Constraint Satisfaction in Semi-structured Data Graphs

Nikos Mamoulig and Kostas Stergidu

! Department of Computer Science and Information Systems
University of Hong Kong
ni kos@si s. hku. hk,
2 Department of Information and Communication Systems Engineering
University of the Aegean
konst er g@egean. gr

Abstract. XML data can be modeled as node-labeled graphs and XML queries
can be expressed by structural relationships between labeled elendifits.
query evaluation has been addressed using mainly database, andeicases
graph search, techniques. We propose an alternative method thatsneodi
solves such queries as constraint satisfaction problems (CSPs) séfédeom-
mon constraint types occurring in XML queries and show how querluatian
can benefit from methods for preprocessing and solving CSPs. Weéfydan
important non-binary constraint that is a common module of XML queaies
describe a generalized arc consistency algorithm with low cost that camesn
polynomial query evaluation. Finally, we demonstrate that maintaining the co
sistency of such non-binary constraints can greatly accelerate seartriactable
queries that include referential relationships.

1 Introduction

XML is becoming a standard for information exchange overlttternet. This flexible
markup language allows both data content and structure de$eibed in a single doc-
ument. XML is very appropriate for describing semi-struetldata, which do not com-
ply to a well-defined schema. XML documents can be viewed aed) node-labeled
graphs, where the intermediate nodes take values from tha# petential element la-
bels and the leaves store textual information. The nodeswif ¥raphs can be viewed
as object instances, whose labels identifies their clasgnblatored semi-structured
data in a large XML document, we are often interested in theeral of object in-
stances which satisfy sonséructural constraintbetween them. Such requests can be
modeled as XML queries, expressed in a language like XP&ih [1

Although the evaluation of simple structural queries hagired a lot of attention
from database research, little has been done to addressthation of complex queries
where there is a large structure of objects to be retrievishdithe structural constraints
between the objects are complicated. The rapid increaseinge of XML in a wide
variety of applications makes the need to address suchgmssh pressing one.

In this paper we propose the use of the constraint satiefagaradigm as a new
way of handling XML navigational (i.e. path) queries. We derstrate that the expres-
siveness of constraint satisfaction allows us to captugenatural way a wide variety

of such queries, from simple to very complex ones. Also, aded constraint program-
ming algorithms and heuristics allow us to handle compl@bjams that are otherwise
difficult to deal with.

We begin by providing a mapping of all the common structuetdtionships used
in XML navigational queries to a set of unary and binary coaists with well-defined
semantics. Evaluation of queries with primitive structwe@nstraints only (e.g. parent,
child, sibling, etc.) has been recently shown to be in PTIMELB, 12]. For example,
consider the query “find a faculty member who has an RA and ai$slied in an XML
document containing structural information about a ursitgr In other words, we are
looking for twigs in an XML graph (e.g., see Figure 1), whele parent element is
tagged byf acul t y and has two children elements taggedR#yand TA. In general,
XML navigational queries are instances of the graph containt problem which has
been shown to be polynomial for some classes of graphs,ries t Interestingly, we
show that such results can be also derived by constraintgmmoging theory.

In addition, we identify an interesting conjunctive nomdniy constraint that is
commonly found in XML queries. Thiall-different + ancestor-descendanbnstraint
(ADAD for short) relates a parent (or ancestor in generath&@inumber of children (or
descendants in general) and, in addition, children (deloggr) of the same label are
related with an all-different constraint. For instancengider the query “find a faculty
member who has at least 3 RAs”, which does not allow the iestaof the RA variables
to take the same value. Such queries fall in a class define?] th4t can be evaluated
in PTIME. We present an alternative efficient way to procest Xjueries that contain
only ADAD and primitive structural constraints. To achiahés, we provide a filtering
algorithm of low complexity for ADAD constraints. Finallwe show how queries that
also include precedence (i.e., ordering) constraints eaavaluated in PTIME using
constraint programming techniques.

Although many classes of XML queries are in PTIME, the geneoatainment
problem in XML graphs, where arbitrarngferential (i.e., IDREF) constraints are in-
cluded (e.qg., see [11]) is intractable. We show how suclhatéible containment queries
can be modeled as CSPs, and make an empirical comparisoriafs/&SP search al-
gorithms. The results show that maintaining specializedlnioary constraints, such as
ADAD, can significantly increase pruning and speed-up $earc

The rest of the paper is organized as follows. Section 2 gesvbackground about
XML query processing in database systems, and constratisfasdion problems. In
Section 3 we describe how simple and complex XML queries @folmulated as
CSPs. In Section 4 we discuss the application of constragdgramming techniques
to preprocess and solve this class of problems. We alsoral@bon the complexity of
query evaluation for different classes of queries and oielan experimental evaluation
of search algorithms on intractable XML queries when foreedl as CSPs. Finally,
Section 5 concludes and discusses future work.

2 Background

In this section, we review work carried out in the databasaroanity for XML query
processing, focusing on the widely used query language XRaid also give some
basic background on constraint satisfaction.

