
SeAl: Managing Accesses and Data in Peer-to-Peer
Sharing Networks

Nikos Ntarmos

R.A. Computer Technology Institute and
Computer Engineering and Informatics Dept.

University of Patras, Rio, Greece.
ntarmos@ceid.upatras.gr

Peter Triantafillou

R.A. Computer Technology Institute and
Computer Engineering and Informatics Dept.

University of Patras, Rio, Greece.
peter@ceid.upatras.gr

Abstract— We present SeAl1, a novel data/resource and data-
access management infrastructure designed for the purpose of
addressing a key problem in P2P data sharing networks, namely
the problem of wide-scale selfish peer behavior. Selfish behavior
has been manifested and well documented and it is widely
accepted that unless this is dealt with, the scalability, efficiency,
and the usefulness of P2P sharing networks will be diminished.
SeAl essentially consists of a monitoring/accounting subsystem,
an auditing/verification subsystem, and incentive mechanisms.
The monitoring subsystem facilitates the classification of peers
into selfish/altruistic. The auditing/verification layer provides
a shield against perjurer/slandering and colluding peers that
may try to cheat the monitoring subsystem. The incentives
mechanisms efectively utilize these layers so to increase the
computational/networking and data resources that are available
to the community. Our extensive performance results show that
SeAl performs its tasks swiftly, while the overhead introduced by
our accounting and auditing mechanisms in terms of response
time, network, and storage overheads are very small.

I. INTRODUCTION

The Peer-to-Peer (P2P) paradigm is becoming a new stan-
dard for architecting distributed applications, with file-sharing
applications being by far the most popular among end-users.
This popularity, however, raises new challenging data and
resource management problems. In this realm there is no
central authority for managing data and data accesses, unlike
traditional (centralized or distributed) database systems, where
database administrators were burdened with such tasks. The
same lack of centralized control holds for the computational
and networking resources as well. In P2P environments,
users/peers manage their own data and their storage/compu-
ting/communication resources at will, which are a very small
fraction of the total data and resources available in the system.
In order for the whole system to be functioning efficiently,
peers must be online and cooperating, contributing towards
the achievement of the goals of system efficiency and high
availability. The potentially huge numbers of peers, the result-
ing very large scale distribution of data and resources, and
the peers’ autonomous behavior make the task of managing
resources, data and accesses a formidable challenge.

1This work is partly supported by the 6th Framework Program of the EU
through the Integrated Project DELIS (#001907) on Dynamically Evolving,
Large-scale Information Systems.

On the other hand, so far, P2P systems mostly rely on
an altruistic operational conceptualization, where peers are
assumed to be willing to share content/resources with the rest
of the community. In such an ideal setting, the aforementioned
problems are greatly simplified. However, analysis of user
behavior patterns has lead to the conclusion that, in the P2P
world, selfishness is the norm [1], [2].

We consider the problem of tackling selfish behavior in a
P2P sharing network, especially of the scale of modern file-
sharing networks, to be (i) crucial for the performance, stabil-
ity, and scalability of the system, and (ii) very challenging, due
to the restrictions posed on such widely distributed systems.

We present SeAl: an infrastructure transparently weavable
into (structured and unstructured) P2P sharing networks. SeAl
components act in two ways; they provide the system with the
necessary infrastructure to categorize peers and to allow them
regulated access to resources, according to their contribution
to the community; and they urge users to be altruistic, in order
to build up a good reputation in the system.

II. A HIGH-LEVEL VIEW OF SEAL

Conceptually, SeAl consists of two distinct layers: (i) the
SeAl monitoring/accounting layer (SAL), monitoring behavior
and maintaining all metadata pertinent to the peers’ participa-
tion and contribution to the rest of the community, and (ii) the
SeAl auditing/verification layer (SVL), utilizing cryptographic
techniques in order to provide overwatch to the operations of
the accounting layer in the presence of misbehaving users.
These two layers form a substrate utilized by an incentives
mechanism, which essentialy increases the shared pool of
content and resources.

SeAl’s counter-selfishness mechanism is based on the novel,
but “natural” notion of “favors” (to be presented shortly). For
simplicity reasons, we’ll assume operation in the context of a
file-sharing application (such as music file sharing). However,
our algorithms and mechanisms are in general applicable to
other classes of P2P applications, especially those dealing with
large objects (e.g., digital libraries).

A. Favors

We say that a peer n1 ∈ N (N being the set of all peers
in SeAl), owes peer n2 ∈ N a “favor” f(n1, n2, r), when
n1 accesses a resource r shared by n2 (e.g. by downloading
files shared by n2). Each node ni, keeps a list ni.Fo of favors
owed, and a list ni.Fd of favors rendered, to other peers.

Ideally, peers will contribute to the community the same
amount of content/resources they take from it and the whole
system will be in total equilibrium; thus, given similarly-sized
resources, Fos and Fds must be of equal size for every peer
in the network (i.e. |ni.Fo| = |ni.Fd|, ∀ni ∈ N , where |X |
denotes the cumulative size of the elements of the set X). With
this in mind, we define selfishness as a function of Fds and
Fos, using |Fd||Fo| or |Fd| − |Fo|2. The higher (lower) the value,
the more altruist (selfish) a peer is.

