
Constraint Satisfaction in Semi-structured Data Graphs

Nikos Mamoulis1 and Kostas Stergiou2

1 Department of Computer Science and Information Systems
University of Hong Kong
nikos@csis.hku.hk,

2 Department of Information and Communication Systems Engineering
University of the Aegean
konsterg@aegean.gr

Abstract. XML data can be modeled as node-labeled graphs and XML queries
can be expressed by structural relationships between labeled elements.XML
query evaluation has been addressed using mainly database, and in some cases
graph search, techniques. We propose an alternative method that models and
solves such queries as constraint satisfaction problems (CSPs). We describe com-
mon constraint types occurring in XML queries and show how query evaluation
can benefit from methods for preprocessing and solving CSPs. We identify an
important non-binary constraint that is a common module of XML queriesand
describe a generalized arc consistency algorithm with low cost that can ensure
polynomial query evaluation. Finally, we demonstrate that maintaining the con-
sistency of such non-binary constraints can greatly accelerate searchin intractable
queries that include referential relationships.

1 Introduction

XML is becoming a standard for information exchange over theInternet. This flexible
markup language allows both data content and structure to bedescribed in a single doc-
ument. XML is very appropriate for describing semi-structured data, which do not com-
ply to a well-defined schema. XML documents can be viewed as rooted, node-labeled
graphs, where the intermediate nodes take values from the set of potential element la-
bels and the leaves store textual information. The nodes of XML graphs can be viewed
as object instances, whose labels identifies their class. Having stored semi-structured
data in a large XML document, we are often interested in the retrieval of object in-
stances which satisfy somestructural constraintsbetween them. Such requests can be
modeled as XML queries, expressed in a language like XPath [19].

Although the evaluation of simple structural queries has received a lot of attention
from database research, little has been done to address the evaluation of complex queries
where there is a large structure of objects to be retrieved or/and the structural constraints
between the objects are complicated. The rapid increase in the use of XML in a wide
variety of applications makes the need to address such problems a pressing one.

In this paper we propose the use of the constraint satisfaction paradigm as a new
way of handling XML navigational (i.e. path) queries. We demonstrate that the expres-
siveness of constraint satisfaction allows us to capture ina natural way a wide variety

of such queries, from simple to very complex ones. Also, advanced constraint program-
ming algorithms and heuristics allow us to handle complex problems that are otherwise
difficult to deal with.

We begin by providing a mapping of all the common structural relationships used
in XML navigational queries to a set of unary and binary constraints with well-defined
semantics. Evaluation of queries with primitive structural constraints only (e.g. parent,
child, sibling, etc.) has been recently shown to be in PTIME [7, 16, 12]. For example,
consider the query “find a faculty member who has an RA and a TA”, issued in an XML
document containing structural information about a university. In other words, we are
looking for twigs in an XML graph (e.g., see Figure 1), where the parent element is
tagged byfaculty and has two children elements tagged byRA andTA. In general,
XML navigational queries are instances of the graph containment problem which has
been shown to be polynomial for some classes of graphs, like trees. Interestingly, we
show that such results can be also derived by constraint programming theory.

In addition, we identify an interesting conjunctive non-binary constraint that is
commonly found in XML queries. Thisall-different + ancestor-descendantconstraint
(ADAD for short) relates a parent (or ancestor in general) with a number of children (or
descendants in general) and, in addition, children (descendants) of the same label are
related with an all-different constraint. For instance, consider the query “find a faculty
member who has at least 3 RAs”, which does not allow the instances of the RA variables
to take the same value. Such queries fall in a class defined in [8] that can be evaluated
in PTIME. We present an alternative efficient way to process XML queries that contain
only ADAD and primitive structural constraints. To achievethis, we provide a filtering
algorithm of low complexity for ADAD constraints. Finally,we show how queries that
also include precedence (i.e., ordering) constraints can be evaluated in PTIME using
constraint programming techniques.

Although many classes of XML queries are in PTIME, the general containment
problem in XML graphs, where arbitraryreferential (i.e., IDREF) constraints are in-
cluded (e.g., see [11]) is intractable. We show how such intractable containment queries
can be modeled as CSPs, and make an empirical comparison of various CSP search al-
gorithms. The results show that maintaining specialized non-binary constraints, such as
ADAD, can significantly increase pruning and speed-up search.

The rest of the paper is organized as follows. Section 2 provides background about
XML query processing in database systems, and constraint satisfaction problems. In
Section 3 we describe how simple and complex XML queries can be formulated as
CSPs. In Section 4 we discuss the application of constraint programming techniques
to preprocess and solve this class of problems. We also elaborate on the complexity of
query evaluation for different classes of queries and include an experimental evaluation
of search algorithms on intractable XML queries when formulated as CSPs. Finally,
Section 5 concludes and discusses future work.

2 Background

In this section, we review work carried out in the database community for XML query
processing, focusing on the widely used query language XPath, and also give some
basic background on constraint satisfaction.

2.1 XML Databases and Query Processing

XML elementsin angled braces (i.e., ‘<’ and ‘>’) are used to denote object instances.
Each element carries alabel describing a class the object belongs to (e.g., university,
department, faculty). All information related to an objectis enclosed between the be-
ginning and ending tag the object.