2.1 XML Databases and Query Processing

XML elementsn angled braces (i.e.<' and >’) are used to denote object instances.
Each element carrieslabel describing a class the object belongs to (e.g., university,
department, faculty). All information related to an objecenclosed between the be-
ginning and ending tag the object.

XML documents can be modeled as rooted node-labeled grapksr{ply trees, in
the absence of reference links), where the intermediatesiadke values from the set of
potential element labels (or else object classes) and #fvesestore textual information.
For example, Figure 1 shows the XML tree for a part of an XML wloent, contain-
ing information about a University. XML syntax also allowsr freference links (i.e.,
IDREF) between elements. For instance, a faculty membddceeter to the university
where he graduated (e.g., ‘BigSchool’) by a reference ling.(IDREF='"BigSchool’).

\ s EEE

Smith Jones James Jackson Lee Maria

BigSchool

Bin
Brown Jane Cage Lin

Fig. 1. An XML tree

The World Wide Web Consortium [19] has been continuouslysiey the defi-
nition of XPath; a query language for XML data. XPath allowes the definition of
queries where the problem variables must have some stalicalationships. For in-
stance, the XPath expression document(“university.¥fhl&cul t y/nane refers to
all nodes labeledane, which have a parent labelédcul t y, in the XML document
file “university.xml”.

The popularity of XML attracted database researchers wystioe efficient man-
agement of XML data. As a result, a number of native XML mamaget systems or

extensions of relational systems have been developed J[15, &ddition, new index-
ing methods and query processing algorithms have been gedd@6]. Some of these
methods (e.g., [1,9, 10]) consider the documents as lalteded, ignoring the cycles
due to IDREF links. Others (e.g., [11]), are also applicdblepath queries in node
labeled graphs, which may contain cycles. In general, fr@® gerspective, only easy
problems (i.e., high selective queries with few variableéfagge domains) have been
considered and the methods aim at minimizing the 1/0 cost.

Recently is has been proved that all queries that can be ssquidy XPath 1.0 can
be evaluated in PTIME [7]. Different polynomial worst-caseunds have been pro-
vided for several classes of such queries. Interestinglydémonstrates that several
commercial XPath 1.0 evaluation engines still use expaalelyorithms even for sim-
ple, polynomial queries such as the ones discussed in thisrp@ur work is related
to that of [7, 8] in the sense that we discuss polynomial algars for various classes
of queries, albeit from a CSP perspective. However, we dsmuds the evaluation of
generic graph containment queries, beyond XPath 1.0. Suehes can be expressed
by the new version (2.0) of XPath, as discussed later.

2.2 Constraint Satisfaction Problems

Constraint satisfactiois a paradigm that can capture a wide variety of problems from
Al, engineering, databases, and other disciplines. A caimstsatisfaction problem
(CSP) consists of a set of variable¥ = {z1,...2,}, a set of domains

D ={D(xy),...,D(z,)}, whereD(z;) is the finite set of possible values for variable
x;, and a set” of constraints over subsets of the variables. A constraamt variables
xi,...,x; IS asubset of the Cartesian produiztz;) x ... x D(x;) that specifies the
allowed combinations of values for variables ..., z;. The operation performed to
determine whether a constraint is satisfied is calledresistency checln assignment

of a valueq to variablez; is denoted by(z;, a).

CSPs that contain constraints between at most two variabdssalled binary. CSPs
with constraints between arbitrary numbers of variablesaled n-ary (or non-binary).
A CSP is usually represented by a constraint graph (or hgpagh in the case of n-ary
problems) where nodes correspond to variables and edgpsr{byiges) correspond
to constraints. The basic goal in a CSP is to find one or aljassents of values to
variables so that all the constraints are satisfied.

A constraintc = (z;, z;) is arc consistentAC) iff for each valuea in D(z;) there
exists a valueé in D(x;) so that the assignments;, a) and(z;,b) satisfyc. In this
case we say thdt is a supportfor a on constraintc. A binary CSP is AC if all its
constraints are arc consistent. These definitions extemtriebinary constraints in a
straightforward way. A non-binary constraintgeneralized arc-consiste(fGAC) iff
for any variable in the constraint and value that it is assigjrihere exist compatible
values for all the other variables in the constraint.

3 Formulating XML Queries as CSPs

While evaluating an XML query, we actually search for a setlefreents in the XML
graph with labels and structural relationships betweemtthat match the labels of the

nodes in the query and the relationships between them. Weegaesent the entities
in a query as variables, the elements (nodes) in the XML geapline possible values
of the variables, the labels of the query nodes as unary reontst, and the structural
relationships between query nodes as directed binary reamtst. Queries expressed
in XPath can be transformed into CSPs in a straightforwarg ®wach variable in the
XPath expression becomes a variable in the CSP, the domaittssenodes of the XML
graph, and the constraints are the relationships betweé@bles in the query.

