
Discovery of Collocation Episodes in Spatiotemporal Data∗

Huiping Cao, Nikos Mamoulis, and David W. Cheung
Department of Computer Science

The University of Hong Kong
Pokfulam Road, Hong Kong

{hpcao,nikos,dcheung}@cs.hku.hk

Abstract

Given a collection of trajectories of moving objects with
different types (e.g., pumas, deers, vultures, etc.), we intro-
duce the problem of discovering collocation episodes in them
(e.g., if a puma is moving near a deer, then a vulture is also
going to move close to the same deer with high probabil-
ity within the next 3 minutes). Collocation episodes catch
the inter-movement regularities among different types of ob-
jects. We formally define the problem of mining collocation
episodes and propose two scaleable algorithms for its effi-
cient solution. We empirically evaluate the performance of
the proposed methods using synthetically generated data that
emulate real-world object movements.

1 Introduction
The large volume of the spatiotemporal data, (i.e., mov-

ing objects trajectories) renders their manual analysis tedious
and impossible. For their efficient analysis, spatiotemporal
data mining [1] is proposed for the development and appli-
cation of novel computational techniques. Given a trajectory
database, our goal is to unveil inter-movement regularities
among objects of different types, modeled as a sequence of
collocation events. Consider an application that monitors the
activities of animals (e.g., via sensors attached to them). An
exemplary collocation episode for this application could be
“Once we detect that a puma is moving close to a deer for 1
minute, we expect that a vulture will also move near to this
deer in 3 minutes with high probability.”

A collocation episode is in fact a sequence of spatiotem-
poral collocation events. Such events are sets of objects mov-
ing close to each other for some period. In addition, there
is a particular object type (e.g., deer), called centric fea-
ture, which participates in a sequence of collocations (e.g.,
deer-puma, deer-vulture). Finally, in a valid instance of
the episode the object that instantiates the common feature
should be the same in all collocation instances (e.g., the same
deer appears in both deer-puma and deer-vulture colloca-
tions). Our definition of a collocation event is a temporal ex-
tension of the spatial collocation defined in [6], which mod-
els the co-existence of a set of (non-spatial) features, such
as environmental observations (humidity and pollution val-
ues), plant and animal types, etc., in a spatial neighborhood.
E.g., pattern (wet, bamboo) means that, with high probabil-
ity, we can find bamboo plants near places with high hu-

∗Work supported by grant HKU 7142/04E from Hong Kong RGC.

midity values. Existing methods that consider only spatial
relationships between static features are not directly applica-
ble for our problem, since (i) we require a temporal duration
for a valid collocation event and (ii) we search for temporal
episodes of such events. Our problem also has some simi-
larity with episodes mining in sequence data [5], where fre-
quent episodes are (partially or totally) ordered list of events.
A sliding window w is used to extract subsequences in the
event series, and the contribution of every subsequence to
each candidate episode’s frequency is counted. However, the
events in our episodes are complex collocations as opposed
to simple categorical values. In addition, for a valid episode
instance there must be a common feature instantiation1 (cen-
tric feature requirement), as opposed to an appearance of any
event of the same type in [5].

In view of the challenges in this problem, we propose a
two-step framework for mining collocation episodes. First,
we apply a hash-based technique to efficiently retrieve the
object pairs, whose trajectories are close during some periods
and identify these intervals. Then, we provide two colloca-
tion episode mining algorithms (one Apriori-based approach
and one that is based on the vertical mining paradigm) and
some pruning techniques to improve the mining efficiency.
Finally, we empirically evaluate the performance of the pro-
posed methods using synthetically generated data. In the re-
mainder of the paper, we introduce some related work, for-
mally define the problem, outline our algorithms, and present
an experimental evaluation for them.

