
Continuous Constraint Query Evaluation For
Spatiotemporal Streams

Marios Hadjieleftheriou1, Nikos Mamoulis2, and Yufei Tao3

1 AT&T Labs Inc., 180 Park Avenue, Florham Park, NJ 07932,
marioh@research.att.com

2 Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong,
nikos@cs.hku.hk

3 Department of Computer Science and Engineering, Chinese University of Hong Kong, Sha
Tin, New Territories, Hong Kong, taoyf@cse.cuhk.edu.hk

Abstract. In this paper we study the evaluation of continuous constraint queries
(CCQs) for spatiotemporal streams. A CCQ triggers an alert whenever a config-
uration of constraints between streaming events in space and time are satisfied.
Consider, for instance, a server that receives updates from GPS-enabled agents
that report their positions and other measurements (e.g., environmental readings).
An example of CCQ is: “Alert whenever at least 5 readings closer than 5km to
each other and within a time difference of 5 minutes report high pressures and low
temperatures”. We model CCQs as Constraint Satisfaction Problems (CSPs) and
develop solutions for their continuous evaluation. Our techniques (1) consider the
fast arrival rate of incoming events, and (2) minimize the memory requirements,
without using predefined window constraints, but by utilizing the structure of the
queries. In order to show the merits of the proposed techniques, we implement a
system prototype and evaluate it with real data.

1 Introduction

The recent advances in telecommunications have made it possible to collect unbounded
streams of spatiotemporal information from various sources (GPS devices, sensors,
etc.). Consider, for instance, a server which receives updates from GPS-enabled agents
that continuously report their positions and other measurements (e.g., environmental
readings). A real example of such a system is the Global Drifter Center [2] where a
large number of buoys have been deployed in oceans all around the world. The buoys
report various measurements at regular time-intervals in a streaming fashion while drift-
ing in the water according to sea currents.

The large size and fast arrival rates of streaming data renders storage and off-line
analysis infeasible. In addition, users are often interested in answering queries in an on-
line, dynamic manner, as streaming data arrive. In this paper, we study the processing of
continuous constraint queries (CCQs), which trigger an alert whenever a configuration
of constraints between streaming events in space and time are satisfied. For instance,

Nikos Mamoulis was supported by grant HKU 7160/05E from Hong Kong RGC. Yufei Tao
was supported by grant CUHK 1202/06 from Hong Kong RGC.

consider the following query: “Alert whenever at least 5 readings closer than 5 km to
each other and within a time difference of 5 minutes report high pressures and low
temperatures”. CCQs facilitate the automatic and continuous monitoring of interesting
combinations of spatiotemporal events.

There is an abundance of interesting and useful queries that can be formulated as
a combination of diverse types of constraints. The constraints may capture both spatial
(e.g., proximity, intersection, and containment) and temporal (e.g., during, before, and
after) relationships between a large number of events, as well as to other event charac-
teristics (e.g., measurements like velocity and temperature).

CCQs are similar to traditional triggers in database systems, in that they should be
evaluated every time a new event arrives. A CCQ states that if the new event forms a
specific spatiotemporal configuration (e.g., a number of abnormal thermal indications in
space and time) with past events, an alert should be triggered. The important difference
to traditional triggers is that the constraints are spatiotemporal. First, the methods for
evaluating them are related to spatial and spatiotemporal query processing. Second,
typically, there is no need to keep the whole history of events in memory, since the
spatiotemporal constraints define the essential intervals in time and space, for which
information needs to be maintained. For instance, for a CCQ asking for a number of
abnormal thermal indications within 10 minutes in time, we need not keep events in
memory older than 10 minutes, since they could not form query results with current or
future data.

In this paper we present a system with the following characteristics: (1) a stream of
events arrives on a central server at fast rates; (2) events are associated with spatiotem-
poral properties, and other, alphanumeric measurements; (3) users register CCQs, and
(4) the system triggers alerts whenever a newly arriving event together with past events
form a result of a CCQ.

Our main focus is on critical applications where it is essential not to dismiss any
query alerts and, in addition, not to produce any false alarms. Hence, we propose tech-
niques that produce exact query results, raising alerts if and only if a combination of
events satisfies all constraints for a given query. This is accomplished by guaranteeing
that all useful events (the ones that can contribute to a query answer) are stored in main
memory during processing. Since storing the complete event stream is not feasible for
most practical applications, we introduce algorithms for determining event expiration
times — computed by inspecting all query constraints related to a specific event — and
establishing a time-instant after which the event will not possibly satisfy any constraints
and can be deleted. We introduce a simple expiration time computation algorithm, as
well as a tighter technique that guarantees that every event is kept in main memory for
a very short amount of time. With this approach we minimize the peak amount of main
memory that is consumed by the system. Finally, to show the merits of our architecture,
we implement and evaluate a prototype for the proposed system.

2 Problem Formulation and Definitions

This section introduces a formal problem statement and some necessary definitions to
simplify our analysis. As already discussed, a stream of events arrives on a central server

where each event carries a timestamp (or a time interval), spatial (i.e., geometric) prop-
erties, and other properties of a simple type (e.g., alphanumeric). Users register queries
that pose various constraints between properties of a possibly large number of events.
The goal is to find in real-time tuples of event instances that have already appeared on
the stream and satisfy all query constraints, in which case an alert is triggered. First, we
formally define an event instance. Then, we present a formal way of expressing generic
constraint queries between events. Finally, we discuss algorithms for evaluating such
queries continuously, as new events arrive on the stream.

A spatiotemporal stream is a never ending sequence of eventsS = 〈e1 e2 · · · en · · · 〉
where:

Definition 1. An event e is a tuple {t, r, p}, e.t are the temporal properties of the event
(e.g., a time-interval or the arrival time), e.r the geometric properties (e.g., e.r ∈ Rd
for a d-dimensional point), and e.p a set of application dependent properties (e.g., tem-
perature, velocity, other measurements).

