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Abstract Existing spatiotemporal indexes suffer from ei- 4y

ther large update cost or poor query performance, except for 107 6,(0) NN search q;
the B*-tree (the state-of-the-art), which consists of multi- 8: 1 ¢(2) -1 920
ple B*-trees indexing the 1D values transformed from the -2

(multi-dimensional) moving objects based on a space filling 6l -1
curve (Hilbert, in particular). This curve, however, does not - 7:(2)
consider object velocities, and as a result, query processing 4 )

with a B*-tree retrieves a large number of false hits, which 2;%(0) 1 :
seriously compromises its efficiency. It is natural to wonder i range searchq, -1 2 (O]
“can we obtain better performance by capturing also the ve- o

locity information, using a Hilbert curve of a higher dimen-

sionality?”. This paper provides a positive answer by devely. 1 Examples of spatiotemporal data and queries

oping theB!-tree, a novel spatiotemporal access method

leveraging pure relational methodology. We show, with the-

oretical evidence, that thig?“*!-tree indeed outperforms theexpected to qualify a predicate in the future (e.g., find the

B*-tree in most circumstances. Furthermore, our techniqaicrafts that will appear over Hong Kong in the next 10

can effectively answer progressive spatiotemporal queriesinutes).

which are poorly supported by*-trees. An object is a multi-dimensional point moving with a

constant velocity, and issues an update to the server when-

ever its velocity changes. In Figure 1, objegtis at coor-

dinates (2, 9) at time 0, and its velocities (represented with

arrows) on the x- and y- dimensions equal 1 ar?| re-

: spectively. A negative value means that the object is moving

1 Introduction towards the negative direction of an axis. Similarly, object
. . 04 positions at (9, 2) at time 0, and is moving at velocity

A spatiotemporal database supports gfflClent query procesSion the x- (y-) axis.

ing on a large number of moving objects, and has numer- A range queryeturns the objects that will appear (based

ous applications (e.g., traffic monitoring, flight control, etc gy, their existing motion parameters) in a moving rectaggle

in pract?ce. The existing studies can be classified i.nto t"YRJring a (future) time intervajt. Figure 1 shows a queny

categories, depending on whether they focushistorical \ith ¢+ = [0, 2], whose extents at time 0 correspond to box

retrle;va_ll, or predictive searchin thls_ paper, we conS|d_erq1(0)_ The left (right) edge of; moves towards right at a

predictive search, where the goal is to report the ObJeQ}élocityl (2), and the velocity of its upper (lower) boundary

is 2 (1) on the y-dimension. Bay (2) demonstrates the ex-
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Given a moving poiny and a time intervalt, a near-
est neighboi(NN) query finds the object with the smallest
“minimum distance” tay duringgt. In Figure 1, for instance,
gueryg, has a location (10, 8) at time 0, and moves with ve-
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Table 1 Comparison of predictive spatiotemporal indexes We further demonstrate the superiority of thé“*!-tree
B% T 8% | TPR" | STRIPES by showing that it has_higher applicability, and can effec-
Query cost low | high | Tow high tively answer progressive queries that_are poorly supported
Update cost low | Tow | high Tow by B*-trees. For example, a progressive (aggregate) range
Storage size low | Tow | low high guery aims at continuously refining its estimate about the
DBMS integration| easy | easy| hard hard numberof qualifying objects, and (when allowed to execute

till termination) returns the actual result. B4 -tree can
produce a highly accurate estimatell beforethe query ter-
minates, while &*-tree incurs significant error until nearly
the end of processing.

Specifically, our contributions include:

locity —1 on both axes. Assumingt = [0, 2], the NN ofg,

iS 02, whose minimum distance’5 to ¢, (obtained at time

2) is smaller than tha{/17 of o;. In general, &NN query

returns thek objects with the smallest minimum distances. — establishing the importance of capturing velocities in in-
Motivation and Contributions. Existing indexes [16,  dexing moving objects based on space filling curves;

13,6] for moving points suffer from certain disadvantages— developing the algorithms for using a velocity-conscious

Although the TPR-tree [15, 16] has good query performance, Hilbert curve to solve various types of queries;

it incurs expensive update cost, and thus, is not appropriate careful analysis of the performance Bf*“*- and B*-

for real-time applications with frequent updates. STRIPES trees;

[13] is efficient to update, but (as explained in Section 2.1y solutions for progressive spatiotemporal search;

has high space consumption and low query performance. €xtensive experimental evaluation of the proposed and

Neither structure can be easily integrated in an existing €Xisting spatiotemporal indexes.

DBMS because they are based on techniques that are notrhe rest of the paper is organized as follows. Section 2
supported by a relational database. Htetree [6], the state- reviews the previous work directly related to ours. Section 3
of-the-art, involves severaB*-trees indexing the order of formally defines the problem. Section 4 explains the struc-
objects on a space filling curve (e.g., Hilbert [3]). Hence, fyre of the B4“a!-tree and its rang&NN algorithms. Sec-

can be incorporated into an off-the-shelf DBMS (e.g., Orgon 5 provides theoretical justification about the superiority
cle, DB2, etc.). As explained in Section 2, howevet;trees of our technique oveB*-trees. Section 6 discusses progres-
do not achieve satisfactory query efficiency due to the largge processing, while Section 7 experimentally compares
number of “false hits” (i.e., non-qualifying objects that neegdual trees against the previous structures. Finally, Section

to be inspected). _ ~ 8concludes the paper with directions for future work.
In this paper, we present thizf“+!-tree, which combines

the advantages of the existing solutions without sharing their
disadvantages. Table 1 summarizes the properties of the newe|ated Work
structure compared to the previous indexes. In particular, the

Bal-tree (i) handles both updates and queries effectivelyhe existing predictive spatiotemporal structures can be clas-
(ii) is space-efficienand (iii) is readily implementable using sified into 3 categories, depending on whether they focus on
pure relational technologies, as long @' -trees are sup- the dual space, adopt the TPR-tree representation, or resort

ported The B¢“*!-tree is motivated by a simple observatiorg a space filling curve. Next, we discuss each category in
that the Hilbert curve deployed ina*-tree considers only tyrn.

objects’ locations (i.e., not velocities), which leads to the re-

trieval of numerous false hits. Th@?“*!-tree is also based

on BT -trees, but avoids false hits by indexing a Hilbert curve.1 Dual Space Indexing

of a higher dimensionality, which captures both locations

and velocities. Kollios et al. [7] present a transformation that converts a 1D
It turns out that the above observation generates humerving object to a static point in a 2D “dual space”. Agar-

ous non-trivial issues. From the algorithmic perspective, speal et al. [1] extended the transformation to arbitrary dimen-

cialized methods must be designed for utilizing a high dionality, and propose theoretical indexes that achieve good

mensional Hilbert curve to perform range akiN search asymptotic performance. These solutions, however, are not

(the original B* solutions are no longer applicable, as exefficient in practice due to the large hidden constants in their

plained in Section 4.3). From a theoretical viewpoint, it isomplexities.

well known that, as the dimensionality increases, the effi- Kollios et al. [8] developed a practical access method

ciency of Hilbert curves drops, making it important to jusbased on similar transformations. ledbe a 2D point whose

tify why the penalty can be compensated by retrieving fewarovement on theé-th dimension { < i < 2) is given by

false hits. We derive analytical formulae that elaborate wiayi](¢) = o[i] + o.v[i] - (t — trer), Whereo.v[d] is its veloc-

and when a curve capturing velocities provides better quéty along this dimension, and(i](¢), o[i] are itsi-th coor-

performance. Our equations quantify the cosBéf*- and dinate at a future timestanmpand the (past) reference time

B-trees, and prove that our method outperfotBistrees t,.¢, respectively. Thélough-X representatioaf o is a vec-

in most circumstances. tor (0.v[1], o[1], 0.v[2], 0[2]), and itsHough-Y representation
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= ZH% 0.5[1]’ 0_3% 0.5[2]). Accordingly, four 2D R-trees are v ais Ay avis
created to manage the following 2D spaces, respectively: '°L oL Ny Ly N,
— Hough-X of Dimension 1 containing points of the form ¥[ R il
(0.v[1], o[1)); R i
[} v . i 6 < 6
— Hough-X of Dimension 2 for points ob(v[2], 0[2]); F2 ] - Y
— Hough-Y of Dimension 1 forg’%ﬁ], O.vlm); T b, | ‘r * c
— Hough¥ of Dimension 2 for 5% ﬁ) 2 2t 2t a
An objecto may be inserted in various ways depend- i S B iy
ing on the velocities ob. If o.v[1] is smalt (or large), a (a) SBox/VBox at time 0 (b) Node extents at time 1

point (o.v[1], o[1]) (or (%ﬁ, #[1])) is inserted in the R- Fio. 2 ATPRA |
tree managing the Hough-X (or Hough-Y) of Dimension 1.9 “ree exampie
Similarly, if o.v[2] is small (or large), a pointo(v[2], 0[2])

(or (525}, 5 is incorporated. Hence, two R-tree inserSBox is a rectangle that tightly encloses the locations of the

