
D.I.C.E. and Co.In.S. :
A Data Integration Cache Engine for a Content Integration System

Peter Triantafillou and Nikolaos Ntarmos
Comp. Eng. & Informatics Dept.

University of Patras<peter,ntarmos>@ceid.upatras.gr

John Yannakopoulos
Computer Science Dept.

University of Crete<giannak@ics.forth.gr>
Abstract

Content integration of web data sources is becoming in-
creasingly important for the formation of the next genera-
tion information systems. A common performance bottle-
neck faced by all proposed solutions is the network over-
head incurred when contacting the integrated e-sites. With
this paper we contribute ongoing work on D.I.C.E. and
Co.In.S.; a domain-independent Content Integration System
and its Data Integration Cache Engine. DICE constitutes a
cache engine utilizing novel techniques for operating as a
fully active semantic cache. We show how our contribu-
tions can be applied in the field of content integration in
order to improve the response time of content integration
systems, representative of a large class of e-commerce ap-
plications. We have implemented the proposed architecture
and are currently developing a number of applications.

1 Introduction

Web data integration has become vital for modern data
management systems. Most relevant research focuses on
the wrapping part of the integration process. In the real-
world, however, the bottleneck of the system is the network
overhead, incurred when contacting the integrated e-sites.

Co.In.S. - the Content Integration System, is a domain-
independent mediator-based system. With this work we
contribute D.I.C.E.; the Data Integration Cache Engine, op-
erating in the context of Co.In.S. DnC1 targets content inte-
gration systems, representative of those needed to supporta
large class of e-commerce applications (e.g. comparative e-
shopping for books or CDs, e-hotels, online auctions, etc.),
with such characteristics as: (i) a need for translation of the
large variety of different data models, used by the back-end
e-sites, into a single data model, (ii) the fact that queries
posed to the system are over all relations of the unified data

1We use DnC to refer to D.I.C.E. and Co.In.S., where appropriate.

model and involves all attributes in the joined relations, and
(iii) the fact that the unified model and query semantics are
available a-priori at the mediator.

2 D.I.C.E. and Co.In.S

2.1 Architectural Overview

The architectural emphasis is on speed, platform inde-
pendence, and ease of deployment. Briefly, DnC is a multi-
tier architecture, consisting of the following components:
(i) the user interface, (ii) the Front-end modules, imple-
mented using Java Servlets and XML-related technologies,
(iii) the caching subsystem (aka D.I.C.E.), based on off-the-
self database management systems and novel cache man-
agement techniques, (iv) an XML-enabled mediator sub-
system, utilizing third-party wrappers and standard XML-
derived technologies, and (v) the back-end e-sites. All in-
ternal communications between the components of DnC -
that is, queries and their responses - use XML documents,
constructed according to a set ofQueryandResponse DTDs
respectively2.

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Query
Generator

Web

Browser

Web

Browser

Web

Browser

HTML/XML
over the Web

HTML/XML
over the Web

back−end
e−sites

Agent

Agent

Mediator

Query
Generator

RDBMS
Data

Repository

Wrapper

Wrapper

Wrapper
Kernel
Cache

Caching
Subsystem

Clients

Front−End

Co.In.S. & D.I.C.E.

Mediator
Subsystem

Figure 1. DnC Architecture

2We’ll use the termsQDC-XMLdocument andRDC-XMLdocument to
refer to aQuery/Response DTD CompliantXML document respectively.

1

2.2 D.I.C.E.: A Macroscopic View

An effective and transparent method for tackling the net-
work overhead is to cache queries and their results within
the data integration system. D.I.C.E. performs this task in
our setting. It uses a RDBMS at its storage layer. Cached
information is stored in tuples in the RDBMS’s relation and
cached queries are represented in the cache as materialized
views over the database relations.

