
Discovering Minimal Infrequent Structures from XML
Documents

Wang Lian Nikos Mamoulis David W. Cheung S. M. Yiu

Department of Computer Science and Information Systems,
The University of Hong Kong, Pokfulam, Hong Kong.

{wlian, nikos, dcheung, smyiu}@csis.hku.hk

Abstract. More and more data (documents) are wrapped in XML format. Min-
ing these documents involves mining the corresponding XML structures. How-
ever, the semi-structured (tree structured) XML makes it somewhat difficult for
traditional data mining algorithms to work properly. Recently, several new algo-
rithms were proposed to mine XML documents. These algorithms mainly focus
on mining frequent tree structures from XML documents. However, none of them
was designed for mining infrequent structures which are also important in many
applications, such as query processing and identification of exceptional cases. In
this paper, we consider the problem of identifying infrequent tree structures from
XML documents. Intuitively, if a tree structure is infrequent, all tree structures
that contain this subtree is also infrequent. So, we propose to consider the mini-
mal infrequent structure (MIS), which is an infrequent structure while all proper
subtrees of it are frequent. We also derive a level-wise mining algorithm that
makes use of the SG-tree (signature tree) and some effective pruning techniques
to efficiently discover all MIS. We validate the efficiency and feasibility of our
methods through experiments on both synthetic and real data.

1 Introduction

The standardized, simple, self describing nature of XML makes it a good choice for
data exchange and storage on the World Wide Web. More and more documents are
wrapped in XML format nowadays. To process large amount of XML documents more
efficiently, we can rely on data mining techniques to get more insight into the character-
istics of the XML data, so as to design a good database schema; to construct an efficient
storage strategy; and especially for enhancing query performance. Unlike traditional
structured data, XML document is classified as semi-structured data. Besides data, its
tree structure always embeds significant sementic meaning. Therefore, efficiently min-
ing useful tree structures from XML documents now attract more and more attention.

In recent years, several algorithms that can efficiently discover frequent tree struc-
tures are available. However, discovering infrequent tree structures is also a very im-
portant subject. In fact, infrequent tree structures carry more information than frequent
structures from the information theory point of view. There are many applications that
can make use of the infrequent tree structures such as query optimization, intrusion de-
tection and identification of abnormal cases. Unfortunately, as far as we know, there
are no papers that formally address this problem. In this paper, we present our work

in mining infrequent structures. Because any superstructure of an infrequent structure
must be infrequent, identifying all infrequent structures is impractical as the number
of them will be huge. On the other hand, we propose to discover a special kind of in-
frequent structure: the Minimal Infrequent Structure (MIS), which is itself infrequent
but all its substructures being frequent. The role of MIS is similar to that of negative
border on itemsets [8]. Based on MIS, we can easily identify all infrequent structures
by constructing superstructures from MIS.

Several methods have been proposed for the problem of mining frequent tree struc-
tures in semi-structure data [2][6] [10][12]. Most of them are based on the classical
Apriori technique [1], however, these methods are rather slow when applying to find
MIS (the number of MIS is rather small, whereas the number of frequent structures
is very large, a lot of time is spent on counting the support of frequent structures). In
order to accelerate the discovery of MIS, we propose the following three-phase data
mining algorithm. In phase one, we scan the data to derive the edge-based summary
(signature) of each XML document. In phase two, we run Apriori on the summaries
to quickly generate a set of frequent structures of size k. In phase three, we remove
the frequent structures so as to identify the minimal infrequent structures. Experimen-
tal results demonstrate that this three-phase data mining algorithm indeed achieves a
significant speed improvement.

The contribution of this paper is two-fold:

– We introduce a useful structure: Minimal Infrequent Structure as a base for repre-
senting all infrequent structures in XML documents.

– We propose an efficient level-wise data mining algorithm that discovers Minimal
Infrequent Structures in XML data, which can also be used in other mining appli-
cations.

The rest of the paper is organized as follows. Section 2 provides background on
existing work. In Section 3, we present the data mining algorithm that finds all MIS. In
Section 4, we evaluate our proposed methods on both synthetic and real data. Finally,
Section 5 concludes the paper with a discussion about future work.

