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Abstract Existing spatiotemporal indexes suffer from ei-
ther large update cost or poor query performance, except for
the Bx-tree (the state-of-the-art), which consists of multi-
ple B+-trees indexing the 1D values transformed from the
(multi-dimensional) moving objects based on a space filling
curve (Hilbert, in particular). This curve, however, does not
consider object velocities, and as a result, query processing
with a Bx-tree retrieves a large number of false hits, which
seriously compromises its efficiency. It is natural to wonder
“can we obtain better performance by capturing also the ve-
locity information, using a Hilbert curve of a higher dimen-
sionality?”. This paper provides a positive answer by devel-
oping theBdual-tree, a novel spatiotemporal access method
leveraging pure relational methodology. We show, with the-
oretical evidence, that theBdual-tree indeed outperforms the
Bx-tree in most circumstances. Furthermore, our technique
can effectively answer progressive spatiotemporal queries,
which are poorly supported byBx-trees.

Keywords Access Method· Spatiotemporal· Space Filling
Curve

1 Introduction

A spatiotemporal database supports efficient query process-
ing on a large number of moving objects, and has numer-
ous applications (e.g., traffic monitoring, flight control, etc.)
in practice. The existing studies can be classified into two
categories, depending on whether they focus onhistorical
retrieval, or predictive search. In this paper, we consider
predictive search, where the goal is to report the objects
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Fig. 1 Examples of spatiotemporal data and queries

expected to qualify a predicate in the future (e.g., find the
aircrafts that will appear over Hong Kong in the next 10
minutes).

An object is a multi-dimensional point moving with a
constant velocity, and issues an update to the server when-
ever its velocity changes. In Figure 1, objecto1 is at coor-
dinates (2, 9) at time 0, and its velocities (represented with
arrows) on the x- and y- dimensions equal 1 and−2, re-
spectively. A negative value means that the object is moving
towards the negative direction of an axis. Similarly, object
o2 positions at (9, 2) at time 0, and is moving at velocity−1
(1) on the x- (y-) axis.

A range queryreturns the objects that will appear (based
on their existing motion parameters) in a moving rectangleq
during a (future) time intervalqt. Figure 1 shows a queryq1

with qt = [0, 2], whose extents at time 0 correspond to box
q1(0). The left (right) edge ofq1 moves towards right at a
velocity 1 (2), and the velocity of its upper (lower) boundary
is 2 (1) on the y-dimension. Boxq1(2) demonstrates the ex-
tents ofq1 at time 2. Notice thatq1(2) has a larger size than
q1(0) since the right (upper) edge ofq1 moves faster than the
left (lower) one. The query result contains a single objecto1,
whose location (4, 5) at time 2 falls inq1(2).

Given a moving pointq and a time intervalqt, a near-
est neighbor(NN) query finds the object with the smallest
“minimum distance” toq duringqt. In Figure 1, for instance,
queryq2 has a location (10, 8) at time 0, and moves with ve-
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Table 1 Comparison of predictive spatiotemporal indexes

Bdual Bx TPR∗ STRIPES
Query cost low high low high
Update cost low low high low
Storage size low low low high

DBMS integration easy easy hard hard

locity −1 on both axes. Assumingqt = [0, 2], the NN ofq2

is o2, whose minimum distance
√

5 to q2 (obtained at time
2) is smaller than that

√
17 of o1. In general, akNN query

returns thek objects with the smallest minimum distances.
Motivation and Contributions. Existing indexes [16,

13,6] for moving points suffer from certain disadvantages.
Although the TPR-tree [15,16] has good query performance,
it incurs expensive update cost, and thus, is not appropriate
for real-time applications with frequent updates. STRIPES
[13] is efficient to update, but (as explained in Section 2.1)
has high space consumption and low query performance.
Neither structure can be easily integrated in an existing
DBMS because they are based on techniques that are not
supported by a relational database. TheBx-tree [6], the state-
of-the-art, involves severalB+-trees indexing the order of
objects on a space filling curve (e.g., Hilbert [3]). Hence, it
can be incorporated into an off-the-shelf DBMS (e.g., Ora-
cle, DB2, etc.). As explained in Section 2, however,Bx-trees
do not achieve satisfactory query efficiency due to the large
number of “false hits” (i.e., non-qualifying objects that need
to be inspected).

In this paper, we present theBdual-tree, which combines
the advantages of the existing solutions without sharing their
disadvantages. Table 1 summarizes the properties of the new
structure compared to the previous indexes. In particular, the
Bdual-tree (i)handles both updates and queries effectively,
(ii) is space-efficient, and (iii) is readily implementable using
pure relational technologies, as long asB+-trees are sup-
ported. TheBdual-tree is motivated by a simple observation
that the Hilbert curve deployed in aBx-tree considers only
objects’ locations (i.e., not velocities), which leads to the re-
trieval of numerous false hits. TheBdual-tree is also based
onB+-trees, but avoids false hits by indexing a Hilbert curve
of a higher dimensionality, which captures both locations
and velocities.

It turns out that the above observation generates numer-
ous non-trivial issues. From the algorithmic perspective, spe-
cialized methods must be designed for utilizing a high di-
mensional Hilbert curve to perform range andkNN search
(the originalBx solutions are no longer applicable, as ex-
plained in Section 4.3). From a theoretical viewpoint, it is
well known that, as the dimensionality increases, the effi-
ciency of Hilbert curves drops, making it important to jus-
tify why the penalty can be compensated by retrieving fewer
false hits. We derive analytical formulae that elaborate why
and when a curve capturing velocities provides better query
performance. Our equations quantify the cost ofBdual- and
Bx-trees, and prove that our method outperformsBx-trees
in most circumstances.

We further demonstrate the superiority of theBdual-tree
by showing that it has higher applicability, and can effec-
tively answer progressive queries that are poorly supported
by Bx-trees. For example, a progressive (aggregate) range
query aims at continuously refining its estimate about the
numberof qualifying objects, and (when allowed to execute
till termination) returns the actual result. ABdual-tree can
produce a highly accurate estimatewell beforethe query ter-
minates, while aBx-tree incurs significant error until nearly
the end of processing.

Specifically, our contributions include:

– establishing the importance of capturing velocities in in-
dexing moving objects based on space filling curves;

– developing the algorithms for using a velocity-conscious
Hilbert curve to solve various types of queries;

– careful analysis of the performance ofBdual- andBx-
trees;

– solutions for progressive spatiotemporal search;
– extensive experimental evaluation of the proposed and

existing spatiotemporal indexes.

The rest of the paper is organized as follows. Section 2
reviews the previous work directly related to ours. Section 3
formally defines the problem. Section 4 explains the struc-
ture of theBdual-tree and its range/kNN algorithms. Sec-
tion 5 provides theoretical justification about the superiority
of our technique overBx-trees. Section 6 discusses progres-
sive processing, while Section 7 experimentally compares
Bdual-trees against the previous structures. Finally, Section
8 concludes the paper with directions for future work.

2 Related Work

The existing predictive spatiotemporal structures can be clas-
sified into 3 categories, depending on whether they focus on
the dual space, adopt the TPR-tree representation, or resort
to a space filling curve. Next, we discuss each category in
turn.

2.1 Dual Space Indexing

Kollios et al. [7] present a transformation that converts a 1D
moving object to a static point in a 2D “dual space”. Agar-
wal et al. [1] extended the transformation to arbitrary dimen-
sionality, and propose theoretical indexes that achieve good
asymptotic performance. These solutions, however, are not
efficient in practice due to the large hidden constants in their
complexities.

Kollios et al. [8] developed a practical access method
based on similar transformations. Leto be a 2D point whose
movement on thei-th dimension (1 ≤ i ≤ 2) is given by
o[i](t) = o[i] + o.v[i] · (t − tref ), whereo.v[i] is its veloc-
ity along this dimension, ando[i](t), o[i] are itsi-th coor-
dinate at a future timestampt and the (past) reference time
tref , respectively. TheHough-X representationof o is a vec-
tor (o.v[1], o[1], o.v[2], o[2]), and itsHough-Y representation



TheBdual-Tree: Indexing Moving Objects by Space Filling Curves in the Dual Space 3

(−o[1]
o.v[1] ,

1
o.v[1] ,

−o[2]
o.v[2] ,

1
o.v[2] ). Accordingly, four 2D R-trees are

created to manage the following 2D spaces, respectively:

– Hough-X of Dimension 1 containing points of the form
(o.v[1], o[1]);

– Hough-X of Dimension 2 for points of (o.v[2], o[2]);
– Hough-Y of Dimension 1 for (−o[1]

o.v[1] ,
1

o.v[1] );

– Hough-Y of Dimension 2 for (−o[2]
o.v[2] ,

1
o.v[2] ).

An object o may be inserted in various ways depend-
ing on the velocities ofo. If o.v[1] is small1 (or large), a
point (o.v[1], o[1]) (or (−o[1]

o.v[1] ,
1

o.v[1] )) is inserted in the R-
tree managing the Hough-X (or Hough-Y) of Dimension 1.
Similarly, if o.v[2] is small (or large), a point (o.v[2], o[2])
(or (−o[2]

o.v[2] ,
1

o.v[2] )) is incorporated. Hence, two R-tree inser-
tions are needed foro, whose entry in each R-tree, however,
contains the object’s complete motion parameters (i.e., the
parameters are duplicated).

