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We study the problem of temporal database indexing, i.e., indexing versions of a database table in an evolving

database. With the larger and cheaper memory chips nowadays, we can afford to keep track of all versions of

an evolving table in memory. This raises the question of how to index such a table effectively. We depart from

the classic indexing approach, where both current (i.e., live) and past (i.e., dead) data versions are indexed in

the same data structure, and propose LIT, a hybrid index, which decouples the management of the current

and past states of the indexed column. LIT includes optimized indexing modules for dead and live records,

which support efficient queries and updates, and gracefully combines them. We experimentally show that LIT

is orders of magnitude faster than the state-of-the-art temporal indices. Furthermore, we demonstrate that

LIT uses linear space to the number of record indexed versions, making it suitable for main-memory temporal

data management.
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1 INTRODUCTION
Temporal data management has been studied extensively for at least four decades [6, 7, 20, 24, 38].

Temporal databases track the database evolution for the support of time-travel queries: given a

database query and a past time moment (or time interval), process the query on the database

instance(s) that was (were) valid then. Temporal and multi-version data management re-gained

interest recently [4, 5, 8, 11, 15, 21, 23, 28, 33, 43], due to the increase of cheap storage that makes

it possible to track the versions of a database even in the main memory of a commodity machine.

As an example, consider a database table 𝑇 , storing information about company employees.

The table has three attributes: ID, Name, and Salary. As the database evolves over time, there are

changes in the table, where records are inserted or deleted, or attribute values of existing records

are updated. Figure 1 shows some versions of 𝑇 , where, at time 𝑡0, 𝑇 is initialized to include two
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ID Name Salary

1 Smith 50K

2 Black 30K

ID Name Salary

1 Smith 50K

2 Black 30K

3 James 40K

ID Name Salary

1 Smith 50K

2 Black 35K

3 James 40K

ID Name Salary

2 Black 35K

3 James 45K

after t0 after t1 after t2 after t3

ΕventID Time r.ID r.Salary Event

0 t0 1 50K start

1 t0 2 30K start

2 t1 3 40K start

3 t2 2 30K end

4 t2 2 35K start

5 t3 1 50K end

6 t3 3 40K end

7 t3 3 45K start

Events sequence

Salary

25K

50K

t0 t1 t2 t3

1 (Smith)

2 (Black)

3 (James)
3 (James)

tnow

2 (Black)

tq1 tq2.s tq2.etq0

Geometric representation

Fig. 1. Example of a time-evolving table

records; at time 𝑡1, a new record (with ID=3) is inserted to 𝑇 ; at time 𝑡2, the Salary value of record

2 is updated; and at time 𝑡3, record 1 is deleted and record 2 is updated. The evolution of 𝑇 can

be seen as a stream (time-sequence) of events, also shown in the figure (bottom-left). Insertions

(deletions) are modeled by events of type start (end); each update (i.e., value changes) is modeled

by a deletion immediately followed by an insertion. Finally, the figure (bottom-right) shows the

validity intervals of the records and their values in the Salary attribute, as flat line segments. The

current time is denoted by 𝑡𝑛𝑜𝑤 .

We study the problem of indexing a database table 𝑇 to support time-travel queries. We first

focus on indexing for pure time travel queries, where the objective is to retrieve the record versions

that were valid at a given timepoint or timerange in the past. In our running example (Figure 1),

such a pure timepoint query 𝑞0 is “find all records in 𝑇 , which were valid at time 𝑡𝑞0” and the

answer records are (1, Smith, 50K) and (2, Black, 30K). Then, we study how our indexing scheme

can be extended to temporally index𝑇 with respect to a specific attribute𝑇 .𝐴, for range time travel

queries, that retrieve record versions 𝑟 in 𝑇 which were valid at a given timepoint/timerange and

their 𝑟 .𝐴 satisfies a range query predicate. Such a range-timepoint query 𝑞1 is: “find all records in

𝑇 , which were valid at time 𝑡𝑞1 and have Salary at most 32K.” Query 𝑞1 is geometrically represented

by the vertical line segment starting at time 𝑡𝑞1 and retrieves the records, corresponding to the

line segments intersected by vertical segment starting at 𝑡𝑞1, i.e., record (2, Black, 30K). Another

example is range-timerange query 𝑞2: “find all records in 𝑇 , which were valid anytime between

𝑡𝑞2.𝑠 and 𝑡𝑞2.𝑒 and have Salary between 25K and 43K,” modeled by the rectangle in Figure 1. Again,

the query results are the segments that intersect the rectangle, namely (2, Black, 30K) valid in

[𝑡0, 𝑡2), (2, Black, 35K) valid in [𝑡2, 𝑡𝑛𝑜𝑤), and (3, James, 40K) valid in [𝑡1, 𝑡3). Note that it is important

to find the records and their validity intervals in order to be able to distinguish between results

corresponding to different versions of the same record/entity (e.g., Black in the results of 𝑞2).

