Continuous Monitoring of Exclusive Closest Pairs

Leong Hou U, Nikos Mamoulisg, and Man Lung Yid

! Department of Computer Science, University of Hong Kong, PokfuRarad, Hong Kong,
{hl eongu, ni kos}@s. hku. hk
2 Department of Computer Science
Aalborg University
DK-9220 Aalborg, Denmark
mMy@s. aau. dk

Abstract. Given two datasetsl and B, their exclusive closest pairs (ECP) join
is a one-to-one assignment of objects from the two datasets, such thatgips-

est pair(a, b) in A x Bis in the result and (ii) the remaining pairs are determined
by removing objects, b from A, B respectively, and recursively searching for
the next closest pair. An application of exclusive closest pairs is the@utation

of (car, parking slot) assignments. In this paper, we propose algaritbnthe
computation and continuous monitoring of ECP joins in memory, given arstre
of events that indicate dynamic assignment requests and releasésoEgper-
imental results on a system prototype demonstrate the efficiency of lotioss

in practice.

1 Introduction

Due to the increasing popularity of location-based sesyicentinuous monitoring of
spatial queries emerges as an important research topatirigxwork [18, 11, 21, 13, 16,
17] focuses omangeor k nearest neighbo(kNN) queries on moving objects. These
problems can also be viewed as continuous joins betweeneguand data objects,
according to their spatial relationship. However, thereinat been much research done
related to the continuous monitoring of spatial join resuieveral variants of spatial
join queries exist, such as the intersection join [2], tretatice (or similarity) join [14],
the allk nearest neighbors join [24], and th€inclusive) closest pairs querglCP) [9,

4].

In this paper, we study an interesting type of spatial jolret has received little
attention in the past. We call this operation thexclusive closest paijgin (kECP).
kKECP produceg one-to-one assignments of objects between two datasetsd B,
such that (i) the closest pditi, b) in A x B belongs to the result and (ii) the remaining
pairs are determined by removing objeat$ from A, B respectively, and recursively
searching for the next closest pair. Thus, each object appedy once in the result.

A real-life application of &ECP query is the car-parking assignment problem. Con-
sider a setd of car drivers that request for a parking slot and anotheBsaftavailable
slots. The well-known assignment problem [19] searcheshi®rl-to-1 assignment of
cars to parking spaces, such that the sum of travel distamoaisimized. However, in
a world of selfish users, it is more reasonable to assigh emch& A to the parking
spacep € B that may not be taken by another drivér which happens to be closer

* Supported by grant HKU 7160/05E from Hong Kong RGC.

to p thanc is. Therefore, our formulation of theECP query (assuming thétis the
minimum of cardinalitiegA| and|B|) searches for a practical solution to the problem.

We propose a technique for computing the ECP pairs effigigiten a set of cars
and a set of parking slots. In addition, we extend it to monit@ ECP results, in a
dynamic environment, where parking requests from cars aailbhility events from
parking slots arrive from a data stream. Due to such eve@P, &signments must be
deleted (i.e., when a car un-parks), new assignments musdded (i.e., when a new
car requests parking), and current assignments may hawe ¢banged. For instance,
assume that paif, p) is in the current assignment and a new parking gldtecomes
available which is closer to thanp is. In this case¢ must be re-assigned ¢ and
p should become available for other cars. This change magerig “chaining” effect
which could alter the whole assignment. Our method prosessmming events in
an appropriate order, such that the correct ECP results anetamed correctly and
efficiently.

We assume that a centralized server monitors the locatiboebjects. When an
object moves to another location, it informs the server alisumew location. Since the
frequent updates render disk-based management technigaiésient, our solution is
based on a memory grid-based indexing approach [16, 18].

Our contributions can be summarized as follows:

— We identify ECP as a new type of spatial join that finds apgiticain real-life
dynamic allocation problems (e.g., car/parking assigrijnen

— We show that th&ECP fork = min{|A|, | B|} is equivalent to a special case of the
stable marriage problem [7], where assignment prefereaceslerived from the
distance function. Based on this observation, we adapt #ie-Shapley algorithm
[6] to solve kECP queries by computing only a small fraction of the distsnc
dynamically and on-demand.

— We define a dynamic version of ECP for moving objects and stimg events that
indicate (i) availability of slots and (ii) demand for nesiECP pairs. We propose
an appropriate extension of our statiECP query evaluation algorithm that solves
this continuous:ECP query.

— We conduct a set of experiments to verify the efficiency ofgheposed methods
for a wide range of problem parameters.

The rest of the paper is organized as follows. Section 2 gamgdated work on clos-
est pair queries in spatial data, continuous monitorin@leras, and the stable marriage
problem. Section 3 formally defines ECP and presents outigolto it for a static in-
put. Section 4 presents an update framework for ECP calonlaith two optimizations
to improve its performance. Our solutions are evaluatecertiSn 5. Finally, Section 6
concludes the paper, giving directions for future work.

2 Background and Related Work

2.1 Closest Pairs Queries in Spatial Databases

Computation of closest pairs queries have been studiedefaral decades. Main-
memory algorithms, such as the Neighbor Heuristic [1] anst Pair [3, 5], focus on
1CP problems. Fast Pair was shown to have the best overadirpeahce. However, this

method is not directly applicable to: (|ICP queries for arbitrary values &f and (ii)
other variants of CP queries.

Some previous work [4, 9, 22] employ spatial indexes to sél@P queries in sec-
ondary memory. [4, 9] assume that the datasets are indexBetitwes [8]. On the other
hand, Yang et al. [22] extended the R-tree to a b-Rdnn treauggnenting each non-leaf
entry with the maximum nearest neighbor distance (witheet the other dataset) of
points in its subtree. During query evaluation, such distarare utilized for reducing
the search space. [22] showed that their approach outpgsfprevious R-tree based
methods. Since these methods operate on indexed data tlyeyotrize applied in a dy-
namic environment. A high rate of streaming events impos$ggtaburden to the update
of the indexes, which in combination with the expensiveasing of the query results,
renders the overall approach inefficient or impossiblediditéon, although aiICP al-
gorithm can be tuned to process #ECP query (i.e., by remembering assigned points
and avoiding their re-assignment), such an approach wegjdire a large amount of
memory (fork=min{|A|, | B|}, as large as the size of a dataset).