2 Related Work
Besides the work reviewed in Section 1, our work is also

related to pattern discovery in one-dimensional time series,
e.g., [4] etc. Nevertheless, these problems differ in three
main aspects from our work; (i) the pattern/rule element is
just a symbol or an event, while our pattern unit is a topo-
logical structure with a temporal duration; (ii) patterns are
defined based on a single time series, but our patterns are
based on relationships among different sequences; and (iii)
temporal and time-series data mining is usually based on pre-
defined categorization of 1D values, whereas we work on a
continuous (spatiotemporal) data space. In addition, several
efforts have been made to extend spatial collocation patterns
[6] to contain temporal aspects towards different directions.
E.g., from spatiotemporal data, [9] searches for evolving col-
locations, which in nature are pattern components in our con-
text, while [8] discovers topological patterns (without tempo-

1Note that two trajectories of the same type (e.g., deer) may correspond
to different objects (e.g., two different deers).

ral order). Finally, a related piece of work to our problem is
[3], where spatiotemporal pattern queries are proposed and
studied. An intuitive example of such a query is “find the
moving object that is close to location A at time t1, and then
moves to region C during time interval [t3, t4]”. The main
differences of our work are (i) we automatically identify fre-
quent patterns that relate the movement of objects, instead
of posing explicit queries and (ii) our patterns relate two
or more trajectories (that are feature instances), instead of
searching for trajectories that follow a specific “route” spec-
ified by a temporal sequence of static regions.

3 Problem Definition
This section formally defines the spatiotemporal colloca-

tion episodes by gracefully combining the concept of episode
in event sequences and collocation in spatial databases.

3.1 Spatiotemporal sequences and close subsequences

A spatiotemporal sequence S is the trajectory of a mov-
ing object. Formally, it is an ordered list of location-time
pairs (l0, t0), (l1, t1), · · · , (lm−1, tm−1) where ti <tj if i<j
(i, j∈ [0, m)). The pair (li, ti) denotes that the object was at
location li at time ti. In practice, li is a 2D position (xi, yi),
and ti records the time represented in time units (e.g., one
minute is a time unit). In the following discussion, the sub-
script of a location implicitly refers to its timestamp (i.e., li
implies the location at time ti).

Given n (n ≥ 1) objects o1, o2, · · · , on, the trajectory of
object oi is denoted by Si. Figure 1 plots three exemplary
sequences SP , SD and SV (abbreviating SPuma, SDeer , and
SV ulture, respectively). For illustration purposes, we use 1D
values to represent spatial locations, however, our discussion
extends naturally to the multidimensional space.

A subsequence s of S is a list of continuous location-
time pairs of S: (li1 , ti1), (li2 , ti2), · · · , (liq , tiq), where for
∀j∈ [1, q], lij is in S and tij +1= tij+1 . The starting (ending)
time of s is denoted by s.ts (s.te). For a complete sequence
S with m positions, S.ts = t0 and S.te = tm−1 + 1.
Definition 1 A window is a time interval [ts, te). The time
span (or length) of a window [ts, te) is te−ts. A window with
time span w is called a w-window.
Definition 2 A subsequence s is on window [ts, te) if s.ts =
ts and s.te = te. A subsequence is called a w-subsequence if
it is on a w-window. Two subsequences si ∈ Si and sj ∈ Sj

are concurrent subsequences if they are on the same win-
dow.

0

1

2

3

4

5

6

7

8

9

10

8 10 12 14 16 18 20

lo
ca

tio
n

time

w1

w2

w1

w2

w1

w2

w1

w2

w1

w2

w1

w2

w1

w2

w1

w2

w1

w2

w1

w2

w1

w2

w1

w2

Puma
Deer

Vulture

Figure 1: Example of trajectories
and windows

 D

 P

 D

 P

 D

 V

(a) (b)

Figure 2: Collocation
unit and episode

Example: Figure 1 shows two windows with time span 3:
w1=[10, 13) and w2=[15, 18). For SD , the two subsequences
on w1 and w2 are sD1 = (3.5, 10), (4.3, 11), (5.0, 12) and
sD2 = (6.2, 15), (6.1, 16), (6.0, 17). For SP , the subse-
quence on w1 is sP1 = (2.5, 10), (3.6, 11), (4.6, 12), while

on w2 we have sV2 = (6.7, 15), (6.5, 16), (5.2, 17) from
SV . sD1 and sP1 (also: sD2 and sV2) are concurrent subse-
quences. SD is on window [9, 20) and has eight (te−ts−w=
20−9−3) 3-subsequences, the second of which is on w1.