Previously proposed temporal indices can be classified to (1) methods for transaction-time and

multi-versioned databases (e.g., MVB-tree [1], Timeline index [24]), (2) data structures for (time)

intervals [3, 12, 14, 17, 26]. Our work belongs to the first category, where the goal is to support

not only the aforementioned queries, but also data version updates in real-time, in a continuously
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evolving database. Indices in the second category offer fast search times, but (1) they do not support

effectively live data versions, i.e., records which are valid now, but we do not know up to when in

the future and (2) are mainly designed for static intervals in a static domain.

Contribution We aim at the efficient support of updates in a continuously evolving database,

and target a much better performance in queries compared to the state-of-the-art access methods

for time-evolving data. Our proposal is LIT, a hybrid index, which indexes live records (i.e., those
which valid at 𝑡𝑛𝑜𝑤), like (2, Black, 35K), by a different data structure compared to dead records

(i.e., those not currently valid), like (2, Black, 30K). Specifically, LIT includes a LiveIndex for the

live records; LiveIndex only needs to index the begin time of the validity of each live record. For

dead records we use a DeadIndex, which includes their validity intervals with both starting and

ending timepoints. When a temporal record is created, it is added to LiveIndex; when the record

dies (i.e., deleted from the temporal table 𝑇 , or updated), it is deleted from LiveIndex and added

to the DeadIndex. Given these operations, LiveIndex supports fast temporal appends (i.e., add a

new live record at the “temporal” end of the index) and deletions, whereas DeadIndex needs only

to support insertions (anywhere in the time domain up to 𝑡𝑛𝑜𝑤), but no deletions (since past data

versions are never deleted from a temporal DB). Both LiveIndex and DeadIndex gracefully adapt

to the ever-evolving time domain. We tuned, implemented, and tested the best implementations

of LiveIndex and DeadIndex and compared LIT with in-memory versions of the state-of-the-art

temporal and multi-version indices [1, 24] on mixed workloads of queries and version updates,

showing that LIT is orders of magnitude faster.

Outline The rest of the paper is organized as follows. Section 2 reviews related work on managing

intervals and database record versions. In Section 3, we define time-travel queries and the record

version data whereon they apply. Section 4 proposes an extension to the state-of-the-art interval

index [12] to manage live and dead record versions in an ever-growing time domain. In Section 5,

we present LIT, the main proposal of this paper for pure time-travel queries. Section 6 discusses

how LIT can be extended to index an attribute 𝐴 of the records besides their temporal validity

intervals, in order to support range time-travel queries. Section 7 discusses the integration of

our main-memory LIT in a DMBS that should support persistence and fault-tolerance (recovery).

Section 8 includes our experimental analysis and, finally, Section 9 concludes the paper.

2 RELATEDWORK
In this section, we review related work on (1) indexing intervals and (2) indexing data versions in a

time-evolving database; we also briefly present other recent work on temporal data management.

2.1 Indexing Intervals
Valid-time temporal databases store record versions which are valid during a well-defined time

interval [32]. This interval could refer to the past, the future, or may start at some time in the past

and finish in the future (for example, an activated credit card which expires at some time in the

future). The order by which records in a valid-time database are inserted, deleted, or updated is not

necessarily related to the validity time of the records.

Managing valid-time records for the evaluation of time-travel queries can then be considered as

a case of indexing intervals (i.e., one-dimensional ranges), which is a well-studied problem with lots

of previous work [3, 12, 14, 17, 26]. Classic data structures for intervals include the segment tree [14]

and the interval tree [17]. They are both binary search trees, built from a static set of intervals and
designed to answer point queries (i.e., find the intervals that contain a given value) in 𝑂 (log𝑛 + 𝐾)
time, where 𝑛 is the number of data intervals and 𝐾 is the number of query results. Their space

complexity is 𝑂 (𝑛 log𝑛) and 𝑂 (𝑛), respectively. The interval tree can be used to also answer range
queries, i.e., find intervals that overlap with a query interval (value range) in 𝑂 (log𝑛 + 𝐾).
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Data structures for multi-dimensional boxes, such as the R-tree [2, 22], can also be used for 1D

intervals. For example, a simple and dynamic data structure for intervals is the 1D-grid, which

divides the space into a number of partitions, either uniformly or adaptively to the interval distri-

bution. Each interval is then assigned to all partitions that overlap with it. A point (or range) query

𝑞 is evaluated by accessing the partition(s) intersecting 𝑞 and reporting the intervals there after

conducting comparisons as necessary. Duplicate results can be avoided using the reference point

technique [16] or after dividing the data in each partition to classes based on whether they begin

inside or before the partition [12, 29, 40]. A data structure which considers both the values and the

durations of the intervals is the period index [3]. The domain is primarily divided by a 1D-grid. For

each grid partition, a hierarchical partitioning of its sub-domain is applied and each interval in the

partition is assigned to a sub-partition according to its position and duration.