To evaluate a range query, the algorithm of [8] relies on
a heuristic that decides an appropriate dimension to search
(i.e., only one dimension is considered). Assume that the
first dimension is chosen; then, the query is converted to two
“simplex queries” in the Hough-X and Hough-Y spaces of
the dimension, which are answered using the R-trees. The
problem with this approach is thatall objects qualifying the
query alongonly onedimension must also be retrieved. Con-
sider uniform data distribution and a query with selectivity
1/10 along each dimension. Around 1/100 of the objects sat-
isfy the query, whereas the above algorithm may access 1/10
of the dataset, fetching an excessive number of false hits.

Patel et al. [13] propose STRIPES, where 2D moving
objects are mapped to 4D points (by the Hough-X transfor-
mation) that are indexed by a PR bucket quadtree. Since the
tree includes data on both dimensions, STRIPES does not re-
trieve false hits. This, however, does not imply lower query
cost, because a node in STRIPES may contain an arbitrarily
small number of entries, and hence, more pages need to be
accessed to obtain the same number of results. Furthermore,
low page utilization also leads to large space consumption.
To alleviate the problem, the authors of [13] suggest a “half-
page” storage scheme. Specifically, a leaf node with occu-
pancy at most 50% is stored in half of a page, whereas a full
page is used for leaf nodes with over 50% occupancy (see
[13] for details).

2.2 The TPR-Tree

Saltenis et al. [15] propose the TPR-tree (later improved in
[16]) that augments R-trees [4] with velocities to index mov-
ing objects. Figure 2a shows an example. The black dots rep-
resent the positions of 4 objectsa, b, c, d at time 0, and the
arrows indicate their movements. Figure 2b illustrates the
object locations at timestamp 1.

A node in the TPR-tree is represented as amoving rec-
tangle (MOR), which includes an SBox and a VBox. The

1 We refer the interested readers to [8] for the criteria of “small”.
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(a) SBox/VBox at time 0 (b) Node extents at time 1

Fig. 2 A TPR-tree example

SBox is a rectangle that tightly encloses the locations of the
underlying objects at time 0, while the VBox is a vector
bounding their velocities. For example, the SBox of node
N1 is a rectangle with a projection [2, 5] ([3, 6]) on the
x- (y-) dimension. Its VBox equals (-2, 1, -2, 2), where the
first/second number captures the smallest/largest object ve-
locity on the x-dimension (decided byb, a respectively), and
similarly, the third and fourth values concern the y-axis. Fig-
ure 2 demonstrates a VBox with 4 white arrows attached to
the edges of the corresponding SBox.

The extents of an MOR grow with time (at the speeds
indicated by its VBox) so that at any future timestamp it
contains the locations of the underlying objects, although it
is not necessarily tight. For example, in Figure 2b, at time 1
the MOR ofN1 (or N2) is considerably larger than the min-
imum bounding rectangle for its objects. Consider a range
query at time 1 whose search regionq is the shaded rectan-
gle in Figure 2b. SinceN1 at time 1 does not intersectq, it
does not contain any result, and can be pruned from further
consideration. On the other hand, the query examinesN2,
which contains the only qualifying objectc.

The TPR-tree has been deployed to solve a large number
of spatiotemporal problems (e.g.,kNN retrieval [2], location-
based queries [19], etc.). However, it has a major defect:
each insertion/deletion requires numerous page accesses.
Therefore, TPR-trees are not feasible for real-life applica-
tions where objects issue updates frequently.

2.3 TheBx-Tree

The solutions in the previous sections cannot be easily in-
tegrated into an existing relational database, since consider-
able changes are required in the “kernel” of a system (e.g.,
query optimization, concurrency control, introducing “half-
pages”, etc.). Motivated by this, Jensen et al. [6] propose
theBx-tree, which consists ofB+-trees indexing the trans-
formed 1D values of moving objects based on a space filling
curve (e.g. Hilbert curve). In [9],Bx-trees are extended to
manage historical data.

Figure 3 shows an exemplaryBx-tree on 4 moving points.
The location of an object at the reference time 0 is mapped
to a Hilbert value, which is indexed by aB+-tree. Object
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Fig. 3 A Bx-tree example

updates are highly efficient by resorting to theB+ inser-
tion/deletion procedures. To process a range query, the query
region is enlarged to cover the locations of the qualifying
objects at time 0. Consider, for example, the small rectan-
gle in Figure 3 as a range queryq at timestamp 1. To avoid
false misses,q is expanded to rectangleq′, according to the
maximum object velocities on the two dimensions. For ex-
ample, since 2 is the largest velocity along the positive di-
rection of the x-axis, the distance between the right edges of
q′ andq equals 2 (i.e., the length traveled with speed 2 in
one timestamp). The enlargement guarantees that if an ob-
ject appears inq at time 1, its location at time 0 must fall in
q′.

Regionq′ intersects the Hilbert curve into 6 one-dimen-
sional intervals:AB, CD, EF , GH, IJ , KL shown in Fig-
ure 3. As a result, 6 one-dimensional range queries are exe-
cuted on theB+-tree for retrieving the points inq′. For each
resultant object, its actual location and velocity are verified
against the original query. In this example, onlyc andd sat-
isfy the query, although all the objects are examined. In the
sequel, we refer to the processing strategy as the1D-range
reduction, because it reduces spatiotemporal search to sev-
eral 1D range queries on theB+-tree.

Since expanding the query based on the maximum ve-
locities of the entire dataset may lead to an excessively large
search region, theBx-tree uses histograms to maintain the
largest velocities of objects in various parts of the data space
(so that smaller query enlargement is sufficient based on
these velocities). However, in case there are slow and fast
objects across the whole data space, the benefits of the his-
togram are limited, in which case the query performance of
Bx-trees can be much worse than that of TPR-trees. An-
other problem of theBx-tree is that it does not supportkNN
queries efficiently, becausekNN search is performed using
iterative range queries (by expanding the search area incre-
mentally), as opposed to a single-traversal algorithm [2] for
the TPR-tree.

3 Problem Definition and Notations

We represent ad-dimensional (in practice,d = 2 or 3) mov-
ing pointo with

– a reference timestampo.tref ,
– its coordinateso[1], o[2], ...,o[d] at timeo.tref , and
– its current velocitieso.v[1], o.v[2], ...,o.v[d].

For example, objecto1 in Figure 1 has reference time
o1.tref = 0, coordinateso1[1] = 2, o1[2] = 9, and veloci-
tieso1.v[1] = 1, o1.v[2] = −2. We use vectoro(t) = (o[1](t),
o[2](t), ...,o[d](t)) to denote the location ofo at a timestamp
t ≥ o.tref , where, for1 ≤ i ≤ d:

o[i](t) = o[i] + o.v[i] · (t− o.tref ) (1)

A database consists ofN moving pointso, each of which is-
sues an update whenever its velocity changes. The reference
time o.tref equals the time of its last update. In accordance
to the existing techniques [1,7,6,13], we consider that an
object issues at least one update everyT timestamps.

A d-dimensional moving rectangle (MOR)r is captured
by

– a reference timestampr.tref ,
– a spatial box(SBox), a2d-dimensional vector (r`[1],

ra[1], ..., r`[d], ra[d]), where [r`[i], ra[i]] is the i-th
(1 ≤ i ≤ d) projection ofr at timer.tref , and

– avelocity box(VBox), a2d-dimensional vector (r.V`[1],
r.Va[1], ..., r.V`[d], r.Va[d]), wherer.V`[i] (or r.Va[i])
indicates the velocity of the left (or right) edge on the
i-th dimension.

Denoting the spatial extents ofr at a timestampt ≥
r.tref asr(t) = (r`[1](t), ra[1](t), ...,r`[d](t), ra[d](t)), we
have:

r`[i](t) = r`[i] + r.V`[i] · (t− r.tref )
ra[i](t) = ra[i] + r.Va[i] · (t− r.tref )

A range query specifies a time intervalqt = [qt`, qta],
and an MORq whose reference time isqt`. For instance,
for the range search in Figure 1,qt = [0, 2], and the query
q1 is an MOR with reference time 0, SBox (2, 3, 3, 4), and
VBox (1, 2, 1, 2). An objecto satisfiesq if o(t) falls in q(t)
for somet ∈ qt.

A k nearest neighbor query has a time intervalqt = [qt`,
qta], and a moving pointq with reference timeqt`. The min-
imum distancedmin(o, q) between an objecto andq equals
the shortest Euclidean distance betweeno(t) andq(t) for all
t ∈ qt. The query result consists of thek objects with the
smallestdmin.

For both query types, we say thatq is atimestamp query
if qt involves a single timestamp (i.e.,qt` = qta); otherwise,
q is aninterval query. Our objective is to minimize the CPU
and I/O cost in answering a query.

4 TheBdual-Tree

Section 4.1 discusses the structure of the proposed index
and its update algorithms. Section 4.2 clarifies the decision
of a crucial parameter of theBdual-tree. Section 4.3 ex-
plains why the query algorithms ofBx-trees are inefficient



TheBdual-Tree: Indexing Moving Objects by Space Filling Curves in the Dual Space 5

for Bdual-trees. Section 4.4 illustrates the concept of “per-
fect MOR”, based on which Section 4.5 elaborates the range
andkNN algorithms.