Example 1.Consider the query “is there any department which has 3 tlacoém-
bers with one RA and one TA?". Figure 2a shows how we can egpresing XPath
2.0. Observe that the expression already uses similarnetagy to CSPs. It asks for
instances of nodes labelekdpart ment (variablex,), which are ancestors of three
differentf acul t y nodes (variablegs, x3, z4), which have children labeled RA and
TA. The query can be modeled as a CSP; the correspondingamsjraph is shown in
Figure 2b. There are 10 variables with unary constraint®ésof the labels are omitted
from the graph for the sake of readability). E.gs, 23, x4 can take labef acul ty.
There are also binary constraints, denoting ancestodésnt or parent/child relation-
ships. E.g.z; is an ancestor of each onewnf, 3, andz,. Finally, there are inequality
constraints between,, x3, andx4 in order to forbid these variables to take the same
value. These constraints could be alternatively modeled asn-binaryall-different
constraint.

We can represent each elementin the XML data graph with a quadruple
(label(e), pre(e), post(e), preparent(€)), Wherelabel(e) is the label of the node, and
pre(e) andpost(e) are the values given to elemeniy a preorder and postorder traver-
sal of the rooted graph (ignoring IDREF links). We also kdepreorder value of's
parent node. This representation facilitates the fastemphtation of various types of
constraint checks. [9] uses a similar representation ttltan indexing structure on
XML data?

The primitive structural relationships between nodes in XML graphschiiel, par-
ent, sibling, descendant, ancestdhese relationships can be expressed as binary di-
rected constraints in the CSP formulation. In Table 1, wendetiie semantics of the
primitive constraints and also the precedence constrameceding, following, pre-
cedingsibling, followingsibling, which will be described shortly. For each constraint
¢ on variablesz; andz;, a constraint check amounts to checking whether the corre-
sponding conditions of Table 1 hold. This can be done in @mgtme. Note that for
every directed constrainfx, x2) there is a equivalent inverse constraifts, x1). For
example, the inverse @lurent(xz1, x3) is child(xs, x1).

Another useful observation is that the child constrainésfanctional and the parent
constraints are piecewise functional [18]. A binary caaistrc = (z;, ;) is functional
if for every valuea € D(z;), there exists at most one supportfir{z;). Consider a
constraintchild(z;, z;). Each values € D(x;) can only have one parent in the XML
graph. Therefore, the constraint is functional pecewise functionatonstraintc =
(x;, z;) is a constraint where the domainsagfcan be partitioned into groups such that

3 Note that the choice of element representation is independent of theaB®Rldtion; other
representations are possible with only slight changes in the definitionsisframts.

some $x1 in (“university.xmlMMepar t ment
satisfies ((some $x2 in $xi/cul ty
satisfies $xIRA andTA]?
and (some $x3 in $xtacul ty
satisfies $x3IRA andTA]?
and (some $x4 in $xt/acul ty
satisfies $x4RA andTA])
and ($x2 isnot $x3
and ($x2 isnot $x4
and ($x3 isnot $x4))

(a) query expression in XPath 2.0

label(x1)="department’

parel
label(x5)="RA’

label(x6)="TA’
(b) a constraint graph representation

Fig. 2. Two representations of an XML query

each value oD (x;) is supported by at most one groupDfz;). Consider a constraint
parent(x;, z;). We can partitionD(z;) into groups such that each group includes the
children of a valuex € D(z;) in the XML graph. Now each value € D(x;) will be
supported by at most one group, and therefore the consisgigcewise functional.

parent(xy1,x2) < pre(r1) = preparent(T2)

child(x1,x2) < preparent (1) = pre(xa)

sibling(wl, 172) < Préparent(T1) = p"‘epa'rent(a:Z) A pre(:vl) # pTE(wg)
descendant(xy, x2) < pre(x1) > pre(rz) A post(xz1) < post(xzz)
ancestor(z1, r2) & pre(ry) < pre(zz) A post(xy) > post(xsz)
preceding(zy, z2) < pre(zi) < pre(zs

following(z1, x2) < pre(x1) > pre(za

preceding-sibling(z1,x2) < pre(z1) < pre(zz) A sibling(x1, 2
following_sibling(z1,x2) < pre(z1) > pre(zz) A sibling(x1, z2

Table 1. Semantics of primitive and precedence constraints

The precedence relationshipsecedingand following are used to express order-
ing associations between XML constructs, conventionalsdal on a preorder traversal
of the graph. Note that the preorder traversal is possibleeifgnore all relationships
among elements except the hierarchidaild, parentrelationships. Other precedence
relationships arprecedingsibling, following sibling, with obvious meaning. The prim-
itive and precedence relationships do not capture all&trakinformation contained in
any XML document. There could also kferential relationshipshat represent IDREF

links. Simply put an IDREF relationship allows one to spgeifpointer from one ele-
mente to another element.

Precedence relationships can be captured in the CSP maadgkirsple constraints
on the preorder values of elements, as shown in Table 1. SMREF links do not carry
any specific semantics they cannot be easily representediuncton (or predicate).
We can represent them explicitly by their allowed tuplesaflif, a referential constraint
c between variables; andz; is encoded as a table, where each row is a 2-t(iple),
such thate € D(z;), ¢ € D(z;), and there exists a referential constraint between
elements: ande’ in the XML data graph.

