
Earth Mover’s Distance based Similarity Search at Scale

Yu Tang†, Leong Hou U‡, Yilun Cai†, Nikos Mamoulis†, Reynold Cheng†
†The University of Hong Kong ‡University of Macau

†{ytang, ylcai, nikos, ckcheng}@cs.hku.hk ‡ryanlhu@umac.mo

ABSTRACT
Earth Mover’s Distance (EMD), as a similarity measure, has re-
ceived a lot of attention in the fields of multimedia and probabilis-
tic databases, computer vision, image retrieval, machine learning,
etc. EMD on multidimensional histograms provides better distin-
guishability between the objects approximated by the histograms
(e.g., images), compared to classic measures like Euclidean dis-
tance. Despite its usefulness, EMD has a high computational cost;
therefore, a number of effective filtering methods have been pro-
posed, to reduce the pairs of histograms for which the exact EMD
has to be computed, during similarity search. Still, EMD calcu-
lations in the refinement step remain the bottleneck of the whole
similarity search process. In this paper, we focus on optimizing the
refinement phase of EMD-based similarity search by (i) adapting
an efficient min-cost flow algorithm (SIA) for EMD computation,
(ii) proposing a dynamic distance bound, which can be used to ter-
minate an EMD refinement early, and (iii) proposing a dynamic re-
finement order for the candidates which, paired with a concurrent
EMD refinement strategy, reduces the amount of needless compu-
tations. Our proposed techniques are orthogonal to and can be eas-
ily integrated with the state-of-the-art filtering techniques, reducing
the cost of EMD-based similarity queries by orders of magnitude.

1. INTRODUCTION
Given two histograms (e.g., probability distributions), their

Earth Mover’s Distance (EMD) is defined as the minimum amount
of work to transform one histogram into the other. EMD is robust
to outliers and small shifts of values among histogram bins [20],
improving the quality of similarity search in different domain ar-
eas, such as computer vision [19, 21], machine learning [6, 9], in-
formation retrieval [23, 24], probabilistic [25, 32] and multimedia
databases [5, 30]. Typically, the EMD between two histograms is
modeled and solved as a linear optimization problem, the min-cost
flow problem, which requires super-cubic time. The high compu-
tational cost of EMD restricts its applicability to datasets of low-
scale. For example, in computer vision applications, the quality of
results is typically compromised by the use of low-granularity his-
tograms, to render EMD-based similarity retrieval feasible [22,30].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 4
Copyright 2013 VLDB Endowment 2150-8097/13/12.

EMD-based similarity search has been extensively studied in [5,
25,30,32]. Given a query histogram q and a database of histogram
objects D, the objective is to find the k nearest neighbors of q in
D. All these works adopt the filter-and-refinement framework; to
evaluate a query, unpromising objects (or object groups) are fil-
tered out, by utilizing various effective EMD lower bound estima-
tions, based on centroids and projections [7], dimensionality re-
duction [30], primal-dual space [32], normal distributions [25], etc.
Actual EMD calculations1 are applied only between q and all ob-
jects that survive the filter step. Thus, the primary focus of previous
research has been in tightening the lower bounds such that more ob-
jects can be pruned at the filter step. For instance, [25] demonstrate
that the projection-based lower bound can be up to 90% of the ac-
tual EMD. However, the effectiveness of a lower bound largely
depends on various factors, such as the dimensionality and gran-
ularity of histograms, the data distribution, and the parameters of
the similarity query (e.g., k). In particular, for large-scale datasets
(e.g., 1M cardinality and/or 1K histogram dimensionality), the cur-
rent state-of-the-art solution [25] is not feasible, due to the extreme
cost of the refinement step. For instance, based on the experiments
in [25], it may take 10 minutes2 to complete one k-NN query on a
dataset with 1M objects even when 99% of objects are filtered out.

In view of this, we focus on optimizing the refinement phase
of EMD-based similarity search. Calculating the EMD between
two object histograms is equivalent to finding the minimum-cost
flow (MCF) in a bipartite network, where each vertex indicates a
histogram bin and edges connect bins from different object his-
tograms. Techniques from operations research [1], such as network
simplex, primal-dual, successive shortest path, and cost-scaling can
be used to solve MCF. However, these solutions do not scale well
with the number of histogram bins since their computations rely
on a complete bipartite network. For example, consider two his-
tograms having 1K bins each, and the corresponding flow graph
(bipartite network) with 1M (1K× 1K) edges in total. Constructing
and using this graph for solving MCF requires high computational
resources. To alleviate this problem, we adapt a simplified graph
incremental algorithm (SIA), originally proposed for assignment-
joins in spatial databases [29], which incrementally constructs the
flow graph during the flow calculations based on the edge weights.
Our adaptation significantly reduces the EMD computation time.

Min-cost flow algorithms, such as SIA, only aim at efficiently
evaluating a single EMD computation but they do not exploit the
execution plan of EMD-based similarity queries. In other words,
by integrating SIA into the filter-and-refinement framework as a
black-box module, the number of EMD calculations is not affected,

1By EMD calculation we refer to the entire run of an algorithmic
process that computes the EMD between two histograms.
2A linear estimation derived from the IRMA experiment in [25].

and every calculation is still conducted at its entirety. In our study,
we observe that it is possible to incrementally derive and tighten
a running lower bound for the EMD during the SIA calculation.
Based on this, we introduce a progressive bounding (PB) technique,
which can terminate the SIA calculations early for histograms that
are no longer promising to the similarity query. In addition, we
propose a dynamic refinement ordering (DRO) technique, which
concurrently handles and dynamically re-orders multiple EMD cal-
culations. These two techniques greatly reduce the computations at
the refinement phase of EMD-based similarity search, boosting the
search performance.

PB and DRO can be seamlessly integrated with any existing (and
future) filtering techniques. We show by experimentation that our
techniques can compute EMD-based similarity queries one to two
orders of magnitude faster, compared to the current state-of-the-
art [25]. To the best of our knowledge, ours is the first study on
this subject that considers datasets of million-scale on the object
cardinality and thousand-scale on the histogram dimensionality.

The rest of the paper is organized as follows. Section 2 formally
defines EMD, presents a min-cost flow algorithm for its compu-
tation, and discusses the standard filter-and-refinement framework
used for EMD-based similarity queries. Section 3 describes SIA, an
optimized implementation of the successive shortest path MCF al-
gorithm. Section 4 presents our progressive bounding and dynamic
refinement ordering techniques. Section 5 includes an extensive ex-
perimental evaluation which demonstrates the effectiveness of our
techniques. Related work is presented in Section 6. Finally, Sec-
tion 7 concludes the paper with a discussion about future work.

2. PRELIMINARIES
The Earth Mover’s Distance (EMD), first introduced by the com-

puter vision community in [23,24], is a distance function that mea-
sures the dissimilarity of two histograms (e.g., probability or fea-
ture distributions). Given two histograms q = (q1, . . . , qn) and
p = (p1, . . . , pn), each having n bins, a flow matrix F, where fi,j
indicates flow (i.e., earth) to move from qi to pj , and a cost matrix
C, where ci,j models cost of moving flow from the i-th bin to the
j-th bin, we can define the total cost of moving unit flow according
to F and C between q and p as

d(q,p) =

n∑
i=1

n∑
j=1

fi,jci,j (1)

The cost matrix (a.k.a., ground distance) C can be designed by
domain experts and/or derived from a mathematical formula [25,
32]. Intuitively, ci,i = 0 and the larger the distance between i and
j in the bin space, the larger ci,j is.3 Assuming that q and p are
normalized such that

∑n
i=1 qi =

∑n
i=1 pi, the EMD between q

and p is formally defined as follows:

emd(q,p) = min
F
d(q,p),

such that ∀i, j ∈ [1, n] : fi,j ≥ 0,

∀i ∈ [1, n] :

n∑
j=1

fi,j = qi,

and ∀j ∈ [1, n] :

n∑
i=1

fi,j = pj (2)

3The motivating example of [32] partitions a 2-dimensional feature
space (humidity and temperature) into 4×4 cells based on the range
of domain values. The cost ci,j between bins i and j is represented
by their Euclidean distance of the corresponding cells.

emd(q,p) is the minimum cost needed to transform q to p; to
do so, we distribute the flow (i.e., earth) from each bin qi to a set
of initially empty bins for p, such that the resulting histogram will
be equal to p. As moving earth fi,j from qi to the j-th bin of
p bears a cost fi,jci,j , the objective is to find the flow distribution
that results in the minimum total cost. Note that emd(q,p) is equal
to emd(p,q) when the cost matrix C is symmetric.

We demonstrate the calculation and applicability of EMD via a
real example from web data analysis. Figure 1(a) and 1(b) illustrate
the download rates of four music genres by two customers, q and
p, in an online store. The rates are normalized such that all values
of each histogram sum to 10. To calculate the distance emd(q,p)
between the two customers, we should identify the minimum work
to transform genre distribution q to distribution p. Assume that the
cost matrix C of the music genres is as shown in Table 1, where
indices 1, 2, 3, 4 denote the four music genres (i.e., R&B, Samba,
Jazz, and House, respectively). Figure 1(c) illustrates the best trans-
formation of q to p in terms of the total cost among all feasible
transformations. For instance, there are 3 units in q’s R&B genre.
In the transformation, f1,1 = 2 units are moved to p’s R&B (with
cost 2 · c1,1 = 0) and f1,3 = 1 unit is moved to p’s Jazz (with cost
1 · c1,3 = 0.1). Thus, based on the best transformation, emd(q,p)
is 0.1+2.4+0+0 = 2.5, providing a quantitative measure for the
dissimilarity between these two customers. This example demon-
strates an application of EMD to viral marketing analysis, which
enables enterprises to derive similarities between customers in or-
der to promote their products.