B. Basic notation and infrastructure

Independently of the underlying (structured or unstructured)
P2P network, our accounting layer (SAL) deploys a Dis-
tributed Hash Table (DHT) overlay of its own to store SeAl-
specific data, to achieve low hop-counts and network overhead.
The DHT used may well be any of the widely used ones [3]–
[6]. If the underlying system already features a DHT overlay,
SeAl can leverage this additional functionality provided by its
substrate, instead of deploying a separate DHT. Note that there
have been approaches [7] that attempt to use a structured P2P
overlay to improve performance of traditionally unstructured
P2P networks – a trend already followed by many currently
available peer-to-peer systems (e.g. JXTA uses Chord for
its name resolution layer, while Mnet (ex-Mojonation) and
LimeWire also use Chord for routing).

Every node n in SeAl has a public/secret keypair
{n.kp, n.ks}, generated at bootstrap-time. This keypair is used
to both allow SAL to identify n during transactions and
to allow SVL to guarantee integrity and confidentiality of
resources and messages circulating in SeAl. We assume that
the public keys of nodes in SeAl are directly accessible by all
peers in the system. This functionality may be provided by a
centralized public-key infrastructure (PKI), or in a distributed
manner (e.g. a la SDSI/SPKI [8], or the PGP web of trust), or
through the DHT deployed by the accounting layer, in a way
similar to that described in [9]. In any case, we believe this
kind of functionality to be orthogonal to the operation of our
accounting layer.

We assume that resources, and (join/search/retrieval) trans-
actions in SeAl are identified by unique IDs (e.g. 160-bit
UUIDs [10]). Node IDs are a special case of unique identifiers;
a node in SeAl is uniquely identified by the hash of its public
key. This allows for pseudonymous operation of nodes in SeAl:
(i) the identification of nodes is decoupled from their actual
IP address or other link-level information, (ii) as long as a
node uses the same keypair, its ID remains the same, and (iii)

2A more elaborate metric of altruism may well be used instead of the ratio
or difference of the sizes of a peer’s favor lists; however, we shall use these
metrics for the rest of the paper, and leave more complex forumalae as a
subject of future work.

nodes may deny responsibility for certain actions by simply
generating a new keypair and discarding the old one (although
this would lose them their reputation). Furthermore, we want
to prevent nodes (a la Freenet [11] and Achord [12]) from
arbitrarily choosing their IDs (and thus their exact position
in the DHT network overlay). Thus, in order for a node to
be allocated a certain ID, it must prove knowledge of the
corresponding secret key. For example, in a Chord-like system,
the node’s predecessor could ask the node to sign some piece
of information using its secret key, considering that forging a
signature is computationally infeasible.

III. THE SEAL MONITORING / ACCOUNTING LAYER

We shall first discuss the properties of SAL – the SeAl
Monitoring/Accounting Layer. For now, we confine our dis-
cussion to tackling only selfish behaviors, where users may
be either fully contributing their data and resources to the
P2P community (altruistic) or keeping some or all of their
files and resources off-line (selfish). We assume that peers
in the system do not attempt to subvert the system protocols
and mechanisms. We shall deal with such malicious behaviors
later, introducing the SeAl Verification Layer.

A. Transaction receipts and favors

Every (retrieval) transaction in SeAl terminates with both
of the participating parties having a digital “receipt” of the
transaction, called a Transaction Receipt (or TR). TRs are
created as the concatenation of the IDs of the sender (server)
and receiver (client) nodes participating in a transaction,
plus information about the resource exchanged (e.g. its ID,
size, and a checksum), plus a timestamp. We denote by
TR(n1.id, n2.id, r.id, t) a Transaction Receipt concerning
resource r being sent from n2 to n1 at time t. Favors in SeAl
are implemented using TRs. Thus an entry in the Fo list of
node n1, about a transaction with a node n2, concerning a
resource r, is of the form: {n2.id, r.id, t, TR(. . .)}.

Since in the realm of file-sharing P2P applications, the
main bottleneck and the main resource consumed by peers is
bandwidth, TRs contain the size of the exchanged information
(in the resource-specific information), as an indication of how-
big-a-favor does the requesting node owe to the serving one.
Thus, TRs are not mere tokens of esteem, but also have
a quantitative nature – a TR is assumed to have a value
of TR.r.size × TR.t

current time , with time expressed relative to
an Epoch a la SVr4 and *BSD). Timestamps are further
used to allow for the implementation of an aging mechanism
(left as a subject of future work) in order to (i) keep the
memory/storage requirements low, and (ii) adapt to transitivity
of node behavior. With these in mind, we can now see that
the above mentioned scoring schemes (i.e. |Fd||Fo| or |Fd|−|Fo|),
although simplistic, manage to capture the degree at which a
peer contributes or takes advantage of the community.

B. Favor Payback (Enforced!)

Assume that node n1 accesses resource r shared by node
n2, and therefore n1 owes n2 a favor (i.e. f(n1, n2, r) ∈

{n2.Fd, n1.Fo}). Peer n2 can then use this favor as follows:
the next time another peer n3 will contact n2 in order to
download a file, n2 can choose to redirect the request to
one of the peers which owe it a favor – e.g. preferably n1,
if the resource wanted is r – and have n3 report back its
(dis)satisfaction.