2.2 Continuous Monitoring of Spatial Queries

Various spatial applications, like the car-parking problef the Introduction, handle
large amounts of information at fast arrival rate. Sevextgmsions of R-trees have been
developed for supporting frequent updates of spatial dasa.et al. [15] proposed the
FUR-tree (Frequent Update R-tree), which uses localizeétbimeup update strategies
into the traditional R-tree. Recently, Xiong et al. [20] dped the RUM-tree (R-
tree with Update Memo), which was shown to have better uppet®ormance than
FUR-tree. [12] applied an event-driven approach to mairgakery results fokNN and
spatial join queries, with the assumption that moving digjean be modeled by linear
motion functions.

IB

50 P4

>

l/—\ =
N

Fig. 1. Monitoring spatial queries

Continuous monitoring ahultiplespatial queries (e.g., range [16, 17] &idN [21,
23,18]) adopt theshared execution paradigno reduce the processing cost. Instead
of monitoring the results for different queries separattg problem is viewed as a
large spatial join between the query objects and data abjéstillustrated in Figure 1,
grid cells (of cell lengthy) are employed for indexing the objects. In practice, memory
grid cells [23, 18] are used (instead of disk-based stresjuin order to handle very
high update rateg, corresponds to a range query (shown in bold rectangle) and it
influence regiorconsists of the (gray) cells that intersect with Since data object
updates outside the influence region cannot affect the qeslt, the processing cost

is significantly reduced. As another exampjerepresents a NN query (shown in bold
circle). Its difference frony; is that its influence region is a circular region centered at
g2 With dynamic radius equal its NN distance. For example, wtherNN of g moves
closer to (further fromy,, then the influence region @f shrinks (grows).

Observe that continuous monitoring of rarigeN queries is different from that of
kKECP queries. For range aitN queries, only query results near a change triggered
by a streaming event (i.e., appearance, disappearing, verment of an object) need
to be updated (i.e., only for queries whose influence regibersects the location of
the change). On the other hand, as we will discuss in Sectiarsfeaming event can
generate a sequence of changes inklBEP result. Thus, the idea of influence regions
is not appropriate fokECP monitoring, which calls for novel techniques.

2.3 The Stable Marriage Problem

The KECP join is closely related to the classic stable marriagélpm [6, 7]. Given
two set of objectsd and B, M is said to be anatchingbetweenA and B if (i) M is

a set ofmin{|A|, | B|} pairs of objectga, b) wherea € A, b € B, and (i) each object

a € A (b € B) appears in at most one pairdd. A matching) is stableif there are no
pairs(a,b) and(a’, ") in M such that preferst’ to b andb’ prefersa to o’. Given the
preference lists of all objects € A andb € B, the stable marriage problem seeks for
a stable matching. In our context, the preference list oftgeata is implicitly defined

by the total order defined by the Euclidean distance;i#f closer tab than tod’, thena
prefershbto b'.

[7]is a nice reference text that introduces the stable mgerproblem and presents
solutions to it, for special cases of the input. For the ger@oblem, Gale and Shap-
ley [6] proved that, iffA| = |B|, it is always possible to find a solution and provided
an algorithm for this. For the ease of discussion, we calldbjects inA and B as
senders and receivers, respectively. In the first roundy saeder (ind) calls its most
preferred receiver (i3). If a receiver hears from at least one sender, then thevescei
matches with the best sender (according to the receiveefemnce) and the corre-
sponding sender is removed frafn The above procedure is applied iteratively in sub-
sequent rounds, but with an additional rule: if a receives been assigned a sender
aog (in previous rounds) and now it hears from a better senggy, (in the current
round), then the receiver matches with the new sender aneéh&ning set of senders
becomesd := {ana} U A — {anew }- Eventually, the stable matching betweérand
B is obtained after all objects iA or B have been removed.

Job| Preference ||Applicant| Preference
a1 |by = bs = b2 b1 a1 > az > as
as b1>—b2>-b3 bo as > a3 > ai
as |ba > by = b1 bs as > a1 > as
Table 1. Example of stable marriage

For example, Table 1 illustrates a sebf three jobs and a sét of three applicants,
such that the applicants (jobs) can be totally ordered basddeir qualification (pref-
erence) for the job (applicant). In the first round of the Galapley algorithm, both
jobsa; andas call the applicanb,, who prefersa; to as. Thus,b; matches witha,
anda; is removed fromA. Also, as calls by, b, matches withus andas is removed

from A. In the second rounds, calls bs. Sinceby prefers the new jola, to its old
job as, bo now matches withu, instead and the jobjs is added back tal. In the third
round,as callsbs andbs matches withuz. Thus, the stable matching contains the pairs
(a1,b1), (a2, b2), (as, bs). Note that at least one pair is finalized at each round, theis th
worst-case time complexity of the algorithm@¥|A| x | B]).

The stable marriage algorithm is asymmetric; if the roled @ind B are reversed, a
different solution may be found. Furthermore, it has beemstthat it is sender-optimal
(i.e., A-optimal if A is the sender dataset); its execution will derive the ogtjpa& in
B for anya € A, for any order of examined objects fro Thus, there is a unique
solution when takingd as the sender input and another unique solution when taking
as the sender. We now prove that if the preference list iselélly a symmetric weight
functionw (e.g., Euclidean distance), such thdt, b) = w(b,a),Va € A,b € B, then
these two solutions are identical.