We define the closeness of two concurrent subsequences,
using an aggregate function aggDist for their element-to-
element distances. Typically, aggDist can be the maxi-
mum (max) or average (avg) of the component distances.
Assuming that si and sj are both on window [ts, te), and
dist is some atomic distance function (e.g., Euclidean dis-
tance), maxDist(si, sj) = maxts≤it=jt<te{dist(lit , ljt)}
and avgDist(si, sj) =

P
ts≤it=jt<te

dist(lit ,ljt)

te−ts
. A distance

threshold ε is used to model closeness:

Definition 3 Two concurrent subsequences si and sj are
close, denoted by close(si, sj), if aggDist(si, sj)≤ε.

Example: Assuming ε = 2.5 and aggDist = maxDist, the
two concurrent subsequences sD1 and sP1 on window w1 of
Figure 1 are close to each other since for ∀it = jt ∈ [10, 13),
the location pair lit ∈si and ljt ∈sj satisfies dist(lit , ljt)≤ε.

3.2 Spatiotemporal collocations and episodes thereof

Let F be a set of moving object types (e.g., different ani-
mals). Given a database of object trajectories, the type (or
feature) of an object oi is denoted by type(oi), such that
type(oi) ∈ F . In general, the number of objects n in the
database can be larger than the number |F| of types in F ; i.e.,
more than one object may belong to the same object type.

Definition 4 A spatiotemporal collocation unit g (simply
unit) is an undirected graph (V, E) where each vertex in g.V
is an object type in F . The length of the unit g is the number
of vertices |g.V | in it. Given a unit time span w, a valid
instance Ig of unit g=(V, E), where V ={f1, f2, . . . , f|V |},
is a set of concurrent w-subsequences {s1, s2, . . . , s|V |} on
a window [ts, te) such that (i) si is of type fi, (1 ≤ i ≤ |V |)
and (ii) if (fi, fj)∈E then close(si, sj).

The starting (ending) time of Ig is denoted by Ig.ts (Ig.te).
For example, the two concurrent window trajectories sD1 and
sP1 in Figure 1 is an instance of the collocation unit in Figure
2a, and the related window is [10, 13) (i.e., w1).

Definition 5 A spatiotemporal collocation pattern (or
episode) P is an ordered list of spatiotemporal collocation
units: g1g2 · · · g� where ∩�

i=1(gi.V) �= ∅.

The object types in ∩�
i=1(gi.V), are called the reference types

(features) of pattern P . The length of the pattern P is de-
fined by

∑�
i=1 |gi.V |. A pattern with length k is called

a k-pattern. In this paper, we only consider the case that
| ∩�

i=1 (gi.V)| = 1, and we denote the common (reference)
object type as fr. The reference object type fr is also called
the centric feature of the pattern. Thus, we can also represent
a pattern in the form (fr, g1.V −fr)→· · ·→(fr, g�.V −fr),
where the underlined feature is the reference feature.

Example: Figure 2b shows a 4-collocation episode, indi-
cating that when a deer and a puma are close during w = 3
time units, a vulture will come close to this deer later. This
episode’s common feature is D and can also be represented
by (D, P)→(D, V).

Definition 6 Given a maximum pattern time span W , a
valid instance IP for a pattern P =g1g2 · · · g�, is a sequence
of valid unit instances Ig1Ig2 · · · Ig�

such that (i) in all unit

instances the reference feature fr is instantiated by a sub-
sequence of the same object sequence, (ii) for every i < j,
Igi .te ≤ Igj .ts, and (iii) Ig�

.te−Ig1 .ts ≤ W .