XML documents can be modeled as rooted node-labeled graphs (or simply trees, in
the absence of reference links), where the intermediate nodes take values from the set of
potential element labels (or else object classes) and the leaves store textual information.
For example, Figure 1 shows the XML tree for a part of an XML document, contain-
ing information about a University. XML syntax also allows for reference links (i.e.,
IDREF) between elements. For instance, a faculty member could refer to the university
where he graduated (e.g., ‘BigSchool’) by a reference link (e.g., IDREF=‘BigSchool’).

university

RA RA TATAname secretary

faculty

department

name

faculty

RA TATA

name

CS

name

staff

name

department

name

EEE

BigSchool

Smith Jones James Lee MariaJackson

Brown Jane Cage Lin

...

Bin

...

...

...

Fig. 1.An XML tree

The World Wide Web Consortium [19] has been continuously revising the defi-
nition of XPath; a query language for XML data. XPath allows for the definition of
queries where the problem variables must have some structural relationships. For in-
stance, the XPath expression document(“university.xml”)//faculty/name refers to
all nodes labeledname, which have a parent labeledfaculty, in the XML document
file “university.xml”.

The popularity of XML attracted database researchers to study the efficient man-
agement of XML data. As a result, a number of native XML management systems or

extensions of relational systems have been developed [15, 3]. In addition, new index-
ing methods and query processing algorithms have been proposed [16]. Some of these
methods (e.g., [1, 9, 10]) consider the documents as labeledtrees, ignoring the cycles
due to IDREF links. Others (e.g., [11]), are also applicablefor path queries in node
labeled graphs, which may contain cycles. In general, from aCP perspective, only easy
problems (i.e., high selective queries with few variables of large domains) have been
considered and the methods aim at minimizing the I/O cost.

Recently is has been proved that all queries that can be expressed by XPath 1.0 can
be evaluated in PTIME [7]. Different polynomial worst-casebounds have been pro-
vided for several classes of such queries. Interestingly, [7] demonstrates that several
commercial XPath 1.0 evaluation engines still use exponential algorithms even for sim-
ple, polynomial queries such as the ones discussed in this paper. Our work is related
to that of [7, 8] in the sense that we discuss polynomial algorithms for various classes
of queries, albeit from a CSP perspective. However, we also discuss the evaluation of
generic graph containment queries, beyond XPath 1.0. Such queries can be expressed
by the new version (2.0) of XPath, as discussed later.

2.2 Constraint Satisfaction Problems

Constraint satisfactionis a paradigm that can capture a wide variety of problems from
AI, engineering, databases, and other disciplines. A constraint satisfaction problem
(CSP) consists of a set of variablesX = {x1, . . . xn}, a set of domains
D = {D(x1), . . . ,D(xn)}, whereD(xi) is the finite set of possible values for variable
xi, and a setC of constraints over subsets of the variables. A constraintc on variables
xi, . . . , xj is a subset of the Cartesian productD(xi) × . . . ×D(xj) that specifies the
allowed combinations of values for variablesxi, . . . , xj . The operation performed to
determine whether a constraint is satisfied is called aconsistency check. An assignment
of a valuea to variablexi is denoted by(xi, a).

CSPs that contain constraints between at most two variablesare called binary. CSPs
with constraints between arbitrary numbers of variables are called n-ary (or non-binary).
A CSP is usually represented by a constraint graph (or hyper-graph in the case of n-ary
problems) where nodes correspond to variables and edges (hyper-edges) correspond
to constraints. The basic goal in a CSP is to find one or all assignments of values to
variables so that all the constraints are satisfied.

A constraintc = (xi, xj) is arc consistent(AC) iff for each valuea in D(xi) there
exists a valueb in D(xj) so that the assignments(xi, a) and(xj , b) satisfyc. In this
case we say thatb is a support for a on constraintc. A binary CSP is AC if all its
constraints are arc consistent. These definitions extend tonon-binary constraints in a
straightforward way. A non-binary constraint isgeneralized arc-consistent(GAC) iff
for any variable in the constraint and value that it is assigned, there exist compatible
values for all the other variables in the constraint.

3 Formulating XML Queries as CSPs

While evaluating an XML query, we actually search for a set of elements in the XML
graph with labels and structural relationships between them that match the labels of the

nodes in the query and the relationships between them. We canrepresent the entities
in a query as variables, the elements (nodes) in the XML graphas the possible values
of the variables, the labels of the query nodes as unary constraints, and the structural
relationships between query nodes as directed binary constraints. Queries expressed
in XPath can be transformed into CSPs in a straightforward way. Each variable in the
XPath expression becomes a variable in the CSP, the domains are the nodes of the XML
graph, and the constraints are the relationships between variables in the query.

Example 1.Consider the query “is there any department which has 3 faculty mem-
bers with one RA and one TA?”. Figure 2a shows how we can express it using XPath
2.0. Observe that the expression already uses similar terminology to CSPs. It asks for
instances of nodes labeleddepartment (variablex1), which are ancestors of three
differentfaculty nodes (variablesx2, x3, x4), which have children labeled RA and
TA. The query can be modeled as a CSP; the corresponding constraint graph is shown in
Figure 2b. There are 10 variables with unary constraints (some of the labels are omitted
from the graph for the sake of readability). E.g.,x2, x3, x4 can take labelfaculty.
There are also binary constraints, denoting ancestor/descendant or parent/child relation-
ships. E.g.,x1 is an ancestor of each one ofx2, x3, andx4. Finally, there are inequality
constraints betweenx2, x3, andx4 in order to forbid these variables to take the same
value. These constraints could be alternatively modeled asa non-binaryall-different
constraint.

