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Abstract. Given two datasetsA andB, their exclusive closest pairs (ECP) join
is a one-to-one assignment of objects from the two datasets, such that (i)the clos-
est pair(a, b) inA×B is in the result and (ii) the remaining pairs are determined
by removing objectsa, b from A,B respectively, and recursively searching for
the next closest pair. An application of exclusive closest pairs is the computation
of (car, parking slot) assignments. In this paper, we propose algorithms for the
computation and continuous monitoring of ECP joins in memory, given a stream
of events that indicate dynamic assignment requests and releases of pairs. Exper-
imental results on a system prototype demonstrate the efficiency of our solutions
in practice.

1 Introduction
Due to the increasing popularity of location-based services, continuous monitoring of
spatial queries emerges as an important research topic. Existing work [18, 11, 21, 13, 16,
17] focuses onrangeor k nearest neighbor(kNN) queries on moving objects. These
problems can also be viewed as continuous joins between queries and data objects,
according to their spatial relationship. However, there has not been much research done
related to the continuous monitoring of spatial join results. Several variants of spatial
join queries exist, such as the intersection join [2], the distance (or similarity) join [14],
the allk nearest neighbors join [24], and thek (inclusive) closest pairs query (kICP) [9,
4].

In this paper, we study an interesting type of spatial joins that has received little
attention in the past. We call this operation thek exclusive closest pairsjoin (kECP).
kECP producesk one-to-one assignments of objects between two datasetsA andB,
such that (i) the closest pair(a, b) in A×B belongs to the result and (ii) the remaining
pairs are determined by removing objectsa, b from A,B respectively, and recursively
searching for the next closest pair. Thus, each object appears only once in the result.

A real-life application of akECP query is the car-parking assignment problem. Con-
sider a setA of car drivers that request for a parking slot and another setB of available
slots. The well-known assignment problem [19] searches forthe 1-to-1 assignment of
cars to parking spaces, such that the sum of travel distancesis minimized. However, in
a world of selfish users, it is more reasonable to assign each car c ∈ A to the parking
spacep ∈ B that may not be taken by another driverc′, which happens to be closer
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to p thanc is. Therefore, our formulation of thekECP query (assuming thatk is the
minimum of cardinalities|A| and|B|) searches for a practical solution to the problem.

We propose a technique for computing the ECP pairs efficiently given a set of cars
and a set of parking slots. In addition, we extend it to monitor the ECP results, in a
dynamic environment, where parking requests from cars and availability events from
parking slots arrive from a data stream. Due to such events, ECP assignments must be
deleted (i.e., when a car un-parks), new assignments must beadded (i.e., when a new
car requests parking), and current assignments may have to be changed. For instance,
assume that pair(c, p) is in the current assignment and a new parking slotp′ becomes
available which is closer toc thanp is. In this case,c must be re-assigned top′ and
p should become available for other cars. This change may trigger a “chaining” effect
which could alter the whole assignment. Our method processes incoming events in
an appropriate order, such that the correct ECP results are maintained correctly and
efficiently.

We assume that a centralized server monitors the locations of objects. When an
object moves to another location, it informs the server about its new location. Since the
frequent updates render disk-based management techniquesinefficient, our solution is
based on a memory grid-based indexing approach [16, 18].

Our contributions can be summarized as follows:

– We identify ECP as a new type of spatial join that finds application in real-life
dynamic allocation problems (e.g., car/parking assignment).

– We show that thekECP fork = min{|A|, |B|} is equivalent to a special case of the
stable marriage problem [7], where assignment preferencesare derived from the
distance function. Based on this observation, we adapt the Gale-Shapley algorithm
[6] to solve kECP queries by computing only a small fraction of the distances
dynamically and on-demand.

– We define a dynamic version of ECP for moving objects and streaming events that
indicate (i) availability of slots and (ii) demand for newkECP pairs. We propose
an appropriate extension of our statickECP query evaluation algorithm that solves
this continuouskECP query.

– We conduct a set of experiments to verify the efficiency of theproposed methods
for a wide range of problem parameters.

The rest of the paper is organized as follows. Section 2 surveys related work on clos-
est pair queries in spatial data, continuous monitoring problems, and the stable marriage
problem. Section 3 formally defines ECP and presents our solution to it for a static in-
put. Section 4 presents an update framework for ECP calculation with two optimizations
to improve its performance. Our solutions are evaluated in Section 5. Finally, Section 6
concludes the paper, giving directions for future work.

2 Background and Related Work

2.1 Closest Pairs Queries in Spatial Databases

Computation of closest pairs queries have been studied for several decades. Main-
memory algorithms, such as the Neighbor Heuristic [1] and Fast Pair [3, 5], focus on
1CP problems. Fast Pair was shown to have the best overall performance. However, this
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method is not directly applicable to: (i)kCP queries for arbitrary values ofk, and (ii)
other variants of CP queries.