2 Related Work

According to our knowledge, there are no papers that have discussed the problem of
mining infrequent tree structures in XML documents. On the other hand, there are sev-
eral algorithms for mining frequent tree structures in trees [2][6] [10][12] based on
Apriori [1]. Starting from frequent vertices, the occurrences of more complex struc-
tures are counted by adding an edge to the frequent structures of the previous level.
The major difference among these algorithms is on the candidate generation and the
counting processes.

In [2], a mining technique that enumerates subtrees in semi-structured data effi-
ciently, and a candidate generation procedure that ensures no misses, was proposed.
The tree enumeration works as follows: for each frequent structure s, the next-level
candidate subtrees with one more edge are generated by adding frequent edges to its
rightmost path. That is, we first locate the right most leaf r, traverse back to the root,

and extend each node visited during the backward traversal. This technique enumerates
the occurrences of trees relatively quickly, but fails to prune candidates early, since the
final goal is to discover frequent structures. A similar candidate generation technique
is applied in TREEMINER [12]. This method also fails to prune candidates at an early
stage, although the counting efficiency for each candidate is improved with the help of
a special encoding schema.

In [6], simple algorithms for canonical labeling and graph isomorphism are used, but
they do not scale well and cannot be applied to large graphs. In [10], complicated prun-
ing techniques are incorporated to reduce the size of candidates, however the method
discovers only collections of paths in ordered trees, rather than arbitrary frequent trees.
Our work is also related to FastXMiner [11], discovers frequently asked query patterns
and their results are intelligently arranged in the system cache in order to improve fu-
ture query performance. This method is also Apriori-like, however, it only discovers
frequent query patterns rooted at the root of DTD, whereas our mining algorithm does
not have this limitation.

Among the studies on association rule discovery, the Maxminer in [3] is the most re-
lated work to this paper. Maxminer is equipped with an efficient enumeration technique
based on set-enumeration tree to overcome the inefficiency of lattice-based itemset enu-
meration. On the other hand, our data mining method uses the enumeration method in
[2] to generate the candidates level-by-level, but we apply more effective pruning tech-
niques to reduce the number of candidates; a generated candidate is pruned if any of
its substructures are not in the set of frequent structures generated in previous level.
Furthermore, we use a novel approach which performs counting on a SG–tree [7], a
tree of signatures, to quickly identify possible large frequent structures of a particular
size. The mining algorithm on the exact structures then counts only candidates which
are not substructures of the frequent structures already discovered. This greatly reduces
the number of candidates that need to be counted and speeds up the mining process
significantly. The details of the new data mining method will be described in the next
section.

Other related work includes [8] and [5]. In [8], the concept of negative border is
introduced, which is a set of infrequent itemsets, where all subsets of each infrequent
itemset are frequent. Conceptually, MIS is similar to negative border. In [5], WARMR
is developed on first-order models and graph structures. This algorithm can be applied
for frequent tree discovery, since tree is a special case of graph structures. However its
candidate generation function is over-powerful, it produces many duplicated candidates.

3 Discovery of MIS

3.1 Problem Definition

Before defining our data mining problem, we introduce some concepts that are related
to the problem formulation.

Definition 1. Let L be the set of labels found in an XML database. A structure is a
node-labelled tree, where nodes are labels from L. Given two structures, s1 and s2, if
s1 can be derived by removing recursively l ≥ 0 nodes (which are either leaf nodes

or root nodes) from s2 then s1 is a substructure of s2. In this case we also say that
s2 contains s1, or that s2 is a superstructure of s1. Finally, the size of a structure s
size(s) is defined by the number of edges in it.

If a structure contains only one element, we assume the size of it is zero. As-
suming that L = {a, b, c, d, e}, two potential structures with respect to L are s1 =
(a(b)(c(a)))? and s2 = (a(c)); s2 is a substructure of s1, or s1 contains s2.

Definition 2. Given a set D of structures, the support sup(s) of a structure s in D is
defined as the number of structures in D, which contain s. Given a user input threshold
ρ, if sup(s) ≥ ρ × |D|, then s is frequent in D, otherwise it is infrequent.
(1) If size(s) ≥ 1 and sup(s) < ρ×|D|, and for each substructure sx of s, sup(sx) ≥
ρ × |D|, then s is a Minimal Infrequent Structure(MIS)??.
(2) If size(s) = 0 and sup(s) < ρ × |D|, then s is a MIS.