We can represent each elemente in the XML data graph with a quadruple
〈label(e), pre(e), post(e), preparent(e)〉, wherelabel(e) is the label of the node, and
pre(e) andpost(e) are the values given to elemente by a preorder and postorder traver-
sal of the rooted graph (ignoring IDREF links). We also keep the preorder value ofe’s
parent node. This representation facilitates the fast implementation of various types of
constraint checks. [9] uses a similar representation to build an indexing structure on
XML data.3

Theprimitivestructural relationships between nodes in XML graphs arechild, par-
ent, sibling, descendant, ancestor. These relationships can be expressed as binary di-
rected constraints in the CSP formulation. In Table 1, we define the semantics of the
primitive constraints and also the precedence constraintspreceding, following, pre-
cedingsibling, followingsibling, which will be described shortly. For each constraint
c on variablesxi andxj , a constraint check amounts to checking whether the corre-
sponding conditions of Table 1 hold. This can be done in constant time. Note that for
every directed constraintc(x1, x2) there is a equivalent inverse constraintc(x2, x1). For
example, the inverse ofparent(x1, x2) is child(x2, x1).

Another useful observation is that the child constraints are functional and the parent
constraints are piecewise functional [18]. A binary constraint c = (xi, xj) is functional
if for every valuea ∈ D(xi), there exists at most one support inD(xj). Consider a
constraintchild(xi, xj). Each valuea ∈ D(xi) can only have one parent in the XML
graph. Therefore, the constraint is functional. Apiecewise functionalconstraintc =
(xi, xj) is a constraint where the domains ofxj can be partitioned into groups such that

3 Note that the choice of element representation is independent of the CSP formulation; other
representations are possible with only slight changes in the definitions of constraints.

some $x1 in (“university.xml”)//department
satisfies ((some $x2 in $x1//faculty

satisfies $x2[RA andTA])
and (some $x3 in $x1//faculty

satisfies $x3[RA andTA])
and (some $x4 in $x1//faculty

satisfies $x4[RA andTA])
and ($x2 isnot $x3)
and ($x2 isnot $x4)
and ($x3 isnot $x4))

(a) query expression in XPath 2.0

x1

x6 x7 x9

x4

x10

x2 x3

x5 x8

label(x1)=’department’

ancestor
ancestor

ancestor

parent
parent parent parent

parent
parent

label(x5)=’RA’

label(x6)=’TA’

label(x2)=’faculty’

(b) a constraint graph representation

Fig. 2. Two representations of an XML query

each value ofD(xi) is supported by at most one group ofD(xj). Consider a constraint
parent(xi, xj). We can partitionD(xj) into groups such that each group includes the
children of a valuea ∈ D(xi) in the XML graph. Now each valuea ∈ D(xi) will be
supported by at most one group, and therefore the constraintis piecewise functional.

parent(x1, x2) ⇔ pre(x1) = preparent(x2)
child(x1, x2) ⇔ preparent(x1) = pre(x2)
sibling(x1, x2) ⇔ preparent(x1) = preparent(x2) ∧ pre(x1) 6= pre(x2)
descendant(x1, x2) ⇔ pre(x1) > pre(x2) ∧ post(x1) < post(x2)
ancestor(x1, x2) ⇔ pre(x1) < pre(x2) ∧ post(x1) > post(x2)
preceding(x1, x2) ⇔ pre(x1) < pre(x2)
following(x1, x2) ⇔ pre(x1) > pre(x2)
preceding sibling(x1, x2) ⇔ pre(x1) < pre(x2) ∧ sibling(x1, x2)
following sibling(x1, x2) ⇔ pre(x1) > pre(x2) ∧ sibling(x1, x2)

Table 1.Semantics of primitive and precedence constraints

The precedence relationshipsprecedingand following are used to express order-
ing associations between XML constructs, conventionally based on a preorder traversal
of the graph. Note that the preorder traversal is possible ifwe ignore all relationships
among elements except the hierarchicalchild, parentrelationships. Other precedence
relationships areprecedingsibling, following sibling, with obvious meaning. The prim-
itive and precedence relationships do not capture all structural information contained in
any XML document. There could also bereferential relationshipsthat represent IDREF

links. Simply put an IDREF relationship allows one to specify a pointer from one ele-
mente to another elemente′.

Precedence relationships can be captured in the CSP model using simple constraints
on the preorder values of elements, as shown in Table 1. SinceIDREF links do not carry
any specific semantics they cannot be easily represented by afunction (or predicate).
We can represent them explicitly by their allowed tuples. That is, a referential constraint
c between variablesxi andxj is encoded as a table, where each row is a 2-tuple〈e, e′〉,
such thate ∈ D(xi), e′ ∈ D(xj), and there exists a referential constraint between
elementse ande′ in the XML data graph.