The XML queries that have been investigated in the databitesature typically
have a few variables (of large domains) connected with piinstructural constraints.
Such queries correspond to small and relatively easy CS#Psambe handled more
efficiently using database techniques. However, thesanigabs are not suitable for
queries involving large numbers of densely constrainedkibes, with relatively small
domains. In such cases, advanced indexing methods aredticaiand evaluation de-
generates to the use of simple nested loops joins, corrdsppto static chronological
backtracking search in CSP terminology. In contrast, camdtprogramming has more
advanced search algorithms combined with powerful hecsish offer.

4 Query Evaluation as Constraint Satisfaction

In our framework, query evaluation can be simply viewed asstraint satisfaction
search. We introduce a simple method for preprocessing @&RsXML structural
constraints that can reduce the search effort by addingechpbnstraints to the prob-
lem. We also discuss search algorithms for such CSPs.

4.1 Constraint Inference

Constraint inference has been shown to be very useful apegoessing step in certain
classes of CSPs. By “constraint inference” we mean the iadditf new constraints
to the problem that are implied by existing ones. In temp&@Ps, for example, path
consistency algorithms are used to preprocess the givdriepno usually resulting in
considerable reduction of the search effort [4]. Constiiafierence can replace existing
constraints with tighter ones and even detect inconsigtena problem, avoiding un-
necessary search. In general CSPs, algorithms like pa#iistency are not commonly
used, but recent studies (e.g., [17, 6]) have demonstragehanefits of adding implied
(sometimes called redundant) constraints in various tgppsoblems.

Constraint inference can also be used for preprocessingeircontext of CSPs
with structural constraints. Inference operatiagmgersion intersectionand composi-
tion defined for (directed) temporal constraints in [4] can beursly extended for (di-
rected) structural constraints. Inversion of a constraint, ;) (denoted bye(xz;, z;))
infers a constraint’(z;, z;). For instance, the inversigmrent(z;,z;) of constraint
parent(x;, ;) is child(z;,z;). Intersection (denoted bg) computes the “tightest”
constraint on variables; andz; that can be derived from two constraints;, z;) and
d(z;,2;). For instance, the intersectionncestor(z;,z;) @ parent(x;,z;) is
parent(x;, ;). Note that not all intersections of primitive constraintgegconsistent

results. For example, the intersectielild(xz;, x;) ® parent(z;,z;) iS inconsistent.
The composition of two constraint§z;, ;) andc'(z;, z) (denoted bye(x;, z;) ®
c'(z, 1)) derives a new constraint’ (z;, zx) by transitivity. For instance, the com-
positionparent(x;, x;) ® parent(z;, zy) is ancestor(z;, xx). Inversion, intersection,
and composition tables for all combinations of primitivedgmrecedence constraints
can be easily derived. In addition, we can adapt path camigtalgorithms used in
temporal CSPs [4] to minimize the constraint graph of an XMlery and/or detect
inconsistency. Details are omitted due to space cons$taint

4.2 Tractable queries

Primitive Structural Constraints An important and very common class of XML
queries can be expressed using only the primitive strulatelaionshipschild, parent,
sibling, descendant, ancestdfor example, consider the query “find faculty members
with an RA and a TA". Note that their constraint graph corgaggs to a tree. As a
result, these queries can be processed in PTIME, sincedingado [5], AC ensures
backtrack-free search in acyclic binary constraint gréphs be precise, AC for CSPs
of such queries can be achieved in timg@), wheree is the number of primitive con-
straints in the query andis the domain size of the variables (i.e., the size of the)data
This follows directly from [18] where it is proved that AC féunctional and piecewise
functional constraints is computable if(&) time. Then backtrack-free search can be
achieved in linear time by visiting each variablestarting from the root of the con-
straint graph, in depth-first order, assigning a valde x and instantiating the children
of x by the supports ofz, a) in them, recursively. Note that queries with primitive con-
straints only are part of a core fragment of XPath 1.0, whiels shown to be in time
linear to the size of the query and the size of the data in [é}etHwe have shown how
the same result can be derived using constraint programtinéayy.

All-different + Ancestor-Descendant Constraints We now study a special class of
non-binary constraints that are commonly found in XML gesriConsider for exam-
ple the constraint graph of Figure 2b. This graph is a treeriofifive structural con-
straints plus a set of binary “not-equals” constraints agngibling nodes with the same
label. For example, there are threacul t y nodes linked with binary “not-equals”
constraints and connected to their parent in the graph bgah®eancestor constraint.
Alternatively, we could have a common parent/child cornstraVe can consider this
set of relationships as a special non-binary constrainichvive call all-different +
ancestor-descendanbnstraint (ADAD for short).

Definition 1. An ADAD constraint on variables, ..., z;, where variables;, i =
1,...,k — 1 are siblings of the same label and variabjeis their parent, is defined as
cap(Tk, T1) A ... ANecap(xg, xp—1)A all-different(zy, ... x5_1), wherec 4 p is a single
parent Or ancestor constraint.