4.1 The Structure and Update Algorithms

A Bdual-tree has two parameters: ahorizonH, and arefer-
ence timeTref . H decides the farthest future time that can
be efficiently queried. Similar to TPR-trees [15], aBdual-
tree constructed at timet optimizes queries about the pe-
riod [t, t + H]. Queries that concern timestamps later than
t + H are also correctly answered, but they are not opti-
mized due to their lower importance (predicting about a dis-
tant timestamp is not useful since many objects may have
issued updates by then).

The second parameterTref is needed to convert data to
their duals.Tref is not necessarily equal to the construction
time of the tree (the computation ofTref will be discussed
in the next section). Leto be a moving point with a refer-
ence timestampo.tref , coordinateso[1], ..., o[d], and veloci-
tieso.v[1], ...,o.v[d]; its dual is a2d-dimensional vector:

odual = (o[1](Tref ), ..., o[d](Tref ), o.v[1], ..., o.v[d])

whereo[i](Tref ) is thei-th coordinate ofo at timeTref , and
is given by

o[i](Tref ) = o[i] + o.v[i] · (Tref − o.tref )

Equivalently,odual is a point in a2d-dimensionaldual
space, which containsd location dimensions(for the firstd
components ofodual) andd velocity dimensions. The dual
space can be mapped to a 1D domain using any space filling
curve. We choose the Hilbert curve because it preserves the
spatial locality better than other curves [6], leading to lower
query cost. The Hilbert value ofodual can be computed using
a standard algorithm [3], based on apartitioning grid that
divides the data space into2λ·2d cells. In particular, the grid
has2λ cells on each dimension, andλ is an integer called
theresolution.

Objects whose duals fall in the same cell have identical
Hilbert values, which are indexed by aB+-tree. Each leaf
entry stores the detailed information of an object (i.e., its ref-
erence time, locations, and velocities). An insertion/deletion
is performed in the same way as aB+-tree, by accessing
O(log N) pages whereN is the dataset cardinality.

As with theBx-tree, aBdual-tree is composed of two
B+-treesBT1 andBT2. Each tree has two states: (i) agrow-
ing statewhen objects can be inserted/deleted, and (ii) a
shrinking statewhen only deletions are allowed. At any time,
one tree is in the growing state, and the other in the shrink-
ing state. They swap states everyT timestamps, whereT is
the largest interval between two consecutive updates from
the same object.

Initially, BT1 (BT2) is in the growing (shrinking) state
for time interval [0, T ), when all the updates are directed
to BT1, andBT2 remains empty. During[T, 2T ), the states

10

1 
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Fig. 4 Hilbert range decomposition (d = 1, λ = 3)

of BT1 andBT2 are reversed. In this period, every inser-
tion is performed inBT2. A deletion, however, may remove
an object fromBT1 or BT2, depending on whether it was
inserted during[0, T ) or [T, 2T ), respectively. At time2T ,
BT1 becomes empty (all the objects inserted during[0, T )
have issued updates), and the two trees switch states again.

Given a query, bothBT1 andBT2 are searched, and the
results are combined to produce the final answer. SinceBT1

andBT2 are symmetric, in the rest of Section 4, we focus on
a single tree, and refer to it simply as aBdual-tree.

4.2 Deciding the Reference Time

The selection ofTref has a significant impact on query per-
formance. Without loss of generality, consider aBdual-tree
that enters the growing state at timetgrow. Although previ-
ous methods [1,13,8] setTref to tgrow, we will show that a
better choice ofTref is tgrow +H/2, whereH is the horizon
parameter.

Any cell c in the partitioning grid can be regarded as ad-
dimensional MOR (moving rectangle) whose SBox (VBox)
captures the projection of the cell on the location (velocity)
dimensions of the dual space. Figure 4 shows an example
whered = 1, and the dual space has2d = 2 dimensions. The
partitioning grid contains23·2 = 64 cells (i.e., the resolution
λ = 3), and the number in each cell is the Hilbert value
(of any point inside). The cell 53, for example, has a 1D
SBox [0.5, 0.625] (its projection on the horizontal axis) and
a VBox [0.375, 0.5], assuming that all the dimensions have
a domain [0, 1].

Given a range queryq (an MOR), objects in a cellc need
to be inspected if and only if the MORc intersectsq during
the query intervalqt. For example, assumeTref = 0 and letc
be the cell in Figure 4 with value 53. According to the SBox
and VBox ofc, the spatial extent ofc at time 1 isc(1) = [0.5
+ 0.375, 0.625 + 0.5] = [0.875, 1.125]. For a query withq =
[0.7, 0.8],q.V = [0.1, 0.1], andqt = [0, 1], all the objects with
Hilbert value 53 must be examined becauseq(1) = [0.8, 0.9]
intersectsc(1); otherwise, we may risk having false misses.

Hence, to maximize query efficiency, we should reduce
the probability that the MOR ofc intersects a queryq. The
analysis in [15] shows that the probability is decided by the
“integrated area” ofc during [tgrow, tgrow + H], calculated
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as:∫ tgrow+H

tgrow

AREA(c(t)) dt (2)

wherec(t) is the spatial extents ofc at time t. Figures 5a
and 5b illustrate the integrated areas (the grey regions) of
a 1D MOR, assuming reference timeTref = tgrow and
Tref = tgrow + H/2, respectively. Letl (lv) be the side
length of a cell on a location (velocity) dimension. For gen-
eral dimensionalityd, the integrated area ofc equals:∫ Tref−tgrow

0

(l+t·lv)d dt+
∫ tgrow+H−Tref

0

(l+t·lv)d dt (3)

Lemma 1 Equation 3 is minimized whenTref equalstgrow+
H/2.

Proof Let us consider the difference between the integrated
area achieved withTref = tgrow + t′ for any t′ ∈ [0,H/2)
and that withTref = tgrow + H/2. The difference equals:∫ t′

0

(l + t · lv)d dt +
∫ H−t′

0

(l + t · lv)d dt

−2
∫ H/2

0

(l + t · lv)ddt

=
∫ H−t′

H/2

(l + t · lv)d dt−
∫ H/2

t′
(l + t · lv)d dt

≥ (
H

2
− t′)(l + lv ·

H

2
)d − (

H

2
− t′)(l + lv ·

H

2
)d

= 0

which indicates thatTref = tgrow + H/2 produces a smaller
area thanTref = tgrow + t′. By symmetry, we can show
that the same is true forTref = tgrow + H − t′ (given any
t′ ∈ [0,H/2)), thus completing the proof. ut

Rigorously, Formula 2 captures the access probability of
a cell for a timestamp range queryq with qt` uniformly dis-
tributed in[tgrow, tgrow + H]. Hence,Tref = tgrow + H/2
minimizes the query cost only in this scenario. The analysis
for general queries is more complex. Nevertheless, the above
analysis shows thattgrow is most likely not an appropriate
value forTref . As a heuristic, we setTref to tgrow +H/2 in
any case, which leads to lower query cost thanTref = tgrow

in all of our experiments.

4.3 Pitfall of the 1D-Range Reduction

As reviewed in Section 2.3, theBx-tree adopts the 1D-range
reduction for solving range search. Specifically, the search is
converted to several 1D range queries on theB+-tree (e.g.,
in Figure 3, six queries are required for segmentsAB, CD,
EF , GH, IJ , KL, respectively). In this section, we will
show that this strategy is inefficient forBdual-trees, and out-
line an alternative processing framework.

To apply the 1D-range reduction, we need to transform
range search into asimplex queryin the dual space. As men-
tioned in Section 2.1, a simplex query specifies a set of linear
constraints (each corresponding to a2d-dimensional half-
space in the dual space), and aims at finding the (dual) points
that fall in the intersection of all the half-spaces. Although
these constraints can be formulated using the derivation of
[8], the intersection can be a very complex polyhedron, ren-
dering it difficult to compute the smallest set of segments on
the Hilbert curve constituting the polyhedron.

Furthermore, even if an algorithm was available to dis-
cover these segments, applying the 1D-range reduction to
Bdual-trees would suffer from another problem: the number
of required 1D range queries increases exponentially with
the dimensionalityd. This is a well-known drawback of the
Hilbert curve, regardless of the shape of a search region.
For simplicity, we explain the phenomenon using regular
regions, which are hyper-squares coveringb cells (of the
partitioning grid) on each dimension (i.e., the square con-
tains totallyb2d cells), whereb is an integer smaller than2λ.
Consider each cellc such that (i) it is at the border of the
square, and (ii) the cell whose Hilbert value precedes that
of c lies outside the square. The number of necessary 1D
range queries (for finding all the points in the square) equals
exactly the number of cells satisfying the conditions (i) and
(ii). Unfortunately, there are on averageb2d−1 such cells in
the square [11]. Note that the value ofb depends on the res-
olution λ. A typical value ofλ is 10 (i.e., each dimension
consists of 1024 cells), and thus,b is at the order of 100 for a
search region covering 10% of each axis. In this case, issuing
b2d−1 1D range queries becomes prohibitively expensive.