In practice, some MIS could be arbitrarily large and potentially not very useful, so
we restrict our focus to structures that contain up to a maximum number of k edges.
Note that the set D in Definition 2 can be regarded as a set of documents. Now, we are
ready to define our problem formally as follows:

Definition 3. (problem definition): Given a document set D, and two user input pa-
rameters ρ and k, find the set S of all MIS with respect to D, such that for each s ∈ S,
size(s) ≤ k.

The following theorem shows the relationship between MIS and an infrequent struc-
ture.

Theorem 1. Let D be a document set, and S be the set of MIS in D with respect to ρ
and k. If an infrequent structure t contains at most k edges then it contains at least one
MIS.

Proof In the cases where size(t) = 0 or all substructures of t are frequent, t itself
is an MIS (of size at most k), thus it should be contained in the set of MIS. Now let
us examine the case, where t has at least one infrequent proper substructure t′. If t′ is
MIS, then we have proven our claim. Otherwise, we can find a proper substructure of t′

which is infrequent and apply the same test recursively, until we find a MIS (recall that
a single node that is infrequent is also an MIS of size 0). ut

Based on the above theorem, we can easily: (i)construct infrequent structures by
generating superstructures from MIS. (ii)verify whether a strcture is infrequent by check-
ing whether it contains a MIS or not.

Finally, in order to accelerate the data mining process we make use of a document
abstraction called signature, which is defined as follow:

? We use brackets to represent parent/child relationship.
?? From now on, we use MIS to represent both Minimal Infrequent Structure and Minimal Infre-

quent Structures.

Definition 4. Assume that the total number of distinct edges in D is E, and consider
an arbitrary order on them from 1 to E. Let order(e) be the position of edge e in this
order. For each d ∈ D, we define an E-length bitmap, sig(d), called signature; sig(d)
has 1 in position order(e) if and only if e is present in d. Similarly, the signature of a
structure s is defined by an E-length bitmap sig(s), which has 1 in position order(e)
if and only if e is present in s.

The definition above applies not only for documents, but also for structures. Observe
that if s1 is a substructure of s2, then sig(s1) ⊆ sig(s2). Thus, signature can be used
as a fast check on whether or not a structure can be contained in a document. On the
other hand, it is possible that sig(s1) ⊆ sig(s2) and s1 is not a substructure of s2 (e.g.,
s1 = (a(b(c))(b(d))), s2 = (a(b(c)(d))). Thus, we can only use the signature to find
an upper bound of a structure’s support in the database.

3.2 Mining MIS

We consider the problem of mining MIS as a three-phase process. The first phase is
preprocessing. The document in D is scanned once for two purposes. (1) Find out all
infrequent elements, infrequent edges and all frequent edges. The set of all frequent
edges are stored in FE. We will use M to store the discovered MIS. (2) Compute sig-
natures of all the documents and store them in an array SG. Besides the signature, SG
also store the support of the signature in D, which is the number of documents whose
signatures match the signature. Since many documents will have the same signature,
SG in general can fit into the memory; otherwise, the approach in MaxMiner[3] could
be used to store SG on disk.

The second phase of the mining process is called signature-based counting, and is
described by the pseudocode in Figure 1. In this phase, given a fixed k, we will compute
the set of size-k frequent structures in D. These frequent structures will be stored in Fk.
In the third phase, Fk will be used to narrow the search domain of MIS because no
subset of a frequent structure in Fk can be an MIS. Note that k is a user input parameter
which is the same as the maximum size of MIS that we want to mine.

/* Input k, the maximum number of edges in a MIS*/
/* Output Fk , all size k frequent structures*/
1). Fprev = FE
2). for i=2 to k
3). candidates = genCandidate(Fprev , FE)
4). if candidates == ∅ then break; Fprev = ∅
5). for each c in candidates

6). if sigsup(c) ≥ ρ × |D| w.r.t SG then move c to Fprev

7). scan documents to count the support of each c ∈ Fprev

8). for each c in Fprev

9). if sup(c) ≥ ρ × |D| then insert c into Fk

10). return Fk

Fig. 1. The Mining Algorithm – Phase 2

The algorithm in Figure 1 computes the frequent structures in an Apriori-like fash-
ion. The procedure genCandiates uses the method proposed in [2] to generate the

candidates. Frequent structures of the previous level (Fprev) and the edges in FE are
used to generate candidate structures for the current level (line 3). Note that if the sig-
nature of a structure does not have the enough support, then it cannot be a frequent
structure. (The reverse is not necessary true.) Therefore, we can use the information to
remove many inadmissable candidates during the generation. Using SG to prune the
candidates in Fprev will not wrongly remove a true frequent structure but may have
false hits remaining in Fprev . Therefore, a final counting is required to confirm the
candidates reminds in Fprev (line 9).