Some previous work [4, 9, 22] employ spatial indexes to solvekICP queries in sec-
ondary memory. [4, 9] assume that the datasets are indexed byR-trees [8]. On the other
hand, Yang et al. [22] extended the R-tree to a b-Rdnn tree, byaugmenting each non-leaf
entry with the maximum nearest neighbor distance (with respect to the other dataset) of
points in its subtree. During query evaluation, such distances are utilized for reducing
the search space. [22] showed that their approach outperforms previous R-tree based
methods. Since these methods operate on indexed data they may not be applied in a dy-
namic environment. A high rate of streaming events imposes ahigh burden to the update
of the indexes, which in combination with the expensive refreshing of the query results,
renders the overall approach inefficient or impossible. In addition, although ankICP al-
gorithm can be tuned to process thekECP query (i.e., by remembering assigned points
and avoiding their re-assignment), such an approach would require a large amount of
memory (fork=min{|A|, |B|}, as large as the size of a dataset).

2.2 Continuous Monitoring of Spatial Queries

Various spatial applications, like the car-parking problem of the Introduction, handle
large amounts of information at fast arrival rate. Several extensions of R-trees have been
developed for supporting frequent updates of spatial data.Lee et al. [15] proposed the
FUR-tree (Frequent Update R-tree), which uses localized bottom-up update strategies
into the traditional R-tree. Recently, Xiong et al. [20] developed the RUM-tree (R-
tree with Update Memo), which was shown to have better updateperformance than
FUR-tree. [12] applied an event-driven approach to maintain query results forkNN and
spatial join queries, with the assumption that moving objects can be modeled by linear
motion functions.

δ

q1

q2

p1

p2

p3

p4

p5

Fig. 1.Monitoring spatial queries

Continuous monitoring ofmultiplespatial queries (e.g., range [16, 17] andkNN [21,
23, 18]) adopt theshared execution paradigmto reduce the processing cost. Instead
of monitoring the results for different queries separately, the problem is viewed as a
large spatial join between the query objects and data objects. As illustrated in Figure 1,
grid cells (of cell lengthδ) are employed for indexing the objects. In practice, memory
grid cells [23, 18] are used (instead of disk-based structures) in order to handle very
high update rate.q1 corresponds to a range query (shown in bold rectangle) and its
influence regionconsists of the (gray) cells that intersect withq1. Since data object
updates outside the influence region cannot affect the queryresult, the processing cost
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is significantly reduced. As another example,q2 represents a NN query (shown in bold
circle). Its difference fromq1 is that its influence region is a circular region centered at
q2 with dynamic radius equal its NN distance. For example, whenthe NN ofq2 moves
closer to (further from)q2, then the influence region ofq2 shrinks (grows).

Observe that continuous monitoring of range/kNN queries is different from that of
kECP queries. For range andkNN queries, only query results near a change triggered
by a streaming event (i.e., appearance, disappearing, or movement of an object) need
to be updated (i.e., only for queries whose influence region intersects the location of
the change). On the other hand, as we will discuss in Section 4, a streaming event can
generate a sequence of changes in thekECP result. Thus, the idea of influence regions
is not appropriate forkECP monitoring, which calls for novel techniques.

2.3 The Stable Marriage Problem

The kECP join is closely related to the classic stable marriage problem [6, 7]. Given
two set of objectsA andB, M is said to be amatchingbetweenA andB if (i) M is
a set ofmin{|A|, |B|} pairs of objects(a, b) wherea ∈ A, b ∈ B, and (ii) each object
a ∈ A (b ∈ B) appears in at most one pair inM . A matchingM is stableif there are no
pairs(a, b) and(a′, b′) in M such thata prefersb′ to b andb′ prefersa to a′. Given the
preference lists of all objectsa ∈ A andb ∈ B, the stable marriage problem seeks for
a stable matching. In our context, the preference list of an objecta is implicitly defined
by the total order defined by the Euclidean distance; ifa is closer tob than tob′, thena
prefersb to b′.

[7] is a nice reference text that introduces the stable marriage problem and presents
solutions to it, for special cases of the input. For the generic problem, Gale and Shap-
ley [6] proved that, if|A| = |B|, it is always possible to find a solution and provided
an algorithm for this. For the ease of discussion, we call theobjects inA andB as
senders and receivers, respectively. In the first round, each sender (inA) calls its most
preferred receiver (inB). If a receiver hears from at least one sender, then the receiver
matches with the best sender (according to the receiver’s preference) and the corre-
sponding sender is removed fromA. The above procedure is applied iteratively in sub-
sequent rounds, but with an additional rule: if a receiver has been assigned a sender
aold (in previous rounds) and now it hears from a better senderanew (in the current
round), then the receiver matches with the new sender and theremaining set of senders
becomesA := {aold} ∪ A − {anew}. Eventually, the stable matching betweenA and
B is obtained after all objects inA orB have been removed.