0.V

tions are needed far, whose entry in each R-tree, howevemnderlying objects at time 0, while the VBox is a vector
contains the object’'s complete motion parameters (i.e., theunding their velocities. For example, the SBox of node
parameters are duplicated). N, is a rectangle with a projection [2, 5] ([3, 6]) on the
To evaluate a range query, the algorithm of [8] relies ot (y-) dimension. Its VBox equals (-2, 1, -2, 2), where the
a heuristic that decides an appropriate dimension to seaficst/second number captures the smallest/largest object ve-
(i.e., only one dimension is considered). Assume that thaeity on the x-dimension (decided bya respectively), and
first dimension is chosen; then, the query is converted to twimilarly, the third and fourth values concern the y-axis. Fig-
“simplex queries” in the Hougl¥ and HoughY spaces of ure 2 demonstrates a VBox with 4 white arrows attached to
the dimension, which are answered using the R-trees. Tthe edges of the corresponding SBox.
problem with this approach is thall objects qualifying the The extents of an MOR grow with time (at the speeds
guery alongonly onedimension must also be retrieved. Conindicated by its VBox) so that at any future timestamp it
sider uniform data distribution and a query with selectivitgontains the locations of the underlying objects, although it
1/10 along each dimension. Around 1/100 of the objects s&-not necessarily tight. For example, in Figure 2b, at time 1
isfy the query, whereas the above algorithm may access 1tth® MOR of N; (or Ns) is considerably larger than the min-
of the dataset, fetching an excessive number of false hits.imum bounding rectangle for its objects. Consider a range
Patel et al. [13] propose STRIPES, where 2D movinguery at time 1 whose search regigpis the shaded rectan-
objects are mapped to 4D points (by the Houghransfor- gle in Figure 2b. SincéV; at time 1 does not intersegt it
mation) that are indexed by a PR bucket quadtree. Since tites not contain any result, and can be pruned from further
tree includes data on both dimensions, STRIPES does notaensideration. On the other hand, the query exami¥igs
trieve false hits. This, however, does not imply lower queryhich contains the only qualifying objeet
cost, because a node in STRIPES may contain an arbitrarily The TPR-tree has been deployed to solve a large number
small number of entries, and hence, more pages need tmbspatiotemporal problems (e.gNN retrieval [2], location-
accessed to obtain the same number of results. Furthermbeesed queries [19], etc.). However, it has a major defect:
low page utilization also leads to large space consumpti@ach insertion/deletion requires numerous page accesses.
To alleviate the problem, the authors of [13] suggest a “halfherefore, TPR-trees are not feasible for real-life applica-
page” storage scheme. Specifically, a leaf node with ocdiens where objects issue updates frequently.
pancy at most 50% is stored in half of a page, whereas a full
page is used for leaf nodes with over 50% occupancy (see

[13] for details). 2 3 TheB®-Tree

The solutions in the previous sections cannot be easily in-
tegrated into an existing relational database, since consider-
drﬁple changes are required in the “kernel” of a system (e.g.,
\duery optimization, concurrency control, introducing “half-
ges”, etc.). Motivated by this, Jensen et al. [6] propose
e B®-tree, which consists aBT-trees indexing the trans-
IIl%rmed 1D values of moving objects based on a space filling
curve (e.g. Hilbert curve). In [9]B*-trees are extended to
manage historical data.
Figure 3 shows an exemplaB#-tree on 4 moving points.
e location of an object at the reference time 0 is mapped
! We refer the interested readers to [8] for the criteria of “small”. to a Hilbert value, which is indexed by A*-tree. Object

2.2 The TPR-Tree

Saltenis et al. [15] propose the TPR-tree (later improve
[16]) that augments R-trees [4] with velocities to index mo
ing objects. Figure 2a shows an example. The black dots r
resent the positions of 4 objeaisd, ¢, d at time 0, and the
arrows indicate their movements. Figure 2b illustrates t
object locations at timestamp 1.
A node in the TPR-tree is represented ava@ving rec-

tangle (MOR), which includes an SBox and a VBox. Thel’h
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il

— areference timestamgpt, .. s,
— its coordinates[1], 0[2], ..., o[d] at timeo.t,. s, and
— its current velocitie®.v[1], 0.v[2], ..., 0.v[d].

For example, object; in Figure 1 has reference time
o1.trey = 0, coordinatesn [1] = 2, 01[2] = 9, and veloci-

fe=nEs

4 O*F,
1
2=l J}THFL tieso;.v[1] = 1, 01.v[2] = —2. We use vectoo(t) = (o[1](¢),
) i_y o[2](¢t), ...,o[d](t)) to denote the location efat a timestamp
/Ej ] t > o.ty.r, where, forl <i < d:
[ ] |
0 5 s 6 < olf](t) = ofi] + 0.v[i] - (t — 0.trey) 1)
Fig. 3 A B*-tree example A database consists &f moving pointso, each of which is-

sues an update whenever its velocity changes. The reference
time o.t,.; equals the time of its last update. In accordance
updates are highly efficient by resorting to the inser- to the existing technigques [1,7,6,13], we consider that an
tion/deletion procedures. To process a range query, the quelbject issues at least one update evEtymestamps.
region is enlarged to cover the locations of the qualifying A d-dimensional moving rectangle (MOR)is captured
objects at time 0. Consider, for example, the small rectany

gle in Figure 3 as a range quepyat timestamp 1. To avoid areference timestamn?

false misses; is expanded to rectanglg, according to the a spatial box(SBoxr;margg-dimensional vectorr([1

maximum object velocities on the two dimensions. For ex- P y ; JEREITT .[ )
rq[1], ..., re[d], ra[d]), where [ [i], r4[i]] is the i-th

ample, since 2 is the largest velocity along the positive di- (1< < d) projection ofr at timer.t,., and

rection of the x-axis, the distance between the right edges of avelocity box(VBox), a2d-dimensional vector{Vi.[1],

¢’ andq equals 2 (i.e., the length traveled with speed 2 in } .
. : VA1, ..., r.VE[d], ».V4[d]), wherer. VL [i] (or r.V.
one tlmestarr_lp). T_he enlz_irgemer_nt guarantees that if an Ob'rnd?(:[a]tes tr71ne CLHOCTty B[f ]t)he left (gr rrg[;r]]t)( edrge%c[ﬁl) the
ject appears i at time 1, its location at time O must fall in . .
m i-th dimension.

Regiong’ intersects the Hilbert curve into 6 one-dimen- Denoting the spatial extents efat a timestampg >
sional intervalsAB, CD, EF GH, 1J,KL shown_in Fig- r.trep asr(t) = (re[1](¢), ra[1)(2), ..., r[d](2), ma[d](1)), we
ure 3. As a result, 6 one-dimensional range queries are elxave:
cuted on theB*-tree for retrieving the points . For each St .
resultant object, its actual location and velocity are verifida [} (t) = T[] + 7-Veli] - (¢ = 7-trey)
against the original query. In this example, onlgndd sat- 7-[i}(t) = r4[i] + 7. V4li] - (¢ = 7.trey)
isfy the query, although all the objects are examined. In the A range query specifies a time interval = [¢t-, qt_],
sequel, we refer to the processing strategy aslih@ange 4nq an MORg whose reference time ig,. For instance,
reduction because it reduces spatiotemporal search to Sy ine range search in Figure d = [0, 2], and the query
eral 1D range queries on thg’-tree. _ ¢1 is an MOR with reference time 0, SBox (2, 3, 3, 4), and

Since expanding the query based on the maximum Mggox (1, 2, 1, 2). An object satisfies; if o(t) falls in g(t)
locities of the entire dataset may lead to an excessively lakge somer ¢ qt.
search region, th&*-tree uses histograms to maintain the A 1 nearest neighbor query has a time integzat [¢t.,
largest velocities of objects in various parts of the data spage| and a moving poing with reference timet, . The min-
(so that smaller query enlargement is sufficient based pRum distancel,..;, (o, ¢) between an objeet andq equals
these velocities). However, in case there are slow and fagt shortest Euclidean distance betwegn andg(t) for all
objects across the whole data space, the benefits of the hig- ;+ The query result consists of tiieobjects with the
togram are limited, in which case the query performance &hajlesid, ;,,.
other problem of thé3*-tree is that it does not suppdmN it 4+ involves a single timestamp (i.ez; = qt_); otherwise,

queries efficiently, becauseNN search is performed using, is aninterval query Our objective is to minimize the CPU
iterative range queries (by expanding the search area inGigy 1/0 cost in answering a query.

mentally), as opposed to a single-traversal algorithm [2] for
the TPR-tree.

4 The Bduel_Tree

3 Problem Definition and Notations Section 4.1 discusses the structure of the proposed index
and its update algorithms. Section 4.2 clarifies the decision

We represent d-dimensional (in practice] = 2 or 3) mov- of a crucial parameter of th&% *'-tree. Section 4.3 ex-

ing pointo with plains why the query algorithms d#*-trees are inefficient
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for Bl trees. Section 4.4 illustrates the concept of “per- 1
fect MOR”, based on which Section 4.5 elaborates the range
andiNN algorithms.