In general, redirect targets are chosen among the peers
appearing in a node’s Fd, based on various heuristics, such
as the history of transactions with that peer (e.g. what files
the target peer has downloaded from the source peer), the
processing/network capabilities of the target peer (e.g. as
measured by PING messages), the reputation of the target
peer, or some heuristics binding all of the above together (the
actual selection algorithm remains a subject for future work).
All three peers keep track of this transaction by adding or
updating the appropriate entries in their favor lists; n3 owes
a favor to n1 (i.e. f(n3, n1, r) ∈ {n1.Fd, n3.Fo}), while both
n1 and n2 mark the corresponding favors as paid-back.

Furthermore, given the selfishness/altruism definition pre-
sented earlier, peers in SeAl keep track of their “altruism
score” – ni.A. The actual formula used is node-dependent;
the administrator of each node autonomously sets her own
desired value to ni.A = |Fd|

|Fo| or |Fd| − |Fo|. Moreover, node
administrators individually set an upper and a lower threshold
for this score, denoted ni.Amax and ni.Amin respectively. Un-
der this scheme, nodes choose to redirect or not an incoming
request, based on their current score and their corresponding
thresholds; always redirect when over the upper limit, never
when under the lower limit, and probabilistically decide (with
probability P(R)) when in between.

Requests may be recursively redirected, up to a maximum
(tunable) hop-count, thus creating chains of nodes (cycles are
avoided using the ID of the request). In this case, only the
last pair of nodes in the chain mark the corresponding favors
as paid-back. The intuition is that the cost of redirecting an
incoming request is negligible, compared to the cost of actually
serving it; thus only the last node in the chain actually pays
back the corresponding favor.

The favor payback mechanism outlined above has some
rather interesting characteristics. First, it makes no assump-
tions on the distribution of popularities or on the degree of
replication of the objects shared in the system; the probability
of having two or more nodes sharing the same file grows with
the popularity of this file. This means that the more popular
a file is, the more it is replicated, as a sheer consequence of
its popularity. Second, the probability that some of the nodes
sharing a common subset of files owe favors to each other,
grows with both the popularity of the shared files and the
altruism score threshold values set by the nodes in the system.

C. Bad Reputation – The “black lists”

Any deviation from the normal behavior may trigger the
“black-listing” of the corresponding peer. n2 can then use
its f() entry (from its favor list) to “black-list” n1 as not
being a legitimate peer (a second-chance algorithm may also
be used instead of the strict one described here). Note that

being offline is viewed as selfish behavior, since the peer is
not contributing to the community at the moment. Thus, when
node n2 wishes to blacklist node n1, it creates a blacklisting
request (BLR) and publishes it in the DHT overlay. A BLR
is merely the TR of the transaction on which the blacklisting
is based (with the ID of the black-listed (n1) peer in the TR
being hashed again), published on the DHT using an ID of
H(“BLR”||H(n1.id)) –H(·) denoting a secure hash function.
Thus, a node will be responsible of a BLR concerning itself
with negligible probability, while the node storing a certain
BLR can’t know whom does it blacklist, due to the use of
secure hashing for the black-listed peer’s ID. The recipient
of any such message can choose to either give n1 a second
chance to be good (with probability P(SC)), or black-list n1

(i.e. store the BLR) immediately (with probability 1−P(SC)).
Note that the use and publishing of BLRs poses no scala-

bility restrictions on our system. We treat such objects much
like we would treat any other object on a DHT (except, of
course, from SVL’s verification chores). Thus, storing and
retrieving a (set of) BLR(s), needs as many hops and time
as the underlying DHT (e.g. O(logN) hops for Chord).
Fault tolerance and availability concerns are left on the DHT,
although other approaches could be taken.

D. Request scoring – the “white lists”

Peers probe the DHT overlay periodically to discover any
black-list records filed against them. Thus, they become aware
of their status within the P2P community. When a node n1

contacts a node n2 for a retrieval request of resource r, n2

asks n1 to select a small fraction Wm of its Fd favor-list
entries (called the “white records”) whose sum of values is
less than some threshold value localy defined by n2, and to
present this sum to n2. Remember that, at this stage, we do
not deal with malicious behaviors.

This leads to the following scoring scheme: the incoming
request is assigned a preliminary positive score sw, equal to the
sum of the values of the selected white records. Subsequently,
the sum of the values of the node’s “black records” (sb), up
to the same threshold defined in the first step above, plus the
size of the requested resource (r.size), are subtracted from the
request’s score, for a final score of sw−sb−r.size. Note that
the serving node may well choose 0 as the threshold value
for the “white records” presented by the requesting peer, thus
practically ignoring the favor list entries altogether and scoring
the incoming request on a per-size basis.

E. Request serving – the incentives

Incoming requests are not served directly but rather put in
a waiting queue, sorted using the requests’ scores (ties are
broken using the requests’ arrival time, in a FIFO order).
Scheduling is hence based on the peers’ reputation. Based
on local decisions of the administrator of each node, requests
from low-reputation peers may be either scheduled for process-
ing for when the serving node will be idle, allocated limited re-
sources (e.g. connection throttling, bandwidth throttling etc.),
or even completely rejected, thus introducing a first slider –

the “scheduling” slider. Furthermore, since a request’s position
in the queue may change with the addition (or bailing-out) of
higher-scored requests, served peers may probe the serving
ones for their position in their queues (or for the amount of
resources allocated to them).

This scheduling strategy (called the “feedback” mechanism)
gives peers incentives to act altruistically, since highly-reputed
peers will be served better or ahead of others. Moreover, we
argue that, since reputation is of high importance for the users’
satisfaction, users will have incentives to not mount Sybil3

[13] attacks. Note that this scheme allows for the exploitation
of such “positive externalities”4 as underused resources, since
even lowly reputed nodes will (eventually) be served.