The XML queries that have been investigated in the database literature typically
have a few variables (of large domains) connected with primitive structural constraints.
Such queries correspond to small and relatively easy CSPs and can be handled more
efficiently using database techniques. However, these techniques are not suitable for
queries involving large numbers of densely constrained variables, with relatively small
domains. In such cases, advanced indexing methods are impractical and evaluation de-
generates to the use of simple nested loops joins, corresponding to static chronological
backtracking search in CSP terminology. In contrast, constraint programming has more
advanced search algorithms combined with powerful heuristics to offer.

4 Query Evaluation as Constraint Satisfaction

In our framework, query evaluation can be simply viewed as constraint satisfaction
search. We introduce a simple method for preprocessing CSPswith XML structural
constraints that can reduce the search effort by adding implied constraints to the prob-
lem. We also discuss search algorithms for such CSPs.

4.1 Constraint Inference

Constraint inference has been shown to be very useful as a preprocessing step in certain
classes of CSPs. By “constraint inference” we mean the addition of new constraints
to the problem that are implied by existing ones. In temporalCSPs, for example, path
consistency algorithms are used to preprocess the given problem, usually resulting in
considerable reduction of the search effort [4]. Constraint inference can replace existing
constraints with tighter ones and even detect inconsistency in a problem, avoiding un-
necessary search. In general CSPs, algorithms like path consistency are not commonly
used, but recent studies (e.g., [17, 6]) have demonstrated the benefits of adding implied
(sometimes called redundant) constraints in various typesof problems.

Constraint inference can also be used for preprocessing in the context of CSPs
with structural constraints. Inference operationsinversion, intersectionandcomposi-
tion defined for (directed) temporal constraints in [4] can be naturally extended for (di-
rected) structural constraints. Inversion of a constraintc(xi, xj) (denoted byc(xi, xj))
infers a constraintc′(xj , xi). For instance, the inversionparent(xi, xj) of constraint
parent(xi, xj) is child(xj , xi). Intersection (denoted by⊕) computes the “tightest”
constraint on variablesxi andxj that can be derived from two constraintsc(xi, xj) and
c′(xi, xj). For instance, the intersectionancestor(xi, xj) ⊕ parent(xi, xj) is
parent(xi, xj). Note that not all intersections of primitive constraints give consistent

results. For example, the intersectionchild(xi, xj) ⊕ parent(xi, xj) is inconsistent.
The composition of two constraintsc(xi, xj) andc′(xj , xk) (denoted byc(xi, xj) ⊗
c′(xj , xk)) derives a new constraintc′′(xi, xk) by transitivity. For instance, the com-
positionparent(xi, xj)⊗ parent(xj , xk) is ancestor(xi, xk). Inversion, intersection,
and composition tables for all combinations of primitive and precedence constraints
can be easily derived. In addition, we can adapt path consistency algorithms used in
temporal CSPs [4] to minimize the constraint graph of an XML query and/or detect
inconsistency. Details are omitted due to space constraints.

4.2 Tractable queries
Primitive Structural Constraints An important and very common class of XML
queries can be expressed using only the primitive structural relationshipschild, parent,
sibling, descendant, ancestor. For example, consider the query “find faculty members
with an RA and a TA”. Note that their constraint graph corresponds to a tree. As a
result, these queries can be processed in PTIME, since according to [5], AC ensures
backtrack-free search in acyclic binary constraint graphs4. To be precise, AC for CSPs
of such queries can be achieved in time O(ed), wheree is the number of primitive con-
straints in the query andd is the domain size of the variables (i.e., the size of the data).
This follows directly from [18] where it is proved that AC forfunctional and piecewise
functional constraints is computable in O(ed) time. Then backtrack-free search can be
achieved in linear time by visiting each variablex, starting from the root of the con-
straint graph, in depth-first order, assigning a valuea to x and instantiating the children
of x by the supports of(x, a) in them, recursively. Note that queries with primitive con-
straints only are part of a core fragment of XPath 1.0, which was shown to be in time
linear to the size of the query and the size of the data in [7]. Here, we have shown how
the same result can be derived using constraint programmingtheory.

All-different + Ancestor-Descendant Constraints We now study a special class of
non-binary constraints that are commonly found in XML queries. Consider for exam-
ple the constraint graph of Figure 2b. This graph is a tree of primitive structural con-
straints plus a set of binary “not-equals” constraints among sibling nodes with the same
label. For example, there are threefaculty nodes linked with binary “not-equals”
constraints and connected to their parent in the graph by thesameancestor constraint.
Alternatively, we could have a common parent/child constraint. We can consider this
set of relationships as a special non-binary constraint, which we call all-different +
ancestor-descendantconstraint (ADAD for short).

Definition 1. An ADAD constraint on variablesx1, . . . , xk, where variablesxi, i =
1, . . . , k − 1 are siblings of the same label and variablexk is their parent, is defined as
cAP (xk, x1)∧ . . .∧ cAP (xk, xk−1)∧ all-different(x1, . . . xk−1), wherecAP is a single
parent or ancestor constraint.