21222526 37|38| 41|42
20| 23124 27| 36| 39| 40| 43

1918 35|34 45| 44
16| 17 32|33|46| 47

4.1 The Structure and Update Algorithms 5] 12| 11/ 10] 53] 52| 51 [
14| 13| 8| 9|54|55| 50|49
A Bl tree has two parametersharizon H, and arefer- 1| 2| 7| 6[57|56| 61|62
ence timel,..;. H decides the farthest future time that can 0| 3| 4| 5/58|59|60|63
be efficiently queried. Similar to TPR-trees [15],3£"!- 0 1

tree constructed at time optimizes queries about the pegig 4 Hilbert range decompositionl(= 1, A = 3)

riod [¢,¢ + H]. Queries that concern timestamps later than

t + H are also correctly answered, but they are not opti-

mized due to their lower importance (predicting about a disf BT, and BT, are reversed. In this period, every inser-

tant timestamp is not useful since many objects may hawen is performed inBT5. A deletion, however, may remove

issued updates by then). an object fromBT; or BT;, depending on whether it was
The second parametér.; is needed to convert data toinserted during0, 7) or [T, 27), respectively. At timeT,

their dualsT;..; is not necessarily equal to the constructioBT; becomes empty (all the objects inserted during’)

time of the tree (the computation @f..; will be discussed have issued updates), and the two trees switch states again.

in the next section). Let be a moving point with a refer-  Given a query, bottBT, and BT, are searched, and the

ence timestamp.t,..;, coordinates([1], ..., o[d], and veloci- results are combined to produce the final answer. SikiEe

tieso.v[1], ...,0.v[d]; its dual is @d-dimensional vector:  andBT, are symmetric, in the rest of Section 4, we focus on

el a single tree, and refer to it simply a4 -tree.
0™ = (o[1](Tref), .-, 0ld)(Tref), 0.v[1], ..., 0.0[d])

whereoli](T;.s) is thei-th coordinate ob at timeT,.. s, and

is given by 4.2 Deciding the Reference Time

o[i)(Tyes) = oli] + 0.v[i] - (Tref — 0-tres) The selection of’.. ; has a significant impact on query per-
formance. Without loss of generality, consideB&** -tree
Equivalently,o?® is a point in a2d-dimensionaldual that enters the growing state at tirhg,,,. Although previ-
space which contains! location dimensiongfor the firstd ous methods [1,13, 8] S&.. s t0 ¢ 4,0, We Will show that a
components ob?“e!) andd velocity dimensionsThe dual better choice of .. s ist ..., + H/2, whereH is the horizon
space can be mapped to a 1D domain using any space fillpggameter.
curve. We choose the Hilbert curve because it preserves theAny cell ¢ in the partitioning grid can be regarded a%a
spatial locality better than other curves [6], leading to lowelimensional MOR (moving rectangle) whose SBox (VBox)
query cost. The Hilbert value of“*! can be computed usingcaptures the projection of the cell on the location (velocity)
a standard algorithm [3], based orpartitioning grid that dimensions of the dual space. Figure 4 shows an example
divides the data space in?d2? cells. In particular, the grid whered = 1, and the dual space h2¢ = 2 dimensions. The
has2* cells on each dimension, andis an integer called partitioning grid containg?2 = 64 cells (i.e., the resolution
theresolution A = 3), and the number in each cell is the Hilbert value
Objects whose duals fall in the same cell have identic@f any point inside). The cell 53, for example, has a 1D
Hilbert values, which are indexed by -tree. Each leaf SBox [0.5, 0.625] (its projection on the horizontal axis) and
entry stores the detailed information of an object (i.e., its ref-VBox [0.375, 0.5], assuming that all the dimensions have
erence time, locations, and velocities). An insertion/deleti@ndomain [0, 1].
is performed in the same way asR -tree, by accessing  Given arange query (an MOR), objects in a cellneed
O(log N) pages wheréV is the dataset cardinality. to be inspected if and only if the MORIintersects; during
As with the B*-tree, aB4“!-tree is composed of two the query intervajt. For example, assunie.; = 0 and letc
BT-treesBT; andBT5. Each tree has two states: (iyw- be the cell in Figure 4 with value 53. According to the SBox
ing statewhen objects can be inserted/deleted, and (ii)and VBox ofc, the spatial extent of at time 1 isc(1) = [0.5
shrinking statevhen only deletions are allowed. At any time+ 0.375, 0.625 + 0.5] = [0.875, 1.125]. For a query wjth
one tree is in the growing state, and the other in the shrifk-7, 0.8],¢.V =[0.1, 0.1], and;t = [0, 1], all the objects with
ing state. They swap states evargtimestamps, wher# is  Hilbert value 53 must be examined becay§g = [0.8, 0.9]
the largest interval between two consecutive updates framtersects:(1); otherwise, we may risk having false misses.
the same object. Hence, to maximize query efficiency, we should reduce
Initially, BT, (BT>) is in the growing (shrinking) state the probability that the MOR of intersects a query. The
for time interval [0, T"), when all the updates are directe@nalysis in [15] shows that the probability is decided by the
to BTy, and BT, remains empty. During[l, 2T'), the states “integrated area” ot during [ty ow, tgrow + H], calculated
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4.3 Pitfall of the 1D-Range Reduction

Vi

As reviewed in Section 2.3, the*-tree adopts the 1D-range
, , L , . ., Teduction for solving range search. Specifically, the search is
tgow  lgowtH/2  tgowtH  lgow  tgowtH/2  lgow+H converted to several 1D range queries onfhetree (e.g.,

@) Tres = tgrow (0) Tref = tgrow + H/2 in Figure 3, six queries are required for segmetis, C'D,
EF, GH, 1J, KL, respectively). In this section, we will
show that this strategy is inefficient f&?“*!-trees, and out-
line an alternative processing framework.

Fig. 5 Integrated areas with different. ¢

as:
To apply the 1D-range reduction, we need to transform
t +H . . .
grow range search intogimplex queryn the dual space. As men-
/t AREA(c(1)) dt ) tioned in Section 2.1, a simplex query specifies a set of linear

grow

constraints (each corresponding t@@&dimensional half-

wherec(t) is the spatial extents aof at time¢. Figures 5a Space in the dual space), and aims at finding the (dual) points
and 5b illustrate the integrated areas (the grey regions)ta@t fall in the intersection of all the half-spaces. Although
a 1D MOR, assuming reference ting.; = tg.0, and these cpnstramts can be formulated using the derivation of
Trep = tgrow + H/2, respectively. Let (I,) be the side [8],_the_|nt¢rsect|on can be a very complex polyhedron, ren-
length of a cell on a location (velocity) dimension. For gerfiering it difficult to compute the smallest set of segments on

eral dimensionalityl, the integrated area efequals: the Hilbert curve constituting the polyhedron.
Tres=tgrow tgrowtH—Tres Furthermore, even if an algorithm was available to dis-
d d I
/O (+t-ly) dt+/0 (+t-1,)" dt (3) cover these segments, applying the 1D-range reduction to

Bdual_trees would suffer from another problem: the number
Lemma 1 Equation 3 is minimized whef}..; equalst,,...,+ of required 1D range queries increases exponentially with
H/2. the dimensionalityl. This is a well-known drawback of the
Hilbert curve, regardless of the shape of a search region.
Proof Let us consider the difference between the integratggr simplicity, we explain the phenomenon using regular
area achieved Witll,..; = t4,.,,, +t' for anyt’ € [0, H/2) regions, which are hyper-squares coveringells (of the
and that withT’..; = t4..., + /2. The difference equals:  partitioning grid) on each dimension (i.e., the square con-
y Heg tains f[otallbed cells), wheré is an integer smaller tham.
/ (I +t-1,)% dt +/ (I +t-1,)% dt Consider each cell such that (i) it is at the border of the
0 0 square, and (ii) the cell whose Hilbert value precedes that
H/2 of ¢ lies outside the square. The number of necessary 1D
—2/ (I4t-1,)%t range queries (for finding all the points in the square) equals
o exactly the number of cells satisfying the conditions (i) and
H—t 4 H/2 4 (ii). Unfortunately, there are on averat®@—! such cells in
/ U+t 0y)" dt — /t (U +1-1,)" dt the square [11]. Note that the valuelofepends on the res-
% I I olution A\. A typical value of) is 10 (i.e., each dimension
)= (= =)+ 1, =) consists of 1024 cells), and thiss at the order of 100 for a
2 2 2 search region covering 10% of each axis. In this case, issuing
b*¢—1 1D range queries becomes prohibitively expensive.