Table 1. Notation used throughout the paper

Symbol Meaning
e Streaming event
t Time-instant or time-interval
r Geometric properties
p Generic properties
� Spatial predicate
V,V Variable, set of variables
D Variable domain
C, C Constraint, set of constraints

G = (V, C) Constraint graph
{ei, ej} ∝ C Tuple {ei, ej} satisfies constraint C

We can naturally express queries with arbitrary constraints between a large number
of events as Constraint Satisfaction Problems (CSP) [33, 3, 14, 16]. Constraint satisfac-
tion is a paradigm that can capture a wide variety of applications from AI, engineering,
databases, and other disciplines. A CSP is defined by a set of variables, each of which
has a finite set of potential values, and a set of constraints between these variables.
CSPs that contain constraints between at most two variables are called binary. A bi-
nary CSP is usually represented by a Constraint Graph (CG) where nodes correspond
to variables and edges correspond to constraints. The basic goal in a CSP is to find
one or all assignments of values to variables so that all constraints are satisfied. In our
setting, the potential values of a given variable are event instances that have appeared
on the stream, and the binary constraints are the spatial, temporal, and other possible
constraints between events. More formally:

Definition 2. A binary Constraint Satisfaction Problem is:

1. A set of variables V = {V1, . . . , Vm}.

V1 V2

V3

dist(V2.r, V3.r) < 1

dist(V1.r, V2.r) < 1

p11
2
3

1 2 3

p2

p3

V1.p = A V2.p = B

dist(V2.r, V3.r) < 1

dist(V1.r, V2.r) < 1

a1[2]1
2
3

1 2 3

V2.t – V1.t ∈ [0,5]
∧

V3.t – V2.t ∈ [1,5]
∧

dist(V1.r, V3.r) < 2
V3.t – V1.t ∈ [1,10]

∧

V3.p = C

b1[7]

c1[9]

(a) (b)

Fig. 1. Examples of Constraint Graphs

2. For each Vi, a finite domain Di = {ei1, . . . , eiki} of ki possible values.
3. A set of binary constraints. A constraint Ci,j is a relation of permitted values for

the pair of variables {Vi, Vj}.

We say that an assignment of values {Vi = eil, Vj = ejk} satisfies constraint Ci,j if
{eil , ejk} is in the relationCi,j . A solution to a CSP is an assignment {V1 = e1

s1 , . . . , Vm =
emsm , } such that for all 1 ≤ i, j ≤ m, constraint Ci,j is satisfied.

Figure 1a illustrates a CG corresponding to a simple CSP with the domain of each
variable being a collection of events (whose spatial properties are 2D point locations)
and constraints between variables being ‘distance within 1 space unit’. Note that the
constraints in this graph are not expressed explicitly by allowed pairs of values, but
implicitly with the use of spatial predicates. A solution to this CSP is the triplet {V1 =
p1, V2 = p2, V3 = p3} of points shown next to the figure.

In our setting, the domain of each variable (e.g., the set of events that correspond
to variable Vi) can be implicitly defined by unary constraints, which correspond to se-
lections in database languages. For example “events with measured temperature greater
than 30◦C”. Selection predicates can range from simple relational operators (e.g., ≤
, <,≥, >,=) to more advanced selection conditions (e.g., “select events with property
A”) or metric spatiotemporal constraints (i.e., relating e.r and e.t to fixed coordinates
of space and time). In the rest, we use notation eil ∝ Ci to denote that event eil satisfies
unary constraint Ci of variable Vi.

As in our spatial CSP example, we can implicitly define binary constraints by spa-
tial, temporal, and/or any other predicates between event properties e.p. Thus, in our
setting, we can specialize the definition of constraints as follows:

Definition 3. A binary constraint Ci,j between variables {Vi, Vj} is a tuple {t,�, p},
where t is a temporal predicate (e.g., a time-interval), � is any binary spatial predi-
cate (for example intersection or proximity), and p any non spatiotemporal constraint
between properties e.p.

A binary constraint Ci,j is satisfied only when the assignment {Vi = eil, Vj = ejk}
satisfies all Ci,j .t, Ci,j .�, and Ci,j .p. Notice that the temporal predicate semantics are
application specific. In the simplest case, e.t can be a time-instant and Ci,j .t can be a
time-interval containment (e.g., eil .t, e

j
k.t ∈ R and Ci,j .t = {ejk.t − eil.t ∈ [tlb, tub]})

but more general semantics can also be considered. Without loss of generality, we re-
strict our analysis to time-interval temporal constraints only. Also, for convenience, in
the rest we use notation {eil, ejk} ∝ Ci,j to denote that assignment {eil, ejk} satisfies bi-
nary constraint Ci,j . In addition, we allow negative temporal values as well, which can
express chronological precedence between events — negative values refer to the past,
while positive refer to the future. For example, time-interval [−3, 4] on edge (Vi, Vj)

means that {eil , ejk} satisfies the temporal constraint if ejk arrives 0–4 time-instants af-
ter or 0–3 time-instants before eil . This generalization is useful since it helps express
inferred constraints between events: Constraint [t1, t2] on edge (Vi, Vj) implies an in-
verse constraint [−t2,−t1] between (Vj , Vi).

Constraint inference facilitates the derivation of complete constraint graphs where
all possible constraints Ci,j are specified (i.e., cliques). In general, user queries may
not provide such complete information (e.g., the graph of Figure 1a). Nevertheless, any
partial query graph can be converted into a complete graph using spatial and temporal
inference rules like inversion, composition and intersection [7, 22, 19]. For instance,
dist(V1.r, V2.r) < 1 and dist(V2.r, V3.r) < 1 imply that dist(V1.r, V3.r) < 2, assuming
that the geometric properties e.r are points. Such CG transformations are useful for
several reasons: (1) for identifying if a query is unsatisfiable by discovering negative
cycles; such queries can be ignored, (2) in order to tighten existing constraints and
make them more selective, and (3) to simplify the proposed algorithms and in some
cases improve query evaluation performance (as will become clear in later sections).
The interested reader can refer to [7, 22, 19] for more details on temporal and spatial
inference, which are beyond the scope of this paper.