An alternative approach is to map intervals to 2D points and then index them by an off-the-shelf

spatial data structure [14, 19]. Specifically, each data interval 𝑠 = [𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑠 .𝑒𝑛𝑑) is mapped to point

(𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑠 .𝑒𝑛𝑑) in the 𝐷 × 𝐷 space, where 𝐷 is the domain of the interval endpoints. Figure 2(a)

shows a number of intervals as points in this 2D space. Since 𝑠 .𝑠𝑡𝑎𝑟𝑡 < 𝑠 .𝑒𝑛𝑑 for each interval 𝑠 , the

points are all above the diagonal connecting points (0, 0) and (𝐷,𝐷). Each point or range query

becomes a rectangular range query in the 2D space, having x- and y-projections [0, 𝑞.𝑒𝑛𝑑] and
[𝑞.𝑠𝑡𝑎𝑟𝑡, 𝐷], respectively, as shown by the shaded rectangle in Figure 2(a). This approach has been

used in previous work on managing text document versions [41] and temporal data [28].

HINT [12] is the state-of-the-art in-memory index for intervals. HINT defines a hierarchy of

𝑚 + 1 levels, such that level ℓ , 0 ≤ ℓ ≤ 𝑚 uniformly divides the domain into 2
𝑚
partitions, as shown

in Figure 2(b) for𝑚 = 3. Each data interval 𝑠 is then normalized and discretized in the [0, 2𝑚 − 1]
domain, and assigned to the smallest set of partitions from all levels that cover 𝑠 . So, 𝑠 is assigned to

at most 2 partitions per level. The intervals in each partition are divided into two classes: those that

start before the partition (replicas) and those that start inside the partition (originals). For instance,
in Figure 2(b), interval 𝑠 is added to the shaded partitions; in 𝑃3,1, 𝑠 is added to the sub-division

𝑃𝑂
3,1, storing original intervals in 𝑃3,1, while in 𝑃2,1 and 𝑃3,4, 𝑠 is stored to the corresponding replica

sub-divisions (𝑃𝑅
2,1 and 𝑃

𝑅
3,4, respectively). Given a point or a range query 𝑞, at every level ℓ of HINT

only the sequence of partitions that intersect 𝑞 are accessed. For the query 𝑞 in Figure 2(b), the

partitions with a solid/bold outline will be accessed. In addition, only for the first such partition in ℓ

both originals and replicas in it are considered, while for the remaining partitions only originals are

considered. Lastly, the number of partitions in the entire index for which comparisons between data

interval endpoints and query endpoints are required is expected to be at most 4 [12]. This means

that the great majority of query results are reported without needing to perform comparisons,

which gives HINT a big performance advantage over other methods.

Deficiencies of interval indices. While HINT [12] is the best performing index, it shares a

weakness of most other interval indexing methods: the domain of the interval endpoints should be

known apriori. If the data domain grows (i.e., as in a temporal database), the partitions have to

potentially be updated to cover the new part of the domain and it might be necessary to change

the assignments of data intervals to partitions to maintain the good properties of the index. On the

other hand, the 2D point transformation approach [41] does not have this problem as a 2D spatial

index such as the R-tree can adapt to a growing domain. Still, the query regions are relatively large

and touch a large part of the 2D space, most of which is sparsely populated, so this approach is

not as efficient as [12]. More importantly, all methods discussed in this section are not appropriate

for indexing live data versions in temporal databases, whose end is unknown (i.e., equal to the

ever-changing 𝑡𝑛𝑜𝑤). Finally, data structures for intervals are not designed for indexing another

attribute at the same time; i.e., they are not appropriate for the range time-travel queries discussed
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end

startq.start q.end

q.start

q.end
P0,0

P1,0 P1,1
P2,1 P2,2 P2,3P2,0

P3,2 P3,3 P3,4P3,0 P3,1 P3,6 P3,7P3,5
s

q

(a) 2D mapping [28, 41] (b) HINT [12]

Fig. 2. Interval indices

in the Introduction. In Section 4, we show how we can adapt HINT to adapt to a growing time

domain and to accommodate live data versions. However, this adaptation cannot cope with the

high overhead of updates; hence, it is inferior compared to our main proposal (LIT).