H/2

> (g o t/)(l + 1y

=0

which indicates thal’..; = t 40, + H/2 produces a smaller
area tharl,.; = t,.00 + t'. By Symmetry, we can show Motivated by this, we devise an alternative query evalua-
that the same is true fdf,..; = tyr00 + H — t' (given any tion strategy forB4 e -trees. We avoid generating 1D range
t' € [0, H/2)), thus completing the proof. O queries, and instead focus on developing algorithms for che-
cking whether the subtree of an intermediate entry (@f#!-
Rigorously, Formula 2 captures the access probability wée) may contain any object satisfying a spatiotemporal pred-
a cell for a timestamp range querwvith gt uniformly dis- icate. As we will see, this strategy allows us to re-use the
tributed in(tgrow, tgrow + H]. HENCeT,c; = t4r0w + H/2  existing algorithms of TPR-trees for query processing with
minimizes the query cost only in this scenario. The analysiz“!-trees (applying simple modifications). Furthermore,
for general queries is more complex. Nevertheless, the abageshown in Section 4.5, our approach suppeibl search
analysis shows that,..,, is most likely not an appropriatemuch more efficiently tharB*-trees. In particular, we re-
value forT,.. As a heuristic, we s€ll,. ; t0 ¢4, + H/2in  trieve the nearest neighbors in a single traversal of the tree,
any case, which leads to lower query cost thayy = ¢,.., as opposed to the iterative solution (with multiple range que-
in all of our experiments. ries) for B*-trees.
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4.4 The MOR Representation of an Intermediate Entry level -1 & Y1 X Y

. . . level -2 e—o——o — oo
Next, we show that each intermediate entigan be associ- X Y2 Xy
ated with a set of MORS$ry, 72, ... 7, } With the following o Vi X
property: at any future timg the location of any objectin level 0 7(\ /’3/
the subtree of is enclosed in the extents of some MOR. For- perfect MORs

mally, there exists at least one MOR(for somei € [1,m])
such thatr;(¢) coverso(t). These MORs are crucial for theFig. 6 lllustration of the proof for Lemma 2
query algorithms presented in the next section.
In fact, as a property of thB"-tree, an intermediate en- ,
try e is implicitly accompanied by an intervéd.h, e.h;), e add toS all the MORs of level — 1 whose Hilbert
which contains the Hilbert values of all the objects in thiitervals fall in[z, y]. Since each interval has a length of
subtree. We refer toe[hy, ¢.h-j) as theHilbert interval of 2>, there canbe at mogf2"2 —1) /2!~ 121 = 4?1
e. Each integer in the interval corresponds to a cell in tfsICh MORs. If we remove these intervals framy], the re-
partitioning grid. As mentioned in Section 4.2, each cell cdRaining part of:z, y] consists of at most two disjoint inter-
be regarded as an MOR, and thugan be trivially associ- V&!S [z, 41] and[z1,y], appearing at both ends Gf, y] re-
ated withe.h_ — e.h. MORs. However, the number of theséPectively, as shown in Figure 6. Each of the two remaining
MORS can be* 24 in the worst case (i.e., all the cells in thdntervals is shorter thaf!~1) 27, _
grid), such that the resulting query algorithms incur expen- Letus recursively decompoge y,] into MORs of lower
sive CPU cost. In the sequel, we present an approach t§€!S- If[z, y1] is already an MOR of level — 2, no recur-
associates with at most(4? — 1) - (2A — 1) MORs. sion is necessary. Otherwise, we addstall the MORs of
Our goal is to breake.h,, e.h) into several disjoint in- 1€vel I — 2 (whose Hilbert intervals are) fully enclosed in
tervals, such that the union of the cells in each interval & v1)- By the reason mentioned earlier, at mSt- 1 such
a hyper-square in the dual space. For example, in Figurd¥ORs are added. We remove their intervals fromy, ],
[23, 49] can be broken into 6 intervals [23, 23], [24, 27], [28Vhich has only one remaining paut y.] with length shorter
31], [32, 47], [48, 48], [49, 49] satisfying the above condithan2!~*2¢ (there is not any remaining interval pf, 1]
tion. In particular, the cells in [23, 23], [24, 27], [32, 47PN the right end, becaugg must be “aligned” with a per-
constitutel x 1, 2 x 2, and4 x 4 squares, respectively. EacHfect interval of level —2). The decomposing process can be
resulting square can be regarded as an MOR whose proféReated at mosttimes, such that eventually we obtain an
tion on a location/velocity dimension is identical to that ofttervallz, ] of length at most — 1 (see Figure 6), corre-
the square (e.g., [23, 49] can be associated with 6 MORsPoNding to at most® — 1 level-0 MORs (i.e., an MOR for
We say that an MOR iperfectif each integer ifir, y/]). _ _
- ) ) . Since the same situation also applies to intef¥al y],
—itis _qrea}ted by &d-dimensional square of cells in the; is clear that, at each level (0 < i < [ — 2), at most
partitioning grid, and _ 2-(4%—1) MORs are created ifi. At level -1, as mentioned
— the cells have continuous Hilbert values. earlier, at most? — 1 MORs are obtained. Hence, the largest
In fact, a set of cells can produce a perfect MOR if argize of.S equals(4? — 1) - (2 — 1). Given that is at most
only if their Hilbert values constitute an interval of the forn1\4c(lthe reSO')l\JUO” of the grid), the size ¢fis bounded by
—1)-(2X—1). g
[a-27%¢, (a4 1) - 2724 — 1] (4) ( a )
Figure 7 presents the algorithm for finding the perfect
MORs of a non-leaf entry in arbitrary dimensionality. Note
. ) ! fhat the actual number of MORs produced is usually much
the above form with = 2 andi = 2, and hence, it leads t0 agyjler than the upper bound stated in Lemma 2 (e.g., the
perfect MOR. number 6 for the interval [23, 49] in Figure 4 is significantly
Lemma 2 An intermediate entry can be associated with [0Wer than the upper t_)our((;dl —1)-(2-3-1)=15). The
at most(4 — 1) - (2\ — 1) perfect MORSs. algorithm terminates i (4% - ) time. Sinced =2 or 3in
most real applications, the computational cost is essentially
Proof Since all the MORs in this proof are perfect MORdjnear to the resolution.
we omit the word “perfect” for simplicity. We say that an  An important implication of Lemma 2 is that &%"2!-
MOR is of level: if it is generated by an interval of For-tree is as powerful as a TPR-tree in terms of the queries that
mula 4. Let[z, y] be the Hilbert interval of, andS the setof can be supported. Intuitively, since the intermediate entries
MORs that will be associated with Consider, among the of both structures can be represented as MORSs, an algorithm
MORs whose Hilbert intervals contain, y], the oner of that applies to a TPR-tree can be adapted for2f¢! -tree.
the minimum level. The lemma is trivially correct ifz,y] Adaptation is needed only because an entry of a TPR-tree
is identical tor (i.e., S has a single MOR). Next, we fo- has a single MOR, while that of B*“*!-tree corresponds to
cus on the case whefe, y| is a proper subset of, i.e., the multiple ones. In the next section, we demonstrate this by
length of[x, 3] is shorter thar2!24, developing the range arkdNN algorithms.

wherei is an integer in [0)\], anda another integer in [0,
22d-(A=9) _ 1]. For instance, [32, 47] can be represented
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Algorithm Decomposéa Hilbert IntervatHZ)
. S:=@; Il S will contain the decomposed perfect MORs eventually?k']

1 for which we are not aware of any existing solufiom
2. ro:=the MOR covering the entire dual space;
3

e sequel, we provide a method that obtalps,(r,¢) in

. wo:= the interval of the Hilbert domain; O(d) time. o .
4. L:={(ro,wo)}; /I Lis a FIFO queue Let d,,i () be the minimum distance betweeft) and
5. while (L is not empty) _ q(t) at a particular timestampy Denote - [i](¢), r4[i]()]
?- remove the f;gfleletrf?em’ w) of L; /I is a perfect MOR and ¢[i](t) as the projection of(¢) and ¢(t) on thei-th
- I (wintersects]) then dimension, respectivelyl(< i < d). We used;,[i](t)
8. if (w is covered byH7Z) then gl . \
9. addr to S: to represent the minimum distance between the 1D interval
10.  else if(the length ofv > 1) then [ (2] (¢), 74[i] (¢)] and valueg[d](t). Hence:
11. divider into 4¢ identical perfect MORs; d
12. for each resulting MORr’ and its Hilbert interval,’ 2 - iy 2
13. add(r’,w’) to L; dmin (1) = Zl (dminli](£)) ©
14.return S; =
To derived,,;, [i](t), we need to solvefrom the follow-
Fig. 7 Decomposing a Hilbert interval ing equations (each a linear equatiornt)of
ri[i](t) = q[2](2) @)
4.5 Query Algorithms rald(t) = q[i](t) (8)

Let ¢ [:] be the solution of Equation 7, ard[:] that of

Let e be an intermediate entry, which is associated with Equation 8. We have:
MORS?1, g, ..., 7y (m < (47—1)-(2A—1)), returned by the ; [i](t) =
algorithm of Figure 7. Given a range querythe subtree of , N . . .
e i% pruned if ngri (1<i<m) intergec?s] dlﬁing the query [ "+11(8)—alil (8) if (#i-[i] <] anddt < teli)
intervalgt. The processing algorithm starts by checking, for | F;r (t-[d] > ] ag b > tafal)
each root entry, whether any of its associated MORs inter- it (¢ 2] <t4[2] andt € [ti-[i], 1]} 9)
sectsq during gt (in the same way as in TPR-trees [15]). If . - or (i [i] >ti] andt € [t4[i] - [1]])
yes, the algorithm accesses the child node, afrrying out gl (t) —r[i] () If (8- [1] < ¢4[i] and?t > £4[d])
the process recursively until a leaf node is reached. Then\ or (t-[i] > t-[i] andt < #i-[1])
detailed information of each object encountered is simply Therefore,t[i] andt,[i] partition the time dimension
examined against the query predicate. into 3 disjoint pieces such that, wherialls in each piece,