Motivated by this, we devise an alternative query evalua-
tion strategy forBdual-trees. We avoid generating 1D range
queries, and instead focus on developing algorithms for che-
cking whether the subtree of an intermediate entry (in aBdual-
tree) may contain any object satisfying a spatiotemporal pred-
icate. As we will see, this strategy allows us to re-use the
existing algorithms of TPR-trees for query processing with
Bdual-trees (applying simple modifications). Furthermore,
as shown in Section 4.5, our approach supportskNN search
much more efficiently thanBx-trees. In particular, we re-
trieve the nearest neighbors in a single traversal of the tree,
as opposed to the iterative solution (with multiple range que-
ries) forBx-trees.
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4.4 The MOR Representation of an Intermediate Entry

Next, we show that each intermediate entrye can be associ-
ated with a set of MORs{r1, r2, ... rm} with the following
property: at any future timet, the location of any objecto in
the subtree ofe is enclosed in the extents of some MOR. For-
mally, there exists at least one MORri (for somei ∈ [1,m])
such thatri(t) coverso(t). These MORs are crucial for the
query algorithms presented in the next section.

In fact, as a property of theB+-tree, an intermediate en-
try e is implicitly accompanied by an interval[e.h`, e.ha),
which contains the Hilbert values of all the objects in the
subtree. We refer to [e.h`, e.ha) as theHilbert interval of
e. Each integer in the interval corresponds to a cell in the
partitioning grid. As mentioned in Section 4.2, each cell can
be regarded as an MOR, and thus,e can be trivially associ-
ated withe.ha− e.h` MORs. However, the number of these
MORs can be2λ·2d in the worst case (i.e., all the cells in the
grid), such that the resulting query algorithms incur expen-
sive CPU cost. In the sequel, we present an approach that
associatese with at most(4d − 1) · (2λ− 1) MORs.

Our goal is to break[e.h`, e.ha) into several disjoint in-
tervals, such that the union of the cells in each interval is
a hyper-square in the dual space. For example, in Figure 4,
[23, 49] can be broken into 6 intervals [23, 23], [24, 27], [28,
31], [32, 47], [48, 48], [49, 49] satisfying the above condi-
tion. In particular, the cells in [23, 23], [24, 27], [32, 47]
constitute1× 1, 2× 2, and4× 4 squares, respectively. Each
resulting square can be regarded as an MOR whose projec-
tion on a location/velocity dimension is identical to that of
the square (e.g., [23, 49] can be associated with 6 MORs).

We say that an MOR isperfectif

– it is created by a2d-dimensional square of cells in the
partitioning grid, and

– the cells have continuous Hilbert values.

In fact, a set of cells can produce a perfect MOR if and
only if their Hilbert values constitute an interval of the form

[a · 2i·2d, (a + 1) · 2i·2d − 1] (4)

wherei is an integer in [0,λ], anda another integer in [0,
22d·(λ−i) − 1]. For instance, [32, 47] can be represented in
the above form witha = 2 andi = 2, and hence, it leads to a
perfect MOR.

Lemma 2 An intermediate entrye can be associated with
at most(4d − 1) · (2λ− 1) perfect MORs.

Proof Since all the MORs in this proof are perfect MORs,
we omit the word “perfect” for simplicity. We say that an
MOR is of level i if it is generated by an interval of For-
mula 4. Let[x, y] be the Hilbert interval ofe, andS the set of
MORs that will be associated withe. Consider, among the
MORs whose Hilbert intervals contain[x, y], the oner of
the minimum levell. The lemma is trivially correct if[x, y]
is identical tor (i.e., S has a single MORr). Next, we fo-
cus on the case where[x, y] is a proper subset ofr, i.e., the
length of[x, y] is shorter than2l·2d.

level l-1 x yy1 x1

x y2 x2 ylevel l-2

level 0

. . .

x
yl xl

y

perfect MORs
 

Fig. 6 Illustration of the proof for Lemma 2

We add toS all the MORs of levell − 1 whose Hilbert
intervals fall in [x, y]. Since each interval has a length of
2(l−1)·2d, there can be at mostb(2l·2d−1)/2(l−1)·2dc = 4d−1
such MORs. If we remove these intervals from[x, y], the re-
maining part of[x, y] consists of at most two disjoint inter-
vals [x, y1] and [x1, y], appearing at both ends of[x, y] re-
spectively, as shown in Figure 6. Each of the two remaining
intervals is shorter than2(l−1)·2d.

Let us recursively decompose[x, y1] into MORs of lower
levels. If [x, y1] is already an MOR of levell − 2, no recur-
sion is necessary. Otherwise, we add toS all the MORs of
level l − 2 (whose Hilbert intervals are) fully enclosed in
[x, y1]. By the reason mentioned earlier, at most4d − 1 such
MORs are added. We remove their intervals from[x, y1],
which has only one remaining part[x, y2] with length shorter
than2(l−2)·2d (there is not any remaining interval of[x, y1]
on the right end, becausey1 must be “aligned” with a per-
fect interval of levell−2). The decomposing process can be
repeated at mostl times, such that eventually we obtain an
interval[x, yl] of length at most4d − 1 (see Figure 6), corre-
sponding to at most4d − 1 level-0 MORs (i.e., an MOR for
each integer in[x, yl]).

Since the same situation also applies to interval[x1, y],
it is clear that, at each leveli (0 ≤ i ≤ l − 2), at most
2·(4d−1) MORs are created inS. At level l−1, as mentioned
earlier, at most4d−1 MORs are obtained. Hence, the largest
size ofS equals(4d − 1) · (2l − 1). Given thatl is at most
λ (the resolution of the grid), the size ofS is bounded by
(4d − 1) · (2λ− 1). ut

Figure 7 presents the algorithm for finding the perfect
MORs of a non-leaf entrye in arbitrary dimensionality. Note
that the actual number of MORs produced is usually much
smaller than the upper bound stated in Lemma 2 (e.g., the
number 6 for the interval [23, 49] in Figure 4 is significantly
lower than the upper bound(41 − 1) · (2 · 3− 1) = 15). The
algorithm terminates inO(4d · λ) time. Sinced = 2 or 3 in
most real applications, the computational cost is essentially
linear to the resolutionλ.

An important implication of Lemma 2 is that aBdual-
tree is as powerful as a TPR-tree in terms of the queries that
can be supported. Intuitively, since the intermediate entries
of both structures can be represented as MORs, an algorithm
that applies to a TPR-tree can be adapted for theBdual-tree.
Adaptation is needed only because an entry of a TPR-tree
has a single MOR, while that of aBdual-tree corresponds to
multiple ones. In the next section, we demonstrate this by
developing the range andkNN algorithms.
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Algorithm Decompose(a Hilbert IntervalHI)
1. S:=∅; // S will contain the decomposed perfect MORs eventually
2. r0:= the MOR covering the entire dual space;
3. ω0:= the interval of the Hilbert domain;
4. L:={(r0, ω0)}; // L is a FIFO queue
5. while (L is not empty)
6. remove the first element(r, ω) of L; //r is a perfect MOR
7. if (ω intersectsHI) then
8. if (ω is covered byHI) then
9. addr to S;
10. else if(the length ofω > 1) then
11. divider into 4d identical perfect MORs;
12. for each resulting MORr′ and its Hilbert intervalω′

13. add(r′, ω′) to L;
14. return S;

Fig. 7 Decomposing a Hilbert interval

4.5 Query Algorithms

Let e be an intermediate entry, which is associated withm
MORsr1, r2, ...,rm (m ≤ (4d−1)·(2λ−1)), returned by the
algorithm of Figure 7. Given a range queryq, the subtree of
e is pruned if nori (1 ≤ i ≤ m) intersectsq during the query
intervalqt. The processing algorithm starts by checking, for
each root entrye, whether any of its associated MORs inter-
sectsq duringqt (in the same way as in TPR-trees [15]). If
yes, the algorithm accesses the child node ofe, carrying out
the process recursively until a leaf node is reached. Then,
detailed information of each object encountered is simply
examined against the query predicate.

We proceed to discuss nearest neighbor retrieval. For an
MOR r, let dmin(r, q) be the minimum distance between
rectangler(t) and pointq(t) for all t ∈ qt. For an interme-
diate entrye associated withm MORsr1, ...,rm, we define
theminimum distancedmin(e, q) betweene andq as:

dmin(e, q) =
m

min
i=1

(dmin(ri, q)) (5)

Given an intermediate entrye and an objecto in its sub-
tree, we havedmin(e, q) ≤ dmin(o, q), wheredmin(o, q) is
the smallest distance betweeno andq during qt. Similarly,
if e′ is an intermediate entry in the subtree ofe, it holds
thatdmin(e, q) ≤ dmin(e′, q). These properties permit us to
deploy the “best-first” algorithm [5] forkNN search with a
Bdual-tree. Specifically, the algorithm uses a heapH to or-
ganize all the (leaf/non-leaf) entries encountered in ascend-
ing order of their minimum distances toq. Initially, all the
root entries are inserted toH. Then, the algorithm repeatedly
processes the entrye that has the smallest minimum distance
among the elements inH. Specifically, ife is an intermedi-
ate entry, we en-heap the entries in its child node; otherwise
(e is an object), it is returned as the next NN. The algorithm
terminates as soon ask objects have been reported.

It remains to clarify the computation ofdmin(e, q). By
Equation 5, this is equivalent to calculating the minimum
distancedmin(r, q) between an MORr and a moving point

q, for which we are not aware of any existing solution2. In
the sequel, we provide a method that obtainsdmin(r, q) in
O(d) time.