2.2 Indexing Data Versions
Transaction-time databases [31] manage the evolution history of a database. In Section 1, we gave an

example of such a database containing a table𝑇 with employees records. Indexing transaction-time

DBs is more challenging than valid-time DBs, since there are live records which are valid now,

but we do not know their end-time. These records comprise the current database state and may

be changed or deleted in the future, but we are not aware of the exact time for this. On the other

hand, dead records belong to past states for which we do know their end-time. Records (2, Black,

30K) and (2, Black, 35K) in Figure 1 are examples of dead and live records, having validity [𝑡0, 𝑡2)
and [𝑡2, 𝑡𝑛𝑜𝑤), respectively. In fact, these two records correspond to versions of the same record

(employee Black). Versions of the same record cannot temporally overlap.

Previous work on temporally indexing an evolving DB table extend current-state indices to

support search on all table versions. A representative access method in this category is the Multi-

version B-tree (MVB-tree) [1], which is a forest of B-trees that succinctly capture the values of the

indexed attribute in all versions of records. A comprehensive survey of early indexing methods for

time-evolving databases see [37]. These indices do not only support pure time travel queries, but

also range time travel queries based on a search-key attribute 𝐴 (i.e., from all records 𝑟 which were

valid at some timestamp or period in the past retrieve those for which 𝑣1 ≤ 𝐴 ≤ 𝑣2). To support

such queries, they index simultaneously the temporal versions of the records and their values

on the search key attribute 𝐴. These methods focus on minimizing disk I/O during search; their

main-memory versions are relatively slow in search and updates compared to the interval indices

reviewed in Sec. 2.1.

A more recent index for transaction-time DBs implemented in SAP HANA is the Timeline index
[24], which builds upon the Time index [18] and supports very fast updates. In a nutshell, the

Timeline index is an Events Sequence Table (see Fig. 1) paired with a set of Checkpoint Tables (CT).
A CT at timestamp 𝑡𝑖 materializes the entire set of active record-ids at 𝑡𝑖 . To evaluate a point or

range query, the latest checkpoint before the query is accessed to activate the records in it, and the

Events Sequence Table (EST) is scanned from thereon until the end time of the query to identify

the records that are active at or during the query. The update cost of the Timeline index is minimal

as a database change simply appends an event at the end of the EST; still, the rare CT construction

events have significant cost. Query evaluation using the Timeline index is quite expensive due to
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the overhead of scanning the events and updating the set of active records until the entire query

result is retrieved.

In this paper, we revisit the indexing of transaction-time DB tables (i.e., version data), for pure

time-travel and range time-travel queries, in main memory, focusing on minimizing the CPU cost

in queries and updates. Our approach is a major departure from previous work which indexes dead

and live versions in the same data structure. Instead, we define two separate data structures for live
and dead versions; in principle, versions which die are transfered from the first data structure to the

second. By decoupling indexing for live and dead versions, we can optimize both data structures.

2.3 Other related work
Recent work in temporal databases studies the efficient evaluation of other queries, besides time-

travel selections. Temporal aggregation [25, 30, 34, 39, 42] computes aggregates of valid record

versions (e.g., total project funding) during a query time period (e.g., from 3-23-2021 to 5-15-2023);

the output is one value for each time interval in the query period where the aggregate does not

change. Temporal top-𝑘 queries [21, 41] are a special case of temporal aggregation. A temporal join
[9, 10, 23, 33, 36] finds pairs of record versions (in two different tables) whose validities temporally

overlap and they agree on the join key attribute. Historical what-if queries compute the effect

that a change in a historical record value would have to the evolution of the database [11]. Other

recent related work includes the definition of new temporal semantics [15], system optimizations

in the implementation of temporal and multi-version databases [5, 28, 43], temporal database

benchmarking [4], and novel temporal integrity constraints [8].

3 PROBLEM DEFINITION
We consider a database table 𝑇 , updated over time, by inserting, deleting or updating records. In

this work, we focus on developing indexing for the following types of time-travel queries [37].

Query 1 (pure timeslice/timerangeqery). Given a query time point 𝑞.𝑡 or query time interval
[𝑞.𝑡𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑡𝑒𝑛𝑑], retrieve the records in all versions of 𝑇 which were valid at 𝑞.𝑡 or some time during
[𝑞.𝑡𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑡𝑒𝑛𝑑], respectively, together with their validity intervals.