Example: Let ε = 2.5, w = 3, and W = 8. In Figure 1, we
can identify a valid instance of the episode of Figure 2b. In
specific, sD1 and sP1 (sD2 and sV2) instantiate the first (sec-
ond) unit of the pattern. In addition, sD1 and sD2 instantiate
the common feature D in both units and they are parts of the
same trajectory. Furthermore, Ig1 .te < Ig2 .ts, since the end
point of w1 is before w2. Finally, Ig2 .te−Ig1 .ts =18−10≤W .

Given the maximal episode time span W , we say that
a W -window [ts, te) covers a pattern instance, if the time
span of the instance [Ig1 .ts, Ig�

.te) satisfies ts ≤ Ig1 .ts and
Ig�

.te ≤ te. We use |IP | to denote the number of W -
windows, which cover at least one instance of pattern P .

Definition 7 Pattern P = g1g2 · · · gp is a superpattern of
P ′ = g′1g

′
2 · · · g′q if (i) P.fr = P ′.fr and (ii) there exists q

units gi1gi2 · · · giq (1 ≤ ij < ij+1 ≤ p, 1 ≤ j < q) of P such
that g′j .V ⊆ gij .V and g′j.E ⊆ gij .E for ∀j ∈ [1, q]. P ′ is a
subpattern of P .

For Example, P = (A, B, C) → (A, C, D) → (A, E) is a
superpattern of P ′=(A, B)→(A, C, D)

To measure the interestingness of a collocation episode,
we use the reference type as the key factor since it does not
make sense to overcount the same instance of the reference
feature (e.g., deer) with different instances of the other ob-
ject types (e.g., puma, vulture) in the pattern. In addition,
we consider all possible time windows W , where the pattern
may appear.

Definition 8 The frequency of a pattern P with reference ob-
ject type fr is fr(P, w, W)= |IP |P

type(oi)=fr
|win| .

Here, win is the total number of W -subsequences in all Si-s
where type(oi)=fr.

Let min sup be the minimum frequent threshold that
the users are interested, one pattern P is frequent if
fr(P, w, W) ≥ min sup.
Problem Definition: Given a database of trajectories
S1, · · · ,Sn of n moving objects, each with type(oi) ∈ F ,
discover all the frequent spatiotemporal collocations, sub-
ject to ε, a closeness duration window length w, a maxi-
mum pattern window length W , and a frequency threshold
min sup∈ [0, 1).

4 Algorithms
To find the collocation episodes, the main tasks are: (i)

identify the types of objects that move closely to each other,
and (ii) find on which W -windows this closeness is observed.

4.1 Finding close subsequences

The first mining phase aims at discovering object pairs
of different types (fi, fj) that have close concurrent subse-
quences. The ultimate objective is to identify the collocation
units that may form longer episodes. For this, we scan each
Si of type fi to identify its w-subsequences that are close to
object subsequences of different type fj , j �= i. We store the
starting position ts of each such window [ts, ts +w) along
with the set of object types close to Si, during [ts, ts +w).
Eventually, each trajectory Si is converted to a feature se-
quence of the form Sf

i = {〈F1, t1〉, 〈F2, t2〉, . . . , 〈Fm, tm〉},

where Fs is the set of object types other than fi close to the
w-subsequence of Si that starts at time ts.

A naive method for the computation of Sf
i for each Si, is

to scan all the other sequences in order to identify the win-
dows and feature-sets in each Sf

i . We now present a hash-
based technique that achieves this goal in two database scans
only and is shown in Figure 3. In the first pass, all data are
hashed to a 3D grid in the trajectory space (Line 1), where
G and T are the projected length of each cell on spatial and
temporal dimension, and are chosen to be ε and w respec-
tively. Then, the algorithm performs a pass over the hashed
data by examining only one hyperplane of cells at a time,
corresponding to a w-period. For each cell gc, the neighbor-
ing cells in the spatial dimensions having the same temporal
coordinates as gc are examined. In the 2D example of Fig-
ure 4, for cell gc, starting at time ts, and for the trajectory Si