For example, the constraints between variablesx1, x2, x3, andx4 in Figure 2b
can be replaced by a 4-ary ADAD constraint. This constraint is the conjunction of the

4 Note that a weaker form of AC, called directional AC, is enough to guarantee backtrack-free
search.

all-different constraint betweenx2, x3, andx4, and the ancestor-descendant constraints
betweenx1 and each ofx2, x3, andx4. We can now model an XML query graph, where
the query involves only primitive relationships, as a set ofADAD constraints. Binary
constraints likeparent(x2, x5) can trivially be considered ADAD constraints with a
single child. Conjunctive non-binary constraints like ADAD with specialized filtering
algorithms are useful in many CSPs (e.g., [14]).

The ADAD constraint can also be used to model aggregation queries with the XPath
function count(node-set). This function takes a set of nodes as argument and returns
the number of nodes in the set, and can be used to select tree patterns with a specific
number of elements or restrict the number of elements to be within a specific range. For
example, the query //faculty[count(child::lecturer)≥5] selects elements labeled
faculty that have 5 or more children labeledlecturer. We can formulate such a
query using an ADAD constraint on one variable labeledfaculty and five variables
labeledlecturer. The use of ADAD constraints is particularly suitable for queries
where the count() function is applied on variables that are inner nodes (not leaves) of the
query constraint graph. For example, the query ”find a faculty member with 5 children
labeled lecturer, such that each one of them has a child labeled TA”.

In the discussion that follows, when we refer to an ADAD constraint, we use ‘par-
ent’ to denote the common parent or ancestor in the constraint and ‘children’ to denote
its children or descendants. Note that the term ‘parent’ is overloaded to denote the par-
ent node of thequery graph; e.g., in the graph of Figure 2b, the parent ofx2, x3, x4 is
x1, however, the relationships on the corresponding edges areancestor.

An XML query with ADAD constraints could alternatively be modeled using only
primitive relationships as a binary CSP, or as a CSP involving only binary and non-
binary all-different constraints. Summarizing we can consider three models:

binary model - in this model the relationships are captured by (i) binary structural con-
straints (child, parent, ancestor, descendant) and (ii) binary ‘not-equals’ constraints
between sibling nodes of the same label.

mixed model - in this model the relationships are captured by (i) binary structural con-
straints (child, parent, ancestor, descendant) and (ii) non-binary all-different con-
straints between sibling nodes.

non-binary model - in this model the relationships are captured by non-binaryADAD
constraints only.

As we will show later, achieving GAC in the non-binary model guarantees that a
solution can be found in backtrack-free manner. In Figure 3 we sketch an algorithm of
low complexity that computes GAC for an ADAD constraint. Thealgorithm explicitly
verifies the consistency of each valuea of the parent variablexk, by reducing the do-
mains of the children variables according toa and applying GAC for the all-different
constraint between them. If a valuea of xk is eliminated, the values of the children
variables which are consistent witha are deleted from the corresponding domains.

To prove that the algorithm of Figure 3 achieves GAC for an ADAD constraint
we need to show that if a value in the domain of some variable isnot GAC then the
algorithm will remove it. This divides in two cases. First, assume that valuea of vari-
ablexk (i.e. the parent node) is not GAC. This means that there is no supporting tuple

booleanGAC (ADAD constraintc(x1, x2, . . . , xk))
1: for eachxi, i ∈ {1, . . . , k − 1}
2: for each valueb ∈ D(xi)
3: if b has no support inD(xk) removeb from D(xi)
4: for each valuea ∈ D(xk) //parent
5: for eachxi, i ∈ {1, . . . , k − 1}
6: temporarily remove fromD(xi) all valuesb

such thatparent(a, b)=false;
7: compute GAC for constraintall-different(x1, . . . xk−1);
8: if there is a domain wipeout
9: removea from D(xk);
10: for eachxi, i ∈ {1, . . . , k − 1}
11: permanently remove all valuesb from D(xi)

such thatparent(a, b)=true;
12: restore all temporarily removed values;
13: if D(xk) is wiped outreturn false;
14: return true;

Fig. 3.GAC filtering for an ADAD constraint

〈b1, . . . , bk−1〉, wherebi ∈ D(xi), such that∀ bi parent(a, bi) = TRUE andall-
different(b1, . . . , bk−1) = TRUE. In this case, when valuea is examined, GAC on
the all-different sub-constraint will detect the inconsistency (lines 7, 8) anda will be
removed (line 9). Second, assume that valuebj of variablexj , with j 6= k, (i.e. a child
node) is not GAC. This means that there is no supporting tuple
〈b1, . . . , bj−1, bj+1, . . . , bk−1, a〉, wherebi ∈ D(xi), i 6= j and a ∈ D(xk), such
that the ADAD constraint is satisfied. This can happen in two cases; first if the par-
ent of bj in the XML graph is not in the domain ofxk (e.g., its parent is not labeled
department). Such values are eliminated right in the beginning of the algorithm
(lines 1–3). Now, assume that the parent ofbj in the XML graph is valuea ∈ D(xk).
Whena is examined (line 4), the algorithm will compute the set of supporting values
of a in each variablex1, . . . xk−1, temporarily reducing the domain of variables to only
values consistent witha. Since valuebj is not GAC, but it has support inxk, it should
be not GAC with the reduced domains of the other children variables and it will be
eliminated during GAC of the sub-constraintall-different(b1, . . . , bk−1).

We now discuss the complexity of the algorithm of Figure 3.