Decoder
XML

Front-end
Request from

Decoded

Converter
XML-to-SQL

Decoded

Converter
SQL-to-XML

Encoder
XML(QDC-XML) XML Content XML Content

Cache Manager
Actual

SQL-to-XML
Converter

XML

Decoded
XML Content

S
Q

L
C

on
te

n
t S

Q
L

C
on

ten
t

XML-to-SQL
Converter

XML
DecoderDecoded

XML Content

Final RDC-XML

Generator

S
Q

L
C

on
ten

t

C
on

te
n

t
S

Q
L

from Cache Back-end
Reply from

(overall RDC-XML) Reply from Back-end (RDC-XML)

(RDC-XML)

Cache Update

(RDC-XML) Encoder

4

2

5

1 3

Initial Query Interpreter

Full or Partial Cache Hit

A B

Cache

B A

D C

Partial Cache Miss

Final QDC-XML

Generator

(QDC-XML)

(QDC-XML)

Request from Front-end

(QDC-XML)
Cache Miss
Partial

Final Request to Back-end

Final Reply to Front-end

7

S2

S1

C D

6

Figure 2. D.I.C.E.: The Cache Manager

A core idea of D.I.C.E. is the use of summarization of
cached entries, based on a novel utilization of Bloom fil-
ters, along with specialized data structures, and of mate-
rialized views, in order to swiftly identify full and partial
cache hits of query results, and to compute the set of sub-
queries whose results represent the data items not present
in the cache (called “missing queries”). Our approach al-
lows for very fast hit/miss identification and missing query
generation. We’d like to stress that our caching framework
provides the mediator with theexact set of missing queries
and delivers theexact query response to the front-end mod-
ules (full semantic active caching).

The characteristics of queries that can be handled by our
cache are shown in fig. 3. We assume that the projectionlist
includes all attributes contained in the union of the tuplesin
each of the targetrelations (i.e. all possible attributes).

SELECT projection list
FROM target relations
WHERE (NOT) atomicconstraint (atomicattribute, value)
[AND j OR] (NOT) other atomicconstraints
AND (NOT) comparisonpredicateconstraint
[AND j OR] (NOT) other comparisonpredicateconstraints

Figure 3. Class of queries supported by
D.I.C.E.

Cache consistency and temporal coherency are issues
typically discussed in works focusing on caching of data.

We presently adopt some form of invalidation mechanism
(e.g. TTL-based a la web proxy caching). An extended dis-
cussion of these issues is outside the scope of this paper.

2.3 Request Processing

1. The front-end module exports, an HTML-based query
interface. The user contacts the server, through her fa-
vorite web browser and poses her query. The front-
end modules convert the user request to a QDC-XML
document describing the query, and forward it to the
caching subsystem.

2. The caching subsystem checks its data structures for a
cache hit. In the case of a full hit, the cached result
is returned to the front-end modules. In the case of
partial/full miss, the caching subsystem constructs a
set of subqueries, representing the missing data, and
forwards them to the mediator.

3. For each such subquery, the mediator selects the set of
back-end sites that have to be contacted, and retrieves
the relevant web pages. After the wrapping process,
the translation of information to the system’s internal
data model, and a preliminary processing on behalf of
the mediator (e.g. duplicate elimination, format con-
version, etc.), the resulting RDC-XML documents are
returned to the caching subsystem.

4. The caching subsystem stores the new data and updates
its internal structures. It then constructs a single RDC-
XML document, combining all of the relevant cached
tuples, and returns it to the front-end.

The front-end modules pretty-format the output and cre-
ate appropriate HTML pages with the answers.

3 D.I.C.E.: A Microscopic View

3.1 Bloom Filters

To insert or lookup an entry in a bloom filter, we hash the
entry using the MD5 message digest generation algorithm,
generating a128-bits number. We then divide those bits intok = 8 equal segments ofn = 16 bits long (i.e. into 8 short
integers). Each of thek integers, is used as an index in the
filter’s bit vector. Hence, the length of the filter’s bit vector
is 2n = 65536 bits. If the operation is a lookup, then the
response is the bitwise ”AND” of all relevant bits. If the
operation is an insertion, then thesek bits are set to ’1’ in
the filter’s bit vector. Note that a single bit in the filter’s bit
vector might be set to ’1’ more than once.

3.1.1 The Query Bloom Filter

The set of cached queries is represented in our system
through a Bloom filter, called theQuery Bloom Filter (or

2

MD5

1 1 11

h1(a) h2(a) h3(a)

............

h8(a)...

Bit Vector V

...