Theorem 1. If preferences are defined by a weight functionsuch that: prefersb to

b’ ifand only ifw(a, b) < w(a,b") andb prefersa to o’ if and only ifw(b, a) < w(b,a’),
andw(a,b) = w(b,a), for anya,a’ € A, b,b' € B then the optimal stable marriage
result is unique independently on whethtor B is the sender set.

Proof. Without loss of generality, assume thadl = |B| = n. Let Ma={{(a), b))},
{(a@y, b))} - {(am), b))} } be theA-optimal matching, such théd;), b(;)) mod-
els the pair which is finalized at thieth loop of the Gale-Shapley algorithhi.et the B-
optimal matching, generated by the Gale-Shapley algoriten/p = {{(b’(l), a’(l))},
{(b/@)’a@))}’ ey {(b’(n),a’(n))}}. We will first prove thata(l) = a’(l) a_ndb(l_) = b’(_l),
i.e., the first assignments output by the two runs of the @lyorare identical. Since
(aq1),b(1)) is the first finalized pair of thel-sender runw(a(y),b(1)) should be the
smallestw(a, b), for anya € A, b € B. Similarly, w(b{,,, a{,,) should be the smallest
w(b,a), foranya € A, b € B. Sincew(a,b) = w(b,a), it must bea(;) = a'(l) and
b1y = b{y)- By induction, we can prove that;) = a(,) andb;) = b{;), for1 <i <mn,
since by removing pair§(a 1y, b)), (a2, b)), - - - » (a(), b))} from the problem we
showed that the first paifa; 1), b(;i+1)) in the resulting subproblem is identical for
both A-sender and3-sender rung

A subtle issue to note is that the uniqueness argument fot-ender (o3-sender)
Gale-Shapley’s output and Theorem 1 holds only for casesenthe preference lists are
unique strictly total orders. Non-unique orders can be derivednfiveight functions
w, for which there exist pair$a,b) and (a’,b’), such thatw(a,b) = w(a’,b’) and
(a=d ANb#£V)or(a#d ANb=1).Insuchcases, e.gqi,= a’ Ab# V', objecta has
the same preference band?’, therefore the stable marriage result may not be unique;
there could be a stable solution that includesh) and another that includés, b').

3 The StatickECP Query

In this section, we define and solve thiatic case of th&ECP query, where theECP
result is requested for two sets of static points. For cotepkess, we also provide the
definition of thek inclusiveclosest pairsKICP) query.

! without loss of generality, we assume that only one pair is finalized atleaphlf there are
multiple such pairs we could modify the algorithm to output only the one with thalest
w(a, b), without affecting the correctness of the result.

Definition 1. Given two set of pointd, B and ak < |A x B, thek inclusive closest
pairskICP(A, B) is defined as the sét C A x B, such thayS| = k andV(a,b) €
S, (a',b') € (A x B) = S,d(a,b) < d(a,V).

Definition 2. Given two set of pointd and B, thek exclusive closest paitsEC' P(A, B)
is recursively defined as:

kECP(A,B)=EkICP(A,B),fork =1, and
kEECP(A,B)=1ECP(A,B)U(k—1)ECP(A —{a}, B — {b}), otherwise.

Note that the maximum possible value folis min{|A|, |B|} in kKECP andk <
|A] - |B|in EICP. It is easy to prove th&ECP, fork = min{|A|,|B|} is a special case
of the stable marriage problem, where the preference osdéerived by the weight
functionw(a, b) = d(a,b) (d denotes Euclidean distance). Therefore the Gale-Shapley
stable marriage algorithm (SMA) can be applied to s@éE#E€P queries; the preference
list of a pointa € A is constructed by placing points i in ascending order of their
distances ta. The preference lists of poinisc B are generated symmetrically. After
running SMA on the preference lists, the obtained resulteespond to the results of
ECP. Sincel(a,b) = d(b,a), and assuming that the distances between a pointA
and the points inB are distinct (and vice versg)SMA will derive the unique ECP
result according to Theorem 1, no matter whether we thké B as the sender set.

Nevertheless, the direct application of SMA requires thepuotation of a large
number of distances and large space to store them|#&br | B| distances), thus it
does not scale well for large problems. We conjecture thatsiatial properties of
the query, in combination with appropriate indexes can bzed to accelerate SMA.
For example, we need not compute the distance of a poit A to all in B before
running SMA, instead, we can applying spatial ranking téghes [10, 18] to generate
the preference list of incrementally and on-demand.

We adopt CPM; the grid-based technique of [18] for indexiagadpoints in our
problem, due to its good performance in environments wighqdient updates. CPM is
the state-of-the-art grid-based index for monitoring NNeigess. Each query point is
associated with a heap such that the objects and grid cellgsited in ascending order
of their distances from the query point. In this way, quersuits can be computed
fast and unnecessary accesses to other points are avaidsatticular, [18] propose a
conceptual partitioning of the cells (see Figure 2) for g distance computations.
Each rectangld®I R;,; is associated with a directiaB/ R and a level numbeéw!. The
direction can béJ (up), D (down), L (left), or R (right). The level number denotes the
number of rectangles betweél R;,,; and the cell containing the query point

Our static ECP algorithm (see Algorithm 1) uses the CPM indesearch for the
optimal matching, and (due to the hardness of the ECP prglilésrmore sophisticated
compared to the simple NN algorithm of [18]. Recall that weehtwo datasetsl and
B in our problem. In order to optimize performance, we consitie smallest dataset
as aqueryset (that will generate nearest neighbor lists to be usedeferpnce lists
in the stable marriage evaluation). Accordingly, the otlheiaset represents abjects
set. For the ease of exposition, letbe the query set anB be the objects set. For each
pointo in A and B keep track of the following information: (i) its current E@Bject

2 This is a realistic assumption since distances are real numbers andghmyikely to coincide.

Fig. 2. Conceptual Partitioning Monitoring (CPM) space division

(0.1)), and (i) the distanceo()) to that object. Initially,o.) is set toco, ando.v is set
to NULL. Table 2 summarizes the notation used in our algarittescription.