(partially) inside gc, the (shaded) cells are checked for possi-
ble containment of subsequences which are partially close to
Si. Note that Sj is close to Si at time ts+2, which means that
this closeness relationship can be extended to a subsequence
closeness in cells of time span [ts+w, ts+2w). Thus, the al-
gorithm for each Si buffers such partially close subsequences
that can be extended to Sf

i elements. When the next hyper-
plane of cells is examined, the partial closeness results are
examined for potential extension and inclusion to Sf

i , along
with generation of new partial results. The sorting of cell
contents by time facilitates the fast identification and exten-
sion of partial closeness results, in a merge-join fashion.

Algorithm getFS(S1, · · · Sn, D, w)
1. impose a spatiotemporal G × G × T grid;
2. hash all locations of S1, · · · ,Sn to cells;
3. for every cell gc in the grid,
4. sort locations in gc according to their time;
5. initialize a (partial results) buffer bufi for Si;
6. for each timestamp ts, multiple of w
7. GC := cells with time interval [ts, ts+w);
8. for each timestamp t ∈ [ts, ts + w)
9. for each grid cell gc ∈ GC

10. find location pairs (lit , ljt) within ε;
11. extend bufi and bufj for each pair;
12. if Sj in bufi is close for at least w

13. add (fj , t−w+1) to Sf
i ;

14. if Si in bufj is close for at least w

15. add (fi, t−w+1) to Sf
j ;

Figure 3: Hash-based computation
of close feature sets

time

sp
ac
e

w

Si

Sj

gc

ts

Figure 4: Exam-
ple of hashing

4.2 Discovery of collocation episodes

In this section, we show two algorithms to discover fre-
quent collocations, based on different usage of the trans-
formed sequence of feature sets.

4.2.1 Pattern extraction from sequences of feature sets

The first algorithm Apriori shown in Figure 5 finds the col-
locations level-by-level. It takes as input the close feature
sets Sf

i found for each Si, the minimum frequency mincntfr

(= min sup × |win|) for an episode to be frequent. First,
the Sf

i ’s are partitioned to |F| groups, one for each different
fi ∈ F . Thus, the group Sfr , for feature fr is used to find the
patterns, having fr as their reference feature. We note that
the apriori property holds for frequent episodes, i.e., if P ′ is
a superpattern of P , then fr(P, w, W) ≤ fr(P ′, w, W). In
this algorithm, when we measure the length of a pattern, we
exclude the reference feature fr from the units, since it is im-
plicit. For example, a 3-candidate (fi) → (fj , fk) represents
a real 5-candidate (fr, fi)→(fr , fj, fk).

Function gen cand, used to generate the �-candidates
from (�− 1)-patterns, is exactly as that in sequential pat-
tern mining [7], so we will not discuss it in detail. The

Algorithm Apriori(Sfr , W , mincntfr)
1. L1 := frequent 1-patterns; � := 2;
2. while (L�−1 �= ∅)
3. C� := gen cand(L�−1);
4. for each Sf

i ∈ Sfr

5. slide window (C�, Sf
i , W);

6. L� := {P ∈ C�|
P.count ≥ mincntfr };

7. � := � + 1;
8. return L := ∪�L�;

Figure 5: Apriori-based al-
gorithm

Algorithm MJ(Sfr , W , mincntfr)
1. generate ITListfr (fj) for each (fj);
2. use ITListfr(fj) to generate L1;
3. � := 2;
4. while (L�−1 �= ∅)
5. C� := gen cand(L�−1);
6. for each P ∈ C�

7. ITListfr (P) :=
MJ count cand(P , W);

8. L� := {P ∈ C�|
P.count ≥ mincntfr};

9. � := � + 1;
10. return L := ∪�L�;