Query 2 (range timeslice/timerange qery). Given a query time point 𝑞.𝑡 or query time
interval [𝑞.𝑡𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑡𝑒𝑛𝑑], an attribute 𝐴 of 𝑇 , and a range [𝑞.𝐴𝑠𝑡𝑎𝑟𝑡, 𝑞.𝐴𝑒𝑛𝑑], retrieve the records 𝑟
in all versions of 𝑇 which (1) were valid at 𝑞.𝑡𝑖𝑚𝑒 or some time during [𝑞.𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑒𝑛𝑑], respectively,
and (2) satisfy 𝑞.𝐴𝑠𝑡𝑎𝑟𝑡 ≤ 𝑟 .𝐴 ≤ 𝑞.𝐴𝑒𝑛𝑑 together with their validity intervals.

Without loss of generality, we assume query intervals closed at both ends. In addition, for each

change in 𝑇 an update event is generated, which may trigger updates in the indices of 𝑇 . These

update events include: (1) the insertion of a record to 𝑇 , (2) the deletion of a record from 𝑇 , and (3)

the change of one or more attribute values of a record in 𝑇 . An event of type (3) can be modeled as

an event of type (1) immediately followed by an event of type (2).

In a pure-time index that supports Query 1, each of the above event types affects one or more

index entries. Specifically, the insertion of a record 𝑟 at time point 𝑡 inserts a new index entry for

𝑟 .𝑖𝑑 having as validity interval [𝑟 .𝑠𝑡𝑎𝑟𝑡 = 𝑡, 𝑟 .𝑒𝑛𝑑 = 𝑡𝑛𝑜𝑤), where 𝑡𝑛𝑜𝑤 models the current time

point, which is ever-changing. The deletion of record 𝑟 at time 𝑡 updates the last index entry for

𝑟 .𝑖𝑑 from [𝑟 .𝑠𝑡𝑎𝑟𝑡, 𝑡𝑛𝑜𝑤) to [𝑟 .𝑠𝑡𝑎𝑟𝑡, 𝑡). The update of a record 𝑟 at time point 𝑡 triggers a deletion

of 𝑟 at point 𝑡 , followed by an insertion of the new version of 𝑟 with 𝑟 .𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡 .

In an index that supports Query 2, the changes affect the index as described above with the

exception that record updates on attributes other than the indexed attribute 𝑟 .𝐴 have no effect on

the index. In other words, we consider two or more consecutive versions of 𝑟 having the same

value in 𝑟 .𝐴 as the same version.
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As discussed in Section 2.2, there is ample previous work on temporal indexing for time-evolving

database tables. However, these indices have poor search times compared to the interval indexing

approaches of Section 2.1. In Section 4, we propose an extension of the state-of-the-art interval

index to support Query 1 over time-evolving databases. LIT, the main proposal of this paper is first

described in Section 5 for pure time queries (Query 1) and then extended in Section 6 for range

time queries (Query 2).

4 TIME-EVOLVING HINT
A first attempt to define an efficient in-memory index for time-evolving tables is to convert HINT

[12, 13], the state-of-the-art interval index, to a single data structure that can handle both live

and dead intervals (records). We call this data structure time-evolving HINT (te-HINT). A te-HINT
for pure time-travel queries (Query 1) extends HINT in two directions. First, it includes both live

and dead records, whereas HINT indexes only intervals for which the end endpoint is immutable.

Second, it supports an evolving domain for the interval endpoints (i.e., an evolving time domain);

the original HINT requires a pre-defined domain. These differences require some structural changes

and new update operations in te-HINT, compared to HINT [12], which are described next.

4.1 Live and dead sub-partitions
The first difference between te-HINT and HINT is the introduction of live partitions in the former.

Recall from Section 2.1 that in each partition 𝑃ℓ,𝑖 at level ℓ of HINT, the intervals are divided into

two classes: the set of originals 𝑃𝑂ℓ,𝑖 which start inside the domain range of 𝑃ℓ,𝑖 and the set of replicas
𝑃𝑅ℓ,𝑖 , which start before the domain of 𝑃ℓ,𝑖 . In te-HINT, we further classify each interval 𝑠 ∈ 𝑃𝑂ℓ,𝑖 as
live original or dead original, depending on whether its end time point is known; we denote the

sub-partitions that hold live and dead originals by 𝑃
𝑂𝐿

ℓ,𝑖
and 𝑃

𝑂𝐷

ℓ,𝑖
, respectively. Similarly, we maintain

sub-partitions 𝑃
𝑅𝐿

ℓ,𝑖
and 𝑃

𝑅𝐷

ℓ,𝑖
for the replicas of 𝑃ℓ,𝑖 . Dead intervals in 𝑃

𝑂𝐷

ℓ,𝑖
or 𝑃

𝑅𝐷

ℓ,𝑖
are immutable,

which means that they persist in the partition and cannot move to other partitions, whereas live

intervals can be deleted or moved to other partitions.