F. Debt Payback

As already discussed, peers eventually become aware of
their reputation in the system. This gives a black-listed peer
the ability to make-up for its past selfish behavior; it can
choose (some of) its black records and offer to pay back the
corresponding favor, by contacting the node who blacklisted
it. If everything works out well, the formerly black-listed node
will end-up with a set of Transaction Receipts, denoting that it
has paid-back its debt to the community, and can subsequently
ask the node storing the relevant BLRs to remove them from
the network. Naturally, every node can be blacklisted only
once for every favor it owes and hasn’t yet paid back.

IV. THE SEAL VERIFICATION LAYER

In real-world conditions, many “selfish” users will try to
subvert the system operation in order to bypass the monitor-
ing/accounting mechanism. Enter SVL – the SeAl Verification
Layer. Due to space considerations, we’ll simply outline the
points in which SVL interferes with the operation of SAL.

A. Transaction receipts revisited

With malicious users in the scene, TRs must also provide
both data origin checking, and uniqueness and timeliness
guarantees – a type of “transaction authentication”, as defined
in [14]. Thus, we construct TRs as in the SAL case, only that
now the TR information is also signed, first by the receiver
node and then by the sender node. Any third party can verify
the validity of a transaction receipt, by verifying the signatures
of the serving and served peers and checking that both key
hashes are present in the receipt. If the verifier wishes, she
can further ask n2 for the hash of (parts of) r, or even access,
through a normal retrieval request (thus being charged with
appropriate favors), (random blocks of) the resource for which
this receipt was issued, and verify that the resource-specific
information in the receipt is valid.

3A Sybil attack is a situation in which a peer connects to the system with
a different ID, in order to get rid of possibly negative feedback.

4A positive externality is a benefit to the community that results from peers
acting in their own self-interest.

B. Blacklists revisited

With SVL in place nodes can’t forge BLRs since such an
operation is equivalent to forging digital signatures. Moreover,
when a blacklist record is sent out on the overlay, a node
receiving or retrieving a BLR, according to local decisions
at this node, verifies its validity with a probability P(V).
Furthermore, nodes periodically check for the validity of black
records of random other nodes.

The verification of BLRs is done by asking the black-listed
(and, optionally, the black-listing) peer. Peers can prove the
(in)validity of such TRs by presenting the appropriate favor
list entries, denoting the corresponding favors as paid-back.
In this case, the legitimate peers may initiate the blacklisting
of the “perjurers”. Thus, both selfish and malicious peers are
identified and, eventually, blacklisted. The usage of digital
signatures and their verification guarantee that no malicious
blacklisting will go by unnoticed or not penalized. Black
records deemed invalid by both the serving and served nodes
don’t trigger any further black-listing; they are only marked
as invalid and linger in the system – for some user-specified
amount of time – as an indication of the nodes’ past behavior.
The above probabilistic scheme presents us with a “black-
listing strictness” slider, creating a trade-off between system
performance (bandwidth requirements, CPU usage, etc.), and
responsiveness to selfish behavior.

C. Whitelists revisited

Assume again that a node n1 contacts a node n2 for a re-
trieval request of resource r. With SVL in place, the requesting
node again chooses a subset of its white records (with sum of
values less than a threshold defined by n2), but now forwards
them along with its request to n2. Node n2 can then choose
to either serve n1’s request (optimistic scenario), or to check
whether n1 is a legitimate peer, by fetching and verifying one
or more of the presented “favors” (following P(C)). Assume
that W ′m ⊂ Wm favors are fetched and verified. Then the
incoming request is assigned a preliminary positive score sw,
just like in the SAL case, while the remaining Wm − W ′m
non-verified favors are assumed to be of (time-normalized)
size equal to the size of the requested resource.

Furthermore, n2 can search the overlay for BLRs filed
against n1; n2 may ask the node(s) responsible for holding
n1’s black records for TRs whose time-normalized score s′b
amounts to less than or equal to the minimum of sw and the
white-list threshold defined in the first step above. The black-
records returned are verified (following P(V)), and a negative
score sb is computed. Finally, the request is assigned an overall
score equal to sw − sb − r.size.

The above probabilistic scheme introduces a trade-off be-
tween the extra network accesses, and possibly fake list entries.
We can imagine a “white-listing strictness” slider, where the
administrator of each node locally decides on the level of
confidence put on every favor list entry presented to it. This
scheme has the very important property that it bounds the
network overhead due to transfers of black records. Moreover,
since we (probabilistically) verify white and black records,

there is now no need for a peer paying back some of its black
records to publish the corresponding TRs to the DHT; the
next time some node will try to verify the validity of any
of the corresponding black records, the test will fail and the
black record will be marked as invalid. Also remember that
no further blacklisting is performed for black records marked
invalid during delayed pay-back, since both peers engaged in
the corresponding transaction will verify that the relevant favor
has indeed been paid-back.