The third phase is structure counting. We will find out all MIS in D and this step is
described in Figure 2. The key steps are in lines 5–7. We again build up the candidates
from FE by calling genCandidates iteratively (line 3). The function prune() removes
a candidate if anyone of its substructure is found to be infrequent by checking it against
the frequent structures from the previous iteration stored in Fprev (line 3). Subsequently,
for a candidate c, we check if it is a subset of a frequent structure in Fk. This will remove
a large number of frequent structures (line 7). For the reminding candidates, we scan D
to find their exact support (line 9). If it is not frequent, then it must be an MIS and it
will be stored in M (line 13).

/* Input int k, the maximum number of edges in a MIS*/
/* Input Fk , all size k frequent structures*/
/* Output M , the set of MIS up to size k*/
1). Fprev = FE; M = ∅
2). for i=2 to k

3). candidates = prune(genCandidate(Fprev , FE))
4). if candidates == ∅ then break; Fprev = ∅
5). for each c in candidates

6). if c is a substructure of an structure in Fk then
7). candidates.remove(c); insert c into Fprev

8). for each c in candidates
9). update sup(c) w.r.t D

10). if sup(c) ≥ ρ × |D| then
11). candidates.remove(c); insert c into Fprev

12). for each c in candidates

13). if sup(c) > 0 then insert c into M
14). return M

Fig. 2. The Mining Algorithm – Phase 3

3.3 Optimizations

In this section we describe several optimizations that can improve the mining efficiency.

First Strategy: Use distinct children-sets During the first scan of the dataset, for each
element we record every distinct set of children elements found in the database. For
example, consider the dataset of Figure 3, consisting of two document trees. Observe
that element a has in total three distinct children sets; ((a)(b)), ((c)(d)), and ((d)(f)).
The children sets ((a)(b)), ((c)(d)) are found in doc1, and the children sets ((a)(b)),
((d)(f)) are found in doc2. When an element a having d as child is extended during

candidate generation, we consider only f as a new child for it. This technique greatly
reduces the number of candidates, since generation is based on extending the frequent
structures by adding edges to their rightmost path.

a

a

c d e

b

a

a

d f n

b

doc1 doc2

a−>(a,b)|(c,d)|(d,f) b−>(e)|(n) c−>null d−>null
e−>null f−>null n−>null

Fig. 3. Summary of Children-sets

Second Strategy: Stop counting early Notice that we are searching for MIS rather
than frequent structures, thus we are not interested in the exact support of frequent
structures. During the counting process, when the support of a candidate is greater than
the threshold, the structure is already frequent. Thus, we do not need to count it any-
more; it is immediately removed from candidates and inserted to Fprev . This heuristic
is implemented in Lines 8–9 in Figure 1 and Lines 10–11 in Figure 2.

Third Strategy: Counting multiple levels of candidates After candidate pruning, if
the number of remaining ones is small, we can directly use them to generate the next
level candidates and count two levels of candidates with a single scan of the documents.
This can reduce the I/O cost at the last phases of the data mining process.

Fourth Strategy: Using the SG–tree in phase-two counting In Figure 1, we obtain
the supports of candidates by sequentially comparing their signatures to those of all doc-
uments. This operation is the bottleneck of the second phase in our mining algorithm.
Instead of comparing each candidate with all document signatures, we can employ an
index for document signatures, to efficiently select only those that contain a candidate.

The SG–tree (or signature tree) [7] is a dynamic balanced tree similar to R–tree for
signatures. Each node of the tree corresponds to a disk page and contains entries of the
form 〈sig, ptr〉. In a leaf node entry, sig is the signature of the document and ptr stores
the number of documents sharing this signature. The signature of a directory node entry
is the logical OR of all signatures in the node pointed by it and ptr is a pointer to this
node. In other words, the signature of each entry contains all signatures in the subtree
pointed by it. All nodes contain between c and C entries, where C is the maximum
capacity and c ≥ C/2, except from the root which may contain fewer entries. Figure
4 shows an example of a signature tree, which indexes 9 signatures. In this graphical
example the maximum node capacity C is three and the length of the signatures six. In
practice, C is in the order of several tens and the length of the signatures in the order of
several hundreds.