Symbol Description
A, B |asetof points (cars), a set of points (parking slpts)
a (b) apointinA (B)

d(a,b) Euclidean distance betweerandb

dmin (7, a)|minimum distance between rectangland pointa
DIRy.,; rect. of direction DI R) in level vl (in CPM)
a.p (b)) a’s (b's) current ECP point
a.A(b.X) the distance between(b) and its ECP point
Table 2. Notation

In its initialization phase (Lines 1-5), SECP allocates a-heapa.H for each
objecta € A, and inserts in iCell(a) (i.e., the cell containing) and all0-level CPM
rectangles (see Figure 2) that surrounduring SECPga. H contains cells, rectangles,
and/or objects fronB and can identify the one with the smallest;, to a in O(1)
time2 In addition, all points inA are inserted to @atientsset P, containing query
points that have not found their exclusive closest pair yet.

SECP then starts a sequence of iterations (Lines 7-16};extd#h loop a number of
ECP pairs are identified and inserted to the result. Atittreiteration, for each query
pointa € P, SECP incrementally retrieves froBinearest neighbors afwhich are no
further than the-th level rectangle of the CPM partition and attempts to fimel ECP
pair of ¢ in them (Lines 10-12).

We now describe in more detail the core search module of SEG&hvis called at
Line 12. Algorithm 2 is a pseudo-code for thidbounded incremental nearest neighbor
search with integrated ECP assignmentNNECP). e-INNECP browses the nearest
neighbors of a query pointincrementally, subject to the constraint that their dis&an
to a is not greater tham. At Lines 3-9, it processes the element on top of ¢thH
heap, if it is a rectangle or a cell, exactly like the origindl algorithm of [18]. If the

% Given a pointp and a rectangle, dy.i.(p,r) is the minimum distance betwegnand any
possible point inr.

Algorithm 1 SECP
V,P, P’ : Queue
Result : Heap
algorithm SECP(Integek)
:forall a € Ado
insert(Cell(a), dmin(a, Cell(a))) into a. H
for each directionDI R do
insert(DI Ry, dmin(a, DIRg)) into a. H
inserta into P
loop:=0
. while |Result| < k do
loop:=loop + 1
mazdist := (loop —1/2) -6
10: while P # @ do

NGO MR

11: dequeue an objeatfrom P

12: e-INNECP(a, mazdist,V, P, P')
13: forall b € V do

14: if b= (b.1)).¢ then

15: insert(b.4, b) into Result

16: P:=P';P=o

nexta.H entry is an objecb, it is processed according to Lines 11-194d[&, b) is
smaller tharb.)\ (this happens ib is unassigned os has been previously assigned to
a further query point), then the current ECPaofresp.b) is tentatively set td (resp.
a). If b is unassigned, we insert it into@ndidatedist V. Otherwise, the previous
assigned pair ob (b.7) € A), is added taP and marked as unassigned. Then, and
b.¢ are updated ag(a,b) anda respectively. Search terminatesdifis assigned to a
pointb € B (while-loop break of Line 19) or ifi: has not been assigned after all its
e-bounded nearest neighborsihhave been examined. In the latter casés inserted
into next loop’s patients lisP’ (Line 21). Note that-INNECP does not search for
neighbors of: beyonde distance frormu, ande is increased at each loop.

After each loop of SECP has examined all pointsPinfor eachb in the candidate
list V, it checks whethet, = b.¢) has alsau.i) = b (Lines 13-15 of SECP). In this
case(a, b) is definitely a pair in the ECP result. The reason is (@t b) < ¢ and
there could not be an unassigned neighbod {@r b) with a smaller distance (those
have already been retrieved &yNNECP). The algorithm terminates when the number
of results reachek. Otherwise ¢-INNECP is invoked again with a new distanee=
(loop — 0.5) - 4, whereloop is the current loop andis the extent of a grid cell.

Figure 3 exemplifies how SECP algorithm works. Assume thatrg (in A) and 3
parking slots (inB) remain unassigned after the first loop. Theis,set to(2 — 0.5) 4,
thus the maximum search range around each P is shown by the gray circles in
Figure 3a. Assume that the order of pointdins (a1, as, as, a4). Figure 3b shows the
running steps of this example inop=2. At the first call ofe-INNECP, a; is assigned
to by, sinceb, is the NN ofa; andb, is currently unassigned. Them, takesb; anda;
is put back toP (Lines 16-17 of-INNECP). This happens becauset(j)is the NN of

Algorithm 2 e-bounded INN search and tentative ECP assignment

algorithm -INNECP(Objecta, Distancer, QueueV/, P, P’)
1: while a.H # @ anda.H'’s top entry’s distanceC ¢ do
2 (0, 04ist) := deheap(a.H)
3 if ois a cellc then
4 for all objectst’ € ¢ do
5: insert(t/, d(a,b’)) into a.H
6
7
8

else ifo is a rectangléd I R;,; then
for each cell’ in DIR;,; do
: insert(c’, dmin (a,c’)) intoa. H
9: insert(DIRMH, dmm(a, DIR[UZ+1)> intoa.H

10: else > o is an objech
11: if b.A > 04ist then > b prefersa to its previous pair
12: seta.y) := banda.\ := ogist > update ECP fou
13: if b.4p is NULL then

14: inserth into V > insert to ECP candidatés
15: else

16: (b.1)).1p:=NULL; (b.4)).X:i=c0 > unset pair ob
17: inserth.1) into P

18: seth.y) := a andb.\ := ogist > update ECP fob
19: break > break while-loop
20: if a.9p=NULL then > a has not been assigned in this loop
21: inserta into P’

ao and (ii) a1 is the current ECP pair df; andd(aq,b1) < d(a1,b1). The algorithm
continues and eventually outputs the assignméntsh;) and(aq, b2), whereasP’ =
{as,a4} are moved to the next loop (sols). Althoughe-INNECP runs with a larger
searching area in the next loop, it avoids accessing unsageslements, because it
continues searching using the current min-hedp for eacha € P.