4

2
1

3

D
ow

nl
oa

d
ra

te
s

R
&B

H
ouse

Sam
ba

Jazz

(a) q’s distribution

D
ow

nl
oa

d
ra

te
s

1

4
3

2

R
&B

H
ouse

Sam
ba

Jazz

(b) p’s distribution

D
ow

nl
oa

d
ra

te
s

R
&B

H
ouse

Sam
ba

Jazz

(c) emd(q,p)

Figure 1: A concrete example of online music library analysis

Table 1: Cost matrix C of 4 music genres
p1 p2 p3 p4

q1 0 0.9 0.1 0.7
q2 0.9 0 0.6 0.9
q3 0.1 0.6 0 0.3
q4 0.7 0.9 0.3 0

q1

q2

q3

q4

p1

p2

p3

p4

3

4

2

1

2

1

4

3

q p

(a) Flow graph

2/2

1/1

1/3

q p

1/1

p1

p2

p4

0

0

0

0

0

0

0

0

1/4

p3
2/3

2/2

q1

q4

q2

q3

(b) Min-cost flow

2/2

1/1

0

0

0

1

q p
1

0

0

0

2/2

1/1
2/4

0/3

1/3

q1

q2

q3

q4

p1

p2

p3

p4

(c) Feasible path

Figure 2: The flow network of the music example

2.1 Computing the EMD
EMD can be computed using linear programming [12] and net-

work flow algorithms [1]. We now explain how EMD computa-
tion can be modeled and solved as a network flow problem. We
first construct a bipartite flow network (see Figure 2(a) for the ex-
ample of Figure 1), where the vertices are derived from the his-
togram bins (e.g., music genres) and the edges connect the bins
between the two histograms. Each edge carries a cost according
to the corresponding cell of the cost matrix. The flow capacity
of each vertex corresponds to the value of the corresponding his-
togram bin. For instance, the flow capacity of vertex q1 (i.e., R&B
of q) in Figure 2(a) is set to 3 according to Figure 1(a). Finding
the minimum-cost flow in this bipartite graph is equivalent to find-
ing the EMD from q to p. Each vertex of q should send total
flow equal to its capacity and each vertex of p should receive total
flow equal to its capacity. The minimum-cost flow is shown in Fig-
ure 2(b). On each edge e(qi, pj), the label fi,j/capi,j shows the
flow fi,j sent from the origin vertex qi and the capacity capi,j of
that edge (i.e., the maximum flow which could possibly be sent
from qi to pj). The edge capacity capi,j is the minimum ca-
pacity of the two end-vertices; e.g., the capacity of e(q2, p4) is 3
(= min {capq2 , capp4} = min {4, 3}).

The successive shortest path (SSP) algorithm [1] is the most rep-
resentative algorithm in the category of the network flow based so-
lutions. SSP iteratively computes and augments paths that (i) start
from a vertex qi which has remaining flow capacity, (ii) terminate to
a vertex pi which also has remaining flow capacity, and (iii) nodes
from q and p are alternated in these paths. A valid path should in-
clude feasible edges only. Given a flow graph, an edge is feasible if
there is remaining flow capacity on the edge. When augmenting a
flow fi,j on an edge e(qi, pj), we subtract fi,j from the capacity of
e(qi, pj) and add fi,j to the flow capacity of e(pj , qi). In our run-
ning example, initially, no flow has been augmented on any edge
(i.e., the fi,j labels of all edges are set to 0); thus, edge e(q2, p4)
(illustrated in Figure 3(a)) is feasible since the remaining flow ca-
pacity from q2 to p4 is 3 (illustrated by the number on the dashed
line). If we augment 1 unit of flow on e(q2, p4), we subtract 1 from
the capacity of e(q2, p4) and add 1 to the capacity of e(p4, q2) (as
shown in Figure 3(b)). Note that e(p4, q2) is not a physical edge
in G, as there are only directed edges from q to p but not vice-
versa. However, during path computation, SSP traverses also re-
verse edges provided that they are feasible. A formal definition of
feasible edges is given below. The capacity of a non-physical edge
(i.e., reverse edge) e(pj , qi) always equals to the flow fi,j currently
on edge e(qi, pj).

DEFINITION 1 (FEASIBLE EDGE). Given a flow graph, a
physical edge e(qi, pj) is feasible if fi,j < capi,j; a non-physical
(reverse) edge e(pj , qi) is feasible if fi,j > 0.

0/3

q p
q2 p4

3

0
4 3

(a) Before augmentation

1/3

q p
q2 p4

2

1
3 2

(b) After augmentation

Figure 3: Augmenting 1 flow on edge e(qs, ph)

Besides, the cost cf (u, v) of an edge e(u, v) is determined by its
physical existence in the flow graph and the cost matrix C:

DEFINITION 2 (COST OF FEASIBLE EDGE). The cost of a
physical edge e(qi, pj) is cf (qi, pj) = ci,j , while the cost of a
non-physical (reverse) edge e(pj , qi) is cf (pj , qi) = −ci,j .

For instance, the reverse edge e(p4, q2) in Figure 3(b) is feasi-
ble. Its cost is cf (p4, q2) = −c2,4 = −0.9 since e(p4, q2) is not
a physical edge. To calculate the min-cost flow (i.e., EMD), SSP
iteratively searches for the feasible path having the minimum cost.
As discussed above, a feasible path starts from a vertex in q, which
still has positive flow capacity, ends at a vertex in p with posi-
tive flow capacity and includes only feasible edges. For instance,
there is a feasible path highlighted by three dashed lines in Fig-
ure 2(c); the path starts at q1, passes p3 and q2, and finally reaches
p4. The cost of this path is cf (q1, p3) + cf (p3, q2) + cf (q2, p4) =
0.1 + (−0.6) + 0.9 = 0.4. SSP selects the feasible path with
the lowest cost and augments the maximum possible flow along the
path. The augmented flow is determined by the minimum of the
following quantities: (i) the remaining flow capacity at the source
node, (ii) the remaining flow capacity at the destination, (iii) the
minimum remaining capacity of all edges on the path. For exam-
ple, Figure 2(b) shows the result of augmenting the path shown by
the three dashed lines in Figure 2(c). The augmentation adds 1 flow
unit to all physical edges on the path (i.e., e(q1, p3) and e(q2, p4)),
subtracts 1 flow unit from the edges, for which the reverse edge
is on the path (i.e., e(q2, p3)), and updates the capacities of path
edges, q1, and p4.

Computing the EMD, using SSP requires O(F |E|log|V |) time,
where F is the total number of flows we need to augment and
O(|E|log|V |) is the cost of a shortest path search on a bipartite
graph with |V | vertices and |E| edges. After each path augmenta-
tion, the changes in the graph render the subsequent shortest path
search independent from the previous one, therefore, a large num-
ber of shortest path computations should be applied. As we shall
see in Section 3, we can greatly reduce the cost of SSP by a method
which builds and searches the flow graph incrementally.

2.2 Filter-and-Refinement Framework

Full projections

Dimensionality
reduction

Independent
minimization

Normal distribution index

Black-box EMD
calculation

quick-and-dirty slow-and-accurate

filter phase refinement phase

Figure 4: Filter-and-refinement framework

Given a collection D of histograms and a query histogram q, a
k-nearest neighbor (k-NN) query, finds a subset S of D contain-
ing k histograms, such that ∀p ∈ S,∀p′ ∈ D \ S, emd(q,p) ≤
emd(q,p′). The k-NN query is the most popular similarity search
type, as the number of results is controlled by k and there is no
requirement for setting a similarity threshold prior to search. In
previous studies [5,7,25,30], k-NN queries are evaluated based on
a filter-and-refinement framework. The EMD emd(q,p) between
the query histogram q and every histogram p ∈ D is estimated
with the help of lower bound filtering techniques, such as the nor-
mal distribution index [25], the full projection lower bound [7], the
reduced dimension lower bound [30], and independent minimiza-
tion [5]. In general, these filters are applied in an order starting
from quick-and-dirty ones to slow-and-accurate ones, as shown in
Figure 4. For histograms p that cannot be pruned by the filters, the
actual emd(q,p) is calculated by a black-box computation mod-
ule, such as SSP or transportation simplex [12].

Algorithm 1 FILTER-AND-REFINEMENT FOR k-NN
H: heap, θ: pruning threshold
Algorithm k-NN(Query q, Index I , Filters ∆)

1: θ :=∞; H := ∅
2: while I.getnext(q, θ, 〈p, lbp〉) do
3: for δi ∈ ∆ do . Filter phase
4: lbp := max{lbp, δi(q,p)}
5: if lbp ≥ θ then break loop
6: if lbp < θ then . Refinement phase
7: if emd(q,p) < θ then
8: update H to include 〈p, emd(q,p)〉
9: θ := k-th EMD value in H

10: return H

Algorithm 1 is a pseudocode of the filter-and-refinement frame-
work used in previous work. Since histograms correspond to ob-
jects (e.g., images), we will use the terms objects and histograms in-
terchangeably. First, the framework accesses objects from an index
I , such as the normal distribution index [25] or the TBI index [32].
These indexes provide a getnext function which returns at each
call an unseen object p having lower bound lbp of emd(q,p)
smaller than a given threshold θ (line 2). In k-NN search, θ is the
k-th largest EMD computed so far (i.e., the distance of the current
k-th NN of q inD). At each iteration (lines 2–9), the framework ac-
cesses a histogram p ∈ D using the getnext function and attempts
to tighten its lower bound lbp by applying a set ∆ of progressively
more expensive and accurate lower bound estimation techniques
(see Figure 4). If any of the computed lower bounds is not smaller
than the pruning threshold θ (line 5), then p is filtered, i.e., the ex-
act emd(q,p) needs not to be computed. Otherwise, emd(q,p)
is essentially computed by a black-box algorithm (line 7). During
search, Algorithm 1 maintains a heapH with the k histograms hav-
ing the lowest EMD so far and the pruning threshold θ (lines 8–9).
The k-NN candidates are confirmed as the result, when no more ob-
jects are returned by the getnext function (line 2), i.e., all unseen
objects do not satisfy the distance threshold θ.