Element

a

128 bits

Figure 4. Bloom FilterQBF). Assume that projection attributes, relations, and
query predicates appear in the same order in every query;
then the text representation of every query introduced to the
cache is inserted in theQBF . Thus, we can immediately
tell whether a query isidentical to a stored one or not (a
”full cache hit” in the passive-caching terminology) with
a simple lookup in theQBF . In case of a ”cache miss”,
the query predicate constraints are decomposed into two
major categories: atomic attribute - value predicate com-
binations of constraints (i.e. AACs) and comparison pred-
icate constraints (i.e. CPCs); the former are of the form
“attribute = value” (e.g. year=2003), while the latter are
of the form ”attribute f< j >g value” (e.g. year>2003).

3.1.2 AACs and Bloom Filters

The AACs of all cached queries are similarly stored in a
second Bloom filter, called theAtomic Attribute Predi-
cate Bloom filter (orABF). Additionally, the cache engine
maintains a hash table of all views with AACs as its key, by
which it knows which cached materialized views answer to
which atomic attribute-value subqueries. By this scheme,
in a cache miss scenario, D.I.C.E. is capable of obtaining
the maximally-contained results from its cache, which is the
best answer possible, and to extract the missing subqueries
to be delivered to the mediator, in order to guarantee the
completeness of the answer to the initial user’s query.

Assume an incoming queryQ. The DICE kernel trans-
formsQ into Q0, with all fields ofQ appropriately sorted.
The kernel then usesQ0 andQBF to tell whetherQ is iden-
tical to a cached query.

To avoid false positives, the kernel maintains a counter
instead of only a bit for each location of the filter, incre-
mented each time a query is “hashed” to a location in the
filter. If the counters at all locations corresponding to an in-
coming query are> 1, the kernel assumes we have a false
positive and simply forwards the original Front-end query
to the Mediator subsystem for further processing.

Example 1 (Query Bloom Filter). Assume the queries:� Q1 = select * from A, C, B where A.a = B.a and C.b =
B.b and C.c = “string2” and B.c = “ string1”, and� Q2 = select * from B, C, A where B.a = A.a and C.b =
B.b and B.c = “string1” and C.c = “ string2”.

The queries are obviously identical. To useQBF , bothQ1;2 would initially be transformed into:� Q01;2 = select * from A, B, C where A.a = B.a and B.b
= C.b and B.c = “string2” and C.c = “ string1”.

ThenQ01;2 would be “hashed” to get the corresponding
locations inQBF . If at least one of the counters is 0 thenQ01;2 is not stored in the cache (i.e. full/partial miss). Oth-
erwise, if all counters are> 1, the kernel assumes this is
a false positive and forwardsQ01;2 to the mediator subsys-
tem. Finally, if all counters are> 0 and at least one of them
is = 1, then there is aQ00, identical toQ01;2, stored in the
cache (i.e. full hit).

If noneof these counters is> 0, then the query is decom-
posed into its AACs and CPCs and further processed by the
Partial Cache Hit Servicemodule. This kernel module an-
alyzes the query through the involved attributes and their
constraints. Via the ABF3, the kernel is capable of produc-
ing the equivalent or maximally contained rewriting of the
requested query (answering query using the stored views),
thus, to generate all or the maximum part of the response
to it respectively. In the case of this second filter, false pos-
itive cases are extremely unlikely, although the analysis is
outside the scope of this short paper.

3.2 CPCs and Paths

The situation is a little different in the case of CPCs.
Note that ranges of values arenot stored in theABF .
Bloom filters are not appropriate for storing range-based
predicates; since each value stored in a Bloom filter is con-
stant, distinct, and randomly distributed in the filter’s bit
vector. Hence, the cache engine also maintains data struc-
tures by which it knows the range of values provided by
each cached materialized view. Thus, for each combina-
tion of (non-)equality constraints in the user queries, DICE
maintains a list of lists of ordered pairs of values (i.e.paths),
representing the ranges produced by the CPCs.

Assume, for example, that the mediated schema consists
(i) of attributes where only equality or non-equality con-
straints are applicable (i.e. AACs), and (ii) of date/price
information, where constraints are usually in the form of
a range of values (i.e. CPCs). For each combination of
AACs, we keep a list of lists of paths, as shown in fig.
5. For example date rangeD1 has associated with it price
ranges/paths(P1s; P1e); (P2s; P2e). Paths in these lists
are split or merged appropriately, to avoid overlapping.