We proceed to discuss nearest neighbor retrieval. Fordni»[i](t) can be represented as a piecewise linear function.
MOR 7, let dp,in (7, q) be the minimum distance betweerC_O_mblnl_ng Equations 6-9, we can see that the time axis is
rectangler(¢) and pointg(t) for all ¢ € ¢t. For an interme- divided into6d segments by thed valuest,-[1], t4[1], ...,
diate entrye associated withn MORS 1, ..., 7., we define t-[d], t4[d] such that, wher is in each segment ,,,(¢)

theminimum distancé,..;, (e, q) betweere andq as: (in Equation 6) is a quadratic function of(i.e., totally 64
guadratic functions).

m Recall that our goal is to obtait),,;,, (r, ¢), which equals
dmin(e, q) = min (dmin(ri, q)) (5) the minimum ofd,;, (t) fort € gt. To findd,., (1, q), it suf-
=1 fices to compute the minimum of each of thé quadratic
functions, andd?,,,,(r, q) is the smallest of thesed min-

Given an intermediate enteyand an object in its sub- imums. Solving the minimum of a quadratic function in-
tree, we havel,in(e,q) < dmin(0,q), Whered,,;»(0,q) is  volves only trivial mathematical manipulation, and can be
the smallest distance betweerandq during ¢t. Similarly, ~achieved inO(1) time.
if ¢/ is an intermediate entry in the subtree «fit holds
thatd,,in(e,q) < dmin(€, q). These properties permit us to
deploy the “best-first” algorithm [5] fokNN search with a 5 Theoretical Evidence about the Necessity of
Biual-tree. Specifically, the algorithm uses a heégo or-  Capturing Velocities
ganize all the (leaf/non-leaf) entries encountered in ascend-
ing order of their minimum distances to Initially, all the In this section, we analyze theoretically why and when it is
root entries are inserted 16. Then, the algorithm repeatedlyimportant to capture velocities in indexing moving objects
processes the entpthat has the smallest minimum distancevith a space filling curve. For this purpose, we derive ana-
among the elements if. Specifically, ife is an intermedi- lytical formulae that mathematically reveal the behavior of
ate entry, we en-heap the entries in its child node; otherwige B!~ and B*-trees, subject to the following simplifica-
(e is an object), it is returned as the next NN. The algorithfion and assumptions:
terminates as soon ambjects have been reported. 2 The closest method was presented by Benetis et al. [2] for the prob

It remains to clarify the computation @f,.;n(e,¢). BY 1o of continuous NN searcFr)L Applying{heir derivation in our cgse,

Equation 5, this is equivalent to calculating the minimurRowever, results in formulae that are much more complex than our re-
distanced,,;, (r, ¢) between an MOR: and a moving point sults.
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— Simplification 1. Although each B¢~ or B*-) tree ure 4), whose projection on each (location or velocity) di-
consists of twoB™-trees, due to symmetry we discussnension covers/2! of that dimension.

only one of them. In particular, we consider that fBré - _ _
andB*-trees both contain B+ -tree with the same refer- Proof By Assumption 2, the parent entry of the first (left-

ence timeT},.;, and aim at comparing the query perforMost) leaf node has a Hilbert interval [B7~924), the entry
+. i L i1 of the second leaf has an interval{—"-2¢, 2.2(x~9)-24) and

mance of the twd3*-trees. Without ambiguity, we still : .

use the namé&?“«! and B* to distinguish the two trees, SO ON- In general, the entry of theh (1 < 7 < Np) leaf has

respectively. an interval

— Simplification 2. The Hilbert values for both indexes[( 1) 9(A—i)-2d j.2(>\—7‘,)~2d 1
are computed using a partitioning grid with resolutian ’

This is reasonable because 10 is enough for ensuring  Note that the above formula is consistent with Formula 4,
that very few objects have the same Hilbert value. by settingz to j—1, and replacing théin Formula 4 with\—

— Simplification 3. Since the entries oB?- and B*- i. Therefore, the intermediate entry is associated with a sin-
trees have identical formats, the two trees on the saigle perfect MOR, which contairg*—"-2¢ cells in the par-
dataset have the same space consumption. We consiilining grid. Since the MOR is a hyper-square, its edge on
that the numbefV;, of leaf nodes in eacBT-tree equals each dimension contair(Q(A—i)'Qd)%d = 22— cells. Given
2724, wherei is an integer at most. that there are totallg* cells on a dimension, the length of
In practice, Ny, is proportional to the dataset cardinalitythe edge accounts far—7/2* =1/2% of a dimension. O
and therefore, this simplification implies that the cardi-
nality equalsN;, - f, where f is the node fanout (the  We illustrate the lemma using Figure 4 (whelre 1 and
average number of entries in a node). In practjcis,in- A = 3). Suppose thad;, equals2*? = 16 (i.e.,i = 2 in
dependent ofV,, and equals 69% of the node capacityemma 3). As a result, the parent entry of the first leaf node
(i.e., the largest number of objects in a leaf node). has a Hilbert interval [0, 3], where the value 3 is obtained as

— Simplification 4. We measure the query cost as the nurg{* =2 — 1. As in Figure 4, this interval covers 4 cells that
ber of leaf nodes accessed (in practice the intermedi#@&m a square, whose side length is 1/4 of the corresponding
levels of aB+-tree are usually memory-resident). dimension (as stated in Lemma 3). It is easy to verify that

— Simplification 5. All the queries are timestamp queriesthe same is true for all the leaf nodes.

We useqt, to denote the query timestamp (recall that Without loss of generality, assume that each location di-
gt is the starting time of a general query interg8l. mension has a unit length, and each velocity dimension has

— Assumption 1. The duals of the objects are uniformlya lengthV. Let e be the parent entry of any leaf node, and
distributed in the dual space. Furthermore, the query disits associated perfect MOR. Denaltg(Ly/) as the projec-
tribution is also uniform; specifically, for rangéNN), tionlength ofr on alocation (velocity) dimension. Lemma 3
the search region (query point) is randomly distributegfates that:
in the data space. L=1/2

— Assumption 2. As discussed in Section 4.4, each inter: i
mediate entry is accompanied by an interval of Hilbeft” — v/2
values. Then, the interval for the parent entry of each Recall thatL describes the size of at the reference
leaf node coverg*~")2? values, i.e. 5 of the Hilbert time 7., of the B4e!-tree. Hence, ifl.(qt.-) is the extent
domain (because of the previous assumption). of r(gti-) at the query timestamg,-, we have:

The above assumptions are needed for obtaining rig@itgt, ) = L + Ly - (gt — Trey) (20)
ous equations that are not excessively complex, and but can ] ] ) ]
capture the behavior of alternative structures. As we will see, AS discussed in Section 4.5, the child node ofeeds to
our findings are highly intuitive, and are valid also in gener€ accessed if and only:igi;-) intersects the query region
scenarios (as demonstrated in the experiments). Section% Ve concentrate on the case that the region is a square with
first develops a cost model that quantifies the overneadSii€ lengthZq. By Assumption 1¢ uniformly distributes in
range search for th8?ua!-tree. Then, Section 5.2 present&e data space, in which case the probabiify, thatr (gt )
a similar model for theB*-tree, and compares it with that@ndq intersects equals (this is based on the well-known re-
of the B%! tree. In Section 5.3, we extend the analysis &yt [18] on the intersection probability of two random rec-

kNN search. tangles):
Pacs = (L(qtr) + LQ>d (11)
5.1 The Range Search Cost®f“*-Trees whereL(qty-) is given in Equation 10. The subscript Bf..
indicates thaf?, ., is also the probability that the child node
Our derivation is based on the following lemma. of e is visited in answering. Thus, the expected query over-

head/Ogu! is computed as:
Lemma 3 The parent entry of each leaf node is associated
with a single perfect MOR (returned by the algorithm of FigfO%“! = N . P,., (12)

range
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where Ny, is the number of leaf nodes. Recall thd; has
two equivalent representations, i.e., it equf&’, or can be
written asN/ f, whereN is the dataset cardinality, arfdhe
node fanout. Solving from the equatior2’2¢ = N/ f leads

to 2¢

can be resolved into a closed formula:
dual __
IOrggge -

() (5)

5.2 Comparison betweeR?“'- and B*-trees

1/2d
+V.

N 1/2d

f

f

N

d

Before analyzing the performance of tli#-tree, we first

(N/f)za.Combining the above analysis, Equation 12

where V' is the length of a velocity dimension. Note that
Equations 10-12 are still valid fas*-trees (replacind. and
Ly with L’ and L}, respectively). Based on these results,
we obtain the formula for the cost é&f*-trees:

((

where the semantics of the variables are identical to those
of Equation 13. Comparing the cost modelsmf *- and
B*-trees, we observe the following characteristics of the two
structures:

N
range — 7

f

N

1/d d
10 ) +V (gt — Trep) + LQ) (14)

— The query cost increases monotonically wjth — T, ¢,
i.e., predicting farther into the future is more expensive.

— The resolutiom\ of the partitioning grid does not affect
the query performance, as long. ass sufficiently large.

present an alternative strategy for processing range searchjf ) is too small, numerous objects have the same Hilbert

which isnever slowethan the original algorithm [6]. Recall
that theB*-tree adopts a Hilbert curve in thiedimensional

value, and they must be searched altogether even if only
one of them may qualify the query.

spatial space (excluding the velocity dimensions). The curve If ¢t = T,..; (the query timestamp coincides with the ref-

is also defined over a partitioning grid, where eachceén

erence time of the tree) /2" -tree actually has better per-

still be regarded as an MOR. In particular, the SBox of the formance (the ternif /N)'/¢ in Equation 14 is smaller

MOR is simply¢, and its VBox covers each af velocity
dimensionsentirely.