3. SCALING UP SSP
Computing EMD by SSP requires having the complete bipar-

tite graph between q and p, which is quadratic to the number of
histogram bins. In our previous work, we proposed an optimized
version of SSP, simplified graph incremental algorithm (SIA) [29],
to scale up the computation of spatial matching problems. We now
show how SIA can be adopted to scale up the computation of EMD,
for histograms with a large number of bins. Different from SSP,
SIA incrementally constructs a partial flow graph G′ by inserting
edges from the complete bipartite graph G to G′. The incremental
graph construction significantly reduces the search cost since the
size of the partial graph G′ is typically much smaller than the com-
plete graphG. We use the running example (cf. Figure 2) to demon-
strate the superiority of SIA in Figure 5. Recall that the min-cost
feasible path starting at q1 (cf. Figure 2(c)) is q1 → p3 → q2 → p4
in the complete graph G. Suppose a partial graph G′ is constructed
based on the seen values in the partial cost matrix (Figure 5(b)), the
same min-cost feasible path can be found in G′ as well. Thereby,
augmenting this path in G′ is equivalent to the augmentation in G
which returns the same result in Figure 2(b).

The question now turns to how we can guarantee that the min-
cost feasible paths in G and G′ are equivalent. This is done by
a distance bound checking where the bound Π is derived from the
edges not yet inserted into G′. As an intuition, if the edges in G′

are inserted incrementally in ascending order to their costs at every
vertex, it is possible that the min-cost path in G′ is cheaper than all

0/2

2/4

0/3

1/3

1/1

2/2

1/1

0

0

0

1

q p
1

0

0

0

2/2

q1

q2

q3

q4

p1

p2

p3

p4

(a) Partial graph, G′

p1 p2 p3 p4

q1 0 - 0.1 -
q2 0.9 0 0.6 0.9
q3 - - 0 -
q4 - - - 0

(b) The cost matrix of G′

Figure 5: SIA on a partial flow graph

feasible paths which include edges not in G′. In this case, the path
is augmented; otherwise SIA expands G′ by inserting more edges
until the best feasible path in G′ has lower cost than the threshold
Π4; the expansion of G′ can only reduce the cost of the feasible
flow and increase Π, as edges are inserted to G′ in increasing order
of their costs.

Algorithm 2 SIA BASED EMD CALCULATION

Π: distance bound, G′: running subgraph
Algorithm emdSIA(Histograms q, p)

1: Π := 0; G′ := ∅
2: while ∃ feasible qi do
3: sp :=Dijkstra(qi, G

′)
4: while sp.cost > Π or sp doesn’t reach any feasible pj do
5: insert min-cost edge e(ql, pm) ∈ G−G′ into G′
6: update distance bound Π
7: sp :=Dijkstra(qi, G

′)

8: augment sp
9: return total augmenting cost

Algorithm 2 is a pseudocode of SIA for EMD calculations. At
each iteration, SIA searches the min-cost feasible path sp using
Dijkstra’s shortest path algorithm [1] inG′ from any feasible vertex
(line 3), i.e., a vertex of q with remaining capacity.5 If the cost of
sp does not exceed the distance bound Π (line 4), then it must be
a valid min-cost feasible path in the entire graph G. We augment
the flow of sp if sp is valid (line 8). Otherwise, G′ is essentially
expanded by adding more edges from G (line 5) and the distance
bound Π is updated accordingly (line 6).

We demonstrate the functionality of SIA by the example of Fig-
ure 6. Suppose that G′ contains only 6 edges and there are 9 flow
capacities sent already. According to the flow capacities, q1 is the
only feasible node in q but there is no feasible path currently from
q1 to any node of p (see Figure 6(a)). Subsequently, we insert
a new edge, e(q1, p3), into G′ and now there is a shortest path,
sp = 〈e(q1, p3), e(p3, q2), e(q2, p4)〉. The cost of sp is 0.4, which
is smaller than the distance bound Π, thus we return sp as the result
of the current search and augment 1 unit of flow from q1 and q2 to
p3 and p4, while 1 unit of flow from q2 to p3 is canceled.
4For clarity, Π = cmax (E − E′) − τmax , where cmax (·) returns
the maximum cost in a set of edges, E′ denotes the edges in G′,
and τmax indicates the largest potential value of the vertices. As a
note, Π can be further tightened if considering only a subset of E′
where the edges are from the vertices being visited by the current
Dijkstra search. The correctness proof and optimization details are
given in [29].
5Since G (and G′) may contain edges of negative costs (i.e., the
reverse of edges that currently carries flow), Dijkstra’s algorithm
cannot be directly applied. To make its application possible, we
need to iteratively maintain a potential value at every vertex, which
transforms the costs of the feasible edges to non-negative values.
The details (see [29]) are omitted for the sake of readability.

2/2

1/1

q p

2/4
1/1

1

0

0

0

0

0

0

1

q1

q4

p1

1/3
2/2

q2

q3

p2

p3

p4

(a) G′ at loop i

2/2

1/1

1

0

0

0

0

0

0

1

q p

1/1

2/2
2/4

0/3

1/3

p1

p2

p3

p4

q1

q2

q3

q4

(b) G′ at loop i+ 1

2/2

1/1

0

0

0

0

0

0

0

0

q p

1/1

2/2
1/4

1/3

2/3

p1

p2

p3

p4

q1

q2

q3

q4

(c) G′ at loop i+ 2

Figure 6: A running example of SIA-EMD

In this work, we use SIA as a module for computing the EMD
between two histograms p and q in the refinement step of simi-
larity search, due to its efficiency and scalability to the number of
histogram bins. Still, SIA only optimizes the performance of an
individual EMD calculation, whereas our ultimate objective is to
minimize the overall cost of a similarity query, which may involve
a large number of EMD calculations. The next section shows how
we can optimize the overall cost of queries by exploiting informa-
tion during the course of a SIA calculation.

4. BOOSTING THE REFINEMENT PHASE
In this section, we propose two novel techniques, progressive

bounding (PB) and dynamic refinement ordering (DRO), which
boost the performance of the refinement phase during EMD-based
similarity search. PB is inspired by the running time pattern of a
single EMD calculation and DRO is inspired by the execution or-
der in the filter-and-refinement framework. These two techniques
make the EMD calculations at the refinement phase being handled
in multiple stages and progressively instead of as one-off processes
(i.e., by black-box modules).

4.1 Analysis of EMD Calculation
According to previous experimental studies (e.g., [25,32]), more

than 95% of the histograms on average can be filtered by the lower
bound estimations; however, such high filter effectiveness is not
guaranteed. To make things worse, if we process EMD-based sim-
ilarity queries on large datasets (e.g., 1M objects) having high-
granularity histograms (e.g., several hundreds of bins), the refine-
ment phase even at a very high filtering ratio (e.g., 99%) easily
becomes the bottleneck, due to the high cost of exact EMD cal-
culations. Although there has been ample work on improving the
performance and effectiveness of the filter phase in EMD-based
similarity search, to the best of our knowledge, there has been no
work focusing on optimizing the refinement phase, for which off-
the-shelf EMD computation techniques (such as transportation sim-
plex or SSP) are simply applied as black-box modules.

0 500 1000 1500 2000 2500 3000
Iterations

0.0

0.2

0.4

0.6

Ti
m

e
(s

)

(a) SIA’s cumulative runtime

0 500 1000 1500 2000 2500 3000
Iterations

0

0.5

1.0

1.5

2.0

C
os

t

Current cost
emd−
Best bound from filter phase
Pruning threshold

(b) Current cost

Figure 7: SIA performance on different iterations

As discussed in Section 3, we adopt SIA for exact EMD calcu-
lations in the refinement phase. Although SIA offers great perfor-
mance improvements over typical EMD solutions (e.g., SSP [1] and
transportation simplex [12]), the running time during its execution
increases quickly as the algorithm progresses. Figure 7(a) shows
the cumulative runtime over SIA iterations during a typical EMD
calculation for two histograms with 1024 bins each. This example
shows that over 90% of SIA’s execution time is used in the last 20%
of its iterations. The reason behind this is that as SIA progresses,
the partial graph G′ and the number of feasible edges grow and
shortest path searches become much more expensive. This analy-
sis shows that there is room for greatly improving the refinement
phase of EMD-based similarity search, if SIA can be terminated
before reaching its late iterations.

4.2 Progressive Bounding
In order to terminate SIA as early as possible for objects that do

not make it to the query result set, we propose a technique which
progressively maintains a running lower bound emd− and tightens
emd− throughout the entire EMD calculation process. SIA, for a
specific refinement, can terminate early if the running lower bound
becomes not smaller than the current pruning threshold θ (i.e., the
k-th lowest EMD found so far).

First, we use a property of SSP (and SIA); at each iteration, the
minimum-cost feasible path is nonnegative when the cost matrix C
does not include any negative values [1]. In other words, the ac-
cumulated cost by augmenting flows at each iteration is monotoni-
cally non-decreasing, and can be used as the running lower bound
of EMD. For example, Figure 7(b) illustrates the accumulation of
the EMD during SIA, for two 1024-bin histograms q and p. At
each iteration, the current cost represents the accumulation of the
augmented costs up to that iteration; by comparing it with the cur-
rent pruning threshold θ (ignore the other series for the moment),
we can observe that SIA may terminate as soon as the current cost
becomes at least equal to θ (i.e., at around 88.3% of the total iter-
ations). This point corresponds to 23.4% of SIA’s total execution
time (cf. Figure 7(a)). Note that the current cost remains 0 until
the 1024th iteration because the shortest paths up to this iteration
correspond to flows between the same bins of q and p (i.e., from
qi to pi for some i ∈ [1, n], n = 1024) with zero cost each.