Figure 1b shows a complete CG with spatiotemporal constraints (inverse edges
are omitted for clarity). Nodes are annotated with unary constraints, which are se-
lections on the non-spatial properties for simplicity. In practice V1.p = A could be
V1.temperature > 30◦C. We denote events for which e.p = A by a1, a2, etc. Thus
event a1 on the right of Figure 1b has a1.p = A, event b1 has b1.p = B, etc. The continu-
ous constraint query (CCQ) that corresponds to the CG triggers an alert if any event ai
is close to an event bj which arrives at most 5 time-instants after ai (i.e.,C1,2.t = [0, 5]),
and bj is close to an event ck, which arrives at least 1 and at most 5 time-instants af-
ter bj (i.e., C2,3.t = [1, 5], and, equivalently, the inverse constraint C3,2.t = [−5,−1]
means that event bj arrived at least 1 and at most 5 time-instants before ck). These two
constraints also infer that ck must arrive at least 1 and at most 10 time-instants after ai,
illustrated by the inferred temporal constraint between variables V1 and V3.

An extended SQL can be used to express CCQs. For instance, our example can be
expressed in pseudo-SQL with spatial and temporal predicates, as follows:

CREATE TRIGGER collision
FOR E as V1, E as V2, E as V3
WHEN V1.p = A AND V2.p = B AND V3.p = C
AND DISTANCE(V1.r, V2.r)<1 AND V2.t-V1.t IN [0, 5]
AND DISTANCE(V2.r, V3.r)<1 AND V3.t-V2.t IN [1, 5]

The continuous constraint query evaluation problem can be formulated as follows:
Problem Statement: Given a number of constraint queries, continuously evaluate their

satisfiability as new events appear on the stream, and trigger alerts whenever a combi-
nation of events constitutes a solution.

Previous methods on processing complex spatiotemporal queries with multiple se-
lections and joins employ spatiotemporal indexes in combination with constraint sat-
isfaction algorithms [24, 21]. Our problem is different in that data arrive continuously
(instead of being stored in a database first) and that the queries should be evaluated
continuously. In other words, the variable domains of the CSPs are not static but dy-
namically change over time. Therefore, CCQs fall into the class of queries described
in [6], requiring special evaluation methods. In addition, our problem is different than
handling traditional triggers in a DBMS [13], since CCQs need not be evaluated over
the whole, past time horizon; As a result, we do not need to maintain the complete
event history but, instead, we can apply rules that minimize the required space (to be
discussed shortly). In the next section we describe our system prototype for registering
and evaluating CCQs over continuous data streams.

3 System Architecture

The problem formulation presented in the previous section raises a number of interest-
ing questions. We need to develop suitable data structures and algorithms for evaluating
CSPs in real-time. In addition, we need to evaluate queries incrementally every time a
new event appears on the stream by restricting the domain of each variable in the given
CGs, to speed up execution. Finally, we must continuously identify and delete from the
system events that cannot possibly belong to future solutions, in order to minimize main
memory requirements.

For simplicity and clarity we make the following assumptions: First, we consider
only transitory events — the information associated with each event is valid only for
a specific time-instant or time-interval and the properties e.p (i.e., the associated mea-
surements) of an event remain static throughout its interval. In addition, we restrict
our analysis only to streams of events with measurements that appear in chronological
order. In other words, the events arrive in the same order as their temporal properties
define. If this is not the case, then a large enough buffer could be used in order to rank
events according to their arrival time-instants first. The size of the buffer can be deter-
mined according to the maximum expected delay of an arrival, which in most cases is a
system characteristic. Finally, we assume that all registered query CGs have been trans-
formed into complete constraint graphs. A variation of the Floyd-Warshall algorithm as
it appears in [22] can be used for temporal constraints. The same algorithm can also be
applied for spatial constraints, using the inference rules of [19].

3.1 CCQ evaluation

We first discuss the basic algorithm used to continuously evaluate constraint queries, in
order to identify the operations that must be supported by our system. When a new event
e arrives it might qualify for a variable domain in a registered CCQ, and therefore it can
be part of a potential solution. Thus, initially we need to evaluate the unary constraints
of all variables of all registered queries, in order to identify CGs related with e. Let Vi

be such a variable in a query corresponding to CG G (i.e., e ∝ Ci in G). Vi is related
through binary constraints to all other variables in G and these constraints refer to the
future, the past, or both temporal directions. For example, V2 in the CCQ of Figure 1b is
connected to a past variable V1 (since C2,1.t = [−5, 0]) and a future variable V3 (since
C2,3.t = [1, 5]).

Let V−i and V+
i , be the sets of past and future variables to Vi. Note that a variable

can be in both V−i and V+
i . If the subgraph G ′ containing Vi = e and V−i is satisfiable,

e is interesting for two reasons. First, e triggers an alert if Vi ∪ V−i = V (i.e., G′ =
G). For example, variable V3 in the graph of Figure 1b has past variables only (i.e.,
V3 ∪ V−3 = V). Thus, an event e with e.p = C may trigger an alert if there exist
past events consistent to e and the subgraph G ′, containing V1, V2 and their constraints.
Second, if V+

i 6= ∅, it is possible for e to participate in an alert in the future when
variables in V+

i get values from events that are consistent with G ′. For example, variable
V2 in the graph of Figure 1b has a future variable (V3). Thus, an event e with e.p = B,
which makes the subgraph containing V1 and V2 satisfiable, can participate in an alert
with some future event that instantiates V3.

Thus, if G′ is satisfiable and V+
i 6= ∅, we say that e is useful and we keep it in

the system for potential future inclusion in an alert. The question now is how long is
it essential to keep e for, until we decide that it cannot be part of a future solution?
We assign e an expiration time e.X , after which e becomes obsolete and should be
deleted. Intuitively, the expiration time cannot be longer than the longest interval length
of temporal constraints that use e. This is a worst case upper bound, and we will see
later on that it can be substantially improved.