100000 100010

N1 N2

001010 001100

N3 N4

001100

N5

110000 011000

N8 N9

100001 010001

N6 N7

100010 001110 110001 111000

101110 111001

level 0

level 1

level 2

Fig. 4. Example of a Signature Tree

The tree can be used to efficiently find all signatures that contain a specific query
signature (in fact, [7] have shown that the tree can also answer similarity queries). For
instance, if q = 000001, the shaded entries of the tree in 4 are the qualifying entries to
be followed in order to answer the query. Note that the first entry of the root node does
not contain q, thus there could be no signature in the subtree pointed by it that qualifies
the query.

In the first phase of our mining algorithm, we construct an SG–tree for the set SG
of signatures, using the optimized algorithm of [7] and then use it in the second phase
to facilitate counting. Thus, lines 5–6 in Figure 1 are replaced by a depth-first search
in the tree for each candidate c, that is to count the number of document signatures
containing the signature of c. As soon as this number reaches the threshold ρ × |D|,
search stops and c is inserted into Fprev . Note that we use a slight modification of the
original structure of [7]; together with each signature g in a leaf node entry we store the
number of documents sup(g) having this signature (in replacement of the pointer in the
original SG–tree).

4 Performance Studies

In this section, we evaluate the effectiveness and efficiency of our methodology using
both synthetic and real data. The real data are from the DBLP archive [13]. First, we
describe how the synthetic data is generated. Then, we validate the efficiency of our data
mining algorithm on both synthetic and real data. All experiments are carried out in a
computer with 4 Intel Pentium 3 Xeon 700MHZ processors and 4G memory running
Solaris 8 Intel Edition. Java is the programming language.

4.1 Synthetic Data Generation

We generated our synthetic data using the NITF (News Industry Text Format) DTD
[14]. Table 1 lists the parameters used at the generation process. First, we parse the
DTD and build a graph on the parent-children relationships and other information like
the relationships between children. Then, starting from the root element r of the DTD,
for each subelement, if it is accompanied by “*” or “+”, we decide how many times
it should appear according to a Poisson distribution. If it is accompanied by “?”, its
occurrence is decided by a biased coin. If there are choices among several subelements

of r, then their appearances in the document follow a random distribution. The process
is repeated on the newly generated elements until some termination thresholds, such as
a maximum document depth, have been reached.

Name Interpretation Value

N total number of docs 10000–100000

W distribution of ‘*’ Poisson

P distribution of ‘+’ Poisson

Q probability of ‘?’ to be 1 a number between 0 & 1

Max distribution of doc depth Poisson

Table 1. Input Parameters for Data Generation

4.2 Efficiency of the Mining Algorithm

In the first set of experiments, we compare the total running cost (including the I/O
time) of our mining algorithm (denoted by MMIS) with the algorithm in [2](denoted
by MFS). The efficiency of the two techniques is compared with respect to three sets of
parameters: (1) the support thresholds, (2) the maximum size k of the mined MIS, (3)
the number of documents.

The synthetic data used in the experiments were generated by setting the parame-
ters of the distribution functions to: W=3, P=3, Q=0.7, Max=10. Except experiments in
Figure 7 and 10, N = 10000 in synthetic data set and N = 25000 in real data set.(where
documents were randomly picked from the DBLP archive.)

Varying the Support Threshold
Figures 5 and 8 show the time spent by MMIS and MFS on the synthetic and real data
respectively. The support threshold varies from 0.005 to 0.1. We set k=10 for the real
dataset and k=15 for the synthetic one. Both figures show the same trend: as the support
threshold increases, the improvement of MMIS over MFS decreases. This is because the
number of frequent structures decreases, which degrades the pruning effectiveness of
Fk. The improvement in the DBLP data is smaller than the improvement in the synthetic
data, because these documents are more uniform.

Note that in lines 5 – 7 of the algorithm in Figure 2, a large number of candidates
would be pruned in the course of finding the MIS. Figure 11 shows for k=15, ρ=0.01,
the percentage of candidates in the synthetic data, which are pruned because of this
optimization. The amount is in the range of 84% to 97%, which is significant saving.