2/2

2/4

lower bound
estimtaion

0

0

0

3

1

0

1

current cost

estimated
cost

emd-computed
by

SIA / SSP

qh ph

1

qr

pj

pr

1/1 ps

2/2

qs

qj

Figure 8: Running lower bound, emd−

Although the current cost could be intuitively used as a lower
bound for the final (actual) EMD, it is not sufficiently tight since
it does not take the remaining feasible flow into consideration.
Thereby, we propose a running lower bound, emd−, which not
only considers the so-far accumulated flow cost, but also provides
an estimation to the cost of flows yet to be augmented. As Fig-
ure 8 illustrates, emd− consists of the current cost (partial EMD
already computed) plus a lower bound for the cost of the remaining
flow. The effectiveness of emd− is shown in the running example
of Figure 7(b), where emd− grows much faster compared to the

current cost and leads to an early termination of SIA for EMD cal-
culations. In this example, the running lower bound emd− reaches
the pruning threshold θ after augmenting 61% iterations which take
only 2.84% of the total execution time. This result demonstrates the
effectiveness of emd− in boosting EMD-based similarity search.

We now formally define emd−. First, Lemma 1 shows that the
costs of the minimum-cost feasible paths being augmented from a
vertex are monotonically non-decreasing, which forms a basis for
the definition of the bound.

LEMMA 1 (COST MONOTONICITY OF FEASIBLE PATHS).
Given a flow graph for which there is a sequence of mi

minimum-cost feasible paths spqi,1, . . . , spqi,mi from a node
qi ∈ q already been augmented in this order, the cost of
these paths from qi is monotonically non-decreasing, i.e.,
cf (spqi,j) ≤ cf (spqi,k), ∀1 ≤ j < k ≤ mi.

PROOF. To prove the statement, it suffices to show that the cost
of the shortest path from any qi ∈ q to any pj ∈ p is monotonically
non-decreasing throughout the entire flow augmentation process;
i.e., ct−1

f (qi pj) ≤ ctf (qi pj), where ctf is the cost of the
shortest path from qi to pj after t augmentations. If this holds,
then the cost of the minimum-cost feasible paths from qi must be
monotonically non-decreasing, because at each iteration, SIA picks
for qi the path with the minimum cost, and there is always a feasible
path between any pair of nodes with remaining capacity.

We prove this by contradiction. Assume that the monotonicity
of the shortest path cost from qi to a vertex pj does not hold, i.e.,
ct−1
f (qi pj) > ctf (qi pj), and assume that no path vio-

lates the monotonicity property until the t-th iteration. In addition,
among all paths that violate the monotonicity property at the t-th
iteration, ctf (qi pj) has the minimum cost. Suppose that qk is
the preceding vertex of pj in the shortest path, we have

ctf (qi pj) = ctf (qi qk) + ctf (qk, pj) ≥ ctf (qi qk).

In addition, based on our assumption, no vertex violates the
monotonicity property before the t-th augmentation. Thereby,

ct−1
f (qi qk) ≤ ctf (qi qk)

By combining the equations, we get

ct−1
f (qi pj) > ctf (qi pj) ≥ ctf (qi qk) ≥ ct−1

f (qi qk)

If e(qk, pj) is feasible in Gt−1, then:

ct−1
f (qi pj) ≤ ct−1

f (qi qk) + ct−1
f (qk, pj)

≤ ctf (qi qk) + ctf (qk, pj) = ctf (qi pj);

otherwise (e(pj , qk) is feasible in Gt−1):

ct−1
f (qi qk) ≥ ct−1

f (qi pj) + ct−1
f (qk, pj)

> ctf (qi pj) + ctf (qk, pj) ≥ ctf (qi qk).

Both cases contradict our assumptions.

DEFINITION 3 (RUNNING LOWER BOUND, emd−).
Consider a flow graph, such that for each node qi ∈ q, there is a
set of mi augmented paths spqi,1, . . . , spqi,mi . The running lower
bound emd− is defined as

emd− =
∑
qi∈q

mi∑
j=1

cf (spqi,j) · f(spqi,j) + (current cost)

∑
qi∈q

cf (spqi,mi) · (capqi − fqi), (estimated cost)

where capv indicates the total flow capacity of node v, and fv in-
dicates the flow units already augmented from v so far.

LEMMA 2 (CORRECTNESS OF emd−). The running lower
bound emd− is monotonically non-decreasing and always not
greater than emd(q,p) throughout the EMD calculation.

PROOF. Trivial, due to the monotonicity of the shortest path
costs from any vertex qi (Lemma 1) and due to the fact that all
remaining flow capqi − fqi at qi should be augmented in paths
originating at qi.

Table 2: Four augmented paths and their costs
iteration feasible path cf (spi) f(spi) current cost

1 sp1 = 〈e(q1, p1)〉 0.0 2 0.0
2 sp2 = 〈e(q3, p3)〉 0.0 2 0.0
3 sp3 = 〈e(q2, p2)〉 0.0 1 0.0
4 sp4 = 〈e(q2, p3)〉 0.6 2 1.2

Using Definition 3, we can compute emd− by adding to current
cost an estimated lower bound for all remaining feasible paths orig-
inating at each vertex qi, based on the node’s remaining capacity
(i.e., capqi − fqi) and the cost of the last augmented feasible path
from qi. Lemma 2 proves the correctness of the bound. The exam-
ple of Figure 8 illustrates the computation of emd−. There are 4
paths already augmented; their costs and iteration order are shown
in Table 2. The current cost is 1.2 (= cf (sp4)f(sp4) = 0.6 · 2)
and the estimated cost of the remaining flows (computed using the
nodes of q in the dashed-line region) is 0.6 (= cf (sp4)(capq2 −
fq2) = 0.6 · (4− 3)). Thereby, emd− is 1.8 which is much tighter
compared to just using the current cost as the lower bound.

Note that the time of updating emd− during SIA is negligible.
Whenever a new feasible path sp from a vertex qi is augmented
(i.e., at each iteration of SIA), we refine emd− by: (i) adding the
augmentation cost of sp (cf (sp) ·f(sp)) to the current cost compo-
nent of emd−; (ii) subtracting the previous estimated cost for qi in
the estimated cost component; (iii) adding the new estimated cost
of qi. Each of these three increments takes constant time (in fact,
(ii) is already cached), so the update of emd− takes O(1) time.

Summing up, our progressive bounding (PB) approach, during
the EMD calculation for a candidate, progressively maintains and
tightens the running lower bound emd− and prunes the object as
soon as the intermediate emd− reaches the pruning threshold θ.
PB saves unnecessary computations at the latter (expensive) stages
of SIA for candidate objects that do not make it to the k-NN result
(i.e., conducting only the necessary portion of the entire flow cal-
culation), and thus reduces the cost of each individual refinement.

4.3 Sensitivity to Refinement Order
So far, we have discussed how to terminate a single EMD cal-

culation early by the progressive bounding technique. Still, the
performance of a k-NN query does not depend only on individual
EMD calculations but also on the amount and progresses of EMD
calculations. According to Algorithm 1, the EMD for an object p
is essentially refined if all estimated lower bounds lbp (at the filter
phase) are smaller than the pruning threshold θ (line 6 of Algo-
rithm 1), where θ is the k-th best-so-far EMD value.

Figure 9 shows the EMD values of the accessed objects during
a 4-NN query execution using Algorithm 1. For each candidate p,
a bar shows the real EMD value emd(q,p), the best lower bound
lbp from the filter phase, and the pruning threshold θ at the time of
p’s verification. Every refined candidate can potentially decrease
the pruning threshold θ if it replaces another object in the current
k-NN set H . For instance, θ is decreased after accessing and refin-
ing the 6-th object. Observe that the order by which the objects are
accessed is not consistent with their real EMD values. On the other

10 20 30 40
Access order

0.0

0.5

1.0

1.5

2.0
E

M
D

Pruning threshold
p5

Best bound from filter phase Real EMD

Figure 9: Access order of a k-NN search

hand, the amount of EMD calculations would have been greatly
reduced if we had considered the objects in a better order. For in-
stance, if we had accessed the 6-th and 7-th objects before the 5-th
object p5, then p5 would have been filtered since its best lower
bound would have been larger than θ in this case. Note that a better
access order not only filters more objects, but also decreases the
pruning threshold θ faster such that individual EMD calculations
can be terminated earlier owing to the progressing bounding tech-
nique. Unfortunately, the access order of the state-of-the-art filter-
and-refinement framework is based on the getnext function (pro-
vided by the normal distribution index [25] or the TBI index [32]),
which just returns any unseen object p having lower bound smaller
than a given threshold θ. As shown in this example, there is room
to improve the access order such that objects that are likely to have
smaller EMD values have higher chances to be refined earlier. Mo-
tivated by this analysis, we propose a novel technique that defines
and follows a dynamic access order of the candidates.