Algorithm 1 summarizes the procedure for handling a new event e that arrives in
the system. Initially, the expiration time is set to its time-instant e.t; if the event is
not found useful by the algorithm, it will be immediately deleted. All relevant CG and
variables to e are then retrieved. A variable Vi in a CG G is relevant if e ∝ Ci, as
already discussed. For each such variable, we find the set V−i of past only variables
and compute their domains Di according to the past events stored in the system. The
domain of a variable Vj ∈ V−i is determined such that (1) its values are consistent with
the assignment Vi = e (for this, constraint Ci,j is used), and (2) they are consistent with
Cj , i.e., the unary constraint of Vj . If a domain of a variable is empty, we know that the
assignment Vi = e for query G is inconsistent. Otherwise, we solve the CSP for graph
G only if all variables in G are consistent with e (and thus if Vi is chronologically last).
If a solution is found (line 12), the algorithm generates an alert. Finally, the expiration
time of e is updated accordingly, if Vi has any future variables (V+

i 6= ∅) and if the past
only variables are consistent with Vi. Otherwise, the event can be deleted, since these
variables can never be satisfied. Algorithm 1 sets the expiration time as the maximum
required by outgoing edges to future variables (i.e., the maximum upper bound of the
temporal constraints linking the current variable with future variables). If there are many
queries or variables that may use e in the future, the expiration time is the maximum
timestamp determined by all of them. Later, we will discuss alternative policies that
result in tighter expiration times and reduce the memory requirements. In addition, we
will discuss the details for storing and indexing events, computing variable domains,
solving constraint graphs, and managing event expirations.

Algorithm 1 HandleNewEvent(e: event,Q: queries)
1: e.X := e.t;
2: Get all (Vi,G) pairs such that G ∈ Q, Vi ∈ G, e ∝ Ci;
3: for each (Vi,G) do
4: Vi.sat := true;
5: for each Vj ∈ V−i do
6: use Vi = e, Ci,j , and Cj to compute Dj ;
7: if Dj = ∅ then
8: Vi.sat := false;
9: break; . break Vj for-loop

10: if Vi.sat and V−i ∪ Vi = G.V then
11: Solve G
12: if G is satisfiable then alert solution
13: if V+

i 6= ∅ and ∀Vj ∈ V−i /V+
i : Dj 6= ∅ then

14: e.X := max{e.X, e.t+ max∀Vj∈V
+
i

(Ci,j .tub)};
15: if e.X > e.t then Store(e); . event is useful

a1

b1

b2
c1

c2

time

x

y

alert!

1 2 3 4 5 6 7

1

2

3

4

1

2

3

4

Fig. 2. A continuous query evaluation example

3.2 An example

In this section we present a simple example that clarifies the rational behind Algo-
rithm 1. Let us assume that only the CCQ shown in Figure 1b has been registered with
the system. Suppose that the arrivals on the stream follow the sequence shown in Fig-
ure 2. Event a1 (for which a1.p = A) arrives at time-instant 1 and a1 ∝ C1. The event
should be stored as a future candidate (i.e., it satisfies the unary constraint of query
variable V1). An expiration time of 11 (due to C1,3.t = [0, 10]) is assigned to a1, after
which a1 will be deleted from main memory in order to save space.

Next, event b1 appears at time-instant 2, which is clearly related with variable V2.
Since V1 is the only past variable related with V2 we need to evaluate constraint C2,1.
Since a1 is the only stored event that satisfies C1 and dist(a1, b1) > 1, C2,1.� is vi-
olated, and hence b1 can never participate in a query alert and can be deleted. At the
next time-instant, events b2 and c1 arrive simultaneously. This time dist(a1, b2) < 1 and
dist(b2, c1) < 1, however, c1 violates the temporal constraint C3,2.t = [−5,−1] and
it can be deleted. Nevertheless, b2 can potentially belong to a future solution, hence, it
needs to be retained and its expiration time becomes 8, given the current time 3 and the
temporal constraint C2,3.t = [1, 5].

Finally, at time-instant 6 event c2 arrives, and since dist(c2, b2) < 1 and a1, b2 have
not expired yet, an alert is triggered with solution tuple {a1, b2, c2}. Since V3 has no
future variables, c2 is deleted. On the other hand, events a1 and b2 need to be retained
until their expiration times, since more events satisfying C3 might appear in the stream
triggering additional alerts. After that time both events can be deleted.

3.3 A Detailed Analysis of the Proposed Framework

We now describe in detail the components of our system prototype that manages incom-
ing events and evaluates CCQs based on Algorithm 1. Our system prototype consists of
five basic components, shown schematically in Figure 3.

Queries are stored in memory-based constraint graph representations. Given a new
event e on the stream, the Query Index retrieves all queries that contain at least one
variable with an associated unary constraint that is satisfied by e. An important compo-
nent is the Spatiotemporal Index, which is used for storing useful past event instances.
Given a new event e and the spatiotemporal constraints associated with some related
variable, the index is probed and all past events e′ that qualify for these constraints
given e, are retrieved. This will help populate all CG variable domains fast, with only
a few candidates, instantly pruning a large number of unrelated events. An Expiration
Time Array indexes events according to the time they should be deleted from the sys-
tem and enables efficient deletion from the Spatiotemporal Index. Finally, a CSP Solver
solves CGs given appropriate variable domains.

Time Array
Expiration

CQE

Spatio−temporal

1Q

4Q 2Q
2QA: 1Q,C:

Q3,D: Q2

1 2

43

CG Representations

CG CG

CGCG
e

Index

Query Index

B:
2Q

e.t
e.r

CSP
Solver

Fig. 3. A system prototype.

Constraint Graph Representation. Given query Q with a complete directed graph G =
(V , C), |V| = m, we represent the graph using a 2-dimensional matrix M such that
M [i, j] = Ci,j , 1 ≤ i, j ≤ m.

Query Index. Queries contain a number of unary variable predicates, corresponding
to multiple properties. Given a large number of queries we must locate efficiently the
ones that contain unary constraints satisfied by newly arriving events; these are the only
queries that have to be considered for further processing (see line 2 of Algorithm 1).
Many predicate indices have appeared in the literature [20, 15, 34, 13, 30]. Here we opt
for a simpler approach with small memory requirements. In order to efficiently identify
all variables Vi related to an incoming event e, we maintain a hash-table indexed by

all known properties appearing in the unary predicates of registered queries. The data
entries of the hash-table are pointers to the queries that have at least one variable with
a unary constraint that is related to a specific property. Using the hash-table, we can
locate fast all queriesQ that contain a variable related to e. Then, by retrieving the unary
constraint associated with that variable we can evaluate if e satisfies the constraint.