——

AL N TN E

P P

o
[s]

°
S]
e

<

= ONED) Blbeedl
4 a as, a4, Q -
t%j&bub\\v 2 ai b; (3a4,4al)1 -
AN o506
\ \t% / 2 as| - - (a4,a3)
(a) locations of points (b) Iterations (Lines 10-12)

Fig. 3. An example of SECPI¢op=2)

4 Continuous Monitoring of ECP Pairs

In this section, we set up the problem of monitoring ECP mhirseamically and propose
a solution that uses the SECP algorithm presented in théopiegection. To motivate

our problem setting, we base it on a realistic applicationeng the ECP join between
a set of moving carg{) and a set of static parking slotS)(is to be computed and in-
crementally maintained. When the car-parking assignmestesystarts up, it receives
a number of event#,. from cars ¢ € C) in the monitored area, corresponding to as-
signment requests. It then runs a static ECP join algorithdetermine the slots to be
assigned to these cars.

While the system is running, it receives events from cars arghgs them into a
buffer Buf. At regular time intervals (e.g., every few seconds), thenév collected in
Buf are handled in batch. Three types of events are collect&dijft E, events from
cars that have just requested to pdtk,events from cars that have just parked to their
assigned slot, and,,, events from cars that have just unparked and they are moving.
Accordingly, we can divide the sets of cars (and slots) iotar tlasses based on their
current state, as specified in Table 3. Figure 4 shows howarsirg events or system
decisions define the transitions of cars and parking slotmgrstates. We assume that
at each timestamp the system receives a numbér.pf.,, and E,,, events from cars.
First, all E, events are processed, which change the statuses of themmmoéng cars
and slots fronC, to C,, andS, to S,, respectively. Then, th&,,, events are processed
and the corresponding cars @, and slots inS, will move to classe<,, and Sy,
respectively (we will explain the role df; shortly). Finally, theE, events move cars
from C,, state toC, state. Unassigned cars @. and currently assigned cars @),
must be processed bycantinuousECP algorithm based on the following.

— If an assigned car € C, can be assigned a better slot (due to the availability of a
new free parking slot which is closer) then perform this gen

— For all cars inc € C,, find their ECP pairs after having considered the optimal
re-assignments for cars (,.

Symbol Description
Cnm set of cars which move and do not want to park
C, set of cars which move and request to park
C, |setof cars which move and are assigned to a parking slot
Cp set of parked cars

®

set of slots which are unoccupied and unassigned
set of slots which are assigned but not occupied
» set of slots which are currently occupied

Sy set of slots which are set free at the current timestamp
Table 3. Classification of objects based on their current status

n|n|n

Note that a re-run of the ECP join for the union@f U C, cars could result in
the unfavorable assignment ofcac C, to a slot which is further than its currently
assigned slot. In order to avoid such situatiee must run a special version of ECP
that handles cars ¥, separately.

Our continuous ECP algorithm (CECP) (see Algorithm 3) iseldasn the realistic
assumption that only slots i}y can change a current assignment c,.y) for ¢, € C,

4 Imagine that you've been assigned to a parking and while moving toviattie system in-
forms you that you have to change to a further slot!

10

Parking Slots

Fig. 4. State transition diagrams for objects

to a better one. The rationale is that once assigned to tts:shwill have moved towards

it, so itis unlikely for a slot inS, (i.e., the empty slots from the previous timestamp) will
Suit ¢, now (since it did not suit it in the previous timestamp). Bhsa this assertion,
we examine all slots it5'y to see if any of them could change the current assignment
of ac, € C, to a better one. If a slog; € S; can replace the current assignment
¢4 of a carc,, we perform this change and pushe to S (since it could update the
assignment of another car). Otherwise, we puto S, (the set of empty slots). After
all slots inSy have been examined and the set becomes empty, we perfortic&SIR
join for the pair of requesting cars and empty sl@ts,(S.). For this join, we use the
SECP algorithm described in Section 3. We now discuss twionig#tion techniques
for speeding up the search operation at Line 3 of CECP.

Algorithm 3 Continuous ECP
algorithm CECP(,S)
while Sy # @ do > first phase
sy = remove slots; from Sy
if foracqa € Cq d(ca, ca-¥) > d(ca, sf) then
movec, .y t0 Sy, setc,.9) := sy
moves to Sq;
else
moves to Se;

SECP(C:, Se) > second phase

1:
2
3
4.
5:
6
7
8:

4.1 Distance-bounded search

For eachs;, CECP scang’, to find a carc, € C, for which s; can replace:, .y or
verify that no such car exists ifi,. This search can be accelerated if the carg jrare
checked in increasing distance fram Therefore, before CECP begins for the current
timestamp, we organize the existi6g (from the previous timestamp) in a CPM index.
In addition, we compute the maximum distanfeof any assigned pair i@, (i.e.,
I' = max{d(cq, ca-?)|ca € C,}). This preprocessing phase requires a only single pass
overC,, whereas the resulting index can be used forgng S;.

For eachs ¢, we examine the objects, € C,, incrementally according to their dis-
tance tos ¢ (i.e., we perform a NN search on the CPM-index [18]). This wag chances
to find an assignment for; early are maximized because assigned cars closg doe

11

examined earlier. More importantly, NN search can terngimatsoon ad(s s, c,) > I,
for a neighbor, of s;.