4.4 Dynamic Refinement Ordering
The main idea behind our dynamic refinement ordering (DRO)

approach in refining candidates during EMD-based similarity
search is to conduct the refinement for multiple candidates con-
currently. Thus, given a priority layer PL set of b candidates
(PL ⊆ D), such that each p ∈ PL passes all filters based on
the current threshold θ, the objective of DRO is to refine all objects
in PL concurrently, by augmenting paths to the EMD of p ∈ PL,
which is currently the most promising object in PL. Intuitively, an
object is promising to augment flows on its corresponding EMD, if
the augmentations can make the threshold θ lower or prune objects
fromPL. For instance, the running lower bound emd− can be used
to prioritize objects, since augmenting an object having the lowest
emd− may update the best k objects found so far and decrease the
threshold θ early. The augmentations result in the increase (i.e.,
tightening) of emd−p 6, which may cause another object p′ to take
the place of p as the most promising one and be refined by DRO
in the next step. Thus, DRO always refines the object p with the
currently best promising value and checks whether p can be pruned
after updating (i.e., increasing) emd−p . If this pruning happens, p is
replaced by another candidate object in PL. DRO also keeps track
of the upper bound emd+p for each object p ∈ PL; if the currently
refined object’s upper bound becomes smaller than θ, then the cur-
rent top-k result is updated to include p. The details on how to
compute and update an upper bound of a partially computed EMD
are given in Section 4.5. DRO continues until PL becomes empty.

Algorithm 3 is a pseudocode of the DRO strategy for EMD-
based k-NN search. DRO uses function getnext filter to get the
next object from D, which passes all filters with respect to the cur-
rent threshold θ. First, DRO calls this function b times to form
the initial PL. PL is stored as a priority queue, in which the top
6For the ease of presentation, we denote emd−(q,p) by emd−p , as
the query histogram q is the same for all objects in D.

Algorithm 3 DYNAMIC REFINEMENT ORDERING

H , PL: heap, θ: pruning threshold
Function getnext filter(Query q, Index I , Filters ∆)

1: while I.getnext(q, θ, 〈p, lbp〉) do
2: for δi ∈ ∆ do . Filter phase
3: lbp := max{lbp, δi(q,p)}
4: if lbp ≥ θ then break loop
5: if lbp < θ then return 〈p, lbp,∞〉

Algorithm DRO-kNN(Query q, Index I , size b)
6: θ :=∞; H := ∅; PL := ∅
7: while |PL| < b do
8: PL := PL ∪ getnext filter(q, I , ∆)
9: while |PL| 6= ∅ do

10: pop 〈p, emd−p , emd+p 〉 from PL . e.g., lowest emd−p
11: while emd−p < PL.top().emd− do
12: augment next shortest path in emd(q,p)

13: if emd−p ≥ θ ∨ emd−p = emd+p then
14: PL := PL ∪ getnext filter(q, I , ∆)
15: break loop
16: if emd+p < θ then
17: update H to include the new 〈p, emd+p 〉
18: θ := k-th EMD value in H
19: for all p ∈ PL such that emd−p ≥ θ do
20: remove p from PL
21: PL := PL ∪ getnext filter(q, I , ∆)
22: if loop not broken then
23: PL := PL ∪ p . add p back to PL
24: return H

element is the object with the smallest emd−. At each iteration,
DRO de-heaps the top object p in PL and progressively refines the
current emd(q,p) by iteratively augmenting shortest paths (i.e.,
using SIA) while emd−p is still smaller than PL.top().emd− (i.e,
the smallest emd− in PL). A path augmentation increases emd−p
and decreases emd+p . If emd−p ≥ θ, then the current object p
is pruned because in the best case it cannot become better than
the current k nearest neighbors (see Section 4.2); DRO calls func-
tion getnext filter to add another candidate in PL in place of p
(line 14). If emd+p < θ, p is updated in H and the threshold θ is
updated accordingly (line 18). After θ is updated, we remove from
PL objects whose lower bounds are already greater than or equal
to θ (line 19). The removal is facilitated by an additional heap
structure that indexes objects in descending order of their lower
bounds. If, after some augmentations, emd−p becomes no smaller
than PL.top().emd− (line 11) and p has not been pruned, it is put
back to PL (line 23) and the top object of PL takes its place in
the inner path augmentation loop. Note that objects that may not
be further refined (i.e., condition emd−p = emd+p at line 13) are
either pruned (if emdp ≥ θ) or added to H (if emdp < θ).

p4

p5

p6
p7

p1 p2 p3

PL

Pruning
threshold, θ

Figure 10: Prioritizing refinement order

Figure 10 illustrates a running instance of DRO. The current
lower and upper bounds of each object are indicated by the borders
of a bar. Suppose k = 3 and there are 7 objects (= b) in PL.

Note that the currently best object in PL (in terms of emd−) is
p4, so DRO refines the current EMD of p4 by augmenting flows.
After the augmentation, the EMD bounds of p4 are updated to the
shaded bar. Note that emd−p5

now becomes the lowest emd−, so
the refinement of p4 is stalled; in the next iteration, p5 is de-heaped
from PL and refined. After augmenting flows to the EMD of p5,
the EMD bounds of p5 are updated as shown by the shaded bar.
Observe that now emd+p5

< θ; this causes (i) p5 to be included in
the currently best k objects H and (ii) θ to be updated to emd+p2

.
DRO is expected to be more efficient than considering the can-

didates that pass the filters one by one and computing their exact
EMD individually. Concurrent refinement by prioritizing candi-
dates with the lowest emd− performs the first (cheap) iterations of
SIA for many candidates and helps in deriving upper bounds emd+

for them and a good estimate of θ early. Obtaining a tight θ early
can help (i) to prune more candidates using the filters (function
getnext filter) and (ii) to avoid the late and expensive path aug-
mentations of SIA for many candidates in PL that can be pruned.

The choice of b (i.e., the size of PL) affects the performance
of DRO; if b is very large, DRO performs multiple concurrent SIA
executions which may have high memory requirements. If b is too
small, the pruning threshold θ does not converge fast to its final
value, and more objects enter the refinement phase. Clearly, there
is a tradeoff between the performance gain and memory consump-
tion. In our experiments, every SIA thread only constructs a small
portion of the entire flow graph. Thereby, b can be set to a relatively
large number. For instance, when b is set to 0.2% of the data cardi-
nality, the peak memory consumption of DRO on the largest dataset
of our experimental evaluation, WORLD, is just around 20 times of
a complete flow graph in a single EMD computation. Moreover, we
study a mechanism to avoid worst cases (e.g., every partial graph in
PL is full). When the size of PL exceeds a limit, we stop inserting
candidates into PL and refine the current EMD by PB until it is
pruned or becomes a k-NN candidate. However, in all of our ex-
perimental testings, this mechanism is never triggered as the size of
PL is much smaller than our default memory limit (i.e., 512MB).

4.5 Running Upper Bound
We now discuss the details of computing and maintaining a run-

ning upper bound emd+p for an object p whose EMD has partially
been computed by SIA. The upper bounds are used by DRO (pre-
sented in Section 4.4) to derive a value for θ after having partially
computed the EMD of some candidate objects. According to the
EMD definition, any flow matrix F satisfying all three conditions
of Equation 2 must lead to an upper bound of the actual EMD. For
the ease of discussion, we call a flow matrix F possible if it satisfies
all these three optimization constraints; the constraints are satisfied
if and only if there is no more feasible path in the flow network.
Thus, finding a possible flow matrix F is equivalent to finding a
maximum flow in the network [1], disregarding edge costs.

Based on the above discussion, we can define a running upper
bound emd+ following the same idea of deriving emd−. Similar to
the illustration in Figure 8, emd+ consists of the current cost plus
an upper bound considering the nodes which still have remaining
flow capacity (i.e., the vertices inside the dashed-line regions). For
instance, a maximum flow of the vertices inside the dashed-line
region is (q1, p4, 1), (q2, p4, 1), and (q4, p4, 1). The cost of this
max flow is 0.7 + 0.9 + 0 = 1.6; thus, emd+ is 1.2 (current cost) +
1.6 = 2.8. Formally, we define the running upper bound as follows.

DEFINITION 4 (RUNNING UPPER BOUND, emd+).
Consider a flow graph, such that for each node pi ∈ p,
there is a set of mi augmented paths spqi,1, . . . , spqi,mi . The

running upper bound emd+ is defined as

emd+ =
∑
qi∈q

mi∑
j=1

cf (spqi,j) · f(spqi,j) + (current cost)

maxflow(q,p), (maximum flow)

where maxflow(q,p) returns the cost of a maximum flow based
on the remaining capacities of q and p.

To compute emd+, we can apply any maximum flow algorithm;
however, existing maximum flow algorithms are too expensive [1],
considering the fact that emd+ should be maintained throughout
the entire EMD calculation. Instead of using these methods, we
propose an efficient greedy approach, which takes advantage of the
EMD flow network topology; note that the EMD flow graph is a
complete bipartite graph between the bins of q and p. This means
that a feasible vertex of q can always augment flow to any fea-
sible vertex of p along one edge. Our GreedyUB algorithm (Al-
gorithm 4), for each feasible vertex qi of q, accesses the feasible
vertices pj of p in increasing order of ci,j and augments the max-
imum possible flow along each edge e(qi, pj), until the remain-
ing capacity from qi has been used up. The accumulated cost of
the greedily augmented flows is used as the maxflow component
maxflow(q,p) of emd+(q,p).

Algorithm 4 GREEDY UPPER BOUND

Algorithm GreedyUB(Histograms q, p)
1: cost := 0
2: while ∃ feasible qi do
3: while capqi > fqi do . qi has remaining capacity
4: pj := feasible bin in p having minimum ci,j
5: flow := min{capqi − fqi , cappj − fpj }
6: fqi := fqi + flow
7: fpi := fpi + flow
8: cost := cost+ ci,j · flow
9: return cost

To facilitate GreedyUB, for each row i of the cost matrix C, we
define an order for the bins j based on ci,j (this order is static, i.e.,
independent of the data and queries, and it is defined once, together
with the ground distance function or cost matrix). For example, for
row q1 of the matrix shown in Table 1, the order is {p1, p3, p4, p2}.
Then, in Algorithm 4 line 4, this order is considered for identifying
feasible bins pj for the current vertex qi. Thus, the complexity of
the greedy algorithm is O(|E|), where E indicates the edges in the
graph, since there are at most |E| feasible pairs in the EMD flow
graph, i.e., much lower compared to the complexity of standard
maximum flow algorithms (e.g., O(|V ||E|)).