For any algorithm objects whose Hilbert values are equ
to those ofc must be accessed, if and only if the MQRn-
tersects the search regigrsometime in the query interval
qt (in order to prevent false misses), based on the reas

than (f/N)'/2? in Equation 13). In general, 8*-tree

better preserves objects’ spatial locality, since the Hilbert
al curve of anB%altree attempts to capture also the lo-

cality along the velocity dimensions. Processing a query

with gt = T,.. ¢ requires only objects’ locations, in which
on-case aB”-tree incurs lower cost thana?**!-tree.

ing elaborated in Section 4.2. This observation implies that As ¢t increases, the efficiency of thB*-tree deteri-

the range query algorithm dg?“!-trees can be applied to

orates considerably faster than that of thé“*-tree.

B*-trees as well. Specifically, we associate each intermedi- Whengt, reaches a certain threshalg, the B%“!-tree

ate entrye of a B®-tree with a set of MORs, and visit its
child node only if any of the MORs interseatsluring gt.
A result similar to Lemma 3 also holds f@*-trees:

Lemma 4 The parent entry of each leaf node in tBé-tree

is associated with a single MOR, whose projection on each

location (velocity) dimension coveis'22¢ of (completely)
that dimension.

Proof The reason why the MOR covers each velocity d

starts outperforming its competitor, and the difference
becomes larger ag grows further. We can quantify
te as the value ofit, that maked 0% equivalent to

range

107, 4¢» OF specifically:
1/2d
1
to = ref""*' (f>
V AN

—Jf v (i.e., the length of a velocity dimension) is large,

mension completely has been mentioned earlier. To prove ; is small, meaning that &%!-tree is better than a

the lemma regarding the location projections, we need As- p=

sumption 2, i.e., the Hilbert interval efincludes2(*—%)-24

values. Similar to the proof of Lemma 3, it is easy to show
that the2(*~9-2¢ cells in the interval constitute a hyper-

1

square, whose edge, therefore, contditis—"2?)a (note
that the outmost exponent is nﬁltbecause the Hilbert curve
concerns only location dimensions), that 28~ cells.
Given that there aré2?*?)!/4 = 22X cells per dimension,
the length of the edge accounts fo12?¢ of the dimension.

o

Following the notations in the previous section, we u
L’ (L},) for the projection length of the MOR e&f, and ac-
cording to the previous lemma:
L'=1/2%
v=V

-tree even if the query timestamp,.- is very close

to T, r. This confirms the intuition that ignoring veloc-
ities is feasible in practice only if objects have similar
motion parameters. In an application where objects can
have drastically different speeds, tii¢ !-tree is the
more effective solution.

5.3 Discussion otNN Search

sIgext, we will show that the previous observations for range

Search also hold fokNN retrieval, due to an inherent con-
nection between the two query types. GivegNN query

q, let dist be the distance between theth NN and point

q at the query timeyt. Then, the cost of &% -tree (in
solvingg) is identical to that of a range query with the same
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qt-, whose search region is a circle centering atith ra- Al90rithm Aggregate-Rangémoving regiory, query intervalt)

d'u_SdiSt' Thisis a well-known property _Of the beSt'_f'rSt a|'2: Tr?lltfélsltze% zétgiﬁgg?{a\s\?hgfsg]Zlglrjneer%t;e;ruétof the form (entkyy)
gorithm [5]. In fact, the algorithm is optimal, meaning thag. for eachentrye in the root
any other method deploying tig#“*!-tree to processi NN 4.  rsltese:=rsltes: + nquatity (4, €);
query will incur at least the same overhead. 5. add(e, nquatify(q; €)) to H; _
Using the technique (illustrated at the beginning of Se§= W';'elfngfe'fhgottoe”;?ggethe “Sfror}a;,”m terminated the query)
tion 5.2) of associating an intermediate entry iB&-tree g rsltest:rslteg - est;m’ est) ’
with a set of MORs, the best-first algorithm can also be ap- read the child noded of ¢;
plied to this index for answering NN query optimally 10. if (nd is a non-leaf nodethen
(in the sense as mentioned earlier). In fact, this algorithfh-  for eachentrye’ € nd
(traversing the tree only once) is expected to significantyg: (el'm‘?r_se‘;tsl duringgt) then
outperform that of [6] that requires numerous range querigs; agé(tj‘";—ri tf”z q+ 67)‘1)“‘?5;-_}.(‘1’ <)
With this improvement, th&NN cost of aB?-tree is also 15  else// nd is a leaf node ’
identical to the overhead of a range query, formulated in the.  for eachobjecto € nd
same fashion as explained earlier %! -trees. Hence, the 17 if (o satisfiesy) then
relative behavior oB?“a!- and B*-trees is analogous to that®: rsltest:=rsitest + 1;

for range search. Fig. 8 Progressive aggregate range search algorithm

6 Progressive Query Processing the query processing if the current estimate is satisfactory

Conventional algorithms return exact results to a user at (a3 it has converged to a roughly constant value). Conver-
9 nce can be automatically detected by analyzing the mov-

umn(;irpgl?fdfgigsirlfs %gy:gee(ih-rligﬁx dgﬁihrzaoéttr(]e;nrl]n (% average of the last few results. If the moving average sta-
9 ) ) zes, we can terminate, with confidence thatt..; will

progressive algorithms return informative results to a i t change significantly afterwards. Such techniques for au-
early, and progressively refine them. The user can termingl, .. - +ermination could be particularly useful to a query

of range and:NN search. Such queries can be posed by tpﬁén remains to clarify the computation ofguairy (g, ©)-
g

e 4 en the node fanouf, we estimate the number of ob-
end users of a database, or by the query optimizer to estm} s in the subtree of as f1¢vI(©), wherelevel(c) is the
query selectivity efficiently. '

level of e. Recall thak is accompanied by a Hilbert interval
HZ(e), and it is associated with a sgtof perfect MORsr

6.1 Aggregate Range Search (returned by the algorithm of Figure 7), each of which also
corresponds to a Hilbert interval (in the form of Formula 4)

An aggregate rangejuery retrieves the number of objectd?Z(r). Consider the set of objects (underlyinpthat are
that W|” appear in a moving rectang@uring a t|me inter- COVe.red.by an MOR Of S In the dual Space. We estimate the
val gt. For instance, “find the number of aircrafts expected &grdinality of the set ag'“></() . |HZ(r)|/|HZ(e)|, where
be within 20 miles from flight UA8O in the next 10 minutes”/HZ (e)| and|HZ(r)| are the lengths of the Hilbert intervals
The query can be processed as a conventional range quifye andr respectively. LePr(q, r) be the probability that
followed by counting the number of qualifying aircrafts. Hef) object in the set satisfiggit can be calculated using the
we propose a progressive algorithm that uses the Hilbert fRfmulain [17] for predicting the range search selectivity on
tervals of the intermediate entries iB4“!-tree to progres- 'andom moving objects). As a resulty.auify (g, €) can be
sively compute estimates for the result. computed as:

Figure 8 shows the pseudocode for the algorithm. Let
Nguati 4 (0, €) be the estimated number of qualifying object8quarify (2, €) = (fle”el(e) -Pr(q,7)
in the subtree of entry. First, the root is loaded, and the vres
estimates for its entries are summed up-étt.,;, which is
the first approximation of the query result (we will discuss
how to deriven,uqiify (g, €) shortly). The root entries are6.2 kNN Distance Search
added to a max-heaf. At each step, the entryin H with
the largestiguaiify (g, €) is de-heaped, and its contribution inGiven a moving poing and a time intervayt, a kNN dis-
rsltes IS replaced by the estimates for the entries in its chitdncequery retrieves the distance of theh nearest object
node (these entries are also inserteddin The rationale is from ¢ (where the distance is defined in Section 3). For in-
that by refining entries with large estimates early, we catance, “what is the shortest distance between flight UA80
reduce the estimation error as soon as possible. and any other aircraft in the next 10 minutes?”. The pro-

The algorithm continuously improvesit.,; to the ac- gressive version of the query provides early estimates of the
tual result. At each step (Line 6), the user can discontinédIN distance, which are iteratively refined.