For example, the constraints between variablesx,, x3, andx4 in Figure 2b
can be replaced by a 4-ary ADAD constraint. This constraithé conjunction of the

4 Note that a weaker form of AC, called directional AC, is enough to guaeabacktrack-free
search.

all-different constraint betweer, x5, andxz4, and the ancestor-descendant constraints
betweenz; and each ok, x3, andxz,. We can now model an XML query graph, where
the query involves only primitive relationships, as a seABDAD constraints. Binary
constraints likeparent(xo,x5) can trivially be considered ADAD constraints with a
single child. Conjunctive non-binary constraints like ADAwith specialized filtering
algorithms are useful in many CSPs (e.qg., [14]).

The ADAD constraint can also be used to model aggregatioriegi@ith the XPath
function count(node-set)This function takes a set of nodes as argument and returns
the number of nodes in the set, and can be used to select tteenpawith a specific
number of elements or restrict the number of elements to théma specific range. For
example, the queryf/acul t y[count(child:] ect ur er)>5] selects elements labeled
facul ty that have 5 or more children labeleéct ur er . We can formulate such a
query using an ADAD constraint on one variable labdlea ul t y and five variables
labeledl ect ur er. The use of ADAD constraints is particularly suitable foreges
where the count() function is applied on variables thatamet nodes (not leaves) of the
guery constraint graph. For example, the query "find a fgaukmber with 5 children
labeled lecturer, such that each one of them has a childddG&\”.

In the discussion that follows, when we refer to an ADAD caaisit, we use ‘par-
ent’ to denote the common parent or ancestor in the consaadh‘children’ to denote
its children or descendants. Note that the term ‘parentvésloaded to denote the par-
ent node of thejuery graph e.g., in the graph of Figure 2b, the parentwgf z3, x4 is
x1, however, the relationships on the corresponding edgesraestor

An XML query with ADAD constraints could alternatively be meled using only
primitive relationships as a binary CSP, or as a CSP invghgnly binary and non-
binary all-different constraints. Summarizing we can édasthree models:

binary model -in this model the relationships are captured by (i) binamyctural con-
straints (child, parent, ancestor, descendant) and (@rli‘not-equals’ constraints
between sibling nodes of the same label.

mixed model - in this model the relationships are captured by (i) binanyctural con-
straints (child, parent, ancestor, descendant) and (i}bioary all-different con-
straints between sibling nodes.

non-binary model - in this model the relationships are captured by non-bidddAD
constraints only.

As we will show later, achieving GAC in the non-binary modebkgantees that a
solution can be found in backtrack-free manner. In FigureeZiketch an algorithm of
low complexity that computes GAC for an ADAD constraint. Tddgorithm explicitly
verifies the consistency of each valuef the parent variable;, by reducing the do-
mains of the children variables accordingd@nd applying GAC for the all-different
constraint between them. If a valueof z;, is eliminated, the values of the children
variables which are consistent withare deleted from the corresponding domains.

To prove that the algorithm of Figure 3 achieves GAC for an ADgonstraint
we need to show that if a value in the domain of some variabf®isGAC then the
algorithm will remove it. This divides in two cases. Firsssame that value of vari-
ablexy, (i.e. the parent node) is not GAC. This means that there isippating tuple

booleanGAC (ADAD constrainte(z1, ©2, - . ., Tk))
for eachz;, i € {1,...,k — 1}
for each valué € D(z;)
if b has no support it (z) removeb from D(z;)
for each valuer € D(x1) //parent
for eachx;, i € {1,...,k— 1}
temporarily remove fronD(z;) all valuesbh
such thaparent(a, b)=false;
compute GAC for constraitl-different(x1, . .. zx_1);
if there is a domain wipeout
removea from D(zy);
for eachz;, i € {1,...,k —1}
permanently remove all valuégrom D(z;)
such thaparent(a, b)=true;
12: restore all temporarily removed values;
13: if D(zs) is wiped outreturn false;
14: return true;

QN oukwhkE

e
RO

Fig. 3. GAC filtering for an ADAD constraint

(b1,...,bk—1), whereb; € D(x;), such thatV b; parent(a,b;) = TRUE andall-
differentby,...,bx—1) = TRUE. In this case, when value is examined, GAC on
the all-different sub-constraint will detect the incomsigy (lines 7, 8) and will be
removed (line 9). Second, assume that valuef variablex;, with j # k, (i.e. a child
node) is not GAC. This means that there is no supporting tuple
(b1,...,bj—1,b541,...,bk—1,a), whereb, € D(x;),i # j anda € D(xy), such
that the ADAD constraint is satisfied. This can happen in tases; first if the par-
ent of b; in the XML graph is not in the domain of;, (e.g., its parent is not labeled
depart ment). Such values are eliminated right in the beginning of ttgoalhm
(lines 1-3). Now, assume that the parenbpfn the XML graph is value: € D(xy).
Whena is examined (line 4), the algorithm will compute the set gborting values
of ain each variable:q, . . . z;_1, temporarily reducing the domain of variables to only
values consistent with. Since value; is not GAC, but it has support iy, it should
be not GAC with the reduced domains of the other childrenatdeis and it will be
eliminated during GAC of the sub-constraail-differentby, ..., bx_1).

We now discuss the complexity of the algorithm of Figure 3.

Proposition 1. The worst-case time complexity of applying GAC on one ADP@-co
straint is Qd?kv/k).