4.2 Partitioning in CPM cells

Recall that eacly; € S; attempts to find any, € C,, for which dist(c,,s¢) <
dist(cq,cq-v). If the distance betweeq, and its assigned slot, (c,.v) is smaller
than the minimum distance betweep and the boundary of the CMP ceflleli(c,)
which encloses:, (i.e., d(cq, o) < dmin(ca, Cell(c,))), thenc, cannot be re-
assigned to any; outsideCell(c,). For example, consider three assigned paifsso),
(c1,51), (c2, s2), and a newly available slat;, as shown in Figure 5. Sine&c, so) <
dmin(co, Cell(cg)) andsy ¢ Cell(cg), we know thaty cannot be re-assigned 4.

We can extend this argument for arbitrary cars as follows.daghc, € C,, we
definelevel(c,) to be the minimum number of CPM levels aroutidi!(c,,) such that,
cannot be re-assigned 49, for anys further than these levels. This can be computed
by comparingi(c,, ¢,.%) t0 dpmin(cq, L) whereL is the boundary (MBR) of successive
cell layers around,. For example, in Figure Sevel(cy) = 0, level(c;) = 1, and
level(ca) = 2.

The idea behind our second optimization is to partition taese, in each cell,
based on theitevel(c,). For example, in Figure 5, belongs to the level-0 partition of
Cell(cp), c1 belongs to the level-1 partition @fell(c;), andce belongs to the level-2
partition of Cell(c2). Then, for eacls s, when we examine a cedl' during NN search,
we only check alk, € C, for whichlevel(c,) > sy.cpmlevel, wheres;.cpmlevel is
the current search level arouggl The furtherC'is from s the more partitions inside it
will be pruned. For example, in Figure 5, while searchingddretter assignment con-
taining s ¢, when visitingCell(cg), we don't have to check its level-0 partition (which
containsz;). Similarly, when visitingCell(cz), we can prune its level-0 and level-1 par-
titions (but not the level-2 partition which contains thereforec; has to be examined).

(st] o [oar o
g @

Level 1 Level 0 B T

\‘OLI Lo I Uy Level 2 else
0 [
S
‘ .
Q, 2

Sy

level 0

o@ i

Dy R, R, ;

level 1

else

Fig. 5. Partitioning of objects to levels

12

5 Experimental Evaluation

In this section we experimentally evaluate the efficiencyof proposed ECP algo-
rithms using synthetic data. First, we compare the SECRithigoproposed in Section
3 with two alternative approaches to the same problem. Skcee validate CECP;
the algorithm for continuous monitoring of ECP pairs pragmbs) Section 4. The algo-
rithms were implemented in C++ and all experiments weregoeréd on a Pentium IV
1.8GHz machine with 512MB memory, running Windows XP.

5.1 ECP Computation

To our knowledge, this is the first paper studying ECP contmrtaso there are no
previous approaches to compare SECP with. Clearly, comgthie distances between
all pairs of points and running the stable-marriage algarif{SMA) would be very
inefficient. Alternatively, we compare SECP with two alt&tive methods, which (like
SECP) avoid computing all distances:

— pINN ECP search. This method is similar to our SECP. The difference is that at
each step it (incrementally) fills a list with the nexnearest neighbors iB for
each unassigned-point, wherep is an input parameter of the algorithm. Given
the pNN lists of all suchA-points to theirp-th neighbors, let be the smallest of
these distances. We can use this distance as a bound anchem1d-12 of SECP
to finalize ECP pairs for some of th&-points. For this purpose, we directly use
thepNN lists, instead of re-computing the nearest points by inma-INNECP. At
each step, after alll-points have been processed, some of them will have found
their ECP pair. For the remaining ones, we continue the IN&tcteuntil their NN
set contains exactly neighbors. For these points we repeat the whole process at
the next step.

— 1INN ECP search.In the initial state of tha INN ECP algorithm, for each unas-
signed query: we maintain a CPM heaf for it and use it to find the nearest CPM
element otz (this could be a rectangle, a cell, or an object). The neatestents of
allunassigned € A are stored in a candidate queue (CQ) which is a priority queue
organizing them in ascending order of the distance. At eteghaf the algorithm,
we pop the top element from CQ. If this is a rectangle or a wedlproceed to find
the next nearest CPM element of the corresponding queryioaiel push it into
CQ. If the popped element from CQ is an unassigned objectudt ine the ECP
result of the corresponding query (by definition). If it isassigned one, we ignore
it and get the next nearest neighbor of the query object, wisipushed back to
CQ. This process is continued until all ECP results are cdatpu

We evaluate the performance of the static ECP algorithmis syihthetic datasets
(to study their scalability with respect to various paragnetand due to lack of real
data for ECP problems). In each dataset, the coordinatesiofspare random values
uniformly generated in §, 10000] x [0, 10000] space. By default, the total number of
queries and objects is 100K and there are as many objectsagsg|(.e.|A| = |B|
and|A| + |B| =100K). By default the CPM grid used was 12828 and the value
of p used by thesINN ECP search algorithm is 8 (we found out by experimentatio
that this method performs best fpr= 8). The k parameter of the ECP join is set to
k = min{|A|, |B|} (i.e., we seek for the maximum possible assignment).

13

Figure 6 shows the performances of the three static ECPitdgwy for CPM grid
sizes|G| x |G| ranging from32 x 32 to 256 x 256. Although the grid sizes with the
best CPU time performance are betwddnx 64 and96 x 96, |G| = 128 presents a
good trade-off between the CPU time and the memory usagel llyraé algorithms.
Furthermore, as we will show later, the8 x 128 grid outperforms other sizes when
larger amounts of data are searched. Note that our SECHtaigooutperforms the
other two methods, while having only slightly higher mempeguirements thahiNN
ECP. The reason behind the good performance of SECP is }hatlike pINN ECP,
it searches only up to the necessary nearest neighborsdorgeery and (ii) it avoids
using and updating the huge CQ head N ECP.