Similar to emd−, we can update emd+ incrementally after each
path augmentation during the refinement of an EMD. After every
augmentation of SIA, according to the capacity feasibility, we can-
cel and re-augment (for those that become feasible after the cance-
lation) the corresponding flows in the maximum flow graph formed
by the greedy algorithm. The number of canceled/re-augmented
edges in the maximum flow instance is at most equal to the flow
units f just being augmented in the current EMD flow. Thereby,
the maintenance cost of emd+ after each augmentation is O(f).

5. EXPERIMENTAL EVALUATION
In this section, we conduct extensive experiments to evaluate the

performance of our proposed EMD-based similarity search frame-
work and compare it with state-of-the-art solutions. All methods
are implemented in C++ and evaluated on 3.40 GHz quad-core ma-
chines running Ubuntu 12.04, with 16 GBytes of main memory.

Table 3: The statistics of six real datasets
Name # Objs # Bins Description

RETINA 3932 96 Feline retina images.
(12×8) Default dataset in [25, 30, 32].

IRMA 10K 199 Medical images from IRMA7

project. Used in [25, 30, 32].

FLICKR 680K 100 Images crawled from Flickr8.
(10×10) This dataset is used in [25].

PANORAMIO 500K 576 Images of European cities from
(24×24) Panoramio9.

FRIENDS 320K 768 Images captured every 25 frames
(24×32) from the TV series “Friends”.

WORLD 3M 1024
Images from ImageNet10 project.(32×32)

We use six real datasets in our evaluation; their default statis-
tics are shown in Table 3. The RETINA, IRMA and FLICKR his-
togram sets are taken from [25]. The PANORAMIO, FRIENDS
and WORLD histogram sets are generated by the same method with
RETINA and FLICKR as suggested in [25]: each image is divided
into tiles by a grid (e.g., 24×24 square granularity); for each tile,
the 12-feature MPEG-7 color layout descriptor (CLD) is extracted,
and we pick only the first feature as the value of the histogram bin.
Similar to [25,30,32], we use Euclidean distance as the ground dis-
tance (cost matrix) in all the experiments. Note that our techniques
are not restricted to any specific ground distance.

In the evaluation, we compare a set of EMD computation meth-
ods when used as a black-box module of the filter-and-refinement
framework (see Section 2.2). In all cases, the filtering of candi-
dates is done by applying the state-of-the-art filtering techniques as
used in [25]. First, we use the normal distribution index [25] to im-
plement the I.getnext function. For each retrieved candidate by
this function, we apply the following set of filters ∆ in this order:
full projection [7], reduced dimension [30] (only for RETINA and
IRMA, on which the filter has positive effects as in [25]), and in-
dependent minimization [5]. For the candidates that pass the filter
phase, we compare the application of the following EMD compu-
tation methods: (i) capacity scaling (CAP), (ii) cost scaling (COS),
(iii) transportation simplex (TRA), (iv) network simplex (NET), (v)
SSP (Section 2.1), (vi) SIA (Section 3). In addition, we evaluate
our progressive bounding (PB) and dynamic refinement ordering
(DRO) techniques when applied in conjunction with SIA. At each
experimental instance (e.g., for a given dataset and k), we run 100
k-NN queries choosing q randomly from the corresponding dataset
and average the query cost. The 100 queries for RETINA, IRMA
and FLICKR dataset are the same queries used in [25, 30, 32]. The
default value of k is 32 and the default b (i.e., maximum size of PL
in DRO) is set to 0.2% of the corresponding dataset cardinality.

5.1 Performance Improvement
First, we compare the performance of different black-box EMD

computation methods in the filter-and-refinement framework. Ta-
ble 4 shows the average query time of the six EMD computation
methods for 32-NN similarity queries on the six datasets. SIA is
the best method which constantly outperforms its base method SSP
and other alternatives (e.g., TRA) by at least 2.4 times. In addition,
SIA scales well with the problem dimensionality (i.e., the number
of histogram bins and the cardinality of datasets). Figure 11 shows

7http://ganymed.imib.rwth-aachen.de/irma
8http://www.flickr.com
9http://www.panoramio.com

10http://www.image-net.org

Table 4: Comparison of black-box EMD computation methods
RETINA IRMA FLICKR PANO. FRIENDS WORLD

Q
ue

ry
tim

e

CAP 0.68s 3.90s 7.89s 803s 3279s 22715s
COS 1.13s 6.48s 13.58s 1394s 5628s 48917s
NET 0.52s 4.13s 7.04s 763s 3573s 22774s
SSP 0.57s 6.14s 7.52s 2048s 10370s 65731s
TRA 0.57s 8.30s 7.72s 3395s 15307s 137414s
SIA 0.17s 1.51s 2.77s 318s 1362s 7082s

Filter time 0.006s 0.008s 0.749s 1.009s 1.476s 12.238s

the performance of the methods as a function of k on five datasets:
RETINA, IRMA, PANORAMIO, FRIENDS, and WORLD.11 SIA
outperforms SSP by around an order of magnitude, while being at
least two times faster than the runner-up network simplex (NET).
Note that the relative performance difference between methods is
not very sensitive to k. SIA is obviously the best module for calcu-
lating EMD under the filter-and-refinement framework. Note also
that the time spent in the filter phase (in Table 4) is negligible,
which confirms our discussion that the refinement phase dominates
the runtime of the entire filter-and-refinement framework.

Next, we evaluate the improvement offered by our progressive
bounding and dynamic refinement ordering techniques. Figure 12
compares the runtime of k-NN queries when (i) using SIA as a
black-box module, (ii) applying progressive bounding in SIA (PB),
and (iii) applying dynamic refinement ordering in conjunction with
progressive bounding in SIA (DRO). Observe that PB achieves a
large performance improvement over SIA (i.e., the best black-box
module in Figure 11). The improvement generally becomes more
visible when the problem size increases (i.e., the number of bins
and the cardinality of datasets). This can be explained by the
fact that the size of the flow graph is quadratic to the number of
histogram bins, therefore the latter iterations of SIA become ex-
tremely expensive. The progressive bounding technique helps to
avoid reaching these iterations, as explained in Section 4.2. DRO
offers a stable improvement over PB (40%–60%), indicating that
the concurrent refinement and dynamic reordering techniques have
positive impact on the performance.

In summary, DRO is the recommended methodology for EMD-
based similarity queries, being several times to two orders of mag-
nitude faster than using off-the-shelf EMD computation methods.
Notably, all previous works [5,25,30,32] adopt transportation sim-
plex (TRA) for calculating EMD at the refinement phase. As shown
in our evaluation, this method only performs well when the number
of bins is relatively small due to its exponential time complexity.
Room for Improvement. So far, we have shown the superiority
of our PB and DRO techniques over existing approaches. To see
how much room for improvement exists for EMD-based similarity
queries, we compare PB and DRO to two ideal yet practically in-
feasible methods, ESS and OI. Assuming that we know the result
of a k-NN query by an oracle, ESS (Essential k-NN search) calcu-
lates the EMDs of only the exact k-NNs, representing the lowest
possible effort to compute the results of a k-NN query. OI (Oracle
Index) assumes that an oracle index is available which offers an
optimal getnext function that returns the objects in the ascending
order of their exact EMDs. OI can be viewed as an optimal or-
dering method integrated with the current state-of-the-art filtering
techniques. In our experiments, both ESS and OI calculate EMDs
by the best black-box module (SIA), and OI uses our progressive
bounding (PB) technique to terminate EMD calculations early.

Figure 13 shows the query time of four methods, PB, DRO, ESS,
and OI, as a function of k. First, we observe that DRO’s perfor-

11The results on FLICKR are similar to those of RETINA.

4 8 16 32 64
k

0.0

0.5

1.0

1.5

2.0

Q
u
e
ry

 t
im

e
 (

s)

CAP
COS
NET

SSP
TRA
SIA

(a) RETINA

4 8 16 32 64
k

0

5

10

15

Q
u
e
ry

 t
im

e
 (

s)

CAP
COS
NET

SSP
TRA
SIA

(b) IRMA

4 8 16 32 64
k

0

1

2

3

4

5

Q
u
e
ry

 t
im

e
 (

x
1
03

s)

CAP
COS
NET

SSP
TRA
SIA

(c) PANORAMIO

4 8 16 32 64
k

0

5

10

15

20

Q
u
e
ry

 t
im

e
 (

x
1
03

s)

CAP
COS
NET

SSP
TRA
SIA

(d) FRIENDS

4 8 16 32 64
k

0

4

8

12

16

20

Qu
er

y
tim

e
(x

10
4

s)

CAP
COS
NET

SSP
TRA
SIA

(e) WORLD

Figure 11: Performance of black-box EMD computation methods varying on k

4 8 16 32 64
k

0.0

0.1

0.2

0.3

Qu
er

y
tim

e
(s

)

SIA
PB
DRO

(a) RETINA

4 8 16 32 64
k

0

1

2

3
Qu

er
y

tim
e

(s
)

SIA
PB
DRO

(b) IRMA

4 8 16 32 64
k

0.0

0.1

0.2

0.3

0.4

0.5

Q
u
e
ry

 t
im

e
 (

x
1
03

s)