4.2 Handling updates
There are two types of update events over time: either the creation of a new live interval (as a result

of an insertion/modification to the database), or the finalization of an existing live interval (as a

result of a deletion/modification to the database).

Insertion events. In the case where an insertion event arrives, i.e., a new live interval 𝑠 begins
corresponding to a version of a record 𝑟 , we insert 𝑠 to te-HINT (in live sub-partitions) using the

insertion algorithm of HINT [12], assuming that the end time point of 𝑠 is the end of the current

domain of te-HINT (i.e., a timepoint in the future), called the horizon of te-HINT and denoted

by 𝑡𝐻 . At the same time we insert an entry ⟨𝑟 .𝑖𝑑, 𝑠 .𝑠𝑡𝑎𝑟𝑡⟩ in an auxiliary key-value data structure

H𝑟 .𝑖𝑑→𝑠𝑡𝑎𝑟𝑡 that facilitates finding a live interval in te-HINT given the corresponding record id.

Figure 3(a) shows a simple example of a 2-level te-HINT, holding interval 𝑠1, which corresponds to

a dead record, in partition 𝑃0,0 (sub-partition 𝑃
𝑂𝐷

0,0
). Two new live intervals 𝑠2 and 𝑠3 are created at

𝑡𝑛𝑜𝑤 and they are inserted to partition 𝑃1,0 (sub-partition 𝑃
𝑂𝐿

1,0
).

Deletion events. When a deletion event arrives for record 𝑟 carrying an 𝑠 .𝑒𝑛𝑑 , i.e., an existing

live interval 𝑠 is terminated and becomes dead, we need to remove 𝑠 from the live sub-partitions of

te-HINT and add it to the appropriate dead partitions. For this, we useH𝑟 .𝑖𝑑→𝑠𝑡𝑎𝑟𝑡 to retrieve 𝑠 .𝑠𝑡𝑎𝑟𝑡 ,

using 𝑟 .𝑖𝑑 , and we run the insertion algorithm of HINT for 𝑠′ = [𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑡𝐻 ) to identify the partitions
wherein 𝑠′ appears and remove 𝑠′ from the corresponding live sub-partitions. Subsequently, we use
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Fig. 3. Example of te-HINT

the insertion algorithm again to add 𝑠 = [𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑠 .𝑒𝑛𝑑) to the relevant dead sub-partitions. Note

that some of the partitions identified by the deletion algorithm may differ from those found by the

insertion algorithm, because 𝑠 ≠ 𝑠′. As an example, assume that at time 𝑡𝑛𝑜𝑤 shown in Figure 3(b),

a deletion event for live interval 𝑠2 arrives, i.e., the record version corresponding to 𝑠2 is deleted

from the indexed table 𝑇 . After finding 𝑠2.𝑠𝑡𝑎𝑟𝑡 using H𝑟 .𝑖𝑑→𝑠𝑡𝑎𝑟𝑡 , the partitions (𝑃
𝑂𝐿

1,0
) where 𝑠2 is

stored as live are identified using interval [𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑡𝐻 ) and 𝑠2 is removed from them, and, finally, 𝑠2

becomes [𝑠2.𝑠𝑡𝑎𝑟𝑡, 𝑡𝑛𝑜𝑤) and is re-inserted to te-HINT as dead (i.e., to partition 𝑃
𝑂𝐷

1,0
).

Domain Extension. te-HINT is initialized to have a single level (0) which includes a single partition

𝑃0,0. The timespan [0, 𝑡𝐻 ) of the partition is small (e.g., one hour) and depends on the application.

In both insert and delete events, it may happen that the current time point 𝑡𝑛𝑜𝑤 when the update

takes place is beyond the current horizon 𝑡𝐻 of te-HINT. Such an update triggers the extension of

the (time) domain that te-HINT covers. The easiest way to accommodate this extension is to double

the domain (and the horizon 𝑡𝐻 ), by adding one more level to te-HINT (and repeat as necessary).

Specifically, we add a new level 0 to the index and add 1 to the identifiers of existing levels (i.e.,

previous level 0 becomes level 1, level 1 becomes level 2, etc.). This does not affect the identifiers

and contents of existing partitions at each level ℓ , but doubles the number of possible partitions at ℓ .