Spatiotemporal Index. The basic functionality of the Spatiotemporal Index is to store
all useful past events that might contribute to a CG solution (i.e., an alert) in the future
(see line 15 of Algorithm 1). The index acts as a filtering step that facilitates efficient
evaluation of a query by substantially limiting variable domains before evaluation (lines
5–6 of Algorithm 1). A naive algorithm would consider all events indiscreetly as possi-
ble domain values. Instead, the Spatiotemporal index, given a new event e, returns only
those stored events that satisfy the spatiotemporal predicates of the binary constraints
associated with the past variables that are related to e. Any data or space partitioning
structures can be used for that purpose, like the R-tree [10] and the Multi-Layer Grid
File [28], both extended with a temporal dimension. For illustration purposes in the
following discussion we assume that a 3D R-tree is used to index useful past events.

When an event e arrives, the domains of past variables that are related to Vi = e are
computed (lines 5–6 of Algorithm 1), as follows. For each Vj ∈ V−i , the spatiotemporal
index is probed using the spatial e.r and temporal e.t properties of e in combination
with predicates Cj,i.� and Cj,i.t. For instance, when event b2 arrives at time instant
b2.t = 2 in the example of Figure 2, for constraint C2,1 a spatiotemporal range query
with temporal extent [−3, 2] (since we are looking for events at least 0 and at most 5
instants before b2.t) and spatial extent a circle with radius 1 around the location of b2

is evaluated using the index. Since no events are contained in this range, D1 = ∅ and
b2 will be found not useful and deleted from the system. The results produced by the
spatiotemporal search are also filtered using the unary constraint of the variable whose
domain Dj is being populated. This guarantees that the domains of all past variables
become consistent with the assignment Vi = e, before solving the CSP on graph G.

Expiration Time Array. While new events arrive on the stream, older events that have
been stored in the index become obsolete. A structure is required that can index events
in increasing expiration time, for easy deletion from the system. In Section 4.1 we will
propose a technique that assigns tight expiration times to events. This technique calls
for efficient operations for updating the expiration time of an event to a new value. We
term this structure the Expiration Time Array.

In order to satisfy these requirements we use the following architecture (shown in
Figure 4). We store all useful events in main memory and associate them with unique
identifiers. In addition, we build a hash-table on the unique ids. The spatiotemporal
index stores direct pointers to the events in the hash table. The Expiration Time Array
is another hash-table with key being the expiration time t of the events, and data entries
being arrays that contain pointers to events that have expiration time equal to t.

Assume that a new event arrives on the stream and is inserted in the index. After the
completion of the insertion operation the event is inserted in the Expiration Time Array
according to the computed expiration time t. The appropriate hash table entry is located

ETA

. . .

E
xp

. t
im

e
ha

sh
ta

bl
e

e1 e2 e3

Spatiotemporal index

Event hashtable

2

5

1

. . .

Fig. 4. The Expiration Time Array.

(or a new one is created if needed) and a pointer to the entry is inserted. The cost of this
operation is dominated by the cost of an insertion to the index.

The Expiration Time Array contains possibly one array of pointers per future time-
instant. Notice that the hash-table does not need to store empty arrays for time-instants
that have no expiring events. So, we expect the structure to be fairly small in size. On
the other hand, all arrays combined contain as many pointers as the total number of
stored events.

Removing expiring events is straightforward. For every time-instant we locate the
corresponding expiration array and remove all events contained therein from the spatial
index and the event hash table. The deletions can happen in bulk and in a bottom-up
fashion for efficiency [18]. This operation is very efficient since the main cost of this
process is the update cost of the spatiotemporal index.

CSP Solver. The CSP Solver takes as input the constraint graph G (line 11 of Algorithm
1) and finds a solution or deduces that the graph is insoluble. The general class of CSPs
is NP-complete. However, a number of algorithms have been proposed in the literature
that try to efficiently evaluate CSPs [4, 8, 14, 3]. The size of all possible value that can
be solutions is the Cartesian product of the variable domains. The most popular search
method uses backtracking; variables are instantiated sequentially and as soon as all
variables relevant to a constraint have assumed a value, the satisfiability of the constraint
is tested. If a partial instantiation violates any constraint, backtracking is performed to
the most recently instantiated variable that still has alternatives available. The algorithm
can prune a whole subtree of the Cartesian product every time a constraint is violated.

In this work we use a variant of the backtracking algorithm, called Forward Check-
ing (FC) [14]. This algorithm has been shown to be very efficient for a wide variety
of CSP settings. In addition, it is very simple to implement and, most importantly, the
state that needs to be kept during evaluation has small size. The basic idea behind FC
is that every time a variable is instantiated, the new value is checked for consistency
with all available values of the domains of outstanding variables. Inconsistent values
are immediately removed. The characteristic data structure used by FC is one array per
variable domain, with length equal to the size of the domain. Each element of the array
is the id of the variable that made the corresponding domain value inconsistent. For
few variables and small variable domains this collection of arrays will be very small in
size (each element can be one byte or less). Since we make sure that before the CSP
Solver is called the variable domains have been restricted as much as possible, FC is

expected to be very robust for spatial and spatiotemporal CSPs, as demonstrated in [24].
An alternative way is to evaluate the CSP as a multiway spatiotemporal join of the vari-
able domains using their binary constraints as join predicates. Nevertheless, secondary
memory techniques for multiway joins [21] are not expected to perform better than CSP
algorithms for main-memory problems of small domains.

4 Alternative Query Evaluation Techniques

In this Section, we propose some variants of the basic algorithm, trading memory re-
quirements for computational performance.