Varying k
Figures 6 and 9 show the time spent by MMIS and MFS on synthetic and real data
respectively, for various values of k and ρ = 0.01. Observe that as k increases, the
speedup of MMIS over MFS increases. The reason for this is that once k goes beyond
the level at which the number of candidates is the maximum, the number of frequent
structures in Fk becomes smaller. Yet, the optimization from the pruning still have
noticeable effect on the speed.

k=15

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.005 0.01 0.02 0.05 0.1

Support threshold

R
u

n
n

in
g

 t
im

e(
s)

MMIS

MFS

Fig. 5. Varying ρ (synth.)

0

1000

2000

3000

4000

5000

6000

k=15 k=16 k=17 k=18 k=19 k=20

R
u

n
n

in
g

 t
im

e(
s)

MMIS

MFS

Fig. 6. Varying k (synth.)

k=15

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10000 25000 50000 100000
Number of documents

R
u

n
n

in
g

 t
im

e(
s)

MMIS

MFS

Fig. 7. Scalability (synth.)
k=10

0

500

1000

1500

2000

2500

0.005 0.01 0.02 0.05 0.1

Support threshold

R
u

n
n

in
g

 t
im

e(
s)

MMIS

MFS

Fig. 8. Varying ρ (real)

0

500

1000

1500

2000

2500

3000

k=6 k=7 k=8 k=9 k=10 k=11

R
u

n
n

in
g

 t
im

e(
s)

MMIS

MFS

Fig. 9. Varying k (real)

k=10

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000 25000 50000 100000
Number of documents

R
u

n
n

in
g

 t
im

e(
s) MMIS

MFS

Fig. 10. Scalability (real)

Figures 12 and 13 show the number of MIS discovered for various k on the synthetic
and real dataset, respectively. The numbers unveil: First, the total numbers of MIS in
both cases are small. Secondly, the number of MIS do not grow much while k increases.
Therefore, even if k is very large, the time to mine MIS is still acceptable. (Even if we
mine all the MIS of any size.) This is also confirmed by the results in Figures 6 and 9.

size of candidates. 8 9 10 11 12 13

% pruned candidates 84 85 90 90 95 97

Fig. 11. Effectiveness in 2nd Phase

k 15 16 17 18 19 20

MIS 321 325 340 342 342 348

Fig. 12. MIS (Synth.)

k 6 7 8 9 10

MIS 69 73 75 78 78

Fig. 13. MIS (Real)

Varying the Number of Documents
Figures 7 and 10 show the time spent by MMIS and MFS on synthetic and real docu-
ment sets of various cardinalities. For this experiment, k=10 for real data and k=15 for
synthetic data, while ρ = 0.01 in both cases.

In both cases the speedup of MISS over MFS is maintained with the increase of
problem size, showing that MMIS scales well. We observe that for the DBLP data, the
speedup actually increases slightly with the problem size. This is due to the fact that
DBLP documents have uniform structure and the number of distinct signatures does
not increase much by adding more documents.

Mining MIS Using SG–tree
As we have discussed the usage of SG-tree as an optimization techniques, here we show
the improvement achieved by SG-tree measured in running time. In the experiments, we
compare the total running time (Including the I/O time) of two versions of our mining
technique (a) MMIS and (b) MMIS-SG–tree (which is MMIS equipped with SG–tree

in the second phase) with MFS. In all experiments, the first and second optimization
strategies discussed in Section 3.3 are applied.

First, we compare the time spent by the three methods for different values of ρ. For
small values of ρ(≤ 2%), the SG–tree provides significant performance gain in mining,
which is about 25-30% less time cost, while the impact of using the tree at search
degrades as ρ increases. There are two reasons for this: (i) the number of candidates
is reduced with ρ, thus fewer structures are applied on it and (ii) the SG–tree is only
efficient for highly selective signature containment.

k=15, D=10,000, ρ= 0.005 0.01 0.02 0.05 0.1

MFS 4300 3700 3200 2000 900

MMIS 923 1211 1527 967 494

MMIS-SG–tree 660 870 1180 870 460

Fig. 14. Running Time on Synthetic Data

k=10, D=25000, ρ= 0.005 0.01 0.02 0.05 0.1

MFS 2300 2110 1900 1150 1000

MMIS 850 889 901 679 650

MMIS-SG–tree 600 640 650 610 630

Fig. 15. Running Time on Real Data

Next, we show the time spent by the three methods for different values of D, where
ρ=0.01. In Table 16 and 17, again the advantage of using the SG–tree is maintained for
small ρ for about 25-30% less time cost.