Job Preference Applicant Preference
a1 b1 ≻ b3 ≻ b2 b1 a1 ≻ a3 ≻ a2

a2 b1 ≻ b2 ≻ b3 b2 a2 ≻ a3 ≻ a1

a3 b2 ≻ b3 ≻ b1 b3 a2 ≻ a1 ≻ a3

Table 1.Example of stable marriage

For example, Table 1 illustrates a setA of three jobs and a setB of three applicants,
such that the applicants (jobs) can be totally ordered basedon their qualification (pref-
erence) for the job (applicant). In the first round of the Gale-Shapley algorithm, both
jobs a1 anda2 call the applicantb1, who prefersa1 to a2. Thus,b1 matches witha1

anda1 is removed fromA. Also, a3 calls b2, b2 matches witha3 anda3 is removed
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from A. In the second round,a2 calls b2. Sinceb2 prefers the new joba2 to its old
job a3, b2 now matches witha2 instead and the joba3 is added back toA. In the third
round,a3 callsb3 andb3 matches witha3. Thus, the stable matching contains the pairs
(a1, b1), (a2, b2), (a3, b3). Note that at least one pair is finalized at each round, thus the
worst-case time complexity of the algorithm isO(|A| × |B|).

The stable marriage algorithm is asymmetric; if the roles ofA andB are reversed, a
different solution may be found. Furthermore, it has been shown that it is sender-optimal
(i.e.,A-optimal ifA is the sender dataset); its execution will derive the optimal pair in
B for anya ∈ A, for any order of examined objects fromA. Thus, there is a unique
solution when takingA as the sender input and another unique solution when takingB
as the sender. We now prove that if the preference list is derived by a symmetric weight
functionw (e.g., Euclidean distance), such thatw(a, b) = w(b, a),∀a ∈ A, b ∈ B, then
these two solutions are identical.
Theorem 1. If preferences are defined by a weight functionw, such thata prefersb to
b′ if and only ifw(a, b) < w(a, b′) andb prefersa toa′ if and only ifw(b, a) < w(b, a′),
andw(a, b) = w(b, a), for anya, a′ ∈ A, b, b′ ∈ B then the optimal stable marriage
result is unique independently on whetherA or B is the sender set.
Proof. Without loss of generality, assume that|A| = |B| = n. LetMA={{(a(1), b(1))},
{(a(2), b(2))}, . . ., {(a(n), b(n))}} be theA-optimal matching, such that(a(i), b(i)) mod-
els the pair which is finalized at thei-th loop of the Gale-Shapley algorithm.1 Let theB-
optimal matching, generated by the Gale-Shapley algorithm, beMB = {{(b′(1), a

′

(1))},

{(b′(2), a
′

(2))}, ..., {(b
′

(n), a
′

(n))}}. We will first prove thata(1) = a′(1) andb(1) = b′(1),
i.e., the first assignments output by the two runs of the algorithm are identical. Since
(a(1), b(1)) is the first finalized pair of theA-sender run,w(a(1), b(1)) should be the
smallestw(a, b), for anya ∈ A, b ∈ B. Similarly,w(b′(1), a

′

(1)) should be the smallest
w(b, a), for anya ∈ A, b ∈ B. Sincew(a, b) = w(b, a), it must bea(1) = a′(1) and
b(1) = b′(1). By induction, we can prove thata(i) = a′(i) andb(i) = b′(i), for 1 ≤ i ≤ n,
since by removing pairs{(a(1), b(1)), (a(2), b(2)), . . . , (a(i), b(i))} from the problem we
showed that the first pair(a(i+1), b(i+1)) in the resulting subproblem is identical for
bothA-sender andB-sender runs.⊓⊔

A subtle issue to note is that the uniqueness argument for theA-sender (orB-sender)
Gale-Shapley’s output and Theorem 1 holds only for cases where the preference lists are
unique, strictly total orders. Non-unique orders can be derived from weight functions
w, for which there exist pairs(a, b) and (a′, b′), such thatw(a, b) = w(a′, b′) and
(a = a′ ∧ b 6= b′) or (a 6= a′ ∧ b = b′). In such cases, e.g.,a = a′ ∧ b 6= b′, objecta has
the same preference tob andb′, therefore the stable marriage result may not be unique;
there could be a stable solution that includes(a, b) and another that includes(a, b′).

3 The StatickECP Query
In this section, we define and solve thestaticcase of thekECP query, where thekECP
result is requested for two sets of static points. For completeness, we also provide the
definition of thek inclusiveclosest pairs (kICP) query.

1 Without loss of generality, we assume that only one pair is finalized at eachloop. If there are
multiple such pairs we could modify the algorithm to output only the one with the smallest
w(a, b), without affecting the correctness of the result.
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Definition 1. Given two set of pointsA, B and ak < |A× B|, thek inclusive closest
pairskICP (A,B) is defined as the setS ⊂ A × B, such that|S| = k and∀(a, b) ∈
S, (a′, b′) ∈ (A×B) − S, d(a, b) ≤ d(a′, b′).

Definition 2. Given two set of pointsA andB, thek exclusive closest pairskECP (A,B)
is recursively defined as:
kECP (A,B) = kICP (A,B), for k = 1, and
kECP (A,B) = 1ECP (A,B) ∪ (k − 1)ECP (A− {a}, B − {b}), otherwise.