The above scheme provides strong disincentives, albeit not
a complete solution, for misbehaving users. Such users may
mount a Sybil attack (rejoin the network with a new ID) to
rid themselves of their black records, or collude with others
in order to create phony white records. A Sybil attack is made
undesirable since it would result obviously in the loss of any
white records gathered so far by the user. Further, a collusion
attack is made undesirable since, regardless of how many (even
phony) white records a selfish peer may have, it can only
achieve a maximum request score equal to the one it would get
if it were a newcomer, if there are enough black records filed
against it. The worst-case scenario is when a node concurrently
performs both types of attacks: it mounts a Sybil-attack (to
get rid of black records) and colludes with other malicious
peers (or multiple digital personas of the same node) to gather
white-records as a newcomer. Note, however, that the amount
of useable white-records is bounded by the threshold value
defined by the serving node.

Ultimately, the problem of collusion in P2P networks re-
mains an open issue, even for purely trust-related systems. We
can prove that such “malicious” behavior can’t be efficiently
or realistically dealt with in a widely distributed environment,
unless we use some centralized authority (e.g. to use a trust-
based system, a la Advogato [15], where colluding peers can’t
gain high trust values outside the set of the peers engaged
in the collusion), or we make outrageous assumptions on the
degree of coordination of peers (a similar claim has been made
by [13]). The modular, layered design of SeAl allows us to
incorporate any such functionality, as soon as better methods
and systems become stable and available.

D. File Transfer

With SVL, the file transfers play a key role in establishing
the validity of TRs circulating in the system. The file transfer
protocol is outlined in alg. 1. Briefly, assume that n1 accesses
resource r shared by n2. When the time has come for the
request to be served, n2 generates two random symmetric-
cipher keys k1 and k2, and uses k1 to encrypt r. It then
encrypts k1 using k2 and sends the encrypted resource and
encrypted k1 to n1. n1 constructs a preliminary TR, signs it,
and sends it to n2. n2 verifies the signature in the TR, and
signs the resulting TR itself. It also encrypts k2 using n1.kp
and sends it and the TR to n1. n1 recovers the symmetric-
cipher key and decrypts r. Finally, both n1 and n2 add the
final TR to their corresponding favor list. Note that (i) we use
symmetric ciphers to encrypt the transfered file, so to achieve
a high bit-rate, and (ii) the transaction-specific keys need not

Algorithm 1 File Transfer. Algorithm runs on m.nserver,
unlessstated otherwise.
Require:
send(msg, node ID): Send msg to node with given ID.
Ek(α): Encrypt α using key k.
Sk(α): Sign α using key k.

process(Msg m)
1: Generate k1, k2 = random symmetric-cipher keys;
2: re = Ek1(r); k′1 = Ek2 (k1);
3: send({re, k′1},m.nclient.id);
4: m.nclient:

4.1: construct TR′ = {m.nserver.id,m.nclient.id, r.id, t};
4.2: TR′s = Sm.nclient.ks (TR′);
4.3: send(TR′s, m.nserver.id);

5: Verify the signature in TR′s;
6: TRs = Sm.nserver.ks (TR′s);
7: send({TRs, Em.nclient.kp (k2),m.nclient.id});
8: m.nclient : recover k2 and k1 and decrypt r;
9: Fd.add(TRs); m.nclient: Fd.add(TRs);

be kept after the transaction ends; the keypair of each node is
enough to do the verification of black and white records. We
consider the bandwidth to be the main bottleneck and the more
scarce resource in current file-sharing P2P applications. One
could argue that n2 could bail out of the algorithm after step
6, thus ending up with a valid TR, while leaving n1 with a pile
of useless random bytes. The intuition behind the file-transfer
protocol is that, since a node has spent some of its resources
to send the actual byte stream, it has already given its share to
the common good. Sticking to the protocol is then trivial and
merely adds to the good reputation of the node itself (since a
TR that can’t be verified is useless).

V. EXPERIMENTATION AND PERFORMANCE RESULTS

Our experimental setup assumes that SeAl operates in a
music-file sharing context, with file sizes (in Mbytes) uni-
formly distributed in the range 3-10 (for an average size
of 6.5 Mbytes). The simulated network consists of 2048
nodes, sharing 50,000 distinct documents, replicated across
peers following a Zipf access distribution, with α = 0.7 and
1.2 [16] (for a total of approximately 50,200 and 51,350
documents respectively). We have also tested our system with
larger node populations (with similar results), but with not
as many queries, due to CPU and memory constraints, and
thus report only on the 2048-node case here. The simulation
runs for 1,000,000 requests. Requests arrive at the system
following a Poisson distribution, such that every peer will
make approximately 5 requests per day of simulated time.
The documents requested follow a Zipf distribution too, with
similar results for both α values (0.7 and 1.2). Due to space
considerations, we report only on the α = 1.2 cases.

The peer population consists of 90% (70%) free-riders
and 10% (30%) altruists, with network connections ranging
(uniformly) from 33.6kbps (modem) to 256kbps (cable) lines
for selfish peers, and from 256kbps to 2Mbps (T1) lines for
altruists. Furthermore, all peers may fail or deny service with
a probability of 0.2, and delete/unshare files with a probability
of 0.1. Finding a peer sharing a file and downloading the
file are both 1-hop operations. All SeAl operations are run

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70

M
ea

n
|F

d|
-|F

o|

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 10 20 30 40 50 60 70

V
ar

ia
nc

e
of

 |F
d|

-|F
o|

5000-requests snapshots

 70%-case, w/o SeAl
 70%-case, w/ SeAl, 0.05 feedback

 90%-case, w/o SeAl
 90%-case, w/ SeAl, 0.05 feedback

Fig. 1. Convergence

on top of a DHT, thus every SeAl transfer is assumed to
take O(log(N)) = 11 hops on average (for the 2048-node
network). As we’ll show shortly, in spite of this handicap,
SeAl incurs negligible network overhead. Moreover, should
SeAl be operating on top of store-and-forward networks, such
as FreeNet or AChord, the observed network and storage
overhead would be orders of magnitudes smaller. Peers com-
pute their scores using |Fd| − |Fo|. Altruistic (selfish) peers
redirect incoming requests with probabilities 0, 1, and 0.5,
when their score is below their lower threshold, above their
upper threshold, or within these values respectively. Moreover,
the aging mechanism for the black- and white- records is off
in the simulation.