SIA
PB
DRO

4 32 640

20

40

60

(c) PANORAMIO

4 8 16 32 64
k

0.0

0.5

1.0

1.5

2.0

Q
u
e
ry

 t
im

e
 (

x
1
03

s)

SIA
PB
DRO

4 32 64
0

50

100

150

(d) FRIENDS

4 8 16 32 64
k

0.0

2.0

4.0

6.0

8.0

10.0

Q
u
e
ry

 t
im

e
 (

x
1
03

s)

SIA
PB
DRO

4 32 640

200

400

600

(e) WORLD

Figure 12: Performance of SIA, PB and DRO varying on k

4 8 16 32 64
k

0.00

0.05

0.10

0.15

0.20

0.25

Qu
er

y
tim

e
(s

)

PB
DRO
OI
ESS

(a) RETINA

4 8 16 32 64
k

0.0

0.5

1.0

1.5

Qu
er

y
tim

e
(s

)

PB
DRO
OI
ESS

(b) IRMA

4 8 16 32 64
k

0

20

40

60

80

Q
u
e
ry

 t
im

e
 (

s)

PB
DRO
OI
ESS

(c) PANORAMIO

4 8 16 32 64
k

0

50

100

150

200

Q
u
e
ry

 t
im

e
 (

s)

PB
DRO
OI
ESS

(d) FRIENDS

4 8 16 32 64
k

0

150

300

450

600

750

Q
u
e
ry

 t
im

e
 (

s)

PB
DRO
OI
ESS

(e) WORLD

Figure 13: Closeness of PB and DRO to the oracle methods (query time)

4 8 16 32 64
k

0

100

200

300

#
 o

f
re

fi
n
e
m

e
n
ts

PB
DRO
OI
ESS
PB-C
DRO-C

(a) RETINA

4 8 16 32 64
k

0

100

200

300

400

#
 o

f
re

fi
n
e
m

e
n
ts

PB
DRO
OI
ESS
PB-C
DRO-C

(b) IRMA

4 8 16 32 64
k

0

1.0

2.0

3.0

#
 o

f
re

fi
n
e
m

e
n
ts

 (
x
10

3
) PB

DRO
OI
ESS
PB-C
DRO-C

(c) PANORAMIO

4 8 16 32 64
k

0

1.5

3.0

4.5

6.0

7.5

#
 o

f
re

fi
n
e
m

e
n
ts

 (
x
10

3
) PB

DRO
OI
ESS
PB-C
DRO-C

(d) FRIENDS

4 8 16 32 64
k

0

3.0

6.0

9.0

12.0

#
 o

f
re

fi
n
e
m

e
n
ts

 (
x
10

3
) PB

DRO
OI
ESS
PB-C
DRO-C

(e) WORLD

Figure 14: Closeness of PB and DRO to the oracle methods (number of refinements)

mance is very close to that of OI, improving PB by a significant
extent towards an ideal method. Figure 14 illustrates the number
of EMD refinements12 of these four methods, and also the number
of complete refinements (i.e., the EMD calculations that are fully
conducted) of PB and DRO (denoted by PB-C and DRO-C respec-
tively), varying on k. These experiments confirm the robustness of
our dynamic reordering technique as DRO commences almost the
same number of EMDs compared to the optimal method OI. Be-
sides, in Figure 14, PB-C and DRO-C are very close to ESS (i.e.,
k). In specific, DRO-C is only slightly larger than k, indicating that
only very few objects that are not the actual k-NN results need to
be fully refined by DRO, which again verifies the effectiveness of
DRO. Obviously, there is limited room for improving DRO, using
the current state-of-the-art filtering techniques, as its performance
is already close to that of OI. On the other hand, we believe that
there is still room for improving upon the current filtering methods
as the performance gap between OI and ESS is still significant.

12An object is counted even when only one path is augmented.

5.2 Scalability Experiments
In the first scalability study, we conduct experiments on

PANORAMIO subsets with cardinality 100K to 500K, on
FRIENDS subsets (64K to 320K), and on WORLD subsets (0.6M
to 3M), by randomly picking objects from the corresponding
datasets. The lines in Figure 15 show the query time of three meth-
ods, SIA, PB, and DRO, as a function of the object cardinality, af-
ter setting k = 32. PB and DRO scale very well with the database
size (they are almost insensitive), since the progressive bounding
technique benefits from better pruning thresholds owing to the in-
creasing number of objects. This experiment exposes an important
advantage of our approach: its performance is less sensitive to the
database size, while k is the main cost factor. Note that while the
database size may increase arbitrarily, in practice k is not expected
to grow at the same rate, since similarity search queries typically
retrieve a limited number of objects. The bars in Figure 15 show
the number of refinements of SIA, PB, and DRO (note that in PB
and DRO, only a portion of these are complete refinements, denoted

100K 200K 300K 400K 500K
Dataset size

0

1

2

#
 o

f
re

fi
n
e
m

e
n
ts

 (
x
10

3
)

0.0

0.1

0.2

0.3

0.4
Q

u
e
ry

 t
im

e
 (

x
10

3
s)

SIA
PB
DRO

SIA
PB
DRO

PB-C
DRO-C

(a) PANORAMIO

64K 128K 192K 256K 320K
Dataset size

0

2

4

#
 o

f
re

fi
n
e
m

e
n
ts

 (
x
10

3
)

0.0

0.5

1.0

1.5

Q
u
e
ry

 t
im

e
 (

x
1
0

3
s)

SIA
PB
DRO

SIA
PB
DRO

PB-C
DRO-C

(b) FRIENDS

0.6M 1.2M 1.8M 2.4M 3.0M
Dataset size

0

3

6

9

#
 o

f
R

e
fi
n
e
m

e
n
ts

 (
x
1
03

)

0

2.0

4.0

6.0

8.0

Q
u
e
ry

 t
im

e
 (

x
1
0

3
s)

SIA
PB
DRO

SIA
PB
DRO

PB-C
DRO-C

(c) WORLD

Figure 15: Scalability to dataset cardinality (number of objects)

256 400 576 784 1024
Number of bins

0

0.5

1.0

1.5

2.0

Qu
er

y
tim

e
(x

10
3

s)

SIA
PB
DRO

(a) PANORAMIO

5767841024 1600 2304
Number of bins

0

2

4

6

8

Q
u
e
ry

 t
im

e
 (

x
1
0

4
s)

SIA
PB
DRO

(b) WORLD

Figure 16: Scalability to histogram dimensionality

by PB-C and DRO-C). We observe that SIA is quite sensitive to the
number of refinements while PB and DRO are likely sensitive to
the number of the complete refinements (PB-C and DRO-C). In ad-
dition, the improvement of DRO over PB is stable, indicating that
the reordering technique is not affected by the increasing number
of objects that survive the filters.

In the second scalability study, we evaluate the effectiveness of
our techniques against the histogram dimensionality (i.e., number
of bins). We generate histogram sets of different dimensionali-
ties (square grid granularities) up to 2304, on PANORAMIO and
WORLD. Figure 16 shows the query time as a function of the
histogram dimensionality on the two datasets (k = 32). We ob-
serve that the query time of PB and DRO increases more slowly
compared to that of SIA. The graceful scalability of our methods
w.r.t. histogram dimensionality enables the application of EMD-
based similarity search on high-dimensional histogram representa-
tions (e.g., multi-dimensional features with fine partitioning).

5.3 Parameter Tuning in DRO
Finally, we demonstrate the effect of two sensitive parameters in

DRO, i.e., the maximum number of concurrently refined objects b
(the size of PL), and the function to prioritize objects in DRO.

4 8 16 32 64
k

0

20

40

60

Qu
er

y
tim

e
(s

)

0.05%
0.1%
0.2%
0.4%

(a) Size of PL, b

4 8 16 32 64
k

0

20

40

60

80

Q
u
e
ry

 t
im

e
 (

s)

PB
emd−

emd+

DRO

(b) Prioritizing function

Figure 17: Performance tuning of DRO on PANORAMIO

Figure 17(a) shows the average query time of k-NN queries on
the PANORAMIO dataset, for different values of b (as different
series). DRO becomes faster when b increases, which indicates
that concurrent refinement is an effective strategy to evaluate EMD-
based k-NN queries. On the other hand, as discussed in Section 4.4,
the memory requirements of DRO are proportional to b, so the per-
formance improvement comes with a memory tradeoff.

As mentioned in Section 4.4, the running lower bound emd−

can be used to prioritize objects in DRO. However, as shown in
Figure 17(b), emd− is not an effective prioritizing function since it
does not take the bound tightness into consideration. For instance,
assume that both emd−pa

and emd−pb
have the same value. Intu-

itively, if emd+pa
< emd+pb

, pa should be given higher priority
than pb during the refinement, because pa has a tighter bound and
it is more likely to be added to the current k-NN setH and decrease
θ. Thus, DRO (in Figure 17(b) and the previous experiments)
uses the following prioritizing function, which is a slight modifi-
cation of emd− (Definition 3): (1−α)·current cost + α·estimated

cost, where α indicates the tightness of the running bounds (i.e.,
emd+−emd−

emd+
). As Figure 17(b) shows, this function, when used in

DRO, maintains a constant advantage over PB, compared to prior-
itizing by just using emd− or emd+.

6. RELATED WORK
Earth Mover’s Distance (EMD) was first introduced by the com-

puter vision community as an effective similarity metric [23]. EMD
is also known as Mallows distance or Wasserstein distance in statis-
tics [15]. As a cross-bin distance, EMD matches better the human
perception of differences [22], compared to bin-by-bin distances
like Euclidean distance or χ2-statistic. EMD supports analysis and
search in a wide range of application domains, such as image re-
trieval [23,24], computer vision [11,17,21], machine learning [6,9],
probabilistic [25, 32] and multimedia databases [5, 30], video and
music identification [28, 31], phishing detection [10], data clean-
ing [8], privacy [16], matrix factorization [26], clustering [4, 6],
classification [14], etc. An empirical study [20] that compares nine
families of image dissimilarity measures based on distributions of
color and texture features shows that EMD has the best overall
quality among the others, yet also the highest computational cost.