Subsequently, we add all live intervals from all partitions as live replicas to partition 𝑃1,1, except from
those in old partition 𝑃0,0 which are moved to the new 𝑃0,0. By this, we minimize the replication of

live intervals and also minimize the necessary updates when new events arrive. Essentially, live

intervals are moved only when there is a domain extension. Continuing the previous example,

assume that a new live interval 𝑠4 is created at 𝑡𝑛𝑜𝑤 of Figure 3(c). Since 𝑡𝑛𝑜𝑤 is greater than or equal

to 𝑡𝐻 , as per the previous state of te-HINT (Figure 3(b)), 𝑡𝐻 is doubled, one more level is added to

te-HINT, and the current partitions are renamed (i.e., previous 𝑃0,0 now becomes 𝑃1,0, etc.), without

any change in their contents. Existing live interval 𝑠3 is added to the new partition 𝑃
𝑅𝐿

1,1
. The new

interval 𝑠4 is added using the insertion algorithm to 𝑃
𝑂𝐿

1,1
.

5 THE LIT HYBRID INDEX
Capitalizing on the original HINT, te-HINT will deliver excellent performance on pure time-travel

queries, as shown in [12, 13]. But, te-HINT will suffer from slow updates, mainly due to the insertion

(and transfer) of intervals to (and beween) multiple partitions when record versions are initiated

(terminated). In view of this shortcoming, we design a hybrid index, termed LIT, which decouples

the indexing of live and dead versions. For now, we describe LIT for pure time-travel queries (Query

1 in Section 3). Its extension for range time-travel queries (Query 2) will be discussed in Section 6.

Overview of LIT Figure 4 shows an overview of LIT, which comprises two components; a LiveIndex

denoted byI𝐿 , storing all current record versions (indexed by their 𝑠𝑡𝑎𝑟𝑡 timepoint) and a DeadIndex,
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Fig. 4. Overview of LIT

denoted by I𝐷 , for the dead (i.e., past) record versions (indexed by their validity intervals). Both

components are dynamic, albeit handling different updates. The stream of updates to the indexed

table 𝑇 is consumed by the LiveIndex I𝐿 . Specifically, when a new record version is created (i.e.,

an insertion to 𝑇 ), the start point 𝑠 .𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑛𝑜𝑤 of its validity interval is inserted to I𝐿 ; this event
type has no impact on the DeadIndex I𝐷 . On the other hand, when a record version “dies” (i.e., a

deletion from 𝑇 ), the corresponding entry is removed from I𝐿 and an entry is inserted to I𝐷 for

the dead record version. As already mentioned, record updates are treated by terminating (i.e.,

“deleting”) the current (live) version of the record and inserting a new version.

To evaluate a pure time-travel query 𝑞 = [𝑞.𝑡𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑡𝑒𝑛𝑑] both I𝐿 , I𝐷 need to be probed. As

the two components index disjoint sets of record versions, these probing tasks are completely

independent. Specifically, we probe the LiveIndexI𝐿 using only𝑞.𝑡𝑒𝑛𝑑 ; every live record that started
before 𝑞.𝑡𝑒𝑛𝑑 is guaranteed to be part of the query result. In contrast, the DeadIndex evaluates a

typical interval range query to find all dead record versions with a validity interval that overlaps 𝑞.

In what follows, we elaborate on the internals of the LIT components I𝐿 and I𝐷 , and describe their

key operations.

5.1 The LiveIndex Component
The LiveIndex I𝐿 offers three key operations. Specifically, I𝐿 is updated to index a new live

record (Function OpenInterval) or updated to un-index a record version that just died (Function

CloseInterval). I𝐿 also evaluates pure time-travel queries (Function QueryLive). To efficiently

implement these functions, I𝐿 defines an internal identifier 𝑟 .𝑛𝑢𝑚 for each live record version 𝑟 in it.

The 𝑛𝑢𝑚 identifier is a serial number that captures the order in which the version 𝑠𝑡𝑎𝑟𝑡 timepoints

were read from the input stream of updates; 𝑛𝑢𝑚 is used to (1) locate a live version to be deleted

from I𝐿 when a delete event arrives for it, and (2) define an implicit order of the live versions based

on their 𝑠𝑡𝑎𝑟𝑡 points, used to index them in I𝐿 . LiveIndex also maintains an auxiliary hash table

H𝑟 .𝑖𝑑→𝑛𝑢𝑚 , which returns the internal 𝑛𝑢𝑚 id, for the live version of a given record 𝑖𝑑 .

5.1.1 Data structures. We discuss three alternative data structures for LiveIndex, aiming at both

fast updates and efficient time-travel queries. We experimentally compare them in Sec. 8.2.1.