3Think of ABF as a “bitmap representation” of AACs of the stored
materialized views. Remember that each value that is to be stored in a
Bloom filter must be constant, distinct, and randomly distributed in the bit
vector of the latter. We thus use separate data structures for storing and
manipulating CPCs.

3

D1 D2 D3 D4 Dn

P1s P1e P2s P2e

P1’s P1’e

P1’’s P1’’e

AAC1 AAC2 AAC3 AACm

QBF

...

...

Figure 5. CPCs and Paths

3.3 Deployment Issues

The user poses a query in terms of the mediated schema
that DnC exports initially through its front-end modules.
The query is delivered to theD:I:C:E: caching framework,
where it’s translated and formulated appropriately, in or-
der to match with the cache’s internal data sources. Thus,
D.I.C.E. must know a-priori the semantics of the queries
that are to be delivered to it.

Furthermore, to enable active caching, the administrator
is required to provideD:I:C:E: with the possible values for
each atomic attribute that participates in the query expres-
sion. Additionally, for the attributes that contain compari-
son predicate values, the minimum and maximum value of
the respective range must be provided. We need the min-
imum and maximum values of the range, because we use
list semantics, i.e. the path which is defined by these two
values is anordered list. These values are provided in the
configuration step.

We stress that such manual interventions are similarly
required in proxy servers; its administrator specifies which
URLs the proxy should cache, thru a configuration file.
Moreover, form-based proxy caching systems ([3, 2]), also
require an a-priori specification of the cacheable forms.

4 Related Work

The problem of answering queries using materialized
views, that is the query containment phase of the semantic
caching scenario, has been studied extensively, either in the
query optimization or in the data integration and data ware-
house design contexts and is known to be NP-complete [1].
With our techniques, we solve a related problem of obtain-
ing the maximal set of cached results for each query, using
an algorithm similar to [4] but less complex, since in our
setting all queries are over the same set of relations and in-
volve all attributes of the joined relations.

The work that is most closely related to ours, is that of
Luo et al. [2]. We differ, however, in: (i) D.I.C.E. can pro-
duce remainder queries for thecomplete andexact missing
results to a given query; (ii) D.I.C.E. can handle queries

with predicates connected by both AND and OR and that
may include a constant number of both joins and compar-
ison predicate values, where the queries processed in [2]
and in similar works, are simple conjunctive queries with
neither joins nor comparison predicates; (iii) our techniques
and algorithms guarantee that we always get the maximum
out of our cache, combining data from multiple cached
queries, as opposed to data from a single cached query each
time; (iv) we use novel data structures and Bloom filters for
the hit/miss identification and the production of the remain-
der (missing) queries, as opposed to linked lists for lookup
and filesystem-based (files / directories) data storage and
retrieval; (v) D.I.C.E. is used in the context of a content
integration system, a context we believe to be both more
demanding than caching queries over a single database (or
website).

5 Conclusions

In this paper we have presented Co.In.S. - the Content In-
tegration System - and D.I.C.E. - its Data Integration Cache
Engine. We tackle the problem of query result caching in
the context of web content integration systems, which are
representative of a large class of e-commerce applications,
backed by a fully functional implementation. Our main con-
tribution is in active caching: the development of algorithms
and of appropriate data structures for the generation of the
exact remainder queries in a partial miss scenario and the
consistent cache update and for extracting the maximally
contained cached data items.

We have implemented Co.In.S. and D.I.C.E. and are in
the process of developing several e-commerce applications
and testing their performance. Early performance results
show that the use of DICE leads to an approximately 50%
decrease in both the user-perceived turn-around time and
the load of the back-end e-sites, and to an average 40% de-
crease in the network bandwidth usage, compared to a bare-
bone mediator and a mediator featuring a static cache.

References

[1] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answer-
ing queries using views. InProc. ACM PODS ’95.

[2] Q. Luo and J. Naughton. Form-Based Proxy Caching for
Database-backed Web Sites. InProc. VLDB ’01.

[3] Q. Luo, J. Naughton, R. Krishnamurthy, P. Cao, and Y. Li. Ac-
tive query caching for database web servers. InProc. WebDB
’00.

[4] R. Pottinger and A. Levy. A Scalable Algorithm for Answer-
ing Queries Using Views. InProc. VLDB ’00.

4