Figure 6: Merge join algo-
rithm

patterns excluding the reference features are similar to the
sequential patterns in transactional databases [7]. However,
counting the support of our patterns is different, since we
consider all positions of a sliding window, whereas for se-
quential patterns each transaction sequence contributes one
or none to a sequential pattern (depending on whether the se-
quence is a superpattern of it or not). Function slide window
is used to count |Ic| (the number of windows that contain
valid instances of c) for each candidate c ∈ C� from a trans-
formed sequence Sf

i ∈ Sfr . In brief, the idea is to slide
a W -window over Sf

i to get a subsequence of feature sets.
For each subsequence s on a W -window, we find the can-
didates that have a valid instance, which is covered (i.e.,
supported) by s, and increase their count. Sliding window
counting for event episodes has also been proposed in [5],
however, the valid instances in our case are more difficult
to count, because of the constraint that one collocation unit
instance should end before the beginning of the next one
(see condition (ii) in Definition 6). For example, assuming
w = 3 and Sf

i = {〈(f1, f2), 10〉, 〈(f1, f3), 11〉, 〈(f4), 14)〉},
pattern c1 =(f1, f2) → (f4) is supported by Sf

i , but pattern
c2 =(f1, f2) → (f3) is not, since f3 is close to the reference
feature at time 11, which is before the end of f2 (10+w=13).
In simple words, in a valid pattern instance, the collocation
unit instances should not overlap in time.

Optimizing the support counting While sliding a W -
window over the transformed sequence, if the subsequence
of Sf

i covered by the window remains the same compared
to the previous window position, the set of candidates sup-
ported by the window does not change. As a result, we
examine only positions of the W window, where either (i)
a feature-set F is included in the window for the first time
or (ii) F ceases to be included in the window (compared to
the previous position). E.g., let w = 3, W = 8, and Sf

i =
{〈(f1, f2), 10〉, 〈(f1, f3), 11〉, 〈(f4), 14)〉}. Since only three
windows, [5, 13), [6, 14), [9, 17), correspond to the event of
a feature-set entering the sliding window, and two windows,
[11, 19), [12, 20), correspond to the event that a feature-set
leaves the window, we just need to examine these five win-
dows. Each feature-set 〈Fi, ti〉 ∈ Sf

i affects two positions
of window [ts, te); the one with te = ti+w (where Fi enters
the window) and the one with ts = ti +1 (where Fi leaves
it). As a result, the cost of examining a feature-set sequence
Sf

i becomes proportional to |Sf
i |, instead of the number of

window positions (which normally is much larger).
Figure 7 shows in detail this optimized counting method

applied for each Sf
i . To avoid overcounting a pattern having

more than one instance at a window position, when we detect
a valid instance, we add to its support only for the window
positions, where previous instances are not valid. For this,
we maintain a variable c.last for each candidate (initialized
to −1), indicating the last known position of W , having an
instance of c. In addition, the algorithm keeps track of the
feature-sets fs contained in W . Whenever a feature-set F
exits the sliding window, it is removed from fs. If a new F
enters fs, we search for candidates for which the last unit is
instantiated by some features in F (instances not affected by
F are identified at earlier positions of W). I.e., only candi-
dates, for which the features in the last unit are all contained
in F , are checked for instantiation. For each candidate, if
we detect a valid instance at the current window position,
we look for the pattern instance with the latest starting time
Ig1 .ts. The support of the candidate is then updated with the
number of window positions Ig1 .ts−ts+1, during which the
pattern instance remains valid (when ts >Ig1 .ts, the instance
becomes outdated). Finally, if some window positions were
already counted due to the last detected pattern for c, i.e., if
c.last ≥ ts, then we add Ig1 .ts−c.last to c.count (instead of
Ig1 .ts−ts+1), in order not to overcount the specific candidate.