_ HI(?‘)I)
[HZ(e)]
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Figure 9 presents the details of the algorithm, which m ?r:ﬁgﬁ?z’;NaNr;q?jfﬁ,aer;ﬁ%ﬂ”Seprﬁ?,ﬁ?g ?#fr% il‘gtfrrzv(aerkﬁt)rk )i
tains an array}’ containing the estimates for the distances (. cach; < (1, k] eyl
of the £ NNs. Specifically, the-th (1 < ¢ < k) element of 3 W[Z-],emry;;g; W{i].dist:=oc;
W has the form ¥V [i] .entry, W [i].dist), whereW[i].entry 4. add (root, 0) toH; _
is thei-th nearest object currently known or an intermedp- while (H is not emptyA the user has not terminated the query)
i i remove the tope, arst) element Oli1 ;
ate entry whose subtree may contain such an object, dhd the tofe, dist) element ofif

W i].dist equals the predicteith nearest distance. Initially, g if Wil.entry = e for anyi then

for ji=itok — 1
Wli].entry = @ andWi].dist = oo for all elementsV[i]. 9. I/I;[j].entry;:WU + 1].entry;
The algorithm operates like the best-first NN algorithm Wj].dist:=W|j + 1].dist;

[5], maintaining a min-heapl of the visited entries by their 10.  Wk].entry:=a; W k].dist:=oc;

2 - : : 1. read the child noded of e;
minimum distances from (computed as discussed in Sec%z_ if (nd is a non-leaf nodehen

tion 4.5). Before an entry is de-heaped the user cantermizs”  ¢or each entrye’ € nd

nate the algorithm, if s/he is satisfied with the current valyg. S:=Decompose(the Hilbert interval of’);

of Wk].dist. Lete be the de-heaped entry. If the child nodes. dmaz (€, q):=max,es (Mine gt dmaz (q(t), 7(1)));

of e is a leaf, we compute the distance for all the objects16. if (dmae(e’,q) < Wk].dist) then

encountered. Otherwise (the child ©fs a non-leaf node), 17- W i]:=the element iV’ with the leastV [4].dist larger

than or equal talist;

for each entry’ in the node, we estimate the largest possiblg, for ji=k downtoi + 1
distancel,,..(¢', ¢) between; and any object in the subtree /lupdateW” with pair (¢/, dmasz (€', q))

of ¢/. Towards this, the algorithm obtains the Saif perfect 19, W(j).entry = W[j — 1].entry;
MORs associated with’. For each MOR- € S, we com- Wj].dist =W[j — 1].dist;

pute its maximum distance frogas a function of (by a set 20 Wi].entry:=e’; W[i].dist:=dmaz (€', q);

. P : : if (dmin(q,€’) < W]k].dist) then
of equations similar those in Section 4.5), and then take add(e’, dynn (g, ¢')) 0 H:

minimum value of this function during € qt. Thus,dist iS 53" qise// nd is a leaf node
bounded by the largest of the minimums for all the MORS4.  for eachobjecto € nd

or formally: 25. if (dmin(q,0) < Wk].dist) then
26. updatél” with pair (o, dmin (g, 0)) in the same way as in
dmaz (6/7 Q) = Imax (min dmaz (Q(t)a T(t))) Lines 18-20;
reS \ teqt

: N e . .Fig.9 P ivé:NN di Igorith
W is updated whenever we (i) find an object whose dis? 9 Progressivé:NN distance algorithm

tance tog is smaller thariV[k].dist, or (i) can assert that

such an object exists underneath an intermediate efitey.,

dmaz(€',q) < W]k].dist). The subtree oé can be pruned 7.1 Data and Query Generation
pruned ifd,,;» (e, ¢) (Equation 5) is at leadV/[k].dist.

We close this section by pointing out that the above agve generated spatiotemporal data following the methodol-
gregate range aneNN distance algorithms also apply to thengy of [16, 13, 6]. The data space is two-dimensional, where
B*-tree. However, the structure does not provide good resetich dimension has a domain [6f1000]. 5000 rectangles
estimates until nearly the end of execution, since its intermagre sampled from a real 128K spatial dat4s#teir cen-
diate entries do not incorporate object velocities. troids model positions of airports. Each object is an aircraft,
which moves along the line segment connecting two air-
ports. Initially, each aircraft is positioned at an arbitrary air-

7 Experiments port, and randomly selects another airport as the destination.
At the subsequent timestamps, the aircraft will move from
In this section, we experimentally compare thé*-tree the source airport to the target one, at a speed that is gener-
against the best indexes of the 3 categories in Sectionagd in the range [0,5], following a Zipf distribution (skewed
STRIPES [13] (representing structures based on dual trangwards 0). As soon as the object reaches the destination,
formations), the TPRtree [16] (an enhanced version of thét chooses another airport as the next destination, at a new
TPR-tree), and thés*-tree [6]. All experiments were per-speed obtained in the same way as described earlier. At this
formed on a machine with a Pentium IV 2.3GHz CPU angioment, the aircraft updates its motion parameters in the
512 Mb of memory. The disk page size is fixed to 1K bytesinderlying index, including a deletion (erasing the previous
We use a relatively small page size to simulate realistic seghtry) followed by an insertion. In addition to these updates
narios where the dataset cardinality is much higher. Unlgggwused by switching destinations), an aircraft also issues an
otherwise stated, we do not use memory buffers for consegdate 25 timestamps (E) after the previous one.
utive queries or updates. All reported 1/0O costs correspond An index with time horizonH = 27 = 50 time units is
to page accesses. created for each dataset. All objects are created and inserted

3 For STRIPES, we store non-leaf nodes as tuples in a relation ﬁﬂ:to the index at time. At each update, exactly one object

and apply the “half-page” storage optimization of [13] for leaf node&1Sertion and one deletion is performed. Queries are issued
Sibling half-page nodes are packed into the same physical disk page;
in order to minimize 1/0s during traversal. 4

available ahttp://www.rtreeportal.org/datasets/spatial/US/RR.zip
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after H/2, when two B -trees,B*-trees, and STRIPES- M ‘ SWES%
quadtrees are used for indexing moving objects (as opposéd| L e

to a single TPR-tree). The resolution level for the Hilbert =

[
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Update CPU (ms)
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curves of B4al-trees andB*-trees is10. We measure the =

query cost, by averaging it over a workload of 100 queries, , .

issued at different current time,,,, as the index runs. A~ dwene 0 0T Db * 0
moving (square) range quegys generated with the follow- (8) /O cost (b) CPU cost

ing parameters: the initial spatial extenslen (default50);  Fig. 12 Update cost vs. number of updates
the velocity with exteny.Vien (default6), centered at a ran-

dom number in—5, 5], and the query time interval length
gtlen (default15). qt. is a random instant ift,,o., tnow + Other three indexes increase only slightly with each up-
40 — gtlen]. The initial spatial location of follows the data date only searches a single path. TB&'- and B*-trees
distribution. For movingtNN queries, parametet.Sien is have the lowest cost as they are both based on the balanced
replaced byt (default50). BT-tree. STRIPES has higher update cost because the PR
bucket quadtree is unbalanced; on the average, a longer path,
compared to thé34 !/ B*-tree, is traversed during updates.
Finally, we study whether the update performance de-

grades over time. At timestantl) 100K objects are inserted

: . : . o_all indexes. We record the update performance of the in-
Figure 10a shows the sizes of the different indexes, aédéaxes after every 5K updates. Figure 12 shows the update

function of the numberV of moving objectsB*'-, B~ gst with respect to the number of updates. Observe that
and TPR-trees have similar sizes. On the other hand, d e update cost (both /O and CPU) of the TPRee in-

to the low storage utilization of PR bucket quadtrees [1
STRIPES occupies much more space. Statistically, pa
that store STRIPES leaf nodes are only 33% full on t

average, whereas the node occupancy for other mdexe% ns. On the other hand, as we will see in the next exper-

approximately 69%. As verified in subsequent experimen : ;

the size difference affects negatively the query performan'ggems' TPR-trees perform co_nS|stentIy better than ot_her

of STRIPES. stfuctures at queries, thus their query cost should be inter-
preted as a lower bound when compared with other methods

(for update-intensive applications).

7.2 Space requirements

égases slightly with time. The other indexes are not sensi-
ve to the time of the updates. Summarizing, the high update
qgt of TPR-tree makes it impractical for real-time applica-

7.3 Update Performance

7.4 Query Performance
We compare the update performance of the indexes with re-
spect to various factors. Figure 10b shows the average &gure 13a shows the performance of range queries with the
date cost as a function of time horizéh As H increases, default parameter values, issued:af,, as the index runs.
the overlapping of entries in TPRree increases and moreThe periodic behavior is caused by the use of two indexes.
pages are accessed during updates. The other three indéx&$' has good performance and it only has small fluctu-
are not affected byH; only a single path is traversed duration of query cost. Figure 13b shows the performance of
ing updates. Figure 11 shows the average update cost ofttie indexes on the default range query workload as a func-
indexes as a function of the data sixe The update cost tion of reference timd,.;. The reference tim&,.. s for the
of the TPR-tree is much higher than that of other indexe8?-, B*-trees, and STRIPES can directly be set to values
and increases witlV. As the non-leaf entries of TPRree other than the index creation tinig,...,. This technique is
overlap, multiple paths need be searched during an insertiwot directly applicable to the TPRree. TPR-tree performs
and deletion. In addition, the tree performs expensige active tightening of nodes during updates and its effect is
tive tighteningof the nodes during updates. The cost of thequivalent to implicitly update the reference time of affected
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nodes tot,,, (instead oft,...,). Observe that all indexes =
achieve better performance when ; is set tot g;.o., + H/2. I SRR R
The performance aB”-tree is too sensitive t®,.. ; because

the query region is enlarged by maximum velocitiesTAs
approaches,,.., + H/2, the average query enlargement i§ig- 16 Range query I/0

reduced. In all subsequent experiments, the vdlug for

all indexes (except the TPRree) is set td ..o, + H/2.