Due to the usefulness of EMD, the database community de-
veloped techniques for similarity queries based on this measure.
Work in this direction is based on the filter-and-refinement frame-
work [5,25,30,32], described in Section 2.2. The main focus is the
development of fast and effective lower bounds for EMD, which
help in pruning objects that cannot make it in the result, at the
filter phase. Assent et al. [5] were the first to study EMD in the
filter-and-refinement framework. Wichterich et al. [30] propose a
dimensionality reduction technique, showing that the EMD of two
objects in the derived space is a lower bound for their actual EMD.
Xu et al. [32] propose a lower bound of EMD based on primal-dual
techniques [1] from linear programming and use B+-tree indexing
to support the filter phase of k-NN and range queries. Ruttenberg
and Singh [25] develop a new index structure for EMD-based simi-
larity queries based on the projection lower bound in [7]. All these
solutions focus only on the effectiveness of filters and efficiency of
the filter phase, simply treating the refinement phase as a black-box
process. However, as we have shown in this paper, the refinement
cost dominates the overall cost and deserves more attention.

Besides these results by the database community, there are also
studies on efficient EMD approximations [2, 3, 13, 19, 27]. Andoni
et al. [3] study EMD approximations in high-dimensional spaces.
Pele and Werman [19] accelerates the EMD computation by limit-
ing the number of edges in the flow graph, without guarantees of
the quality of approximation. Both [13] and [27] study linear-time
approximations of EMD, and [2] proposes sketches for approxi-
mating planar EMD. However, these works assume either specific
ground distances (e.g., L1 norm) [2, 3, 27] and bin spaces (e.g.,
R2) [2, 3, 13, 27], or certain histogram types (e.g., dominant color
descriptor) [13], which do not apply to the general setup of EMD.

For example, the choice of ground distance could be application-
dependent [19, 22, 24]. Note that our proposed techniques do not
have any of the above restrictions. Moreover, there is no study on
filtering bounds and indexing structures on top of these approxi-
mation techniques. Therefore, using the approximation methods,
a similarity query may have to compute EMDs between the query
and all the objects in the database, which is not scalable for large
datasets. Finally, the acceleration of EMD under Manhattan net-
work when using L1 as the ground distance is studied in [18].

7. CONCLUSION
In this paper, we studied the efficient evaluation of similarity

queries using Earth Mover’s Distance (EMD). First, we showed
how we can adapt SIA, an algorithm originally proposed for spatial
matching problems, to compute the EMD between two histograms
efficiently. Then, we proposed a progressive refinement strategy,
which updates a lower bound for EMD during its computation, in
order to abandon early a partial EMD refinement, if the object can-
not make it in the query result. Finally, we proposed a technique
which concurrently handles the refinement of multiple candidates,
by dynamically reordering them and computing upper bounds that
help to tighten the pruning threshold early. Our experiments show
that our methods are very effective in practice, decreasing the over-
all cost of EMD-based similarity queries by up to two orders of
magnitude, compared to the state-of-the-art solution [25].

Note that although our discussion assumes that the histograms
are normalized to sum up to the same values, EMD can also be ap-
plied in cases where histograms are not normalized (in this case, a
slightly different definition than that of Equation 2 is used to reflect
the maximum flow that could be sent from q to p). In addition, it
is not necessary that the two histograms have the same number or
locations of bins. Our framework and solutions are not sensitive to
these problem variants. Finally, note that our solution can also be
used for evaluating range similarity queries, where the objective is
to retrieve objects whose EMD to q does not exceed a given thresh-
old ε. In this case, SIA and PB can directly be applied, however,
DRO is not relevant because the threshold is fixed and insensitive
to the execution order.

In the future, we plan to study the optimization of the refinement
step in similarity queries based on other expensive distance mea-
sures (such as dynamic time warping).

8. ACKNOWLEDGMENT
This work is supported by grants HKU 714212E, 711110, and

711309E from Hong Kong RGC. Leong Hou U is supported by
grant MYRG109(Y1-L3)-FST12-ULH. We would like to thank
Brian Ruttenberg for providing part of his code on [25] and the
anonymous reviewers for their insightful comments.

9. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory,

algorithms and applications. Prentice Hall, 1993.
[2] A. Andoni, K. D. Ba, P. Indyk, and D. P. Woodruff. Efficient sketches

for earth-mover distance, with applications. In FOCS, pages
324–330, 2009.

[3] A. Andoni, P. Indyk, and R. Krauthgamer. Earth mover distance over
high-dimensional spaces. In SODA, pages 343–352, 2008.

[4] D. Applegate, T. Dasu, S. Krishnan, and S. Urbanek. Unsupervised
clustering of multidimensional distributions using earth mover
distance. In KDD, pages 636–644, 2011.

[5] I. Assent, A. Wenning, and T. Seidl. Approximation techniques for
indexing the earth mover’s distance in multimedia databases. In
ICDE, page 11, 2006.

[6] M. H. Coen, M. H. Ansari, and N. Fillmore. Comparing clusterings
in space. In ICML, pages 231–238, 2010.

[7] S. Cohen and L. Guibas. The earth mover”s distance: Lower bounds
and invariance under translation. Technical report, Stanford
University, 1997.

[8] T. Dasu and J. M. Loh. Statistical distortion: Consequences of data
cleaning. PVLDB, 5(11):1674–1683, 2012.

[9] N. Ferns, P. S. Castro, D. Precup, and P. Panangaden. Methods for
computing state similarity in markov decision processes. In UAI,
pages 174–181, 2006.

[10] A. Y. Fu, L. Wenyin, and X. Deng. Detecting phishing web pages
with visual similarity assessment based on earth mover’s distance
(EMD). IEEE Trans. Dependable Sec. Comput., 3(4):301–311, 2006.

[11] K. Grauman and T. Darrell. Fast contour matching using approximate
earth mover’s distance. In CVPR (1), pages 220–227, 2004.

[12] F. S. Hillier and G. J. Lieberman. Introduction to Mathematical
Programming. McGraw-Hill, 1990.

[13] M.-H. Jang, S.-W. Kim, C. Faloutsos, and S. Park. A linear-time
approximation of the earth mover’s distance. In CIKM, pages
505–514, 2011.

[14] H. J. Karloff, S. Khot, A. Mehta, and Y. Rabani. On earthmover
distance, metric labeling, and 0-extension. In STOC, pages 547–556,
2006.

[15] E. Levina and P. J. Bickel. The earth mover’s distance is the mallows
distance: Some insights from statistics. In ICCV, pages 251–256,
2001.

[16] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond
k-anonymity and l-diversity. In ICDE, pages 106–115, 2007.

[17] P. Li, Q. Wang, and L. Zhang. A novel earth mover’s distance
methodology for image matching with gaussian mixture models. In
ICCV, 2013 (to appear).

[18] H. Ling and K. Okada. An efficient earth mover’s distance algorithm
for robust histogram comparison. IEEE Trans. Pattern Anal. Mach.
Intell., 29(5):840–853, 2007.

[19] O. Pele and M. Werman. Fast and robust earth mover’s distances. In
ICCV, pages 460–467, 2009.

[20] J. Puzicha, Y. Rubner, C. Tomasi, and J. M. Buhmann. Empirical
evaluation of dissimilarity measures for color and texture. In ICCV,
pages 1165–1172, 1999.

[21] Z. Ren, J. Yuan, and Z. Zhang. Robust hand gesture recognition
based on finger-earth mover’s distance with a commodity depth
camera. In ACM Multimedia, pages 1093–1096, 2011.

[22] Y. Rubner and C. Tomasi. Perceptual Metrics for Image Database
Navigation. Kluwer Academic Publishers, 2001.

[23] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions
with applications to image databases. In ICCV, pages 59–66, 1998.

[24] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance
as a metric for image retrieval. International Journal of Computer
Vision, 40(2):99–121, 2000.

[25] B. E. Ruttenberg and A. K. Singh. Indexing the earth mover’s
distance using normal distributions. PVLDB, 5(3):205–216, 2011.

[26] R. Sandler and M. Lindenbaum. Nonnegative matrix factorization
with earth mover’s distance metric. In CVPR, pages 1873–1880,
2009.

[27] S. Shirdhonkar and D. W. Jacobs. Approximate earth mover’s
distance in linear time. In CVPR, pages 1–8, 2008.

[28] R. Typke, P. Giannopoulos, R. C. Veltkamp, F. Wiering, and R. van
Oostrum. Using transportation distances for measuring melodic
similarity. In ISMIR, pages 107–114, 2003.

[29] L. H. U, K. Mouratidis, M. L. Yiu, and N. Mamoulis. Optimal
matching between spatial datasets under capacity constraints. ACM
Trans. Database Syst., 35(2), 2010.

[30] M. Wichterich, I. Assent, P. Kranen, and T. Seidl. Efficient
EMD-based similarity search in multimedia databases via flexible
dimensionality reduction. In SIGMOD, pages 199–212, 2008.

[31] J. Xu, Q. Bai, Y. Gu, A. K. H. Tung, G. Wang, G. Yu, and Z. Zhang.
EUDEMON: A system for online video frame copy detection by
earth mover’s distance. In ICDE, pages 1233–1236, 2012.

[32] J. Xu, Z. Zhang, A. K. H. Tung, and G. Yu. Efficient and effective
similarity search over probabilistic data based on earth mover’s
distance. PVLDB, 3(1):758–769, 2010.