Function slide window(C� , Sf
i , W)

1. for each candidate c
2. c.last := −1; c.count := 0; fs := ∅;
3. slide a [ts, te) W -window over Sf

i
4. if some feature set F ∈ fs becomes outdated
5. fs := fs−F ;
6. if some feature set F enters the window
7. fs := fs+F ;
8. for each candidate c
9. find instance of c with Ig�

instantiated by F
10. and largest possible Ig1 .ts;
11. if there exists such an instance
12. h := min{Ig1 .ts−ts+1, Ig1 .ts−c.last};
13. c.count := c.count+h;
14. c.last := Ig1 .ts;

Figure 7: Optimized support counting

4.2.2 Pattern extraction by joining instances of patterns

Our second algorithm follows the vertical mining paradigm.
Instead of scanning the Sf

i lists multiple times, while gener-
ating and counting candidates level-by-level, we keep track
of the details about the instances of the patterns and join them
to produce the instances of their superpatterns.

Figure 6 shows a pseudocode for this merge join (MJ)
algorithm. First (Line 1), we scan the Sf

i lists, to produce
the instance lists (ITLists) of all 1-patterns. For each refer-
ence feature fr, all Sf

i ∈ Sfr produce the instances of 1-
patterns having fr as reference feature. Consider a feature-
set 〈Fi, ti〉 ∈ Sf

i . For each feature fj ∈ Fi an element
(oi, ti) is added to list ITListfr(fj), indicating that there
is an object of feature fj close to object oi of feature fr

at time window [ti, ti +w). By sliding a window W over
ITListfr(fj), we can compute the supports of the 1-pattern
(fj) referencing fr. The ITlists are then used to find the fre-
quent 1-patterns L1 (Line 2 of the algorithm).

For counting the instances of a longer candidate pattern P
(procedure MJ count cand), we slide a W -window along
the two ITLists of the two subpatterns P1 and P2 that gen-
erate P , and merge-join the lists to create ITListfr(P).
For every position t of W , such that ITListfr(P1) and
ITListfr(P2) contain entries of the same oi and these en-

tries qualify the pattern constraints, a new instance is gener-
ated for ITListfr(P). Entries in the ITList of a long pattern
with k units is a list of (oi, Ig1 .ts, . . . , Igk

.ts). We distin-
guish three cases for this merge-join process:
• P1 and P2 contain collocation units that are exactly

the same in P . For example, P1 = (f1) → (f2),
P2 = (f1) → (f3), P = (f1) → (f2) → (f3). In this
case, ITListfr(P1), ITListfr(P2) are joined accord-
ing to the ts time of the common unit, while the rest of
the temporal constraints are verified.

• P1 and P2 contain collocation units that are joined in P .
E.g, P1 = (f1, f2), P2 = (f2) → (f3), P = (f1, f2)→
(f3). In this case, ITListfr(P1), ITListfr(P2) are
joined according to the ts time of the joined units, while
the rest of the temporal constraints are verified.

• P1 and P2 do not have common or joined units. For
example, P1 = (f1), P2 = (f2), P = (f1) →
(f2). In this case, we perform a band-join [2] be-
tween ITListfr(P1) and ITListfr(P2) to produce
ITListfr(P). The band-join is a straightforward ex-
tension of the merge join algorithm that replaces the
equality condition by a maximum difference constraint
(maximum time difference W in our example).

5 Experimental Evaluation
This section experimentally evaluates the performance of

the proposed algorithms based on synthetically generated
data due to the lack of real data. All experiments were run
on a Pentium III Xeon 700MHz workstation with 4096MB
RAM, running Solaris 9x86. The generator takes as input
the following parameters: |F|, the number of features; �, the
maximal length of the generated episodes; n, the number of
sequences (i.e., objects); m, the maximal length of every se-
quence; ε, w, W , and min sup, which have the same mean-
ing as that in the problem definition. Given these parame-
ters, we generate n trajectories, each of which is assigned to
a type in F while making sure that the generated trajectories
instantiate collocation episodes. The default values of the
data generation parameters are n = 500, m = 2000, w = 2,
W = 20, |F|= 40, � = 7, ε = 1% and min sup = 0.03. Un-
less otherwise stated, we use the same parameter values in
data generation and data mining.