Proof. The preprocessing step (lines 1-3) takésd time to enforce AC on thé — 1
ancestor-descendant constraints. At the same time we darabdata structure which
for each value: of x;, holds two pointers; one to the first descendant (dccording to
the preorder values of the elements in the XML graph) andremas its last descendant.
The outer iteration of line 4 is executed at mddimes; once for each value of the
ancestor variable,. In each iteration we reduce the domains of variables. . z;_1

to include only values that are descendanta of the XML graph. This is done using
the data structure built before. Then, we apply a GAC algorion the all-different sub-
constraint over variables,, . . . z;_1, with d domain size each in the worst case. Using

the algorithm of [13], this can done in @/k) time. Ford values of the outer iteration,
we get O¢2k+/k). The complexity, including the preprocessing step, (BOr d*kv/'k)
= O(d?*kVk).

In the case where the ADPC constraint consists of paretd-cbnstraints, the com-
plexity of GAC reduces to QIkv/k). This can be achieved by taking advantage of
the piecewise functionality of parent-child constraimighe following way: The do-
mains of the children are partitioned ingogroups, one for each value in the domain
of the parent (which has domain sige Now, the iteration of line 4 in Figure 3 will
be executed; times, and in each iteration the cost of GAC on the all-défercon-
straint will be ng\/E). Thus, the complexity of GAC on the ADPC constraint will be

O(ggk\/E):O(dk\/E). The same holds for ADPC constraints consisting of ancesto
descendant constraints that are piecewise functionas. dduurs when any label in the
data graph does not appear more than once along any branch.

If some query contains more than one ADAD constraints theorder to achieve
GAC in the constraint graph, we can adapt a standard AC &hgottio use the filtering
function of Figure 3 and propagate the consistency of ADABst@ints using a stack.

If some query contains ADPC constraints then GAC can be applied ite@ k%)
time in the general case, and €@k+/k) time for the special cases discussed above.
Realistically, the ADPC constraints in a query do not shaogenthan one variable,
which means that = n/k. In this case the complexity of GAC in the general case is
O(nd?*V'k). In the special piecewise functional cases, GAC can beeppliQndv/k)
time, which is particularly efficient.

According to [5], GAC ensures backtrack-free search in trairg graphs that are
hyper-trees. Therefore achieving GAC in the non-binary ehoflan XML query, con-
sisting of primitive relationships only, is enough to gudee backtrack-free search,
and thus polynomial query evaluation. In XPath, one exjwadsinds exactly one vari-
able and usually all solutions are required. That is we neeetrieve all the values
of the variable that satisfy the query. In the CSP formufatibese values are the arc
consistent values in the variable’s domain. We can alsdyearieve the whole tree
patterns that match the query pattern using the data steudascribed in the proof of
Proposition 1. It is interesting to note that queries withADconstraints only belong
to a special class called “extended Wadler fragment” in [} queries in this class
[8] provide an algorithm of @:2d?) cost, whereas our GAC + backtrack free search
approach can solve such problems at a lower complexity.

A natural question to ask is if it is necessary to introdugertbn-binary model with
the ADAD constraints in order to achieve backtrack-freed®eais we discussed, there
are two alternative models for the problem; the binary maael the mixed model.
Can AC (GAC) in these two models guarantee backtrack freels@a\s the following
example shows, the answer to this question is no.

Example 2.Consider the query depicted in Figure 4a and the XML datalgoépigure
4b. If we model this problem as a CSP we will have one variahlér the academic
and three variables,, x5, x4 for the RAs. The domain af; comprises two values,
corresponding to the two academics of the XML data graphil&ilyy the domains of
22, x3, andxy4 include the fouRA nodes of the XML graph. Let us first assume that

label(x1)="faculty’

Cseparmen

S
T e @

(a) query (b) XML document

Fig. 4. necessity of non-binary model

AC is applied on the binary model (i.e., considering all ¢oaiats as binary). Observe
that the two possible values far, have supports in the domains.of, 3, andxz4. In
addition, the values of each child variable find support énghrent’s domain and also in
the domains of the sibling variables using the binary “nqoads” constraint. However,
it is easy to see that the problem is inconsistent. To digdtweinconsistency, we have
to search. Similarly, AC on the mixed model leaves the végiglomains unchanged;
enforcing GAC using the non-binary all-different consttadoes not prune any values.
This example proves the following proposition.

Proposition 2. Let @@ be an XML query, consisting of primitive relationships anly
represented in either the binary or the mixed model. AchgAC in the constraint
graph of@) does not guarantee backtrack-free search.