4.1 Computing and Updating Tight Expiration Times

Algorithm 1 may compute very loose expiration times for newly arriving events, which
affect negatively the memory requirements of the system. Consider again the example
query of Figure 1b and the stream of Figure 2. When a1 arrives, Algorithm 1 sets its
expiration time to 11, i.e., a1.t = 1 plus the maximum tub of an outgoing edge (C1.3.t
in this example). Nevertheless observe that unless an event with property B arrives be-
fore time 6, a1 should be deleted, because C1,2.t may never be satisfied. Thus a tight
expiration time for a1 is 6. When an event of type B arrives at or before time-instant 6,
which satisfies C1,2 with a1, then the expiration time of a1 is renewed. Indeed, event b2
satisfies C1,2 with a1, thus a1 remains in the system until time-instant 8 (the expiration
time of b2). This simple example shows that we could minimize the memory require-
ments of CCQ evaluation at the expense of computing and maintaining the expiration
times of active events.

Let e be a new-coming event and Vi a variable in a query G, such that e ∝ Ci.
Assume that e is useful with respect to Vi, i.e., the graph G ′ containing V−i is soluble.
For setting a tight expiration time for e, with respect to Vi, we separate the following
two cases:

1. V−i ∪ Vi = G.V . In this case, e triggers an alert, however, newly arriving events for
variables Vj ∈ V+

i may keep triggering alerts for as long as the temporal constraint
Ci,j .t is active (given that the events satisfy the spatial constraints as well). This is
true, since for all other j, the constraints are already satisfied. Intuitively, this can
keep happening for as long as the longest lived temporal constraint Ci,j .t. Thus
e.X should be updated to max{e.X, e.t + max∀Vj∈V+

i
(Ci,j .tub)}, exactly like in

the original algorithm.
2. V−i ∪ Vi 6= G.V . In this case, there are future variables to Vi not in V−i . If there

are many such variables, we should set the expiration time for e as the minimum
Ci,j .tub of all future variables Vj .

Since e is independently important for all (Vi,G) pairs, its expiration time is eventu-
ally set as the maximum of all expiration times due to each Vi. Algorithm 2 summarizes
the changes to Algorithm 1 for computing tight expiration times.

Defining tight expiration times requires their correct maintenance as new events
arrive. In our example, recall that the expiration time 6 for a1 was updated to 8, after the

Algorithm 2 HandleEventTight(e: event,Q: queries)
....... lines 1–11 of Algorithm 1
if G is satisfiable then

alert solution;
e.X := max{e.X, e.t + max∀Vj∈V

+
i

(Ci,j .tub)};
else e.X := max{e.X, e.t + min∀Vj∈V

+
i

(Ci,j .tub)}; . case 2
....... the rest of Algorithm 1

arrival of b2. Let e be a new event, handled by Algorithm 2. When solving graph G ′, for
all variables Vj ∈ V−i and for each consistent assignment Vj = e′, the expiration time
of e′ is updated to max{e′.X, e.X}. In other words, e′ should remain in the database at
least as long as e is useful, if there are events future to e that may generate alerts with e
and e′. Embedding expiration time updates in Algorithm 2 is straightforward.

4.2 Explicit Maintenance of Variable Domains

Algorithm 1 and its extension (Algorithm 2) employs the spatiotemporal index for each
incoming event to define variable domains on the fly and then solve the CSP on the
domains restricted by binary and unary constraints. Observe that in this way the unary
constraint Cj of a given variable Vj may be validated on the same event e multiple
times (i.e., the first time e arrives and every time it satisfies the binary spatiotempo-
ral constraints with a newly arriving event). An alternative method is to apply Cj only
once per event e and then store e explicitly in the domain of Vj , until e expires. In other
words, the domains of past variables Vj are not computed by probing the spatiotempo-
ral index, but are stored explicitly, making the index obsolete. The space requirements
of this approach increase since events may be stored in multiple domains (and hence
duplication may occur). Nevertheless, the benefit is that we do not need to maintain a
spatiotemporal index, which has a high processing cost. Which approach is better de-
pends on the relative performance of the spatiotemporal structure used and the average
cost for CSP evaluation, which in turn depends on the types of registered queries and
the data distribution in the stream.

5 System Prototype Evaluation

This section presents a system prototype evaluation that will illustrate the applicability
of the proposed techniques using real datasets. The performance of a CCQ evaluation
engine depends mainly on two major operations, populating the variable domains and
solving the CSPs. Therefore, we compare multiple variants of the CCQ prototype to
quantify the effects of different evaluation strategies.

5.1 Testbed and Methodology

We use off-the-shelf tools to implement our system. More specifically, an R-tree in-
dex from [11] and a CSP solver based on the FC algorithm [14]. The system can be
downloaded from [1]. All experiments are run on an Intel(R) Xeon(TM) CPU 3.2GHz.

We use real datasets from the Tropical Atmosphere Ocean Project [26], where a
large number of buoys have been deployed around the pacific ocean to collect oceanic
and atmospheric data several times a day. An archive of the measurements of the past
25 years is available from [26]. For our purposes we used a total of 900,000 measure-
ments, interpreted as a stream of data arriving at a central server for processing. These
measurements include the location of the buoy at the time of the measurement, sea sur-
face temperature, pressure, dynamic height, salinity, relative humidity, wind speed, and
wind direction.

We generate synthetic queries by varying the number and type of variables, the
temporal constraints, and the spatial predicates. We generate a large number of query
workloads based on query verbosity. Verbosity is defined as the total number of query
results (alerts) produced by the query over the total number of streaming events, and
can be adjusted by appropriately tuning unary and binary constraints, making event
selections tighter or looser. The dataset and the queries can be downloaded from [1].

To test various aspects of the system prototype we used two performance measures:
(1) the maximum sustainable processing rate that can be achieved; and (2) the maxi-
mum memory utilization. The first measure is computed as the number of streaming
events that can be processed per second, and the second as the peak number of events
that need to be stored in main memory to achieve the corresponding processing rate. We
measure the system’s performance according to the following measures: (1) query ver-
bosity; (2) scalability; (3) temporal constraint length, number of variables and number
of constraints per query. We compare three CCQ evaluation methods: (1) Algorithm 1
(Loose); (2) Algorithm 2 (Tight); (3) The alternative proposed in Section 4.2 (NoIndex).

Query Verbosity. We measured the performance of our system as a function of query
verbosity (i.e., number of alerts produced over the total number of events processed).
We run all variants using five registered queries of known verbosity.