Performance evaluation Our methods discover the col-
location episodes in two steps; first, close feature sets are
found and then longer patterns are extracted from them. For
the first step, apart from the proposed hash-based method, we
implement a naive one by linearly scanning all other trajecto-
ries. For the second step, besides implementing the two algo-
rithms Apriori and MJ, we also developed a non-optimized
version of the Apriori algorithm, which does not employ the
optimized counting approach shown in Figure 7. We com-
pare the performance of four methods. Apriori-base applies
linear scan in the first step and non-optimized Apriori for
finding the patterns. Apriori-noprune, Apriori, and MJ use
the hash-based method in the first step, and non-optimized
Apriori, optimized Apriori, and MJ respectively, in the sec-
ond step. The difference between the linear scan method and
the hash-based approach in the first step can be seen by com-
paring Apriori-base and Apriori-noprune. The difference be-
tween finding collocations using the transformed sequences
and the ITLists could be observed from Apriori and MJ. Fi-

nally, by comparing Apriori-noprune with Apriori we can
see the effect of optimized support counting in Apriori.

0

20

40

60

80

100

120

140

2 4 6 8 10

tim
e

(s
ec

)

l

Apriori-base
Apriori-noprune

Apriori
MJ

Figure 8: Time vs. �

0

20

40

60

80

100

1 2 3 4 5

tim
e

(s
ec

)

m (k)

Apriori-base
Apriori-noprune

Apriori
MJ

Figure 9: Time vs. m

Figure 8 shows that the mining cost increases with the
maximal length � of the generated episodes. In addition,
since the number of candidates in each level grows expo-
nentially to �, the cost varies slightly for smaller �, and in-
creases sharply when � becomes large. However, the op-
timized counting of Apriori slows down this exponential
growth. Figure 9 illustrates the scalability of the methods
over the maximal length m of the sequences. It shows that
the mining cost grows nearly linear to m, exhibiting good
scalability over the data volume. For changing n, the linear
changing trend could be observed. To summarize, for finding
close feature pairs, the hash-based technique is much faster
than the linear scan method, whereas for discovering collo-
cation episodes from feature sets, the Apriori method with
the counting optimization technique performs best. On the
other hand, in most cases, MJ is not as efficient as Apriori,
due to the large volume of generated and joined ITLists.

6 Conclusion
In this paper, we studied the problem of discovering fre-

quent collocation episodes from spatiotemporal data. We
provided a novel and carefully designed definition of this
new and important mining problem. In addition, we designed
an efficient two-phase mining methodology. In the first
phase, a hash-based technique is used to convert the original
trajectories to sequences of close features to the correspond-
ing object. In the second phase, an Apriori-based technique
is devised to discover the frequent episodes. We showed by
experimentation that the best combination of techniques in
both phases is efficient and scalable.

References
[1] G. Andrienko, D. Malerba, M. May, and M. Teisseire, ed-

itors. ECML/PKDD Workshop on Mining Spatio-Temporal
Data, 2005.

[2] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An evalua-
tion of non-equijoin algorithms. In VLDB, 1991.

[3] M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J. Tsotras.
Complex spatio-temporal pattern queries. In VLDB, 2005.

[4] J. Lin, E. J. Keogh, A. W.-C. Fu, and H. V. Herle. Approxima-
tions to magic: Finding unusual medical time series. In 18th
IEEE Symp. on Computer-Based Medical Systems (CBMS),
2005.

[5] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of fre-
quent episodes in event sequences. Data Min. Knowl. Discov.,
1(3):9, 1997.

[6] S. Shekhar and Y. Huang. Discovering spatial co-location pat-
terns: A summary of results. In SSTD, 2001.

[7] R. Srikant and R. Agrawal. Mining sequential patterns: Gener-
alizations and performance improvements. In EDBT, 1996.

[8] J. Wang, W. Hsu, and M.-L. Lee. A framework for mining topo-
logical patterns in spatio-temporal databases. In CIKM, 2005.

[9] H. Yang, S. Parthasarathy, and S. Mehta. A generalized frame-
work for mining spatio-temporal patterns in scientific data. In
KDD, 2005.