Precedence Constraints We now discuss how to deal with precedence constraints
(i.e., preceding, followinyjthat may be included in a query. Queries with primitive and
precedence constraints only form the core fragment of XP#&xfi7]. Note that a prece-
dence constraint in a query with only structural consteaimty define a cycle, which,
in theory, could make the problem intractable. However, ashow to obtain PTIME
complexity (as proved in [7]) by changing the constraint glodhe key idea is that a
precedence constraint between any two nages; of the query graph can be reduced
to a precedence constraint between two of their ancestars, a(x;) which are sib-
lings. If there are no such ancestors, this means that thgrapis wherer; and«;
belong are only connected by the precedence constrainhaisdsearch complexity is
not affected by it. Thus, we only need to consider how precegleonstraints between
siblings can affect search. In a way similar to the ADAD coaistts, we can treat them
as ternary constraints defined byp (p, a(z;)) A cap(p, a(z;)) A cpr(zs, x;), where
cap IS aparent Or ancestor constraint anapg is the original precedence constraint
between:; andz;. Thus, each arbitrary precedence constraint is either plsibinary
constraint connecting otherwise disconnected query sygror can be reduced to a
simple, local ternary constraint between a parent and itdreim. In any case, the con-
straint graph reduces to a hyper-tree. GAC can be appliellistyper-tree in PTIME
and ensures backtrack-free search. In summary, we havensthatvany query with
only simple structural, precedence, and ADAD constraits be solved in PTIME
using constraint programming techniques.

4.3 Intractable Queries

Queries that include referential relationships are inétale. Such relationships induce
cycles in the constraint graph of the query. As proved in 8§Ps whose constraint
graph contains arbitrary cycles are NP-complete. The sasdtrcan be derived for
arbitrary graph containment problems [12]. Note that sugtrigs cannot be expressed
by XPath 1.0, but only by XPath 2.0, which allows for the déiam of variables and
links between them via IDREF relationships.

For intractable problems, we experimentally studied tfexcésf of considering ADAD
constraints in GAC preprocessing and search. First, wergestea large XML graph,
which is a hierarchy of nested containments enriched by IPRiks. There are 7 la-
bels (-6, apart from an unlabeled root), each corresponding to & éd\tbe tree; i.e.,
nodes with labeD can only have children with labél, nodes with labell can only
have children with labe?, etc. Each generated node has a random number of children
between 0 and 6. Finally, from the node pdies, e;), which are have no parent/child
relationship and do not have the same label, 10% are selaogtén IDREF link is
generated between ande;.

Next, we generated a number of XML queries (i.e., CSPs) dael Each query
class is described by a quadruglee, k, p). For each query in the class, there is one
variable labeled. Each variable labelefj for s < [< ¢, has exactly: children labeled
I + 1. Also, for p% of the variable pairgz;, z;) with different labels, not linked by
a parent/child constraint, an IDREF constraint is generdter instance, in queries of
the clasg2, 4, 3, 10) there is a variable labelet] with three children labele8, each of
which has three children labeled Also 10% of variable pairs of different labels not
linked by a parent/child constraint are linked by an IDRERStaaint.

We implemented two AC algorithms. The first is the AC2001 &thn [2] that
considers only binary constraints. The second is a GAC #lgorthat considers non-
binary ADAD constraints and employs the filtering technigqdid-igure 3. For binary
IDREF constraints, GAC operates like AC2001. We also imgetad four search al-
gorithms. The first one, denoted by FC, is a versiofoofvard checkinghat treats all
constraints as binary. The second one, denoted by MAC, aiaAC on all binary
constraints (using AC2001) after each instantiation. Fieltone, denoted by FCis
slightly stronger than FC, enforcing GAC on ADAD constraimthen parent variables
are instantiated. Finally, MGAC is a method that maintaulsGAC.

In order to reduce the checks and computational effort ofiledring and search
methods, the XML data elements are sortedlabe{(e), pre(e)). We create a directory
index that points for every label to the first and the lastti@sin the elements array that
contain this label. Note that this is done only once and ueedlf XML queries, later
on. Before evaluating a query, we apply a preprocessingls&finds for each value,
of a parent variable the first consistent value in the domains of its childrenalalgs.
For the childreny labeleda of = < e, we apply binary search on the sorted elements
array to find the first value, , labeleda with preorder larger than or equal poe(e,).

5 A polynomial fragment of queries, called XPattern, that considerssBlsown to be in PTIME
in [7]. However, this fragment only includes queries that explicitly sedectes based on their
IDs and therefore such references can be dealt with at a prepiogeasep. In a CSP context,
we can consider such ID selections as unary (i.e., node) constraints.

During AC or search, we can immediately access all vadyes e, , of each childy of

x variable are consistent with < e, while post(e) < post(e,), whenever we need
to check the parent/child constraints for— e,. The preprocessing step simulates a
database technique (e.g., [9]) that could use an index &sdme purpose. Moreover,
we immediately eliminate, from the domain ofc (and its children from the domains
of the children variables), if the, has less children thah in the data graph (i.e.,
less than those in the ADAD constraint withas parent). In this case, the all-different
constraint cannot be satisfied among the children (Haléstém). Note that this is a
cheap (but incomplete) filtering for the non-binary ADAD striaint and enforcing it
before binary algorithms actually favors them.

Table 2 compares the efficiency of four filtering and searahlioations for sev-
eral query classes. For instance, AC-FC denotes that bis@ris used for filtering
before search and if the problem is arc-consistent, FC i@ fsgesearch. For each query
class, we generated 30 instances and averaged the seaecfirtiseconds) and the
number of variable instantiations during search (enclas@drentheses). Note that the
parent-child constraints are the same for each problem ireeycclass; only the IDREF
constraints change between problemss tuned so that query classes are in the hard
region (i.e., roughly half problems are insoluble). Horitad lines separate classes with
different number of children in their ADAD constraints (j.differentk).