Since the incentives given by our mechanism are rather
based on the user experience, we tried to also model the user
behavior. Thus, every peer is characterized by the probabilities:

• P(Ra,s): the probability for a node to remain altru-
ist/selfish (initially set to 0.8 and 1.0 respectively). Used
on a per-request basis to model transient user behavior. In
the case of altruistic peers, we can also think of P(Ra)
as the probability of node failures.

• P(Ef): the probability for a node to erase a file (set to
0.1). Used on a per-download basis.

• P(Ca): the probability of a node to abort a transfer (set
to 0.1). Used on a per-request basis.

Every time a request is to be enqueued, the serving node
informs the requesting node of the expected waiting time,
while probes are periodically sent to the serving nodes for
the current (expected) waiting time every 2 minutes, and
every user/peer has an upper threshold of 20 minutes of
waiting time. When the expected waiting time of a request is
above this value, the request is dropped and the user decides
(with probability P(Sd)) to become a “better” user; users
get better by (probabilistically) increasing their P(Ra) and
decreasing their P(Rs), by an amount of SD. We have run
experiments with the following values for P(Sd) and SD
respectively: {0.0, N/A} (aka no feedback), {0.5, 0.05} (aka
small feedback), and {0.5, 0.2} (aka medium feedback).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 300 320 340 360 380 400 420

|F
d|

|Fo|

SeAl enabled

 0

 50

 100

 150

 200

 250

 300

 350

 300 320 340 360 380 400 420

|F
d|

|Fo|

SeAl enabled (zoom in)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 200 220 240 260 280 300 320

|F
d|

|Fo|

SeAl disabled

 0

 50

 100

 150

 200

 250

 300

 350

 200 220 240 260 280 300 320

|F
d|

|Fo|

SeAl disabled (zoom in)

Fig. 2. |Fd| vs. |Fo| (90% selfish users)

Discussion

We have measured the average altruism score in the system
(using |Fd| − |Fo|). In fig. 1 we have plotted the mean value
and the variance for |Fd| − |Fo|. As can be easily seen, the
SeAl-enabled simulations scale much better as time passes by.

In fig. 2 we have plotted the |Fd|s versus the |Fo|s of all
2048 peers in the system, after all 1,000,000 requests, for the
90%-selfish case (SeAl using 0.05 feedback). This figure can
help us understand the real advantages of SeAl. If we observe
carefully the left subfigures, we’ll see that peers are divided in
two main clusters; the altruists, having higher |Fd|s than |Fo|s
and thus occupying the upper part of the figures, and the selfish
peers, occupying the lower part of the figures. The effects of
SeAl are twofold: (i) the altruistic part of the figures is more
dense around its average coordinates – yet another evidence
of the improved stability and convergence of the SeAl-enabled
system versus the classic, non-SeAl system; and (ii) if we
zoom in to the lower (selfish-occupied) part of the figures,
we’ll see that, while in the non-SeAl system all selfish peers
have 0 |Fd|’s, in the SeAl-enabled case a good fraction of these
peers has moved closer to the equilibrium point (|Fd| = |Fo|).

The network overhead incurred by SeAl is negligible, av-
eraging only 0.4% of the total traffic. As far as the storage
overhead is concerned, even with the aging mechanism turned
off in the experiments, SeAl was found to incur on average
a mere 0.53% overhead in storage space requirements (ap-
proximately 780 kbytes per peer) after 1,000,000 requests, or
an average 0.8-bytes per peer per request! Moreover, should
SeAl be operating on top of store-and-forward networks, such
as FreeNet or AChord, the observed network and storage
overhead would be orders of magnitudes smaller.

A rather interesting result can be seen in the time-overhead
figure for the 90%-case (fig. 3(b)), where the lower subfigure
shows the time taken until a peer is found to serve a request,
the middle subfigure shows the time lost waiting in queues,
and the higher subfigure shows the total response time. Re-
member that the non-SeAl system pays no overhead for finding
serving nodes (depicted by the near-zero curves in the lower
subfigure), as opposed to the 50” for SeAl, caused by (failed)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50 60 70

R
es

po
ns

e
tim

e

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 10 20 30 40 50 60 70

W
ai

tin
g

tim
e

 0
 20
 40
 60
 80

 100
 120

 0 10 20 30 40 50 60 70

R
ed

ir
ec

tio
ns

 ti
m

e

5000-requests snapshots

 70%-case, w/o SeAl 70%-case, w/ SeAl, 0.05 feedback

(a) 70% selfish user population

 0
 100
 200
 300
 400
 500
 600

 0 10 20 30 40 50 60 70

R
es

po
ns

e
tim

e

 0
 50

 100
 150
 200
 250
 300

 0 10 20 30 40 50 60 70

W
ai

tin
g

tim
e

 0
 20
 40
 60
 80

 100
 120

 0 10 20 30 40 50 60 70

R
ed

ir
ec

tio
ns

 ti
m

e

5000-requests snapshots

 90%-case, w/o SeAl 90%-case, w/ SeAl, 0.05 feedback

(b) 90% selfish user population

Fig. 3. Redirection, Waiting, and Response Times (in secs)

redirections. Note, however, that SeAl makes up for this initial
handicap in the total response time subfigure, averaging 20”
lower than the non-SeAl system.