Proposition 1. The worst-case time complexity of applying GAC on one ADPC con-
straint is O(d2k

√
k).

Proof. The preprocessing step (lines 1–3) takes O(kd) time to enforce AC on thek− 1
ancestor-descendant constraints. At the same time we can build a data structure which
for each valuea of xk holds two pointers; one to the first descendant ofa (according to
the preorder values of the elements in the XML graph) and another to its last descendant.
The outer iteration of line 4 is executed at mostd times; once for each valuea of the
ancestor variablexk. In each iteration we reduce the domains of variablesx1, . . . xk−1

to include only values that are descendants ofa in the XML graph. This is done using
the data structure built before. Then, we apply a GAC algorithm on the all-different sub-
constraint over variablesx1, . . . xk−1, with d domain size each in the worst case. Using

the algorithm of [13], this can done in O(dk
√

k) time. Ford values of the outer iteration,
we get O(d2k

√
k). The complexity, including the preprocessing step, is O(kd+d2k

√
k)

= O(d2k
√

k).

In the case where the ADPC constraint consists of parent-child constraints, the com-
plexity of GAC reduces to O(dk

√
k). This can be achieved by taking advantage of

the piecewise functionality of parent-child constraints in the following way: The do-
mains of the children are partitioned intog groups, one for each value in the domain
of the parent (which has domain sizeg). Now, the iteration of line 4 in Figure 3 will
be executedg times, and in each iteration the cost of GAC on the all-different con-
straint will be O(d

g
k
√

k). Thus, the complexity of GAC on the ADPC constraint will be

O(g d
g
k
√

k)=O(dk
√

k). The same holds for ADPC constraints consisting of ancestor-
descendant constraints that are piecewise functional. This occurs when any label in the
data graph does not appear more than once along any branch.

If some query contains more than one ADAD constraints then inorder to achieve
GAC in the constraint graph, we can adapt a standard AC algorithm to use the filtering
function of Figure 3 and propagate the consistency of ADAD constraints using a stack.
If some query containse ADPC constraints then GAC can be applied in O(ed2k

√
k)

time in the general case, and O(edk
√

k) time for the special cases discussed above.
Realistically, the ADPC constraints in a query do not share more than one variable,
which means thate = n/k. In this case the complexity of GAC in the general case is
O(nd2

√
k). In the special piecewise functional cases, GAC can be applied in O(nd

√
k)

time, which is particularly efficient.
According to [5], GAC ensures backtrack-free search in constraint graphs that are

hyper-trees. Therefore achieving GAC in the non-binary model of an XML query, con-
sisting of primitive relationships only, is enough to guarantee backtrack-free search,
and thus polynomial query evaluation. In XPath, one expression binds exactly one vari-
able and usually all solutions are required. That is we need to retrieve all the values
of the variable that satisfy the query. In the CSP formulation, these values are the arc
consistent values in the variable’s domain. We can also easily retrieve the whole tree
patterns that match the query pattern using the data structure described in the proof of
Proposition 1. It is interesting to note that queries with ADAD constraints only belong
to a special class called “extended Wadler fragment” in [8].For queries in this class
[8] provide an algorithm of O(n2d2) cost, whereas our GAC + backtrack free search
approach can solve such problems at a lower complexity.

A natural question to ask is if it is necessary to introduce the non-binary model with
the ADAD constraints in order to achieve backtrack-free search. As we discussed, there
are two alternative models for the problem; the binary modeland the mixed model.
Can AC (GAC) in these two models guarantee backtrack free search? As the following
example shows, the answer to this question is no.

Example 2.Consider the query depicted in Figure 4a and the XML data graph of Figure
4b. If we model this problem as a CSP we will have one variablex1 for the academic
and three variablesx2, x3, x4 for the RAs. The domain ofx1 comprises two values,
corresponding to the two academics of the XML data graph. Similarly, the domains of
x2, x3, andx4 include the fourRA nodes of the XML graph. Let us first assume that

x1

x4x3x2

label(x2)=’RA’

parent
parent

parent

label(x3)=’RA’

label(x4)=’RA’

label(x1)=’faculty’

faculty faculty

RARA RARA

department

(a) query (b) XML document

Fig. 4.necessity of non-binary model

AC is applied on the binary model (i.e., considering all constraints as binary). Observe
that the two possible values forx1 have supports in the domains ofx2, x3, andx4. In
addition, the values of each child variable find support in the parent’s domain and also in
the domains of the sibling variables using the binary “non-equals” constraint. However,
it is easy to see that the problem is inconsistent. To discover the inconsistency, we have
to search. Similarly, AC on the mixed model leaves the variable domains unchanged;
enforcing GAC using the non-binary all-different constraint does not prune any values.
This example proves the following proposition.

Proposition 2. Let Q be an XML query, consisting of primitive relationships only,
represented in either the binary or the mixed model. Achieving GAC in the constraint
graph ofQ does not guarantee backtrack-free search.