Results are shown in Figure 5. The trend of the graph shows that for all variants,
performance deteriorates as verbosity increases since a growing number of events qual-
ify for the variable domains of the query as more alerts are being produced, meaning
that CSP evaluation becomes more expensive. Notice that the Loose variant (the only
one that does not utilize tight expiration times) has somewhat worse performance than
the rest of the techniques, attributed to the larger variable domain sizes. The NoIndex
approach offers the highest processing rates since it does not have to maintain and query
an index.

Figure 5b plots the memory utilization for each variant. The numbers on the graph
correspond to the peak number of events that need to be stored as a percentage of the
total number of events. This measure illustrates the pruning ability of our system with
respect to a brute force approach that would retain all measurements. Clearly, all tech-
niques save substantial amount of main memory, especially for higher query verbosity.
The NoIndex approach has larger memory requirements due to event replication (see
Section 4.2).

Scalability. Next, we evaluate system performance as a function of the number of reg-
istered queries. We keep the verbosity fixed to 1% and vary from 5 up to 100 registered
queries. The NoIndex approach can sustain up to 15,000 events per second even for 100

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

Avg. query verbosity (%)

noindex
loose
tight

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 2 4 6 8 10 12 14 16

P
ea

k
U

sa
ge

 (
%

)

Avg. query selectivity

noindex
loose
tight

Fig. 5. Query Verbosity

registered queries. The other two approaches suffer as the number of queries increases,
but have viable processing rates for most application scenarios even for up to 25 queries
(we should stress the fact here that the algorithms produce exact query results). In terms
of memory utilization, the NoIndex approach introduces substantial event duplication,
making it a less favorable approach for tight memory constraints. Nevertheless, the
memory requirements of all algorithms are still extremely small.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

Number of queries

noindex
loose
tight

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 10 20 30 40 50 60 70 80 90 100

P
ea

k
U

sa
ge

 (
%

)

Number of queries

noindex
loose
tight

Fig. 6. Number of Queries

Temporal Constraint Length. Finally, we tested the system using queries with vary-
ing temporal constraint lengths. We use five registered queries and fix the verbosity
to 1%. The larger the temporal extents the bigger the event expiration times, so it is
expected that the memory requirements will increase as the temporal extents increase.
On the other hand, throughput should remain unaffected since the verbosity is fixed.
The results in Figure 7 attest to that observation. We conducted similar experiments for
varying number of variables per query and number of constraints. The results were the
same. Throughput is only affected by query verbosity and the total number of queries
registered in the system.

To conclude, the NoIndex approach exhibits very good scalability in terms of reg-
istered queries and query verbosity, but higher memory requirements than the other
approaches. The Loose and Tight algorithms can sustain a smaller number of queries at
streaming rates due to the index lookups. All approaches prune a very large percentage
of events, compared to the naive alternative.

6 Related Work

There is a lot of research on data streams in general but little work in the realm of spa-
tiotemporal streams. Moreover, most work has concentrated on the special case of mov-

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

Max. temporal length

noindex
loose
tight

 0.00025
 0.0003

 0.00035
 0.0004

 0.00045
 0.0005

 0.00055
 0.0006

 0.00065
 0.0007

 0.00075

 4 6 8 10 12 14 16 18 20

P
ea

k
U

sa
ge

 (
%

)

Max. temporal length

noindex
loose
tight

Fig. 7. Temporal Constraint Length

ing object applications. Finally, current work addresses only traditional spatial queries
like range searches and nearest-neighbors. In contrast, here we deal with any type of
spatiotemporal stream as well as complex queries with numerous problem variables
and general spatiotemporal predicates between them (i.e., not only selections but also
joins between events).

SINA [23] is a recently proposed framework for incremental evaluation of continu-
ous range queries on data streams. It uses the shared execution paradigm to incremen-
tally evaluate a large number of concurrent queries. SINA indexes the queries along with
the data in order to be able to compute answers incrementally. Previous work with the
same characteristics include [27, 5, 9]. In [27] the authors use incremental query eval-
uation, reversing the role of queries and data, and exploiting the relative locations of
objects and queries to provide answers efficiently. They also propose an index method
that exploits the maximum permissible velocity of the objects to delay expensive up-
dating operations of the index. Finally, the authors of [5] and [9] assume that clients
can process and store information, so that they can share query processing with the
server in a distributed fashion. All these works are suited only for moving object ap-
plications and continuous range queries with absolute spatial coordinates that do not
involve constraints in-between the objects. Similar work, concerning nearest neighbor
queries, includes [17, 29, 31].

Related to our work is research concerning pattern mining with constraints in stream-
ing databases. In [32] the authors address the issue of extracting frequent temporal pat-
terns from the stream. They use a regression based algorithm to scan online transaction
flows and generate candidate frequent patterns in real time. Similarly, a mining per-
spective is also adopted in [25], where the authors introduce techniques for answering
queries with a wide range of constraints related to the length of the patterns, the items
they contain, their duration, etc. However, these works do not consider transactions with
spatial characteristics and concentrate on mining patterns that exceed a user specified
threshold instead of identifying tuples that satisfy spatiotemporal or other constraints in
real-time.

In [6] a system is proposed that can answer continuous queries over streaming data.
The system registers a number of queries and a number of streams and applies new
queries to old data, and old queries to new data on the streams. Nevertheless, this system
does not consider spatial or temporal constraints between streaming data; it only con-
siders predicates that resemble what we term unary variable constraints. Finally, it does
not introduce the concept of expiration times to evict older data from main memory,
but rather indexes all incoming data according to user specified window sizes. Hammad

et al. [12] studied continuous multiway join queries over data streams, where the join
predicates are temporal. This problem can be viewed as a special case of the problem
we study here. In addition, their work does not handle real-time alert triggering, since
buffering techniques are employed before processing the registered queries. Thus, alerts
may be triggered only with some delay.

