursively) substituted. Also notice that during this transformation a
multi-variable declaration (static type2 x, *y;) is broken into single-variable ones (function
xt break multidecl()).

The original typedefs are removed from the ast but kept around (in retiretree) since
there may exist more declarations later on, which depend on those types. For the same reason,
the names of those types are not removed from the symbol table. Remember, that all symbols
(hence user types, too) have pointers to their original specifier and declarator tree nodes.

The substitutions occur through xt barebones substitute(spec,decl), given the specifier
and the declarator part of the the declaration. The substitution is relatively simple: the user
type in spec is replaced by the specifier of the user type definition and decl replaces the user
type name in the declarator of the user type definition (huh?!). Thus (utd stands for ‘user type
definition’):

typedef type1 *type2; // utd: type1 is the specifier

// *type2 is the declarator

static type2 *y; // spec = type2, replaced by utd’s spec

// decl = *y, replaces utd name in utd’s decl

becomes:

static type1 *(*y);

There is a possibility that decl may contain stuff that are based on other user-defined types, for
example:

type2 func(type4 x, type5);

Consequently, before the actual substitution takes place, decl is checked recursively through
xt barebones decl(). Just notice in the above that type4 x is a concrete or direct param-
eter declarator while type5 is an abstract one since it just mentions the type and not the
actual name of the parameter. Substitutions of course take care of such situations (e.g. con-
crete to abstract declarator()).

One last thing that gets transformed is declarations that combine the identifier with a struct,
union or enum (“sue”) definition, such as:

struct s { int f1; char *f2; } x;

The specifier here is ‘struct s { int f1; char *f2; }’ which defines a named structure. Such
declarations are broken into two statements (using xt suedecl xform()); the first one defines the
sue and the second one uses the named sue to declare the identifier:

struct s { int f1; char *f2; }; // no declarator part here

struct s x; // the identifier declaration

The same occurs for unnamed sue, which acquire a unique name during the process:

struct { int f1; char *f2; } x; // unnamed struct

becomes:

struct _unnamed3_ { int f1; char *f2; }; // generated name

struct _unnamed3_ x;

Of course, all sue fields get checked for user types and may be substituted if needed.
In conclusion, the type of a variable ends up being either one of the base types or some named

sue entity (or a combination of both). Thus, the only thing that needs to be done when moving
variables and declarations around is to carry along any named sue the declarations depend on.3

3Because the author got too lazy at some point, instead of checking for sue dependencies, at the top of every
new thread function all visible non-global sue definitions are repeated obliviously.

14

An esoteric note: Due to the above substitutions, the code that is generated (e.g. in
ast xform.c) cannot use any non-primitive types. E.g. even though the type FILE may
have been defined (the user code has #included stdio.h), since FILE gets retired there
should be no generated declaration like ‘FILE *f;’—it will cause an error since FILE won’t
be defined there.

9 Miscellanea

9.1 The thread and the process models

The code produced by ompi follows either the thread (by default) or the process model (tm,
pm). In tm the parallel execution ‘vehicles’ are threads, which means that all global variables
are by nature shared between them. This explains why one needs the threadprivate directive: it
is the only way to make some global variables non-shared. I.e. wrt global variables, everything
is shared unless explicitly stated otherwise (through threadprivate directives). This is exactly
what OpenMP requires, so the tm model is the natural choice.

Nevertheless there are some cases where the execution vehicles are not threads. For example,
one could support process parallelism, through fork() calls. Another example is supporting
OpenMP over software DSM environments to make shared-memory programming available to
clusters. However, if the execution vehicles are processes then all global variables are by nature
private to each process, i.e. there is nothing shared between them. This is good for global
threadprivate variables since they are process-private anyways. But to follow the OpenMP
model, one has to explicitly make all global non-threadprivate (gntp) variables shared between the
processes. As a result, the code that ompi produces for the pm model is somewhat different than
that for the tm model.

We like to have only 1 parser and 1 runtime system for ompi, even if it supports 2 execution
models. Consequently, the differences in the produced code as well as the ort library should be
as few as possible. Here is exactly what ompi does when it is called to compile for pm (i.e. when
executed with the --procs option):

• The threadprivate directive is essentially ignored since the marked variables will be private
to each process anyway.

• All gntp variables are turned into pointers (through sgl fix sglvars() in file x shglob.c) and
are replaced accordingly all over the code (done by ast find sgl vars(), which is called by
ast statement xform() in ast xorm.c when transforming funcdef bodies) Those point-
ers will somewhere, sometime, somehow be explicitly initialized to point to some shared
memory area.

where: all global variable initializations are gathered in one function called init shvars ()
which is placed at the bottom of the produced code. All this is implemented through
sgl fix sglvars() in file x shglob.c, which is called by ast xform(), after all other
transformations on the ast have been completed.

when: all actual allocations should be made before fork()ing new processes. Conse-
quently the produced init shvars () must be called quite early by somebody. Keep
in mind that the user may possibly compile/link many different modules, each one
having its own init shvars () function. This precludes the possibility of injecting allo-
cation calls at the beginning of the main() function (since main() will only be present
in one of the modules). Consequently we face the problem of making some functions
be called before the execution of main(). There is no really portable way of doing
this.4 The solution we adopted is GCC-specific so after all ompi supports the pm

only when the base compiler is GCC, or a few others for which a similar mechanism
exists. GCC-produced executables call all functions labelled as ‘constructors’ before
executing the main() function. All one has to do then is label init shvars () as a
constructor, and this is done through the attribute extension:

4well actually there exists one Unix-specific and far-from-elegant way, which was used in early versions of ompi
to support threadprivate variables

15

static void __attribute__ ((constructor)) _init_shvars_(void);

For Sun Studio compilers, the same effect is achieved by listing the function in a
‘#pragma init’ line:

#pragma init(_init_shvars_)

how: the actual allocations should be done through mmap(), shmget(), etc. calls. Actu-
ally, since this is runtime-specific, ort provides such calls: ort shared allocate(void
**ptr, int size, void *initvalue). Thus init shvars () contains a series of ort shared allocate()
calls, one for each global variable. ort could do the allocations immediately but it
really defers them for a later time; ort shared allocate() just marks the allocation re-
quests but it actually grabs memory and inits the pointers later, when ort initialize()
is called from main(). This has the additional benefit of making only 1 allocation in
total, since the total size of all variables will be known in advance. This is however a
runtime library issue so we stop the story here.

The ‘initvalue’ pointer contains the address of the initial value of the variable. If
the variable was declared with no initializer, initvalue is NULL; otherwise, the parser
moves the initializer code to a new global variable (new insertdummyinitvar()) and
that variable’s address is passed on initvalue. I.e. ‘int a = 10;’ results in

int _sglini_a = 10, *a;

and a call to ort shared allocate(&a, sizeof(int), & sglinit a).

That’ it. Nothing else is needed. The rest of the code produced is the same for tm and pm. A
good question here would be: what about shared variables that are non-global, as in:

{

int x;

#pragma omp parallel shared(x)

x = ...;

We will answer this only partly here. There are two ways to handle this issue. One is to do
nothing (!) and another is to produce code that explicitly: (a) allocates space in shared memory,
(b) copies the value of the original variable there just before fork()ing, (c) frees the space after
the team seizes execution. The second scheme has two disadvantages. First, the produced code
would no longer be similar for the two execution models. Second, it is clearly slow. So ompi
follows the first scheme: it does nothing! It lets the runtime library handle this issue. How?
In a few words the trick is to have the process stacks reside in shared memory. Then all local
variables will be shared anyways.

16