Precedence Constraints We now discuss how to deal with precedence constraints
(i.e.,preceding, following) that may be included in a query. Queries with primitive and
precedence constraints only form the core fragment of XPath1.0 [7]. Note that a prece-
dence constraint in a query with only structural constraints may define a cycle, which,
in theory, could make the problem intractable. However, we show how to obtain PTIME
complexity (as proved in [7]) by changing the constraint model. The key idea is that a
precedence constraint between any two nodesxi, xj of the query graph can be reduced
to a precedence constraint between two of their ancestorsa(xi), a(xj) which are sib-
lings. If there are no such ancestors, this means that the subgraphs wherexi andxj

belong are only connected by the precedence constraint and thus search complexity is
not affected by it. Thus, we only need to consider how precedence constraints between
siblings can affect search. In a way similar to the ADAD constraints, we can treat them
as ternary constraints defined bycAP (p, a(xi)) ∧ cAP (p, a(xj)) ∧ cPR(xi, xj), where
cAP is aparent or ancestor constraint andcPR is the original precedence constraint
betweenxi andxj . Thus, each arbitrary precedence constraint is either a simple binary
constraint connecting otherwise disconnected query subgraphs or can be reduced to a
simple, local ternary constraint between a parent and its children. In any case, the con-
straint graph reduces to a hyper-tree. GAC can be applied on this hyper-tree in PTIME
and ensures backtrack-free search. In summary, we have shown that any query with
only simple structural, precedence, and ADAD constraints can be solved in PTIME
using constraint programming techniques.

4.3 Intractable Queries

Queries that include referential relationships are intractable. Such relationships induce
cycles in the constraint graph of the query. As proved in [5],CSPs whose constraint
graph contains arbitrary cycles are NP-complete. The same result can be derived for
arbitrary graph containment problems [12]. Note that such queries cannot be expressed
by XPath 1.0, but only by XPath 2.0, which allows for the definition of variables and
links between them via IDREF relationships.5

For intractable problems, we experimentally studied the effects of considering ADAD
constraints in GAC preprocessing and search. First, we generated a large XML graph,
which is a hierarchy of nested containments enriched by IDREF links. There are 7 la-
bels (0–6, apart from an unlabeled root), each corresponding to a level of the tree; i.e.,
nodes with label0 can only have children with label1, nodes with label1 can only
have children with label2, etc. Each generated node has a random number of children
between 0 and 6. Finally, from the node pairs(ei, ej), which are have no parent/child
relationship and do not have the same label, 10% are selectedand an IDREF link is
generated betweenei andej .

Next, we generated a number of XML queries (i.e., CSPs) as follows. Each query
class is described by a quadruple〈s, e, k, p〉. For each query in the class, there is one
variable labeleds. Each variable labeledl, for s ≤ l < e, has exactlyk children labeled
l + 1. Also, for p% of the variable pairs(xi, xj) with different labels, not linked by
a parent/child constraint, an IDREF constraint is generated. For instance, in queries of
the class〈2, 4, 3, 10〉 there is a variable labeled2, with three children labeled3, each of
which has three children labeled4. Also 10% of variable pairs of different labels not
linked by a parent/child constraint are linked by an IDREF constraint.

We implemented two AC algorithms. The first is the AC2001 algorithm [2] that
considers only binary constraints. The second is a GAC algorithm that considers non-
binary ADAD constraints and employs the filtering techniqueof Figure 3. For binary
IDREF constraints, GAC operates like AC2001. We also implemented four search al-
gorithms. The first one, denoted by FC, is a version offorward checkingthat treats all
constraints as binary. The second one, denoted by MAC, maintains AC on all binary
constraints (using AC2001) after each instantiation. The third one, denoted by FC+ is
slightly stronger than FC, enforcing GAC on ADAD constraints when parent variables
are instantiated. Finally, MGAC is a method that maintains full GAC.

In order to reduce the checks and computational effort of allfiltering and search
methods, the XML data elements are sorted on (label(e), pre(e)). We create a directory
index that points for every label to the first and the last position in the elements array that
contain this label. Note that this is done only once and used for all XML queries, later
on. Before evaluating a query, we apply a preprocessing stepthat finds for each valueex

of a parent variablex the first consistent value in the domains of its children variables.
For the childreny labeledα of x ← ex we apply binary search on the sorted elements
array to find the first valueeyf

labeledα with preorder larger than or equal topre(ex).

5 A polynomial fragment of queries, called XPattern, that considers IDsis shown to be in PTIME
in [7]. However, this fragment only includes queries that explicitly selectnodes based on their
IDs and therefore such references can be dealt with at a preprocessing step. In a CSP context,
we can consider such ID selections as unary (i.e., node) constraints.

During AC or search, we can immediately access all valuesey ≥ eyf
of each childy of

x variable are consistent withx ← ex, while post(e) < post(ex), whenever we need
to check the parent/child constraints forx ← ex. The preprocessing step simulates a
database technique (e.g., [9]) that could use an index for the same purpose. Moreover,
we immediately eliminateex from the domain ofx (and its children from the domains
of the children variables), if theex has less children thank in the data graph (i.e.,
less than those in the ADAD constraint withx as parent). In this case, the all-different
constraint cannot be satisfied among the children (Hall’s theorem). Note that this is a
cheap (but incomplete) filtering for the non-binary ADAD constraint and enforcing it
before binary algorithms actually favors them.