Note that the maximum possible value fork is min{|A|, |B|} in kECP andk ≤
|A| · |B| in kICP. It is easy to prove thatkECP, fork = min{|A|, |B|} is a special case
of the stable marriage problem, where the preference order is derived by the weight
functionw(a, b) = d(a, b) (d denotes Euclidean distance). Therefore the Gale-Shapley
stable marriage algorithm (SMA) can be applied to solvekECP queries; the preference
list of a pointa ∈ A is constructed by placing points inB in ascending order of their
distances toa. The preference lists of pointsb ∈ B are generated symmetrically. After
running SMA on the preference lists, the obtained results correspond to the results of
ECP. Sinced(a, b) ≡ d(b, a), and assuming that the distances between a pointa ∈ A
and the points inB are distinct (and vice versa)2, SMA will derive the unique ECP
result according to Theorem 1, no matter whether we takeA of B as the sender set.

Nevertheless, the direct application of SMA requires the computation of a large
number of distances and large space to store them (for|A| · |B| distances), thus it
does not scale well for large problems. We conjecture that the spatial properties of
the query, in combination with appropriate indexes can be utilized to accelerate SMA.
For example, we need not compute the distance of a pointa ∈ A to all in B before
running SMA; instead, we can applying spatial ranking techniques [10, 18] to generate
the preference list ofa incrementally and on-demand.

We adopt CPM; the grid-based technique of [18] for indexing data points in our
problem, due to its good performance in environments with frequent updates. CPM is
the state-of-the-art grid-based index for monitoring NN queries. Each query point is
associated with a heap such that the objects and grid cells are visited in ascending order
of their distances from the query point. In this way, query results can be computed
fast and unnecessary accesses to other points are avoided. In particular, [18] propose a
conceptual partitioning of the cells (see Figure 2) for reducing distance computations.
Each rectangleDIRlvl is associated with a directionDIR and a level numberlvl. The
direction can beU (up),D (down),L (left), orR (right). The level number denotes the
number of rectangles betweenDIRlvl and the cell containing the query pointq.

Our static ECP algorithm (see Algorithm 1) uses the CPM indexto search for the
optimal matching, and (due to the hardness of the ECP problem) it is more sophisticated
compared to the simple NN algorithm of [18]. Recall that we have two datasetsA and
B in our problem. In order to optimize performance, we consider the smallest dataset
as aqueryset (that will generate nearest neighbor lists to be used as preference lists
in the stable marriage evaluation). Accordingly, the otherdataset represents anobjects
set. For the ease of exposition, letA be the query set andB be the objects set. For each
point o in A andB keep track of the following information: (i) its current ECPobject

2 This is a realistic assumption since distances are real numbers and they are unlikely to coincide.
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Fig. 2.Conceptual Partitioning Monitoring (CPM) space division

(o.ψ), and (ii) the distance (o.λ) to that object. Initially,o.λ is set to∞, ando.ψ is set
to NULL. Table 2 summarizes the notation used in our algorithm description.

Symbol Description
A,B a set of points (cars), a set of points (parking slots)
a (b) a point inA (B)
d(a, b) Euclidean distance betweena andb

dmin(r, a) minimum distance between rectangler and pointa
DIRlvl rect. of direction (DIR) in level lvl (in CPM)
a.ψ (b.ψ) a’s (b’s) current ECP point
a.λ (b.λ) the distance betweena (b) and its ECP point

Table 2.Notation

In its initialization phase (Lines 1–5), SECP allocates a min-heapa.H for each
objecta ∈ A, and inserts in itCell(a) (i.e., the cell containinga) and all0-level CPM
rectangles (see Figure 2) that surrounda. During SECP,a.H contains cells, rectangles,
and/or objects fromB and can identify the one with the smallestdmin to a in O(1)
time.3 In addition, all points inA are inserted to apatientssetP , containing query
points that have not found their exclusive closest pair yet.

SECP then starts a sequence of iterations (Lines 7-16); after each loop a number of
ECP pairs are identified and inserted to the result. At thei-th iteration, for each query
pointa ∈ P , SECP incrementally retrieves fromB nearest neighbors ofa which are no
further than thei-th level rectangle of the CPM partition and attempts to find the ECP
pair ofa in them (Lines 10-12).

We now describe in more detail the core search module of SECP which is called at
Line 12. Algorithm 2 is a pseudo-code for thisǫ-bounded incremental nearest neighbor
search with integrated ECP assignment (ǫ-INNECP). ǫ-INNECP browses the nearest
neighbors of a query pointa incrementally, subject to the constraint that their distance
to a is not greater thanǫ. At Lines 3-9, it processes the element on top of thea.H
heap, if it is a rectangle or a cell, exactly like the originalNN algorithm of [18]. If the

3 Given a pointp and a rectangler, dmin(p, r) is the minimum distance betweenp and any
possible point inr.
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Algorithm 1 SECP
V, P, P ′ : Queue
Result : Heap
algorithm SECP(Integerk)

1: for all a ∈ A do
2: insert〈Cell(a), dmin(a,Cell(a))〉 into a.H
3: for each directionDIR do
4: insert〈DIR0, dmin(a,DIR0)〉 into a.H

5: inserta intoP
6: loop:=0
7: while |Result| < k do
8: loop:=loop+ 1
9: maxdist := (loop− 1/2) · δ

10: while P 6= ∅ do
11: dequeue an objecta fromP
12: ǫ-INNECP(a,maxdist, V, P, P ′)