7 Conclusions

We have presented a system prototype for evaluating Continuous Constraint Queries on
spatiotemporal streams. The proposed system represents queries as Constraint Graphs
that are incrementally evaluated as Constraint Satisfaction Problems every time a new
event arrives on the stream. We introduce special algorithms for computing event expi-
ration times in order to limit the number of events that need be maintained for providing
exact answers. Finally, we present a concise experimental evaluation of a system pro-
totype implementation. As future work we plan to extend the system for dynamic event
properties (that change over time) and also investigate robust approximation policies
for limiting main memory consumption even further.

References

1. CCQ system prototype. http://www.cs.ucr.edu/∼marioh/ccq.
2. AOML. Global Drifter Center. http://www.aoml.noaa.gov/ phod/dac/gdc.html.
3. C. Bessière and J.C. Régin. Refining the basic constraint propagation algorithm. In Proc. of

the International Joint Conference on Artificial Intelligence (IJCAI), pages 309–315, 2001.
4. J. R. Bitner and E. Reingold. Backtracking programming techniques. Communications of

the ACM (CACM), 18(11):651–656, 1975.
5. Y. Cai, K. A. Hua, and G. Cao. Processing range-monitoring queries on heterogeneous mo-

bile objects. In Proc. of the International Conference on Mobile Data Management (MDM),
pages 27–38, 2004.

6. S. Chandrasekaran and M. J. Franklin. Streaming queries over streaming data. In Proc. of
Very Large Data Bases (VLDB), 2002.

7. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Journal of Artificial Intel-
ligence, 49(1-3):61–95, 1991.

8. J. Gaschnig. Experimental case studies of backtrack vs. waltz-type vs. new algorithms for
satisficing assignment problems. In Proc. of the Canadian Artificial Intelligence Conference,
pages 268–277, 1978.

9. B. Gedik and L. Liu. MobiEyes: Distributed processing of continuously moving queries on
moving objects in a mobile system. In Proc. of Extending Database Technology (EDBT),
pages 67–87, 2004.

10. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. of ACM
Management of Data (SIGMOD), pages 47–57, 1984.

11. M. Hadjieleftheriou, E. Hoel, and V. J. Tsotras. Sail: A library for efficient application
integration of spatial indices. In Proc. of Scientific and Statistical Database Management
(SSDBM), 2004.

12. M. A. Hammad, W. G. Aref, and A. K. Elmagarmid. Stream window join: Tracking moving
objects in sensor-network databases. In Proc. of Scientific and Statistical Database Manage-
ment (SSDBM), pages 75–84, 2003.

13. E. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha, S. Parthasarathy, J. Park, and
A. Vernon. Scalable trigger processing. In Proc. of International Conference on Data Engi-
neering (ICDE), pages 266–275, 1999.

14. M. Haralick and J. Elliot. Increasing tree-search efficiency for constraint satisfaction prob-
lems. Journal of Artificial Intelligence, 14(3):263–313, 1980.

15. M. Keidl, A. Kreutz, A. Kemper, and D. Kossmann. A publish & subscribe architecture for
distributed metadata management. In Proc. of International Conference on Data Engineering
(ICDE), pages 309–320, 2002.

16. V. Kumar. Algorithms for constraints satisfaction problems: A survey. The AI Magazine,
13(1):32–44, 1992.

17. I. Lazaridis, K. Porkaew, and S. Mehrotra. Dynamic queries over mobile objects. In Proc. of
Extending Database Technology (EDBT), 2002.

18. M.-L. Lee, W. Hsu, C. S. Jensen, and K. L. Teo. Supporting frequent updates in R-Trees: A
bottom-up approach. In Proc. of Very Large Data Bases (VLDB), 2003.

19. C. Papadimitriou M. Grigni, D. Papadias. Topological inference. In Proc. of the International
Joint Conference of Artificial Intelligence (IJCAI), 1995.

20. S. Madden, M. Shah, J. Hellerstein, and V. Raman. Continuously adaptive continuous queries
over streams. In Proc. of ACM Management of Data (SIGMOD), 2002.

21. N. Mamoulis and D. Papadias. Multiway spatial joins. ACM Transactions on Database
Systems (TODS), 26(4):424–475, 2001.

22. N. Mamoulis and M.L. Yiu. Non-contiguous sequence pattern queries. In Proc. of Extending
Database Technology (EDBT), pages 783–800, 2004.

23. M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable incremental processing of continu-
ous queries in spatiotemporal databases. In Proc. of ACM Management of Data (SIGMOD),
2004.

24. D. Papadias, N. Mamoulis, and V. Delis. Algorithms for querying by spatial structure. In
Proc. of Very Large Data Bases (VLDB), pages 546–557, 1998.

25. J. Pei, J. Han, and W. Wang. Mining sequential patterns with constraints in large databases.
In Proc. of Conference on Information and Knowledge Management (CIKM), 2002.

26. PMEL. Tropical Atmosphere Ocean Project. http://www.pmel.noaa.gov/tao.
27. S. Prabhakar, Y. Xia, D. Kalashnikov, W. G. Aref, and S. E. Hambrusch. Query indexing and

velocity constraint indexing: Scalable techniques for continuous queries on moving objects.
IEEE Transactions on Computers, 51(10):1–17, 2002.

28. H. Six and P. Widmayer. Spatial searching in geometric databases. In Proc. of International
Conference on Data Engineering (ICDE), pages 496–503, 1988.

29. Z. Song and N. Roussopoulos. K-nearest neighbor search for moving query point. In Proc.
of Symposium on Advances in Spatial and Temporal Databases (SSTD), pages 79–96, 2001.

30. M. Stonebraker, T. K. Sellis, and E. N. Hanson. An analysis of rule indexing implementations
in data base systems. In Expert Database Conference, pages 465–476, 1986.

31. Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search. In Proc. of Very
Large Data Bases (VLDB), pages 287–298, 2002.

32. W.-G. Teng, M.-S. Chen, and P. S. Yu. A regression-based temporal pattern mining scheme
for data streams. In Proc. of Very Large Data Bases (VLDB), 2003.

33. E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press, London and San
Diego, 1993.

34. T. W. Yan and H. Garcia-Molina. The sift information dissemination system. In ACM Trans-
actions on Database Systems (TODS), pages 529–565, 1999.