This can be explained as follows; there are four main factors
that influence the response time: (i) the number of (possibly
failed) redirections (e.g. due to redirection to selfish/offline
nodes), (ii) the scheduling at the waiting queue of every peer
(resulting in an SJF-like schedule in SeAl, since higher-reputed
nodes are more likely to have faster connections than lower-
reputed nodes), (iii) the average length of these waiting queues,
and (iv) the feedback mechanism (which results in more peers
serving requests, thus lowering the average queue length).

Obviously, SeAl benefits from (ii), (iii) and (iv) but not from
(i). In the 90%-selfish case (fig. 3(b)), (i) is overshadowed
by (ii) and (iv), while in the non-SeAl case only 10% of
the peers actually serve requests, thus having huge waiting
queues. In the 70%-selfish case (fig. 3(a)), however, the effect
of (iii) and (iv) is lighter, due to the increased number (by
a factor of 3x; 30% vs. 10%) of altruists, hence the smaller
improvement. Note that selfish, low-bandwidth nodes starting
to behave better (i.e. sharing a file once in a while) may also
cause an increase in the overall response time; while in the
non-SeAl system all requests are served by the altruistic, high-
bandwidth nodes, when SeAl and its feedback mechanism
kick in, a fraction of the downloads are served by these low-
bandwidth nodes, thus further raising the overall service time.

What we face here is a fundamental trade-off between
fairness in the load distribution and efficient request serving.
Our algorithm adds an average extra 20% to the overall
response time in the 70%-selfish case (fig. 3(a)), but leads
to a fairer load distribution (as shown in fig. 1 and 2). On the
other hand, when altruists are more scarce in the system (as
is the case in the 90%-selfish population runs – fig. 3(b)), the
sheer fact of the more balanced load suffices to make SeAl
the winning configuration.

Note that a large part of the time-domain overhead is due

to the auditing/verification chores of SVL; in a system with
a peer population consisting of more altruists and less selfish
peers, we may only need to use the monitoring/accounting ca-
pabilities of SAL and leave aside the expensive cryptographic
mechanisms of SVL. Alternatively, we may tune our black-
and white-listing “sliders” so that the probability with which
we engage in the verification transactions is low enough to
achieve a better/lower response time overhead. In any case, we
believe that even the 20% overhead of the 70%-selfish case is
acceptable, given the achieved fairness of the load distribution.

VI. RELATED WORK

The problems of “trust”, “reputation”, and “accountability”
in distributed systems have been a hot-spot for quite some
time. However, widely deployed, web-scale, data sharing
systems that maintain metadata about participating nodes
[17], [18] don’t address the problems posed by selfish and
malicious peers. Payment schemes have been suggested by
several researchers for enforcing fair-sharing. However, to the
authors knowledge, all existing payment schemes [19]–[22]
make the assumption of the existence of a globally trusted
(centralized) entity at their core. Cornelli et al. [23], present a
system to select the most reputable peer to download content
from, a limited functionality compared to SeAl. GNUnet [24]
like SeAl, allows for the exploitation of “excess” resources.
However, SeAl uses a much stronger fair-play enforcement
scheme, with TRs and black-lists, while also being completely
decentralized. FreeHaven [25] is a client-server-based system
where only servers perform trust computation, not applicable
to a true peer-to-peer sharing network. [26] have peers keep
“usage files”, similar to our favor lists, and other peers
“audit” both their neighbors and random nodes at random
intervals. Their problem is trade-oriented: nodes want to store
their data on other nodes. Furthermore, they use a quota-
based reasoning; “under quota” peers are excluded from the
network. This leaves no space for the exploitation of excessive
network/processing resources.

A work very close to ours is that of Aberer et al. [27].
[27] also use a DHT-type overlay (i.e. P-Grid) to store
transaction information. Compared to their work, SeAl: (i)
uses both black- and white-lists, as opposed to only black-
lists (“complaints”), thus being less prone to Sybil attacks;
(ii) features queueing and scheduling algorithms (built on
top of our monitoring layer) unique to our setting, provid-
ing incentives for altruistism; (iii) uses random checks and
different levels of verification checks for efficiency, while the
verification chores can be left aside or tuned at will to achieve
better response-time efficiency; (iv) allows for inconsistent
malicious/selfish behavior, different forms of punishment, and
for the exploitation of excess resources ([27] use binary
logic as to the behavior exhibited by peers – a peer is either
completely selfish or completely altruist – and, based on this,
are allowed either full or no access to resources); (v)features an
aging mechanism further addressing temporal inconsistencies
in user behavior.

Apart from the individual differences between this and
related work, the main overall differences are in comprehen-
siveness and philosophy. Specifically, SeAl:

1) contributes a comprehensive system design, identifying
selfish/altruistic peers, with the capability of dealing
with slandering and colluding peers, and increasing the
total number of shared data and resources.