k=15, ρ=0.01 D= 10000 25000 50000 100000

MFS 3700 8700 21000 39000

MMIS 1211 3300 6610 10910

MMIS-SG–tree 900 2400 4700 7400

Fig. 16. Running Time on Synthetic Data

k=10, ρ=0.01 D= 10000 25000 50000 100000

MFS 900 2200 4200 8000

MMIS 400 889 1460 2400

MMIS-SG–tree 280 630 1080 1750

Fig. 17. Running Time on Synthetic Data

5 Conclusion and Future Work

Besides discovering frequent tree structures in XML documents, mining infrequent tree
structures is also important in many XML applications such as query optimization and
identification of abnormal cases. In this paper, we initiate the study of mining infre-
quent tree structures. Since all superstructures of an infrequent tree structure are always
infrequent, it does not make sense to find all infrequent tree structures. We introduced
the concept of Minimal Infrequent Structures (MIS), which are infrequent structures in
XML data, whose substructures all are frequent. Based on MIS, it is easy to construct
all infrequent tree structures.

In order to efficiently find all MIS, we developed a data mining algorithm which can
be several times faster than previous methods. In addition, our algorithm is independent
to the problem of indexing MIS. It can be used for other data mining applications (e.g.,
discovery of maximum frequent structures).

In the current work, we have focused on the applicability of our techniques in
databases that contain a large number of XML trees (i.e., documents). However, our
methodology could be adapted for arbitrarily structured queries (e.g., graph-structured
queries with wild-cards or relative path expressions), by changing the definitions of the
primary structural components (e.g., to consider relative path expressions like a//b,
instead of plain edges), and the graph matching algorithms. Some preliminary work
has been done on considering relative edges in [12], we plan to combine the encoding
schema in [12] with our three phase algorithm in our future research.

Another interesting direction for future work is the incremental maintenance of the
set of MIS. A preliminary idea towards solving this problem is to change the mining
algorithm of Figure 1 to compute the exact counts of frequent structures of size k (in-
stead of stopping as soon as the mininmum support has been reached). Then given a
set ∆D of new XML documents, we apply the first and second phases of our algorithm
for ∆D, to count the frequencies of all frequent structures of size k there. Having the
exact count of frequent structures of size k in the existing and new document sets, we
can then directly use the algorithm of [4] to compute the exact count of all frequent
structures of size k in the updated document set D + ∆D and simply apply the third
phase of our algorithm to update the MIS set. Integration of value elements within MIS
and incrementally updating MIS are two interesting problems for further investigation.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of VLDB
Conf., 1994.

2. T. Asai, K. Abe, S. Kawasoe, H. Arimura, and H. Sakamoto. Efficient Substructure Discovery
from Large Semi-structured Data. Proc. of the Annual SIAM symposium on Data Mining,
2002.

3. R. Bayardo. Efficiently Mining Long Patterns from Databases, Proc. of SIGMOD Conf.,
1998

4. D.W. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of Discovered Association Rules
in Large Databases: An Incremental Updating Techniques. Proc. of ICDE Conf., 1996.

5. L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in chemical com-
pounds. Proc. of KDD Conf., 1998.

6. M. Kuramochi and G.Karypis. Frequent subgraph discovery. Proc. of ICDM Conf., 2001.
7. N. Mamoulis, D. W. Cheung, and W. Lian. Similarity Search in Sets and Categorical Data

Using the Signature Tree. Proc. of ICDE Conf., 2003.
8. H. Toivonen. Sampling large databases for association rules. Proc of VLDB Conf., 1996.
9. S. M. Selkow. The tree-to-tree editing problem. Information Processing Letters, 6(6):184–

186, 1977.
10. K. Wang and H. Liu. Discovering Structural Association of Semistructured Data IEEE Trans-

actions on Knowledge and Data Engineering, 12(3):353–371, 2000.
11. L. H. Yang, M. L. Lee and W. Hsu. Efficient Mining of XML Query Patterns for Caching.

Proc. of VLDB Conf., 2003.
12. M. J. Zaki. Efficiently Mining Frequent Trees in a Forest. Proc. of SIGKDD Conf., 2002.
13. DBLP XML records. http://www.acm.org/sigmod/dblp/db/index.html. Feb. 2001.
14. International Press Telecommunications Council. News Industry Text Format (NITF).

http://www.nift.org, 2000.