CPU time (s) versus |G| Peak memory (MBytes) versus |G|
8 : : : . 180 : ‘ ‘ ‘
7L pINN ECP —— é 160 | pINN ECP ——
& 6 I 1INN ECP ”:” g 140 | 1INN ECP ”:”
@ 5°f S 120}
IS >
= 47 i S 100
2 3 » E 80}
£
O 2 EER—- S 60f N
1y § 40y S T
0 ‘ ‘ : ‘ : & 20 ‘ : : ‘ :
0 50 100 150 200 250 300 0 50 100 150 200 250 300
G €]
(a) CPU time (b) Peak memory

Fig. 6. Effect of |G|

Figure 7 compares the three algorithms for various gridssaed database sizes
|O| = |A| + |B|. The results are consistent with the previous experimeBCFSper-
forms the best in terms of CPU while the costgptfIN and 1INN are more sensitive
to the database size. Note that when the number of objectsises finer grids become
more efficient; this is expected since the space becomesidand using a finer parti-
tioning pays off. Note that more memory is required for sevadjrid sizes, since more
individual objects (instead of cells and rectangles) ettesearch heaps of the queries.
Again, SECP has slightly higher memory requirements th&iN. Finally, Figure 8
shows the performance as a function of different data sitesr§ A|/| B|) and data-
base sizesQ| = |A| + | B|). SECP has the best performance and its relative difference
to other methods increases with the database sizg 4fi¢iB| ratio. We do not need
to consider ratios larger than 1, since the ECP computagiegrmmetric (the smallest
dataset is taken as tlggierydatasetd).

5.2 Maintenance of ECP results

We developed a data generator that simulates a real-lifpar&ing assignment prob-
lem and monitoring problem, based on the specifications ofi@e4. The generator
starts with a set of parking slots and a set of cars which aiferamly distributed in a
[0,10000] x [0,10000] space. A parking-request probabiliy..,, an unparking prob-
ability Py.pqrk, and a velocityl” are assigned to each car. Initially, all cars are mov-
ing to a random direction and they request for parking withbability .., at each
timestamp. If a cat issues a parking request to the systdn)(it moves to the parking

14

CPU Time (s) versus |G| versus |O| CPU Time (s) versus |G| versus |O|

pINN ECP ——
1INN ECP ———

(a) CPU time (b) Peak memory

Fig. 7. Combined effect of G| and|O|

CPU Time (s) versus |O| versus Ratio Memory Usage (MBytes) versus |O| versus Ratio

pINN ECP —— pINN ECP ——
1INN ECP_ -

(a) CPU time (b) Peak memory

Fig. 8. Combined effect ofO| and|A| /| B| ratio

request state and the system attempts to assign a slot tode ®slots is assigned to
¢, ¢ moves towards according to its velocity and when it reachel parks, issuing a
E, event. Afterc has parked, at each subsequent timestamp ifhas,.. probability

to issue &k, event. A car that unparks sets its slot free and starts mdwiaglirection
90 degrees different than its direction when moving towdtsiparking slot. At each
timestamp, the system processes all incoming events angdalSection 4.

Table 4 shows the parameters of the generator, their ranggues and their default
value in bold font. In each experiment, only one parameteesavhile the others are
fixed to their default values. We measured the average CPlLLaodsmemory require-
ments of the CECP algorithm for each timestamp, after Igttihe system to run for
1000 timestamps.

In the first experiment, we verify the effectiveness of théirojzations of Sec-
tions 4.1 and 4.2 in CECP. These optimizations aim at reduttie re-assignment
cost for cars inC, using Sy (i.e., Lines 1-7 of Algorithm 3). Figure 9 shows the re-
assignment cost of CECP without, with one (CECP+01 or CECB;+&and with both
(CECP+01+02) optimizations, for different time instanithvdifferent sizes of”, and
S¢. Optimization 2 (Section 4.2) incurs larger improvemennpared to optimization
1 (Section 4.1) since it avoids additional accesses. Thebtwtion of both methods

15

Parameter Values
Number of cars|C/| 600K
Number of slots|S]| 150K
Parking request probability?..,%| 0.5%, 1%, 2%, 4%, 8%
Unparking probability Punpart % | 0.5%, 1%, 2%, 4%, 8%
Average velocity of carsy 1.67, 3.335.27, 6.67, 13.38
Table 4. Stream generation parameters

result in the best performance for CECP at all settings. énrémaining experiments
we use both optimizations in the first phase of CECP.

CPU time (s) versus |C_a| (K) CPU time (s) versus |S_f] (K)
1000 T T T T T T 1000 T T T T T T
& 100} CECP ——+ 4 100 ¢ CECP —i—
2] CECP+01 i 2 CECP+01 -
£ CECP+02 ---o-{- g CECP+02 :
= 10 E. = 10 CECP+01+02 -
=] b T U X
o o o X JC e
© 1) 2 IR g O 1 7><'l,)~o"';i:,/—/—»A""""”"””’A
-0 o A
Qs &
01 1 1 1 1 1 1 01 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 0 5 10 15 20 25 30 35 40
IC_al (K) [S_fl (K)
(a) CPU time (sec.),Sy| = 10K (b) CPU time (C,| = 40K)

Fig. 9. Effect of |C| and|Sy|

Figure 10a shows the average performance per timestampto&CP phases for
different values ofP,.,. The first phase (i.e., the handling 8 andC,) uses both
optimizations of Sections 4.1 and 4.2. The second phase @.of Algorithm 3) is per-
formed by the SECP algorithm. For small valued®{, the distances between assigned
cars and their slots tend to be large, a fact that increasesot of CECP’s first phase
(as many re-assignments are performed). Lafggy reduces the cost of the first phase
due to the decrease of the average distance between aspajreedOn the other hand,
as P,., increasesC,| becomes larger and the second phase of CECP becomes more
expensive. Figure 10a shows that the memory requiremebistiofphases of CECP are
slightly affected byP,.,, with the same trend as the CPU time difference.