13: for all b ∈ V do
14: if b = (b.ψ).ψ then
15: insert(b.ψ, b) intoResult

16: P :=P ′; P ′:=∅

next a.H entry is an objectb, it is processed according to Lines 11-19. Ifd(a, b) is
smaller thanb.λ (this happens ifb is unassigned orb has been previously assigned to
a further query point), then the current ECP ofa (resp.b) is tentatively set tob (resp.
a). If b is unassigned, we insert it into acandidateslist V . Otherwise, the previous
assigned pair ofb (b.ψ ∈ A), is added toP and marked as unassigned. Then,b.λ and
b.ψ are updated asd(a, b) anda respectively. Search terminates ifa is assigned to a
point b ∈ B (while-loop break of Line 19) or ifa has not been assigned after all its
ǫ-bounded nearest neighbors inB have been examined. In the latter case,a is inserted
into next loop’s patients listP ′ (Line 21). Note thatǫ-INNECP does not search for
neighbors ofa beyondǫ distance froma, andǫ is increased at each loop.

After each loop of SECP has examined all points inP , for eachb in the candidate
list V , it checks whethera = b.ψ has alsoa.ψ = b (Lines 13-15 of SECP). In this
case(a, b) is definitely a pair in the ECP result. The reason is thatd(a, b) ≤ ǫ and
there could not be an unassigned neighbor toa (or b) with a smaller distance (those
have already been retrieved byǫ-INNECP). The algorithm terminates when the number
of results reachesk. Otherwise,ǫ-INNECP is invoked again with a new distanceǫ =
(loop− 0.5) · δ, whereloop is the current loop andδ is the extent of a grid cell.

Figure 3 exemplifies how SECP algorithm works. Assume that 4 cars (inA) and 3
parking slots (inB) remain unassigned after the first loop. Then,ǫ is set to(2−0.5)∗δ,
thus the maximum search range around eacha ∈ P is shown by the gray circles in
Figure 3a. Assume that the order of points inP is (a1, a2, a3, a4). Figure 3b shows the
running steps of this example inloop=2. At the first call ofǫ-INNECP,a1 is assigned
to b1, sinceb1 is the NN ofa1 andb1 is currently unassigned. Then,a2 takesb1 anda1

is put back toP (Lines 16-17 ofǫ-INNECP). This happens because (i)b1 is the NN of
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Algorithm 2 ǫ-bounded INN search and tentative ECP assignment
algorithm ǫ-INNECP(Objecta, Distanceǫ, QueueV , P , P ′)

1: while a.H 6= ∅ anda.H ’s top entry’s distance≤ ǫ do
2: 〈o, odist〉 := deheap(a.H)
3: if o is a cellc then
4: for all objectsb′ ∈ c do
5: insert〈b′, d(a, b′)〉 into a.H

6: else ifo is a rectangleDIRlvl then
7: for each cellc′ in DIRlvl do
8: insert〈c′, dmin(a, c′)〉 into a.H

9: insert〈DIRlvl+1, dmin(a,DIRlvl+1)〉 into a.H
10: else ⊲ o is an objectb
11: if b.λ > odist then ⊲ b prefersa to its previous pair
12: seta.ψ := b anda.λ := odist ⊲ update ECP fora
13: if b.ψ is NULL then
14: insertb into V ⊲ insert to ECP candidatesV
15: else
16: (b.ψ).ψ:=NULL; (b.ψ).λ:=∞ ⊲ unset pair ofb
17: insertb.ψ intoP

18: setb.ψ := a andb.λ := odist ⊲ update ECP forb
19: break ⊲ break while-loop

20: if a.ψ=NULL then ⊲ a has not been assigned in this loop
21: inserta intoP ′

a2 and (ii) a1 is the current ECP pair ofb1 andd(a2, b1) < d(a1, b1). The algorithm
continues and eventually outputs the assignments(a2, b1) and(a1, b2), whereasP ′ =
{a3, a4} are moved to the next loop (so isb3). Althoughǫ-INNECP runs with a larger
searching area in the next loop, it avoids accessing unnecessary elements, because it
continues searching using the current min-heapa.H for eacha ∈ P .

a1

a3

a2

b1

b3
b2

a4

Loop a a.ψ P P ′

2 a1 b1 (a2, a3, a4) -
2 a2 b1 (a3, a4, a1) -
2 a3 b2 (a4, a1) -
2 a4 - (a1) (a4)
2 a1 b2 (a3) (a4)
2 a3 - - (a4, a3)

(a) locations of points (b) Iterations (Lines 10-12)

Fig. 3. An example of SECP (loop=2)

4 Continuous Monitoring of ECP Pairs
In this section, we set up the problem of monitoring ECP pairsdynamically and propose
a solution that uses the SECP algorithm presented in the previous section. To motivate
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our problem setting, we base it on a realistic application, where the ECP join between
a set of moving cars (C) and a set of static parking slots (S) is to be computed and in-
crementally maintained. When the car-parking assignment system starts up, it receives
a number of eventsEr from cars (c ∈ C) in the monitored area, corresponding to as-
signment requests. It then runs a static ECP join algorithm to determine the slots to be
assigned to these cars.