Let dmin(t) be the minimum distance betweenr(t) and
q(t) at a particular timestampt. Denote [r`[i](t), ra[i](t)]
and q[i](t) as the projection ofr(t) and q(t) on the i-th
dimension, respectively (1 ≤ i ≤ d). We usedmin[i](t)
to represent the minimum distance between the 1D interval
[r`[i](t), ra[i](t)] and valueq[i](t). Hence:

d2
min(t) =

dX

i=1

(dmin[i](t))2 (6)

To derivedmin[i](t), we need to solvet from the follow-
ing equations (each a linear equation oft):

r`[i](t) = q[i](t) (7)

ra[i](t) = q[i](t) (8)

Let t`[i] be the solution of Equation 7, andta[i] that of
Equation 8. We have:

dmin[i](t)=

r`[i](t)−q[i](t) if ( t`[i] < ta[i] andt < t`[i])
or (t`[i] > ta[i] andt > ta[i])

0 if ( t`[i]<ta[i] andt∈ [t`[i],ta[i]])
or (t`[i]>ta[i] andt∈ [ta[i],t`[i]])

q[i](t)−ra[i](t) if ( t`[i] < ta[i] andt > ta[i])
or (t`[i] > ta[i] andt < t`[i])

(9)

Therefore,t`[i] and ta[i] partition the time dimension
into 3 disjoint pieces such that, whent falls in each piece,
dmin[i](t) can be represented as a piecewise linear function.
Combining Equations 6-9, we can see that the time axis is
divided into6d segments by the2d valuest`[1], ta[1], ...,
t`[d], ta[d] such that, whent is in each segment,d2

min(t)
(in Equation 6) is a quadratic function oft (i.e., totally6d
quadratic functions).

Recall that our goal is to obtaindmin(r, q), which equals
the minimum ofdmin(t) for t ∈ qt. To finddmin(r, q), it suf-
fices to compute the minimum of each of the6d quadratic
functions, andd2

min(r, q) is the smallest of these6d min-
imums. Solving the minimum of a quadratic function in-
volves only trivial mathematical manipulation, and can be
achieved inO(1) time.

5 Theoretical Evidence about the Necessity of
Capturing Velocities

In this section, we analyze theoretically why and when it is
important to capture velocities in indexing moving objects
with a space filling curve. For this purpose, we derive ana-
lytical formulae that mathematically reveal the behavior of
theBdual- andBx-trees, subject to the following simplifica-
tion and assumptions:

2 The closest method was presented by Benetis et al. [2] for the prob-
lem of continuous NN search. Applying their derivation in our case,
however, results in formulae that are much more complex than our re-
sults.
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– Simplification 1. Although each (Bdual- or Bx-) tree
consists of twoB+-trees, due to symmetry we discuss
only one of them. In particular, we consider that theBdual-
andBx-trees both contain aB+-tree with the same refer-
ence timeTref , and aim at comparing the query perfor-
mance of the twoB+-trees. Without ambiguity, we still
use the nameBdual andBx to distinguish the two trees,
respectively.

– Simplification 2. The Hilbert values for both indexes
are computed using a partitioning grid with resolutionλ.
This is reasonable becauseλ = 10 is enough for ensuring
that very few objects have the same Hilbert value.

– Simplification 3. Since the entries ofBdual- and Bx-
trees have identical formats, the two trees on the same
dataset have the same space consumption. We consider
that the numberNL of leaf nodes in eachB+-tree equals
2i·2d, wherei is an integer at mostλ.
In practice,NL is proportional to the dataset cardinality,
and therefore, this simplification implies that the cardi-
nality equalsNL · f , wheref is the node fanout (the
average number of entries in a node). In practice,f is in-
dependent ofNL, and equals 69% of the node capacity
(i.e., the largest number of objects in a leaf node).

– Simplification 4. We measure the query cost as the num-
ber of leaf nodes accessed (in practice the intermediate
levels of aB+-tree are usually memory-resident).

– Simplification 5. All the queries are timestamp queries.
We useqt` to denote the query timestamp (recall that
qt` is the starting time of a general query intervalqt).

– Assumption 1. The duals of the objects are uniformly
distributed in the dual space. Furthermore, the query dis-
tribution is also uniform; specifically, for range (kNN),
the search region (query point) is randomly distributed
in the data space.

– Assumption 2.As discussed in Section 4.4, each inter-
mediate entry is accompanied by an interval of Hilbert
values. Then, the interval for the parent entry of each
leaf node covers2(λ−i)·2d values, i.e., 1

NL
of the Hilbert

domain (because of the previous assumption).

The above assumptions are needed for obtaining rigor-
ous equations that are not excessively complex, and but can
capture the behavior of alternative structures. As we will see,
our findings are highly intuitive, and are valid also in general
scenarios (as demonstrated in the experiments). Section 5.1
first develops a cost model that quantifies the overhead of
range search for theBdual-tree. Then, Section 5.2 presents
a similar model for theBx-tree, and compares it with that
of theBdual-tree. In Section 5.3, we extend the analysis to
kNN search.

5.1 The Range Search Cost ofBdual-Trees

Our derivation is based on the following lemma.

Lemma 3 The parent entry of each leaf node is associated
with a single perfect MOR (returned by the algorithm of Fig-

ure 4), whose projection on each (location or velocity) di-
mension covers1/2i of that dimension.

Proof By Assumption 2, the parent entry of the first (left-
most) leaf node has a Hilbert interval [0,2(λ−i)·2d), the entry
of the second leaf has an interval [2(λ−i)·2d, 2·2(λ−i)·2d), and
so on. In general, the entry of thej-th (1 ≤ j ≤ NL) leaf has
an interval

[(j − 1) · 2(λ−i)·2d, j · 2(λ−i)·2d − 1]

Note that the above formula is consistent with Formula 4,
by settinga to j−1, and replacing thei in Formula 4 withλ−
i. Therefore, the intermediate entry is associated with a sin-
gle perfect MOR, which contains2(λ−i)·2d cells in the par-
titioning grid. Since the MOR is a hyper-square, its edge on
each dimension contains(2(λ−i)·2d)

1
2d = 2λ−i cells. Given

that there are totally2λ cells on a dimension, the length of
the edge accounts for2λ−i/2λ = 1/2i of a dimension. ut

We illustrate the lemma using Figure 4 (whered = 1 and
λ = 3). Suppose thatNL equals22·2 = 16 (i.e., i = 2 in
Lemma 3). As a result, the parent entry of the first leaf node
has a Hilbert interval [0, 3], where the value 3 is obtained as
2(λ−i)·2d − 1. As in Figure 4, this interval covers 4 cells that
form a square, whose side length is 1/4 of the corresponding
dimension (as stated in Lemma 3). It is easy to verify that
the same is true for all the leaf nodes.

Without loss of generality, assume that each location di-
mension has a unit length, and each velocity dimension has
a lengthV . Let e be the parent entry of any leaf node, and
r its associated perfect MOR. DenoteL (LV ) as the projec-
tion length ofr on a location (velocity) dimension. Lemma 3
states that:

L = 1/2i

LV = V/2i

Recall thatL describes the size ofr at the reference
time Tref of the Bdual-tree. Hence, ifL(qt`) is the extent
of r(qt`) at the query timestampqt`, we have:

L(qt`) = L + LV · (qt` − Tref ) (10)

As discussed in Section 4.5, the child node ofe needs to
be accessed if and only ifr(qt`) intersects the query region
q. We concentrate on the case that the region is a square with
side lengthLQ. By Assumption 1,q uniformly distributes in
the data space, in which case the probabilityPacs thatr(qt`)
andq intersects equals (this is based on the well-known re-
sult [18] on the intersection probability of two random rec-
tangles):

Pacs = (L(qt`) + LQ)d (11)

whereL(qt`) is given in Equation 10. The subscript ofPacs

indicates thatPacs is also the probability that the child node
of e is visited in answeringq. Thus, the expected query over-
headIOdual

range is computed as:

IOdual
range = NL · Pacs (12)
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whereNL is the number of leaf nodes. Recall thatNL has
two equivalent representations, i.e., it equals2i·2d, or can be
written asN/f , whereN is the dataset cardinality, andf the
node fanout. Solvingi from the equation2i·2d = N/f leads
to2i = (N/f)

1
2d . Combining the above analysis, Equation 12

can be resolved into a closed formula:

IOdual
range =

N

f
·

((
f

N

)1/2d

+V ·
(

f

N

)1/2d

·(qt`−Tref )+LQ

)d

(13)

5.2 Comparison betweenBdual- andBx-trees

Before analyzing the performance of theBx-tree, we first
present an alternative strategy for processing range search,
which isnever slowerthan the original algorithm [6]. Recall
that theBx-tree adopts a Hilbert curve in thed-dimensional
spatial space (excluding the velocity dimensions). The curve
is also defined over a partitioning grid, where each cellc can
still be regarded as an MOR. In particular, the SBox of the
MOR is simply c, and its VBox covers each ofd velocity
dimensionsentirely.

For any algorithm, objects whose Hilbert values are equal
to those ofc must be accessed, if and only if the MORc in-
tersects the search regionq sometime in the query interval
qt (in order to prevent false misses), based on the reason-
ing elaborated in Section 4.2. This observation implies that
the range query algorithm ofBdual-trees can be applied to
Bx-trees as well. Specifically, we associate each intermedi-
ate entrye of a Bx-tree with a set of MORs, and visit its
child node only if any of the MORs intersectsq duringqt.

A result similar to Lemma 3 also holds forBx-trees:

Lemma 4 The parent entry of each leaf node in theBx-tree
is associated with a single MOR, whose projection on each
location (velocity) dimension covers1/22i of (completely)
that dimension.