[query [AC-FC [AC-MAC [GAC-FCT [GAC-MGAC |
1.(2,6,2,3.8)| 32.9(29K)[3.7(86) |23.1(16.7K] 3.7(86)
2.{3,6,2,14) | 2.7(2843)| 4.3(87) | 1.9(2198)| 4.3(87)
3.(3,6, 2.5, 3) | 21.5(6811) 8.9(130) | 6.4(2225)| 1.3(39)
4.(4,6,3,25) | 7.2(2113)| 53.2(215)| 3.6(937) | 16.2(77)
5.(4,6,4,8) |177.1(98K)|228.8(4102) 1.3(292) | 3.2(32)
6.(4,6,5,3 1.6(616) | 8.3(183) | 0.1(44) 0.8(23)

Table 2. Search performance of algorithms

Algorithms that consider the non-binary constraint (iGAC-FC" and GAC-MGAC)
are up to two orders of magnitude faster than their binaryntaparts (i.e., AC-FC and
AC-MAC) and the difference, in general, increases wittNote that wherk = 2 (i.e.,
each parent variable has only two children) there is nomdiffee between AC and GAC.
For these two classes F(performs better than FC; enforcing AC for the children of
the instantiated variable pays-off. Full maintenance of @nsistency is not always
beneficial; MAC algorithms were found better than their FQraerparts for problem
classes 1 and 3 only.

5 Summary

In this paper we presented a new CSP-based way for the phogegsXML queries.
We identified the most common structural constraints betw&dL query variables
and showed how constraint inference, filtering, and seaanotbe adapted for networks
of such constraints. We identified the particularly impottall-different + ancestor-
descendanfADAD) non-binary constraint and theoretically showedtthaeries con-
taining only such constraints can be processed efficiergigguconstraint program-
ming. To achieve this, we described a polynomial filterirgpaithm for this constraint.

Going one step further, we showed that maintaining this tcaim brings significant
benefits to search in intractable problems that contain AR&D IDREF constraints.
In the future, we plan to study the coverage of additionaltkRanstructs (e.g., quan-
tifiers) with constraint programming techniques. In additiintend to investigate the
application of other (apart frorall-differen) specialized non-binary constraints (e.g.,
the global cardinality constraint) in hard search problemXML data graphs. We will
also perform an empirical comparison of constraint prognamg and database meth-
ods, such as the ones presented in [7].

References

1. S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, andBvastava. Structural
joins: A primitive for efficient XML query pattern matching. Proceedings of IEEE ICDE
2002.

2. C.Besstre and J. Bgin. Refining the basic constraint propagation algorithrProteedings
of IJCAI, 2001.

3. A. B. Chaudhri, A. Rashid, and R. Zica’XML Data Management: Native XML and XML-
Enabled Database Systenfsddison-Wesley, 2003.

4. R. Dechter, |. Meiri, and J. Pearl. Temporal constraint networksificial Intelligence
49:61-95, 1991.

5. E. Freuder. A sufficient condition for backtrack-free seadturnal of the ACM29(1):24—
32, 1982.

6. I. Gent and B. Smith. Symmetry Breaking in Constraint Programming?roceedings of
ECAI, pages 599-603, 2000.

7. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for proresXPath queries. In
Proceedings of VLDR2002.

8. G. Gottlob, C. Koch, and R. Pichler. XPath query evaluation: Impgptiime and space
efficiency. InProceedings of ICDE2003.

9. T. Grust. Accelerating XPath location stepsPitoceedings of ACM SIGMQR002.

10. H. Jiang, H. Lu, and W. Wang. Efficient processing of XML twig e with or-predicates.
In Proceedings of ACM SIGMQ2004.

11. R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth. @ayédexes for branching
path queries. IfProceedings of ACM SIGMQR2002.

12. G. Miklau and D. Suciu. Containment and equivalence for a fragwieXPath. J. ACM
51(1):2-45, 2004.

13. J. C. Rgin. A filtering algorithm for constraints of difference in CSPs.Piioceedings of
AAAI 1994,

14. J. C. Rgin and M. Rueher. A global constraint combining a sum constraintliéfedlence
constraints. IProceedings of CP2000.

15. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt)aF. Naughton. Rela-
tional databases for querying XML documents: Limitations and opportsnitieProceed-
ings of the VLDB Conferenc&999.

16. D. Shasha, J. T.-L. Wang, and R. Giugno. Algorithmics and apjaitaof tree and graph
searching. IrProceedings of ACM PODS002.

17. B. Smith, K. Stergiou, and T. Walsh. Using auxiliary variables and img@nstraints to
model non-binary problems. Rroceedings of AAAROOO.

18. P. van Hentenryck, Y. Deville, and C.-M. Teng. A generic anesggiency algorithm and its
specializationsArtificial Intelligence 57:291-321, 1992.

19. WWW Consortium. XML Path Language (XPath) 2.0, W3C Working Dratft,
http://www.w3.org/TR/xpath20November 2003.