While the system is running, it receives events from cars and pushes them into a
bufferBuf . At regular time intervals (e.g., every few seconds), the events collected in
Buf are handled in batch. Three types of events are collected inBuf : Er events from
cars that have just requested to park,Ep events from cars that have just parked to their
assigned slot, andEm events from cars that have just unparked and they are moving.
Accordingly, we can divide the sets of cars (and slots) into four classes based on their
current state, as specified in Table 3. Figure 4 shows how streaming events or system
decisions define the transitions of cars and parking slots among states. We assume that
at each timestamp the system receives a number ofEr, Ep, andEm events from cars.
First, allEp events are processed, which change the statuses of the corresponding cars
and slots fromCa toCp andSa to Sp, respectively. Then, theEm events are processed
and the corresponding cars inCp and slots inSp will move to classesCm andSf ,
respectively (we will explain the role ofSf shortly). Finally, theEr events move cars
from Cm state toCr state. Unassigned cars inCr and currently assigned cars inCa

must be processed by acontinuousECP algorithm based on the following.

– If an assigned carc ∈ Ca can be assigned a better slot (due to the availability of a
new free parking slot which is closer) then perform this change.

– For all cars inc ∈ Cr, find their ECP pairs after having considered the optimal
re-assignments for cars inCa.

Symbol Description
Cm set of cars which move and do not want to park
Cr set of cars which move and request to park
Ca set of cars which move and are assigned to a parking slot
Cp set of parked cars
Se set of slots which are unoccupied and unassigned
Sa set of slots which are assigned but not occupied
Sp set of slots which are currently occupied
Sf set of slots which are set free at the current timestamp
Table 3.Classification of objects based on their current status

Note that a re-run of the ECP join for the union ofCr ∪ Ca cars could result in
the unfavorable assignment of ac ∈ Ca to a slot which is further than its currently
assigned slot. In order to avoid such situations4, we must run a special version of ECP
that handles cars inCa separately.

Our continuous ECP algorithm (CECP) (see Algorithm 3) is based on the realistic
assumption that only slots inSf can change a current assignment(ca, ca.ψ) for ca ∈ Ca

4 Imagine that you’ve been assigned to a parking and while moving towardsit, the system in-
forms you that you have to change to a further slot!
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Fig. 4.State transition diagrams for objects

to a better one. The rationale is that once assigned to its slot, ca will have moved towards
it, so it is unlikely for a slot inSe (i.e., the empty slots from the previous timestamp) will
suit ca now (since it did not suit it in the previous timestamp). Based on this assertion,
we examine all slots inSf to see if any of them could change the current assignment
of a ca ∈ Ca to a better one. If a slotsf ∈ Sf can replace the current assignment
ca.ψ of a carca, we perform this change and pushca.ψ toSf (since it could update the
assignment of another car). Otherwise, we putsf to Se (the set of empty slots). After
all slots inSf have been examined and the set becomes empty, we perform a static ECP
join for the pair of requesting cars and empty slots (Cr, Se). For this join, we use the
SECP algorithm described in Section 3. We now discuss two optimization techniques
for speeding up the search operation at Line 3 of CECP.

Algorithm 3 Continuous ECP
algorithm CECP(C,S)

1: while Sf 6= ∅ do ⊲ first phase
2: sf := remove slotsf from Sf

3: if for a ca ∈ Ca d(ca, ca.ψ) > d(ca, sf ) then
4: moveca.ψ to Sf ; setca.ψ := sf

5: movesf to Sa;
6: else
7: movesf to Se;

8: SECP(Cr, Se) ⊲ second phase

4.1 Distance-bounded search

For eachsf , CECP scansCa to find a carca ∈ Ca for which sf can replaceca.ψ or
verify that no such car exists inCa. This search can be accelerated if the cars inCa are
checked in increasing distance fromsf . Therefore, before CECP begins for the current
timestamp, we organize the existingCa (from the previous timestamp) in a CPM index.
In addition, we compute the maximum distanceΓ of any assigned pair inCa (i.e.,
Γ = max{d(ca, ca.ψ)|ca ∈ Ca}). This preprocessing phase requires a only single pass
overCa, whereas the resulting index can be used for anysf ∈ Sf .

For eachsf , we examine the objectsca ∈ Ca incrementally according to their dis-
tance tosf (i.e., we perform a NN search on the CPM-index [18]). This way, the chances
to find an assignment forsf early are maximized because assigned cars close tosf are
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examined earlier. More importantly, NN search can terminate as soon asd(sf , ca) ≥ Γ ,
for a neighborca of sf .

4.2 Partitioning in CPM cells

Recall that eachsf ∈ Sf attempts to find anyca ∈ Ca, for which dist(ca, sf ) <
dist(ca, ca.ψ). If the distance betweenca and its assigned slotsa (ca.ψ) is smaller
than the minimum distance betweenca and the boundary of the CMP cellCell(ca)
which enclosesca (i.e., d(ca, ca.ψ) ≤ dmin(ca, Cell(ca))), then ca cannot be re-
assigned to anysf outsideCell(ca). For example, consider three assigned pairs(c0, s0),
(c1, s1), (c2, s2), and a newly available slotsf , as shown in Figure 5. Sinced(c0, s0) ≤
dmin(c0, Cell(c0)) andsf /∈ Cell(c0), we know thatc0 cannot be re-assigned tosf .