Proof The reason why the MOR covers each velocity di-
mension completely has been mentioned earlier. To prove
the lemma regarding the location projections, we need As-
sumption 2, i.e., the Hilbert interval ofe includes2(λ−i)·2d

values. Similar to the proof of Lemma 3, it is easy to show
that the2(λ−i)·2d cells in the interval constitute a hyper-
square, whose edge, therefore, contains(2(λ−i)·2d)

1
d (note

that the outmost exponent is not1
2d because the Hilbert curve

concerns only location dimensions), that is,22(λ−i) cells.
Given that there are(22λd)1/d = 22λ cells per dimension,
the length of the edge accounts for1/22i of the dimension.

ut
Following the notations in the previous section, we use

L′ (L′
V ) for the projection length of the MOR ofe, and ac-

cording to the previous lemma:
L′ = 1/22i

L′
V = V

whereV is the length of a velocity dimension. Note that
Equations 10-12 are still valid forBx-trees (replacingL and
LV with L′ andL′

V , respectively). Based on these results,
we obtain the formula for the cost ofBx-trees:

IOx
range =

N

f
·

((
f

N

)1/d

+ V · (qt` − Tref ) + LQ

)d

(14)

where the semantics of the variables are identical to those
of Equation 13. Comparing the cost models ofBdual- and
Bx-trees, we observe the following characteristics of the two
structures:

– The query cost increases monotonically withqt`−Tref ,
i.e., predicting farther into the future is more expensive.

– The resolutionλ of the partitioning grid does not affect
the query performance, as long asλ is sufficiently large.
If λ is too small, numerous objects have the same Hilbert
value, and they must be searched altogether even if only
one of them may qualify the query.

– If qt = Tref (the query timestamp coincides with the ref-
erence time of the tree), aBx-tree actually has better per-
formance (the term(f/N)1/d in Equation 14 is smaller
than (f/N)1/2d in Equation 13). In general, aBx-tree
better preserves objects’ spatial locality, since the Hilbert
curve of anBdual-tree attempts to capture also the lo-
cality along the velocity dimensions. Processing a query
with qt = Tref requires only objects’ locations, in which
case aBx-tree incurs lower cost than aBdual-tree.

– As qt` increases, the efficiency of theBx-tree deteri-
orates considerably faster than that of theBdual-tree.
Whenqt` reaches a certain thresholdtΘ, theBdual-tree
starts outperforming its competitor, and the difference
becomes larger asqt` grows further. We can quantify
tΘ as the value ofqt` that makesIOdual

range equivalent to
IOx

range, or specifically:

tΘ = Tref +
1
V
·
(

f

N

)1/2d

– If V (i.e., the length of a velocity dimension) is large,
tΘ is small, meaning that aBdual-tree is better than a
Bx-tree even if the query timestampqt` is very close
to Tref . This confirms the intuition that ignoring veloc-
ities is feasible in practice only if objects have similar
motion parameters. In an application where objects can
have drastically different speeds, theBdual-tree is the
more effective solution.

5.3 Discussion onkNN Search

Next, we will show that the previous observations for range
search also hold forkNN retrieval, due to an inherent con-
nection between the two query types. Given akNN query
q, let dist be the distance between thek-th NN and point
q at the query timeqt`. Then, the cost of aBdual-tree (in
solvingq) is identical to that of a range query with the same
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qt`, whose search region is a circle centering atq with ra-
diusdist. This is a well-known property of the best-first al-
gorithm [5]. In fact, the algorithm is optimal, meaning that
any other method deploying theBdual-tree to process akNN
query will incur at least the same overhead.

Using the technique (illustrated at the beginning of Sec-
tion 5.2) of associating an intermediate entry in aBx-tree
with a set of MORs, the best-first algorithm can also be ap-
plied to this index for answering akNN query optimally
(in the sense as mentioned earlier). In fact, this algorithm
(traversing the tree only once) is expected to significantly
outperform that of [6] that requires numerous range queries.
With this improvement, thekNN cost of aBx-tree is also
identical to the overhead of a range query, formulated in the
same fashion as explained earlier forBdual-trees. Hence, the
relative behavior ofBdual- andBx-trees is analogous to that
for range search.

6 Progressive Query Processing

Conventional algorithms return exact results to a user at the
moment they are produced. The query does not terminate
until all the results have been generated. On the other hand,
progressive algorithms return informative results to a user
early, and progressively refine them. The user can terminate
the query if the approximate results obtained so far are sat-
isfactory. In this section, we study the progressive versions
of range andkNN search. Such queries can be posed by the
end users of a database, or by the query optimizer to estimate
query selectivity efficiently.

6.1 Aggregate Range Search

An aggregate rangequery retrieves the number of objects
that will appear in a moving rectangleq during a time inter-
val qt. For instance, “find the number of aircrafts expected to
be within 20 miles from flight UA80 in the next 10 minutes”.
The query can be processed as a conventional range query,
followed by counting the number of qualifying aircrafts. Here,
we propose a progressive algorithm that uses the Hilbert in-
tervals of the intermediate entries in aBdual-tree to progres-
sively compute estimates for the result.

Figure 8 shows the pseudocode for the algorithm. Let
nqualify(q, e) be the estimated number of qualifying objects
in the subtree of entrye. First, the root is loaded, and the
estimates for its entries are summed up torsltest, which is
the first approximation of the query result (we will discuss
how to derivenqualify(q, e) shortly). The root entries are
added to a max-heapH. At each step, the entrye in H with
the largestnqualify(q, e) is de-heaped, and its contribution in
rsltest is replaced by the estimates for the entries in its child
node (these entries are also inserted inH). The rationale is
that by refining entries with large estimates early, we can
reduce the estimation error as soon as possible.

The algorithm continuously improvesrsltest to the ac-
tual result. At each step (Line 6), the user can discontinue

Algorithm Aggregate-Range(moving regionq, query intervalqt)
1. rsltest:=0; //the estimate of the query result
2. initialize a max-heapH whose elements are of the form (entry,key)
3. for eachentrye in the root
4. rsltest:=rsltest + nqualify(q, e);
5. add(e, nqualify(q, e)) to H;
6. while (H is not empty∧ the user has not terminated the query)
7. remove the top element(e, est) of H;
8. rsltest:=rsltest − est;
9. read the child nodend of e;
10. if (nd is a non-leaf node)then
11. for eachentrye′ ∈ nd
12. if (e′ intersectsq duringqt) then
13. rsltest:=rsltest + nqualify(q, e′);
14. add(e′, nqualify(q, e′)) to H;
15. else// nd is a leaf node
16. for eachobjecto ∈ nd
17. if (o satisfiesq) then
18. rsltest:=rsltest + 1;

Fig. 8 Progressive aggregate range search algorithm

the query processing if the current estimate is satisfactory
(e.g., it has converged to a roughly constant value). Conver-
gence can be automatically detected by analyzing the mov-
ing average of the last few results. If the moving average sta-
bilizes, we can terminate, with confidence thatrsltest will
not change significantly afterwards. Such techniques for au-
tomatic termination could be particularly useful to a query
optimizer for selectivity estimation.

It remains to clarify the computation ofnqualify(q, e).
Given the node fanoutf , we estimate the number of ob-
jects in the subtree ofe asf level(e), wherelevel(e) is the
level ofe. Recall thate is accompanied by a Hilbert interval
HI(e), and it is associated with a setS of perfect MORsr
(returned by the algorithm of Figure 7), each of which also
corresponds to a Hilbert interval (in the form of Formula 4)
HI(r). Consider the set of objects (underlyinge) that are
covered by an MORr of S in the dual space. We estimate the
cardinality of the set asf level(e) · |HI(r)|/|HI(e)|, where
|HI(e)| and|HI(r)| are the lengths of the Hilbert intervals
for e andr respectively. LetPr(q, r) be the probability that
an object in the set satisfiesq (it can be calculated using the
formula in [17] for predicting the range search selectivity on
random moving objects). As a result,nqualify(q, e) can be
computed as:

nqualify(q, e) =
∑
∀r∈S

(
f level(e) ·Pr(q, r) · |HI(r)|

|HI(e)|

)

6.2 kNN Distance Search

Given a moving pointq and a time intervalqt, a kNN dis-
tancequery retrieves the distance of thek-th nearest object
from q (where the distance is defined in Section 3). For in-
stance, “what is the shortest distance between flight UA80
and any other aircraft in the next 10 minutes?”. The pro-
gressive version of the query provides early estimates of the
kNN distance, which are iteratively refined.
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Figure 9 presents the details of the algorithm, which main-
tains an arrayW containing the estimates for the distances
of thek NNs. Specifically, thei-th (1 ≤ i ≤ k) element of
W has the form (W [i].entry, W [i].dist), whereW [i].entry
is the i-th nearest object currently known or an intermedi-
ate entry whose subtree may contain such an object, and
W [i].dist equals the predictedi-th nearest distance. Initially,
W [i].entry = ∅ andW [i].dist = ∞ for all elementsW [i].