Table 2 compares the efficiency of four filtering and search combinations for sev-
eral query classes. For instance, AC-FC denotes that binaryAC is used for filtering
before search and if the problem is arc-consistent, FC is used for search. For each query
class, we generated 30 instances and averaged the search time (in seconds) and the
number of variable instantiations during search (enclosedin parentheses). Note that the
parent-child constraints are the same for each problem in a query class; only the IDREF
constraints change between problems.p is tuned so that query classes are in the hard
region (i.e., roughly half problems are insoluble). Horizontal lines separate classes with
different number of children in their ADAD constraints (i.e., differentk).

query AC-FC AC-MAC GAC-FC+ GAC-MGAC
1. 〈2, 6, 2, 3.8〉 32.9(29K) 3.7(86) 23.1(16.7K) 3.7(86)
2. 〈3, 6, 2, 14〉 2.7(2843) 4.3(87) 1.9(2198) 4.3(87)
3. 〈3, 6, 2.5, 3〉 21.5(6811) 8.9(130) 6.4(2225) 1.3(39)
4. 〈4, 6, 3, 25〉 7.2(2113) 53.2(215) 3.6(937) 16.2(77)
5. 〈4, 6, 4, 8〉 177.1(98K)228.8(4102) 1.3(292) 3.2(32)
6. 〈4, 6, 5, 3〉 1.6(616) 8.3(183) 0.1(44) 0.8(23)

Table 2.Search performance of algorithms

Algorithms that consider the non-binary constraint (i.e.,GAC-FC+ and GAC-MGAC)
are up to two orders of magnitude faster than their binary counterparts (i.e., AC-FC and
AC-MAC) and the difference, in general, increases withk. Note that whenk = 2 (i.e.,
each parent variable has only two children) there is no difference between AC and GAC.
For these two classes FC+ performs better than FC; enforcing AC for the children of
the instantiated variable pays-off. Full maintenance of arc consistency is not always
beneficial; MAC algorithms were found better than their FC counterparts for problem
classes 1 and 3 only.

5 Summary
In this paper we presented a new CSP-based way for the processing of XML queries.
We identified the most common structural constraints between XML query variables
and showed how constraint inference, filtering, and search can be adapted for networks
of such constraints. We identified the particularly important all-different + ancestor-
descendant(ADAD) non-binary constraint and theoretically showed that queries con-
taining only such constraints can be processed efficiently using constraint program-
ming. To achieve this, we described a polynomial filtering algorithm for this constraint.

Going one step further, we showed that maintaining this constraint brings significant
benefits to search in intractable problems that contain ADADand IDREF constraints.
In the future, we plan to study the coverage of additional XPath constructs (e.g., quan-
tifiers) with constraint programming techniques. In addition, intend to investigate the
application of other (apart fromall-different) specialized non-binary constraints (e.g.,
the global cardinality constraint) in hard search problemson XML data graphs. We will
also perform an empirical comparison of constraint programming and database meth-
ods, such as the ones presented in [7].

References

1. S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D.Srivastava. Structural
joins: A primitive for efficient XML query pattern matching. InProceedings of IEEE ICDE,
2002.

2. C. Bessìere and J. Ŕegin. Refining the basic constraint propagation algorithm. InProceedings
of IJCAI, 2001.

3. A. B. Chaudhri, A. Rashid, and R. Zicari.XML Data Management: Native XML and XML-
Enabled Database Systems. Addison-Wesley, 2003.

4. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks.Artificial Intelligence,
49:61–95, 1991.

5. E. Freuder. A sufficient condition for backtrack-free search.Journal of the ACM, 29(1):24–
32, 1982.

6. I. Gent and B. Smith. Symmetry Breaking in Constraint Programming.In Proceedings of
ECAI, pages 599–603, 2000.

7. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries. In
Proceedings of VLDB, 2002.

8. G. Gottlob, C. Koch, and R. Pichler. XPath query evaluation: Improving time and space
efficiency. InProceedings of ICDE, 2003.

9. T. Grust. Accelerating XPath location steps. InProceedings of ACM SIGMOD, 2002.
10. H. Jiang, H. Lu, and W. Wang. Efficient processing of XML twig queries with or-predicates.

In Proceedings of ACM SIGMOD, 2004.
11. R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth. Covering indexes for branching

path queries. InProceedings of ACM SIGMOD, 2002.
12. G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath. J. ACM,

51(1):2–45, 2004.
13. J. C. Ŕegin. A filtering algorithm for constraints of difference in CSPs. InProceedings of

AAAI, 1994.
14. J. C. Ŕegin and M. Rueher. A global constraint combining a sum constraint anddifference

constraints. InProceedings of CP, 2000.
15. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F. Naughton. Rela-

tional databases for querying XML documents: Limitations and opportunities. In Proceed-
ings of the VLDB Conference, 1999.

16. D. Shasha, J. T.-L. Wang, and R. Giugno. Algorithmics and applications of tree and graph
searching. InProceedings of ACM PODS, 2002.

17. B. Smith, K. Stergiou, and T. Walsh. Using auxiliary variables and implied constraints to
model non-binary problems. InProceedings of AAAI, 2000.

18. P. van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-consistency algorithm and its
specializations.Artificial Intelligence, 57:291–321, 1992.

19. WWW Consortium. XML Path Language (XPath) 2.0, W3C Working Draft,
http://www.w3.org/TR/xpath20/, November 2003.