We can extend this argument for arbitrary cars as follows. For eachca ∈ Ca, we
definelevel(ca) to be the minimum number of CPM levels aroundCell(ca) such thatca
cannot be re-assigned tosf , for anysf further than these levels. This can be computed
by comparingd(ca, ca.ψ) todmin(ca, L) whereL is the boundary (MBR) of successive
cell layers aroundca. For example, in Figure 5,level(c0) = 0, level(c1) = 1, and
level(c2) = 2.

The idea behind our second optimization is to partition the cars ca in each cell,
based on theirlevel(ca). For example, in Figure 5,c0 belongs to the level-0 partition of
Cell(c0), c1 belongs to the level-1 partition ofCell(c1), andc2 belongs to the level-2
partition ofCell(c2). Then, for eachsf , when we examine a cellC during NN search,
we only check allca ∈ C, for which level(ca) ≥ sf .cpmlevel, wheresf .cpmlevel is
the current search level aroundsf . The furtherC is fromsf the more partitions inside it
will be pruned. For example, in Figure 5, while searching fora better assignment con-
tainingsf , when visitingCell(c0), we don’t have to check its level-0 partition (which
containsc1). Similarly, when visitingCell(c2), we can prune its level-0 and level-1 par-
titions (but not the level-2 partition which containsc2; thereforec2 has to be examined).
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If

else …

slot car

s
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Fig. 5.Partitioning of objects to levels
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5 Experimental Evaluation
In this section we experimentally evaluate the efficiency ofour proposed ECP algo-
rithms using synthetic data. First, we compare the SECP algorithm proposed in Section
3 with two alternative approaches to the same problem. Second, we validate CECP;
the algorithm for continuous monitoring of ECP pairs proposed in Section 4. The algo-
rithms were implemented in C++ and all experiments were performed on a Pentium IV
1.8GHz machine with 512MB memory, running Windows XP.

5.1 ECP Computation

To our knowledge, this is the first paper studying ECP computation, so there are no
previous approaches to compare SECP with. Clearly, computing the distances between
all pairs of points and running the stable-marriage algorithm (SMA) would be very
inefficient. Alternatively, we compare SECP with two alternative methods, which (like
SECP) avoid computing all distances:

– pINN ECP search.This method is similar to our SECP. The difference is that at
each step it (incrementally) fills a list with the nextp nearest neighbors inB for
each unassignedA-point, wherep is an input parameter of the algorithm. Given
thepNN lists of all suchA-points to theirp-th neighbors, letǫ be the smallest of
these distances. We can use this distance as a bound and run Lines 10-12 of SECP
to finalize ECP pairs for some of theA-points. For this purpose, we directly use
thepNN lists, instead of re-computing the nearest points by running ǫ-INNECP. At
each step, after allA-points have been processed, some of them will have found
their ECP pair. For the remaining ones, we continue the INN search until their NN
set contains exactlyp neighbors. For these points we repeat the whole process at
the next step.

– 1INN ECP search. In the initial state of the1INN ECP algorithm, for each unas-
signed querya we maintain a CPM heapH for it and use it to find the nearest CPM
element ofa (this could be a rectangle, a cell, or an object). The nearestelements of
all unassigneda ∈ A are stored in a candidate queue (CQ) which is a priority queue
organizing them in ascending order of the distance. At each step of the algorithm,
we pop the top element from CQ. If this is a rectangle or a cell,we proceed to find
the next nearest CPM element of the corresponding query object and push it into
CQ. If the popped element from CQ is an unassigned object, it must be the ECP
result of the corresponding query (by definition). If it is anassigned one, we ignore
it and get the next nearest neighbor of the query object, which is pushed back to
CQ. This process is continued until all ECP results are computed.

We evaluate the performance of the static ECP algorithms with synthetic datasets
(to study their scalability with respect to various parameters and due to lack of real
data for ECP problems). In each dataset, the coordinates of points are random values
uniformly generated in a[0, 10000] × [0, 10000] space. By default, the total number of
queries and objects is 100K and there are as many objects as queries (i.e.,|A| = |B|
and |A| + |B| =100K). By default the CPM grid used was 128×128 and the value
of p used by thepINN ECP search algorithm is 8 (we found out by experimentation
that this method performs best forp = 8). Thek parameter of the ECP join is set to
k = min{|A|, |B|} (i.e., we seek for the maximum possible assignment).