The algorithm operates like the best-first NN algorithm
[5], maintaining a min-heapH of the visited entries by their
minimum distances fromq (computed as discussed in Sec-
tion 4.5). Before an entrye is de-heaped the user can termi-
nate the algorithm, if s/he is satisfied with the current value
of W [k].dist. Let e be the de-heaped entry. If the child node
of e is a leaf, we compute the distance for all the objectso
encountered. Otherwise (the child ofe is a non-leaf node),
for each entrye′ in the node, we estimate the largest possible
distancedmax(e′, q) betweenq and any object in the subtree
of e′. Towards this, the algorithm obtains the setS of perfect
MORs associated withe′. For each MORr ∈ S, we com-
pute its maximum distance fromq as a function oft (by a set
of equations similar those in Section 4.5), and then take the
minimum value of this function duringt ∈ qt. Thus,dist is
bounded by the largest of the minimums for all the MORs,
or formally:

dmax(e′, q) = max
r∈S

(
min
t∈qt

dmax(q(t), r(t))
)

W is updated whenever we (i) find an object whose dis-
tance toq is smaller thanW [k].dist, or (ii) can assert that
such an object exists underneath an intermediate entrye (i.e.,
dmax(e′, q) < W [k].dist). The subtree ofe can be pruned
pruned ifdmin(e, q) (Equation 5) is at leastW [k].dist.

We close this section by pointing out that the above ag-
gregate range andkNN distance algorithms also apply to the
Bx-tree. However, the structure does not provide good result
estimates until nearly the end of execution, since its interme-
diate entries do not incorporate object velocities.

7 Experiments

In this section, we experimentally compare theBdual-tree
against the best indexes of the 3 categories in Section 2:
STRIPES3 [13] (representing structures based on dual trans-
formations), the TPR∗-tree [16] (an enhanced version of the
TPR-tree), and theBx-tree [6]. All experiments were per-
formed on a machine with a Pentium IV 2.3GHz CPU and
512 Mb of memory. The disk page size is fixed to 1K bytes.
We use a relatively small page size to simulate realistic sce-
narios where the dataset cardinality is much higher. Unless
otherwise stated, we do not use memory buffers for consec-
utive queries or updates. All reported I/O costs correspond
to page accesses.

3 For STRIPES, we store non-leaf nodes as tuples in a relation file
and apply the “half-page” storage optimization of [13] for leaf nodes.
Sibling half-page nodes are packed into the same physical disk page,
in order to minimize I/Os during traversal.

Algorithm kNN-Distance(moving pointq, query intervalqt)
1. initialize a min-heapH with elements of the form (entry,key);
2. for each i ∈ [1, k]
3. W [i].entry:=∅; W [i].dist:=∞;
4. add (root, 0) toH;
5. while (H is not empty∧ the user has not terminated the query)
6. remove the top(e, dist) element ofH;
7. if W [i].entry = e for anyi then
8. for j:=i to k − 1
9. W [j].entry:=W [j + 1].entry;

W [j].dist:=W [j + 1].dist;
10. W [k].entry:=∅; W [k].dist:=∞;
11. read the child nodend of e;
12. if (nd is a non-leaf node)then
13. for eachentrye′ ∈ nd
14. S:=Decompose(the Hilbert interval ofe′);
15. dmax(e′, q):=maxr∈S (mint∈qt dmax(q(t), r(t)));
16. if (dmax(e′, q) < W [k].dist ) then
17. W [i]:=the element inW with the leastW [i].dist larger

than or equal todist;
18. for j:=k downtoi + 1

//updateW with pair (e′, dmax(e′, q))
19. W [j].entry = W [j − 1].entry;

W [j].dist = W [j − 1].dist;
20. W [i].entry:=e′; W [i].dist:=dmax(e′, q);
21. if (dmin(q, e′) < W [k].dist) then
22. add(e′, dmin(q, e′)) to H;
23. else// nd is a leaf node
24. for eachobjecto ∈ nd
25. if (dmin(q, o) < W [k].dist) then
26. updateW with pair (o, dmin(q, o)) in the same way as in

Lines 18-20;

Fig. 9 ProgressivekNN distance algorithm

7.1 Data and Query Generation

We generated spatiotemporal data following the methodol-
ogy of [16,13,6]. The data space is two-dimensional, where
each dimension has a domain of[0, 1000]. 5000 rectangles
are sampled from a real 128K spatial dataset4; their cen-
troids model positions of airports. Each object is an aircraft,
which moves along the line segment connecting two air-
ports. Initially, each aircraft is positioned at an arbitrary air-
port, and randomly selects another airport as the destination.
At the subsequent timestamps, the aircraft will move from
the source airport to the target one, at a speed that is gener-
ated in the range [0,5], following a Zipf distribution (skewed
towards 0). As soon as the object reaches the destination,
it chooses another airport as the next destination, at a new
speed obtained in the same way as described earlier. At this
moment, the aircraft updates its motion parameters in the
underlying index, including a deletion (erasing the previous
entry) followed by an insertion. In addition to these updates
(caused by switching destinations), an aircraft also issues an
update 25 timestamps (=T ) after the previous one.

An index with time horizonH = 2T = 50 time units is
created for each dataset. All objects are created and inserted
into the index at time0. At each update, exactly one object
insertion and one deletion is performed. Queries are issued

4 available athttp://www.rtreeportal.org/datasets/spatial/US/RR.zip.
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Fig. 10 Index sizes and effect ofH on updates

afterH/2, when twoBdual-trees,Bx-trees, and STRIPES-
quadtrees are used for indexing moving objects (as opposed
to a single TPR∗-tree). The resolution levelλ for the Hilbert
curves ofBdual-trees andBx-trees is10. We measure the
query cost, by averaging it over a workload of 100 queries,
issued at different current timetnow as the index runs. A
moving (square) range queryq is generated with the follow-
ing parameters: the initial spatial extentq.Slen (default50);
the velocity with extentq.V len (default6), centered at a ran-
dom number in[−5, 5], and the query time interval length
qtlen (default15). qt` is a random instant in[tnow, tnow +
40− qtlen]. The initial spatial location ofq follows the data
distribution. For movingkNN queries, parameterq.Slen is
replaced byk (default50).

7.2 Space requirements

Figure 10a shows the sizes of the different indexes, as a
function of the numberN of moving objects.Bdual-, Bx-
and TPR∗-trees have similar sizes. On the other hand, due
to the low storage utilization of PR bucket quadtrees [14],
STRIPES occupies much more space. Statistically, pages
that store STRIPES leaf nodes are only 33% full on the
average, whereas the node occupancy for other indexes is
approximately 69%. As verified in subsequent experiments,
the size difference affects negatively the query performance
of STRIPES.

7.3 Update Performance

We compare the update performance of the indexes with re-
spect to various factors. Figure 10b shows the average up-
date cost as a function of time horizonH. As H increases,
the overlapping of entries in TPR∗-tree increases and more
pages are accessed during updates. The other three indexes
are not affected byH; only a single path is traversed dur-
ing updates. Figure 11 shows the average update cost of the
indexes as a function of the data sizeN . The update cost
of the TPR∗-tree is much higher than that of other indexes
and increases withN . As the non-leaf entries of TPR∗-tree
overlap, multiple paths need be searched during an insertion
and deletion. In addition, the tree performs expensiveac-
tive tighteningof the nodes during updates. The cost of the
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Fig. 12 Update cost vs. number of updates

other three indexes increase only slightly withN ; each up-
date only searches a single path. TheBdual- andBx-trees
have the lowest cost as they are both based on the balanced
B+-tree. STRIPES has higher update cost because the PR
bucket quadtree is unbalanced; on the average, a longer path,
compared to theBdual/Bx-tree, is traversed during updates.

Finally, we study whether the update performance de-
grades over time. At timestamp0, 100K objects are inserted
to all indexes. We record the update performance of the in-
dexes after every 5K updates. Figure 12 shows the update
cost with respect to the number of updates. Observe that
the update cost (both I/O and CPU) of the TPR∗-tree in-
creases slightly with time. The other indexes are not sensi-
tive to the time of the updates. Summarizing, the high update
cost of TPR∗-tree makes it impractical for real-time applica-
tions. On the other hand, as we will see in the next exper-
iments, TPR∗-trees perform consistently better than other
structures at queries, thus their query cost should be inter-
preted as a lower bound when compared with other methods
(for update-intensive applications).

7.4 Query Performance

Figure 13a shows the performance of range queries with the
default parameter values, issued attnow as the index runs.
The periodic behavior is caused by the use of two indexes.
Bdual has good performance and it only has small fluctu-
ation of query cost. Figure 13b shows the performance of
the indexes on the default range query workload as a func-
tion of reference timeTref . The reference timeTref for the
Bdual-, Bx-trees, and STRIPES can directly be set to values
other than the index creation timetgrow. This technique is
not directly applicable to the TPR∗-tree. TPR∗-tree performs
active tightening of nodes during updates and its effect is
equivalent to implicitly update the reference time of affected
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nodes totnow (instead oftgrow). Observe that all indexes
achieve better performance whenTref is set totgrow +H/2.
The performance ofBx-tree is too sensitive toTref because
the query region is enlarged by maximum velocities. AsTref

approachestgrow + H/2, the average query enlargement is
reduced. In all subsequent experiments, the valueTref for
all indexes (except the TPR∗-tree) is set totgrow + H/2.