Figure 14a shows the performance of the indexes on tiéect of the time horizoril on the indexes. A query work-
default range query workload, by varying the skewness gaad was generated for each valuedf such thaytien is
rameterd of the Zipf distribution (for generating object ve-Proportional toff. Figure 16a shows the range query 1/Os as
locity values) from O (uniform) to 2 (highly skewed). Thea function of H. The B~ and TPR- trees have similar
performance of the&s®e!- TPR'- trees, and STRIPES im-Costs. TheB*-tree degrades fast witH, since the average
proves because the extents of VBRs (i.e., velocity boundifgery enlargement increases wiih STRIPES is not cheap,
rectangles) in leaf nodes become smaller when the numBEE to its large size.
of fast moving objects decreases. However, Bfetree has We also evaluate the performance of the indexes for dif-
little performance gain, since the small number of fast moferent values of the query parameters. Figures 16b, 16c, and
ing objects are still distributed in many different spatial ret6d show the I/O cost when we fix two of the parameters
gions, resulting in significant query enlargement. Figure 14bSlen, ¢.Vlen, andgtlen to their default values and we vary
shows the average number of perfect MORs decompogbd others. The query cost increases as any parameter value
and examined from an entry, as a function of query winAcreases. The performance gaps between the indexes are al-
dow sizeq.Slen. Full denotes the standard decompositiomost insensitive to the parameter values. Note that the case
method in Section 4.Lrogressivaepresents an optimizedfor gtlen = 0 corresponds to the special case of timestamp
version which combines with query predicate checking iueries.

a single step, employs branch-and-bound technique for fastWe then study the performance of the indexesifaN
computation and returns as soon as a MOR of the entrygigeries with respect to various factors. The timestapl
found to intersect the query. Consequently, faB4“!-tree algorithm for B*-trees proposed in [6] was adapted for mov-
entry, only a small number of MORs is computed and eiag kNN queries (i.e. fogtlen > 0). Note thatiNN search
amined on the average (6-9 as opposed to 102-106 MQ&shniques for STRIPES were not mentioned in [13]. We
in the full decomposition). This justifies why searching thapply the incremental NN search [5] with equations in Sec-
Bul-tree is computationally efficient. tion 4.5 for computing the minimum distance of STRIPES

Figure 15 shows the performance of the indexes on thetries from the query. Figure 17a shows the I/O coaiNil
default query workload, on datasets with different numbeueries as a function of the time horizéh of the indexes,

N of moving objects. The I/O cost increases linearly withy fixing £ = 50. The result is consistent with that of range
N. The CPU costs have similar trends. Next, we study tlggieries: bothB*-tree and STRIPES become much more ex-

(c) varyingq.Vien (d) varyinggtlen
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pensive than th&9“*!-tree asH increases. Figure 17b com-Fig. 19 Effect of a memory buffer
pares the indexes faMNN queries as a function df, by fix-
ing gtlen = 15. The query costs do not change much when
k is small compared to the data sie Figure 17c shows the Workloads, using the default parameters and data. The buffer
I/0 cost of kNN queries as a function aftlen, for k = 50. Offers significant performance gain for updates (similar for
Note that the case fatlen = 0 corresponds to the special@ll methods). During updates, more non-leaf pages than leaf
case of timestamp queries. The performance differences Bages are accessed, which have high chances to reside in the
similar to those of range queries; thé“s!- and TPR- trees buffer at subsequent operations. Note that fhetree in-
have almost the same cost, however, Bietree degrades dexes maintain their performance gain over STRIPES and
fast asgtlen increases. In general, the indexes show similfite TPR-tree for different buffer sizes. Regarding query
behavior inkNN queries as in range queries. performance, the effect of small or moderate buffers is negli-

Next, we study the effect of data dimensionality on th@ible. The reason s that (i) the sequence of queries is random
query performance of the indexes. Figure 18a shows the g(ie&-, queries do not exhibit locality, thus two consecutive
ry cost on the indexes as a function of the data dimension@teries only share a very small set of common leaf pages)
ity d, with default range querie®?u!-trees and TPRtrees and (i) 94% of the accessed pages by a query are leaf pages;
have similar query costs whilB*-trees have much higherthus, even when the whole set of directory pages is pinned
costs. The cost of STRIPES explodesiascreases becauseln the buffer, there is not large performance gain. In short,
a quadtree node split may generate ugtdeaf nodes (in the .buffer size does not affect the relative performance of
the worst case), dramatically reducing the disk utilization &#fe indexes.
the tree.

Figure 18b summarizes the performance of the indexes
for mixed workloads (with updates and range queries of dé-5 Accuracy of the Cost Model
fault parameter values), as a function of the query-to-update
ratio. The figure plots the average I/O cost @filgleopera- In this section, we test the accuracy of the cost models pro-
tion (either update or query) in the workload. The TRiRee posed in Section 5 for timestamp range queries. 100K mov-
is the most expensive index for applications with high upag points are inserted into 8% -tree and aB*-tree at
date rates. It starts outperforming thé-Bee and STRIPES timestamp). We applied a workload of 100 timestamp que-
at a ratio of 1:50 and the 8%-tree at a ratio of 1:5, sinceries and for each query we measured the actugland es-
the cost of a typical query is much higher than that of a sitimatedest; cost of the indexes. Therror rate [17] is then
gle update. Notice that thB?“*!-tree is the best index for defined agrr = S, |est; — act;|/ 3,05 act;.
update-intensive applications, while it has similar query per- Figure 20a shows the error rate as a function of the query
formance to the TPRtree. window size. A query refers to a random timestagp in

So far, we measured update and query 1/O without COfg,ow s tgrow + H] (H = 50). Observe that the maximum
sidering the existence of a memory buffer. Practical systemsor is only below 4%. The error estimates when varying
include buffers that reduce the 1/O cost, by exploiting thether parameter values (i.e., query velocity intemudien
common access patterns of consecutive queries or updaé@sl query timestamgy-) are similar and shown in Figures
We compare the performance of the indexes in the prese26b,c. Figure 20d compares the costs of the two trees, as a
of an LRU memory buffer (Figure 19), for update and querfynction of the time instanjt,- of timestamp queries. In ac-
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cordance to our analysis, there is an instan(x T,..; + 7 F19- 22 Progressive query estimates
in Figure 20d), after which th&<“*!-tree begins to outper-

form the B*-tree. A symmetric observation holds for value . .
y fhe result early. We also implemented versions of the pro-

of ¢t smaller tharl,..; — 7. Figure 20d corresponds to the i p o )

case which all object]; are stored in the same tree, in orde §SSIve algorithms for thB”-tree. Figure 22a shows the es-

verify our analysis. In practice, when the query timesta ated result of an aggregate range query with the standard

is close to theT,.; of one tree, it is far from th&..; of the arameter valuegy.Slen = 50,¢.Vien = 6, gtlen = 15)

other tree. The combined effect on two trees is thdte  ©" the default dataset, as a function of the number of nodes

outperformsB® for any timestamp read. The horizontal dotted envelope represents a 10% error
: bound from the actual result (5833). Observe that/zHe!-

tree converges much faster to a good estimate of the query

result, as opposed to the”-tree which does not reach the

envelope, even at the time needed by Bf&*!-tree to com-

gl_Jte the exact result.

Figure 22b shows the estimateNN distance as a func-

of the number of pages accessed for a query Wwith

,qtlen = 15 on the default dataset. Thg?“*-tree pro-

O ; S essively refines the estimated distance, however, it reaches
riodically every! timestamps (the recomputation interval), n estimate with small relative error slower compared to ag-

Each invocation retrieves the set of results for the dexfa egate range queries. Note that #HeN distance is very

timestamps. When object updates arrive, the set of res . : ;
is maintained continuously. Deletion of objects from the r@;ﬁa”' thus progressive algorithms are prone to relatively

sult set (e.g. for &NN query) may invalidate the result an arger estimates. Summarizing, aggregate range queries us-

the query needs to be recomputed for the Adinestamps. ing the B4 2! -tree can return informative results to the users
. . . early.

Figure 21a shows the amortized maintenance cost of a range

query (with default parameters) per update.lAscreases,

the query is re-invoked less frequently and the maintenance

cost is reduced. Figure 21b shows the amortized main8&€onclusions

nance cost of &NN query (with default parameters) per

update, as a function éf Maintenance costs of all indexesWVe proposed th&?*!-tree, a new spatiotemporal index for

first decrease and then increase. Wheéercomes too large, predictive search that combines features and advantages of

a large set of results need to be maintained and the prshate-of-the-art methods; dual space indexing (STRIPES[13]),

ability of removing an object from the result set increasefast query processing (TPRree [16]), and fast updateB{-

This invalidates the result set and forces the query to be teee [6]). We provided an analytical study, which justifies

computed frequently. We note that specialized methods tbe superiority ofB4“*'-tree compared to th&*-tree and

monitoring continuous (range [10] and NN [12]) queries at@ thorough experimental evaluation, which shows that our

preferred over general-purpose spatiotemporal indexes. method has the best overall (query and update) performance
In the last set of experiments, we demonstrate the effe@mpared to all three pastindexes. Finally, we proposed pro-

tiveness of progressive queries B“*-trees in estimating gressive versions of aggregate (range AN#l) query algo-

7.6 Progressive and Continuous Queries

Next, we study the performance of the indexes on conti
uous queries, by following the evaluation approach in [GI]i'on
The objective is to maintain the query result at any ti

instant. After a query is issued, the query is invoked Bg?
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rithms that use theé3?““'-tree to predict early an accurate
estimate of the result, which is gradually refined.
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