2) is based on a comprehensive performance analysis of
the (i) (storage, network bandwidth, and response time)
overheads, and (ii) the positive effects of SeAl.

3) is weavable in both structured and unstructured P2P
overlays, not bound to any underlying topology. This
fact bears major implications on the system’s usability
and applicability.

4) allows for the exploitation of excess resources and may
employ various levels of punishment (from simple black-
listing, to ousting nodes from the network) exploiting its
very capability to categorize nodes into various types.

VII. CONCLUSIONS

We have presented SeAl, a novel infrastructure that ad-
dresses a key problem in P2P data sharing networks, namely
the problem of wide-scale selfish behavior. Toward this goal
SeAl offers (i) definitions/metrics of selfishness/altruism, (ii)
subsystems performing monitoring/accounting and verifica-
tion/auditing functionalities that enable the efficient, reliable,
auditable identification of selfish peers, and (iii) accompanying
incentive-offering mechanisms, while (i) respecting the auton-
omy of each peer to define his own selfishness/altruism levels
and (ii) allowing for the exploitation of positive externalities
(in the form of excess resources), which abound in P2P net-
works. Furthermore, depending on the environment in which
SeAl is to be deployed, the modular architecture of SeAl per-
mits the use of just SAL’s monitoring/accounting mechanisms,
if we do not want to counter or do not expect to face malicious
behavior, or to also use the extra security encompassed by
SVL’s cryptographic verification mechanisms.

SeAl forms a complete infrastructure software layer that is
weavable in both structured and unstructured P2P networks,
making it thus usable in any existing or future P2P infrastruc-
ture. Our implementation and extensive performance testing of
SeAl shows that SeAl achieves its identification goals swiftly.
At the same time, the network, storage, and response time
overheads imposed by SeAl have been measured to be very
small, if any. SeAl can be the basis for the development of a
wide variety of services in P2P data networks. For example,
the ability to discover altruistic/powerful peers can play a
key role in the derivation of better (more reliable and faster)
network architectures and in the optimization of queries in p2p
data networks. This is a major focus point for our future work.

REFERENCES

[1] E. Adar and B. Huberman, “Free riding on Gnutella,” Xerox PARC,
Tech. Rep., 2000.

[2] S. Saroiu, P. Gummadi, and S. Gribble, “A measurement study of peer-
to-peer file sharing systems,” in Proc. MMCN ’02.

[3] P. Druschel and A. Rowstron, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in Proc.
IFIP/ACM Middleware ’01.

[4] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable Peer-To-Peer lookup service for internet applica-
tions,” in Proc. ACM SIGCOMM ’01.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Proc. ACM SIGCOMM ’01.

[6] P. Maymouknov and D. Mazières, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric.” in Proc. IPTPS ’02.

[7] M. Castro, M. Costa, and A. Rowstron, “Should we build gnutella on a
structured overlay?” in Proc. HotNets II ’03.

[8] IETF, “SPKI Working Group,” http://www.ietf.org/ html.charters/spki-
charter.html.

[9] K. Aberer, A. Datta, and M. Hauswirth, “A decentralized public key in-
frastructure for customer-to-customer e-commerce,” International Jour-
nal of Business Process Integration and Management, to be published.

[10] M. Mealling, P. Leach, and R. Salz, A UUID URN Namespace, Network
Working Group – IETF, October 2002.

[11] Clarke, I., et al., “Freenet: A distributed anonymous information storage
and retrieval system,” in Proc. PET ’00.

[12] S. Hazel and B. Wiley, “Achord: a variant of the Chord lookup service
for use in censorship resistant Peer-to-Peer publishing systems.” in Proc.
IPTPS ’02.

[13] J. Douceur, “The Sybil attack,” in Proc. IPTPS ’02.
[14] A. Menejes, P. van Oorschot, and S. Vanstone, Handbook of Applied

Cryptography. CRC Press, 1996.
[15] Advogato, http://www.advogato.org/.
[16] K. Sripanidkulchai, “The popularity of gnutella queries and its implica-

tions on scalability,” white paper, Feb. 2001.
[17] Gnutella, http://gnutella.wego.com/.
[18] FastTrack, http://www.fasttrack.nu/.
[19] R. Rivest and A. Shamir, “PayWord and MicroMint: Two simple

micropayment schemes,” in Proc. Security Protocols Workshop ’96.
[20] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic cash,” in Proc.

CRYPTO ’88.
[21] P. Golle, K. Leyton-Brown, and I. Mironov, “Incentives for sharing in

peer-to-peer networks,” in Proc. ACM EC ’01.
[22] Mojonation, http://www.mojonation.com/.
[23] F. Cornelli et al., “Implementing a reputation-aware Gnutella servent,”

in Proc. Networking Workshops ’02.
[24] C. Ghrothoff, “An excess-based economic model for resource allocation

in peer-to-peer networks,” Wirtschafts Informatik, March 2003.
[25] R. Dingledine, M. Freedman, and D. Molnar, “The Free Haven Project:

Distributed anonymous storage service,” in Proc. PET ’00.
[26] T. Ngan, D. Wallach, and P. Druschel, “Enforcing fair sharing of peer-

to-peer resources,” in Proc. IPTPS ’03.
[27] K. Aberer and Z. Despotovic, “Managing trust in a peer-to-peer infor-

mation system,” in Proc. CIKM ’01.