Figure 14a shows the performance of the indexes on the
default range query workload, by varying the skewness pa-
rameterθ of the Zipf distribution (for generating object ve-
locity values) from 0 (uniform) to 2 (highly skewed). The
performance of theBdual-, TPR∗- trees, and STRIPES im-
proves because the extents of VBRs (i.e., velocity bounding
rectangles) in leaf nodes become smaller when the number
of fast moving objects decreases. However, theBx-tree has
little performance gain, since the small number of fast mov-
ing objects are still distributed in many different spatial re-
gions, resulting in significant query enlargement. Figure 14b
shows the average number of perfect MORs decomposed
and examined from an entry, as a function of query win-
dow sizeq.Slen. Full denotes the standard decomposition
method in Section 4.4.Progressiverepresents an optimized
version which combines with query predicate checking in
a single step, employs branch-and-bound technique for fast
computation and returns as soon as a MOR of the entry is
found to intersect the query. Consequently, for aBdual-tree
entry, only a small number of MORs is computed and ex-
amined on the average (6–9 as opposed to 102–106 MORs
in the full decomposition). This justifies why searching the
Bdual-tree is computationally efficient.

Figure 15 shows the performance of the indexes on the
default query workload, on datasets with different number
N of moving objects. The I/O cost increases linearly with
N . The CPU costs have similar trends. Next, we study the
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effect of the time horizonH on the indexes. A query work-
load was generated for each value ofH, such thatqtlen is
proportional toH. Figure 16a shows the range query I/Os as
a function ofH. TheBdual- and TPR∗- trees have similar
costs. TheBx-tree degrades fast withH, since the average
query enlargement increases withH. STRIPES is not cheap,
due to its large size.

We also evaluate the performance of the indexes for dif-
ferent values of the query parameters. Figures 16b, 16c, and
16d show the I/O cost when we fix two of the parameters
q.Slen, q.V len, andqtlen to their default values and we vary
the others. The query cost increases as any parameter value
increases. The performance gaps between the indexes are al-
most insensitive to the parameter values. Note that the case
for qtlen = 0 corresponds to the special case of timestamp
queries.

We then study the performance of the indexes forkNN
queries with respect to various factors. The timestampkNN
algorithm forBx-trees proposed in [6] was adapted for mov-
ing kNN queries (i.e. forqtlen ≥ 0). Note thatkNN search
techniques for STRIPES were not mentioned in [13]. We
apply the incremental NN search [5] with equations in Sec-
tion 4.5 for computing the minimum distance of STRIPES
entries from the query. Figure 17a shows the I/O cost ofkNN
queries as a function of the time horizonH of the indexes,
by fixing k = 50. The result is consistent with that of range
queries: bothBx-tree and STRIPES become much more ex-
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Fig. 17 kNN query I/O

pensive than theBdual-tree asH increases. Figure 17b com-
pares the indexes forkNN queries as a function ofk, by fix-
ing qtlen = 15. The query costs do not change much when
k is small compared to the data sizeN . Figure 17c shows the
I/O cost ofkNN queries as a function ofqtlen, for k = 50.
Note that the case forqtlen = 0 corresponds to the special
case of timestamp queries. The performance differences are
similar to those of range queries; theBdual- and TPR∗- trees
have almost the same cost, however, theBx-tree degrades
fast asqtlen increases. In general, the indexes show similar
behavior inkNN queries as in range queries.

Next, we study the effect of data dimensionality on the
query performance of the indexes. Figure 18a shows the que-
ry cost on the indexes as a function of the data dimensional-
ity d, with default range queries.Bdual-trees and TPR∗-trees
have similar query costs whileBx-trees have much higher
costs. The cost of STRIPES explodes asd increases because
a quadtree node split may generate up to4d leaf nodes (in
the worst case), dramatically reducing the disk utilization of
the tree.

Figure 18b summarizes the performance of the indexes
for mixed workloads (with updates and range queries of de-
fault parameter values), as a function of the query-to-update
ratio. The figure plots the average I/O cost of asingleopera-
tion (either update or query) in the workload. The TPR∗-tree
is the most expensive index for applications with high up-
date rates. It starts outperforming the Bx-tree and STRIPES
at a ratio of 1:50 and the Bdual-tree at a ratio of 1:5, since
the cost of a typical query is much higher than that of a sin-
gle update. Notice that theBdual-tree is the best index for
update-intensive applications, while it has similar query per-
formance to the TPR∗-tree.

So far, we measured update and query I/O without con-
sidering the existence of a memory buffer. Practical systems
include buffers that reduce the I/O cost, by exploiting the
common access patterns of consecutive queries or updates.
We compare the performance of the indexes in the presence
of an LRU memory buffer (Figure 19), for update and query
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workloads, using the default parameters and data. The buffer
offers significant performance gain for updates (similar for
all methods). During updates, more non-leaf pages than leaf
pages are accessed, which have high chances to reside in the
buffer at subsequent operations. Note that theB+-tree in-
dexes maintain their performance gain over STRIPES and
the TPR∗-tree for different buffer sizes. Regarding query
performance, the effect of small or moderate buffers is negli-
gible. The reason is that (i) the sequence of queries is random
(i.e., queries do not exhibit locality, thus two consecutive
queries only share a very small set of common leaf pages)
and (ii) 94% of the accessed pages by a query are leaf pages;
thus, even when the whole set of directory pages is pinned
in the buffer, there is not large performance gain. In short,
the buffer size does not affect the relative performance of
the indexes.

7.5 Accuracy of the Cost Model

In this section, we test the accuracy of the cost models pro-
posed in Section 5 for timestamp range queries. 100K mov-
ing points are inserted into aBdual-tree and aBx-tree at
timestamp0. We applied a workload of 100 timestamp que-
ries and for each query we measured the actualacti and es-
timatedesti cost of the indexes. Theerror rate [17] is then
defined aserr =

∑100
i=1 |esti − acti|/

∑100
i=1 acti.

Figure 20a shows the error rate as a function of the query
window size. A query refers to a random timestampqt` in
[tgrow, tgrow + H] (H = 50). Observe that the maximum
error is only below 4%. The error estimates when varying
other parameter values (i.e., query velocity intervalq.V len
and query timestampqt`) are similar and shown in Figures
20b,c. Figure 20d compares the costs of the two trees, as a
function of the time instantqt` of timestamp queries. In ac-
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Fig. 20 Cost estimation error

cordance to our analysis, there is an instanttΘ (u Tref + 7
in Figure 20d), after which theBdual-tree begins to outper-
form theBx-tree. A symmetric observation holds for values
of qt smaller thanTref − 7. Figure 20d corresponds to the
case which all objects are stored in the same tree, in order to
verify our analysis. In practice, when the query timestamp
is close to theTref of one tree, it is far from theTref of the
other tree. The combined effect on two trees is thatBdual

outperformsBx for any timestamp.

7.6 Progressive and Continuous Queries

Next, we study the performance of the indexes on contin-
uous queries, by following the evaluation approach in [6].
The objective is to maintain the query result at any time
instant. After a query is issued, the query is invoked pe-
riodically everyl timestamps (the recomputation interval).
Each invocation retrieves the set of results for the nextl
timestamps. When object updates arrive, the set of results
is maintained continuously. Deletion of objects from the re-
sult set (e.g. for akNN query) may invalidate the result and
the query needs to be recomputed for the nextl timestamps.
Figure 21a shows the amortized maintenance cost of a range
query (with default parameters) per update. Asl increases,
the query is re-invoked less frequently and the maintenance
cost is reduced. Figure 21b shows the amortized mainte-
nance cost of akNN query (with default parameters) per
update, as a function ofl. Maintenance costs of all indexes
first decrease and then increase. Whenl becomes too large,
a large set of results need to be maintained and the prob-
ability of removing an object from the result set increases.
This invalidates the result set and forces the query to be re-
computed frequently. We note that specialized methods for
monitoring continuous (range [10] and NN [12]) queries are
preferred over general-purpose spatiotemporal indexes.

In the last set of experiments, we demonstrate the effec-
tiveness of progressive queries onBdual-trees in estimating
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Fig. 22 Progressive query estimates

the result early. We also implemented versions of the pro-
gressive algorithms for theBx-tree. Figure 22a shows the es-
timated result of an aggregate range query with the standard
parameter values(q.Slen = 50, q.V len = 6, qtlen = 15)
on the default dataset, as a function of the number of nodes
read. The horizontal dotted envelope represents a 10% error
bound from the actual result (5833). Observe that theBdual-
tree converges much faster to a good estimate of the query
result, as opposed to theBx-tree which does not reach the
envelope, even at the time needed by theBdual-tree to com-
pute the exact result.

Figure 22b shows the estimatedkNN distance as a func-
tion of the number of pages accessed for a query withk =
50, qtlen = 15 on the default dataset. TheBdual-tree pro-
gressively refines the estimated distance, however, it reaches
an estimate with small relative error slower compared to ag-
gregate range queries. Note that thekNN distance is very
small, thus progressive algorithms are prone to relatively
larger estimates. Summarizing, aggregate range queries us-
ing theBdual-tree can return informative results to the users
early.

8 Conclusions

We proposed theBdual-tree, a new spatiotemporal index for
predictive search that combines features and advantages of
state-of-the-art methods; dual space indexing (STRIPES[13]),
fast query processing (TPR∗-tree [16]), and fast updates (Bx-
tree [6]). We provided an analytical study, which justifies
the superiority ofBdual-tree compared to theBx-tree and
a thorough experimental evaluation, which shows that our
method has the best overall (query and update) performance
compared to all three past indexes. Finally, we proposed pro-
gressive versions of aggregate (range andkNN) query algo-
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rithms that use theBdual-tree to predict early an accurate
estimate of the result, which is gradually refined.
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