13



Figure 6 shows the performances of the three static ECP algorithms for CPM grid
sizes|G| × |G| ranging from32 × 32 to 256 × 256. Although the grid sizes with the
best CPU time performance are between64 × 64 and96 × 96, |G| = 128 presents a
good trade-off between the CPU time and the memory usage by all three algorithms.
Furthermore, as we will show later, the128 × 128 grid outperforms other sizes when
larger amounts of data are searched. Note that our SECP algorithm outperforms the
other two methods, while having only slightly higher memoryrequirements than1INN
ECP. The reason behind the good performance of SECP is that (i) unlike pINN ECP,
it searches only up to the necessary nearest neighbors for each query and (ii) it avoids
using and updating the huge CQ heap of1INN ECP.
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Fig. 6.Effect of |G|

Figure 7 compares the three algorithms for various grid sizes and database sizes
|O| = |A| + |B|. The results are consistent with the previous experiment. SECP per-
forms the best in terms of CPU while the costs ofpINN and1INN are more sensitive
to the database size. Note that when the number of objects increases finer grids become
more efficient; this is expected since the space becomes denser and using a finer parti-
tioning pays off. Note that more memory is required for smaller grid sizes, since more
individual objects (instead of cells and rectangles) enterthe search heaps of the queries.
Again, SECP has slightly higher memory requirements than1INN. Finally, Figure 8
shows the performance as a function of different data size ratios (|A|/|B|) and data-
base sizes (|O| = |A|+ |B|). SECP has the best performance and its relative difference
to other methods increases with the database size and|A|/|B| ratio. We do not need
to consider ratios larger than 1, since the ECP computation is symmetric (the smallest
dataset is taken as thequerydatasetA).

5.2 Maintenance of ECP results

We developed a data generator that simulates a real-life car-parking assignment prob-
lem and monitoring problem, based on the specifications of Section 4. The generator
starts with a set of parking slots and a set of cars which are uniformly distributed in a
[0, 10000] × [0, 10000] space. A parking-request probabilityPreq, an unparking prob-
ability Punpark, and a velocityV are assigned to each car. Initially, all cars are mov-
ing to a random direction and they request for parking with probability Preq at each
timestamp. If a carc issues a parking request to the system (Er) it moves to the parking
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request state and the system attempts to assign a slot to it. Once a slots is assigned to
c, c moves towardss according to its velocity and when it reachess it parks, issuing a
Ep event. Afterc has parked, at each subsequent timestamp it hasPunpark probability
to issue aEm event. A car that unparks sets its slot free and starts movingto a direction
90 degrees different than its direction when moving towardsits parking slot. At each
timestamp, the system processes all incoming events according to Section 4.

Table 4 shows the parameters of the generator, their range ofvalues and their default
value in bold font. In each experiment, only one parameter varies while the others are
fixed to their default values. We measured the average CPU cost and memory require-
ments of the CECP algorithm for each timestamp, after letting the system to run for
1000 timestamps.

In the first experiment, we verify the effectiveness of the optimizations of Sec-
tions 4.1 and 4.2 in CECP. These optimizations aim at reducing the re-assignment
cost for cars inCa usingSf (i.e., Lines 1–7 of Algorithm 3). Figure 9 shows the re-
assignment cost of CECP without, with one (CECP+O1 or CECP+O2), and with both
(CECP+O1+O2) optimizations, for different time instants with different sizes ofCa and
Sf . Optimization 2 (Section 4.2) incurs larger improvement compared to optimization
1 (Section 4.1) since it avoids additional accesses. The combination of both methods
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Parameter Values
Number of cars,|C| 600K
Number of slots,|S| 150K

Parking request probability,Preq% 0.5%, 1%, 2%, 4%, 8%

Unparking probability,Punpark% 0.5%, 1%, 2%, 4%, 8%

Average velocity of cars,V 1.67, 3.33,5.27, 6.67, 13.33
Table 4.Stream generation parameters

result in the best performance for CECP at all settings. In the remaining experiments
we use both optimizations in the first phase of CECP.
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Figure 10a shows the average performance per timestamp of both CECP phases for
different values ofPreq. The first phase (i.e., the handling ofSf andCa) uses both
optimizations of Sections 4.1 and 4.2. The second phase (Line 8 of Algorithm 3) is per-
formed by the SECP algorithm. For small values ofPreq the distances between assigned
cars and their slots tend to be large, a fact that increases the cost of CECP’s first phase
(as many re-assignments are performed). LargerPreq reduces the cost of the first phase
due to the decrease of the average distance between assignedpairs. On the other hand,
asPreq increases|Cr| becomes larger and the second phase of CECP becomes more
expensive. Figure 10a shows that the memory requirements ofboth phases of CECP are
slightly affected byPreq, with the same trend as the CPU time difference.

Figure 11 shows the effect ofPunpark on the performance of the algorithm, after
fixing Preq andV to their default values. There is a slight increase on the CPUtime
and memory requirements for both phases asPunpark increases (due to the increase of
|Sf |. Finally, Figure 12 shows that our problem is not sensitive to the objects velocity
(Preq andPunpark are fixed to their default values).

6 Conclusion
In this paper we identified the exclusive closest pairs (ECP)problem, which is a spatial
assignment problem. A motivating application of it is the matching of cars and parking
slots. We proposed an efficient main-memory algorithm for solving the static version of
the problem. In addition, we defined the problem of continuous monitoring ECP pairs in
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a dynamic environment where assignment requests and de-assignment notifications ar-
rive from a stream. We presented a thorough experimental evaluation that demonstrates
the efficiency of the proposed solutions on synthetically generated data that simulate
a real-life dynamic car/parking assignment problem. In thefuture, we will consider
other types of one-to-one assignments (e.g., finding and maintaining an assignment that
minimizes an aggregate distance).
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