Figure 11 shows the effect d?,,,..1 On the performance of the algorithm, after
fixing P,.., andV to their default values. There is a slight increase on the @
and memory requirements for both phase®gs,.« increases (due to the increase of
|S¢|. Finally, Figure 12 shows that our problem is not sensitivéhe objects velocity
(Preq and Py pqrk are fixed to their default values).

6 Conclusion

In this paper we identified the exclusive closest pairs (E@BHlem, which is a spatial
assignment problem. A motivating application of it is thetehing of cars and parking
slots. We proposed an efficient main-memory algorithm fdriag the static version of
the problem. In addition, we defined the problem of contirsumenitoring ECP pairs in

16

CPU time (s) versus Requesting Rate Peak memory (MBytes) versus Requesting Rate

1,2 [; e 140 PO ——
: =4 120 +
z M / 2 100 |
P phase2 - S el s
£ 1y “‘phase 1 - g P
S o8} X g 60
a 06
- £ 40
© o4 s ©
0.2 e euuo—— Y S -
0 : : & o0 :
1 10 1 10
Requesting Rate (%) Requesting Rate (%)
(a) CPU time (b) Peak memory
Fig. 10.Effect of requesting rate
CPU time (s) versus Unparking Rate Peak memory (MBytes) versus Unparking Rate
1.8 ‘ - . 140 : —
1 6 L 1 g A -3
: - £ 120
z M - S 00| hase 2 -1
2 12 &7 phase2 - =3 phggz 1wl
e Tl phase 1 - > 80 P]
= 08 . g 60
o 06 2
3) € 40
0.4 X x
0.2 r s 1 g 20 ¢ P S — B
0 X . a 0 .
1 10 1 10
Unparking Rate (%) Unparking Rate (%)
(a) CPU time (b) Peak memory

Fig. 11.Effect of leaving rate

a dynamic environment where assignment requests and agHaEnt notifications ar-
rive from a stream. We presented a thorough experimenthlati@n that demonstrates
the efficiency of the proposed solutions on syntheticallgagated data that simulate
a real-life dynamic car/parking assignment problem. In fitere, we will consider
other types of one-to-one assignments (e.g., finding andtaeiaing an assignment that
minimizes an aggregate distance).

References

1. M. R. AnderbergCluster Analysis for ApplicationsAcademic Press, Inc., 1973.

2. T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient procegohspatial joins using r-trees.
In SIGMOD Conferencepages 237—-246, 1993.

3. J. Cardinal and D. Eppstein. Lazy algorithms for dynamic closésivith arbitrary distance
measures. IAlgorithm Engineering and Experiments Workshop (ALENEED4.

4. A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopsul€losest pair queries
in spatial databases. BIGMOD Conferengepages 189—-200, 2000.

5. D. Eppstein. Fast hierarchical clustering and other applications rerdic closest pairs.
ACM Journal of Experimental AlgorithmS:1, 2000.

6. D. Gale and L. S. Shapley. College admissions and the stability of mardager. Math,
69:9-14, 1962.

17

CPU time (s)

~

©

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

CPU time (s) versus Velocity Peak memory (MBytes) versus Requesting Rate

1.4 : : : : : : _. 140 :
8 o
L2 A 2 g 120 | phase 2 -
1r phase 2 —-&- = 100 phase 1 -~
0.8 phase 1 - > 80
06 g 60
[J]
0.4 £ 40
0.2 f e 1% 20t
. L X 3
0 TR & o0 S
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Velocity Velocity
(a) CPU time (b) Peak memory

Fig. 12. Effect of different velocities

D. Gusfield and R. W. IrvingThe Stable Marriage Problem, Structure and AlgorithiidT
Press, 1989.

. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Seagchin SIGMOD, 1984.
. G. R. Hjaltason and H. Samet. Incremental distance join algorithmpétiatdatabases. In

SIGMOD Conferenggpages 237-248, 1998.

G. R. Hjaltason and H. Samet. Distance browsing in spatial dataBe3ksTrans. Database
Syst, 24(2):265-318, 1999.

H. Hu, J. Xu, and D. L. Lee. A generic framework for monitorimginuous spatial queries
over moving objects. I5IGMOD Conference2005.

G. S. lwerks, H. Samet, and K. P. Smith. Maintenance of k-nn patia$ join queries on
continuously moving pointsACM Trans. Database Sys81(2):485-536, 2006.

N. Koudas, B. C. Ooi, K.-L. Tan, and R. Zhang. Approximate narggs on streams with
guaranteed error/performance boundsVLDB, pages 804-815, 2004.

N. Koudas and K. C. Sevcik. High dimensional similarity joins: Algoristand performance
evaluation. INCDE, 1998.

M.-L. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. L. Teo. Sugipgpfrequent updates in
r-trees: A bottom-up approach. \ALDB, pages 608619, 2003.

M. F. Mokbel, X. Xiong, and W. G. Aref. Sina: Scalable incremeptatessing of continu-
ous queries in spatio-temporal databasesSI{BMOD Conferenggages 623-634, 2004.
M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Continuaysery processing of
spatio-temporal data streams in placeSIFDBM pages 57-64, 2004.

K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptuditipaing: An efficient
method for continuous nearest neighbor monitoring SIBMOD Conferencepages 634—
645, 2005.

E. D. Nering and A. W. TuckerLinear Programs & Related Problems: A Volume in the
Computer Science and Scientific Computing SeAesidemic Press, Inc., 1992.

X. Xiong and W. G. Aref. R-trees with update memosIGDE, 2006.

X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalable pssagg of continuous k-
nearest neighbor queries in spatio-temporal databaséSDIB, pages 643—654, 2005.

C. Yang and K.-I. Lin. An index structure for improving neardgsest pairs and related join
queries in spatial databases.IDEAS pages 140-149, 2002.

X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighhmriggs over moving objects.
In ICDE, pages 631-642, 2005.

J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao. All-neareshbeig queries in spatial
databases. I8SDBM pages 297-306, 2004.

18