Array. The first alternative is to use an append-only array to index live records in sequential

fashion. Updates can be efficiently handled in constant time, as follows. Function OpenInterval
simply appends an entry at the end of the array for a new live record version, while CloseInterval,
drops a tombstone on the existing entry for a newly closed record version. This entry can be
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directly accessed using the 𝑛𝑢𝑚 of the record, which is obtained by probing the record 𝑖𝑑 against

H𝑟 .𝑖𝑑→𝑛𝑢𝑚 . To answer queries, theQueryLive function scans the dynamic array from its first entry,

comparing the 𝑠𝑡𝑎𝑟𝑡 of every live record to 𝑞.𝑡𝑒𝑛𝑑 while ignoring the tombstones. By construction,

the dynamic array stores the live records sorted by their 𝑛𝑢𝑚, which means that the records are

also implicitly sorted by their 𝑠𝑡𝑎𝑟𝑡 , in increasing order. Hence, QueryLive terminates the scan

when the first record that started after 𝑞.𝑡𝑒𝑛𝑑 is accessed.

Search tree. A second alternative data structure for the LiveIndex I𝐿 is a search tree (e.g., a B+-tree),
using 𝑛𝑢𝑚 as the search key. With such a search tree in place, we no longer need to lazy-update I𝐿
when a record version dies. Instead, CloseInterval probes the tree using the 𝑛𝑢𝑚 identifier of the

record (obtained from H𝑟 .𝑖𝑑→𝑛𝑢𝑚), and then directly removes the corresponding entry. As a search

tree typically supports scanning its entries in the search key order, to answer a [𝑞.𝑡𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑡𝑒𝑛𝑑]
query, we scan and report from the first entry until we find the first that has its 𝑠𝑡𝑎𝑟𝑡 after 𝑞.𝑡𝑒𝑛𝑑 .

Enhanced hashmap. In terms of updating (Functions OpenInterval and CloseInterval), we gener-
ally expect the sorted array to outperform the search tree, due to its simplicity. Querying efficiency

depends on the characteristics of the input stream; update-heavy workloads create a large amount

of tombstones to the array, rendering it slower than the search tree. In view of the above, we should

consider a data structure, which will exhibit competitive update time to the array and have lower

query time. To this end, we suggest using an enhanced hash table, similar to the Gapless hashmap
proposed in [35] or the java.util.LinkedHashMap in Java. Such structures can handle insertions

and deletions using 𝑛𝑢𝑚 in constant time (typical for hash tables), but also offer scan time linear to

the number of contained entries, which facilitates fast query processing. In particular, the Gapless
hashmap uses a contiguous memory area to store the elements. Insertions append new elements at

the end of this area, while deletions are handled by swapping the deleted element with the last one

and reducing the array size by one. Scanning is fast as it steps through the contiguous storage area

sequentially. Different to both the array and the search tree, the hashmap does not maintain the

entries sorted by their 𝑛𝑢𝑚, and therefore, a full scan is required to answer time-travel queries.

5.1.2 Temporal partitioning of LiveIndex. Given a query, a LiveIndex implemented by any of the

data structures in Section 5.1.1 would need to conduct comparisons for a large number of live

versions (independently of the underlying data structure), since there is no way to directly output

versions guaranteed to start before 𝑞.𝑡𝑒𝑛𝑑 . In view of this, we propose a temporal partitioning of

the LiveIndex to boost time-travel queries. The key idea is to maintain I𝐿 as a chain of temporal
partitions or simply buffers, instead of a single one, such that all 𝑛𝑢𝑚’s in a buffer are smaller than

all 𝑛𝑢𝑚’s in the next buffer. Hence, the 𝑠𝑡𝑎𝑟𝑡 points of live record versions in a buffer are smaller

than or equal to the 𝑠𝑡𝑎𝑟𝑡 points of live versions in the next buffer. For each query, only the buffers

that may contain results are accessed and even more importantly, comparisons are conducted only

for the last buffer. This partitioning of the LiveIndex I𝐿 is orthogonal to the data structure used for

each buffer.

Duration-based partitioning. An intuitive partitioning approach for I𝐿 is to consider a duration
constraint 𝐷𝐿 . Under this, I𝐿 essentially resembles a uniform 1D-grid of equi-sized partitions, one

for each buffer. A buffer 𝐵𝑖 contains the live entries that started inside the [𝑖 ·𝐷𝐿, (𝑖 + 1) ·𝐷𝐿) range
of time units. Given a [𝑞.𝑡𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑡𝑒𝑛𝑑] time-travel query, we first determine the bucket 𝐵𝑒𝑛𝑑 that

contains the 𝑞.𝑡𝑒𝑛𝑑 timestamp; this can be done in constant time by a simple ⌊𝑞.𝑡𝑒𝑛𝑑/𝐷𝐿⌋ division.
The records inside the buffers before 𝐵𝑒𝑛𝑑 can be directly reported as results; by construction of the

LiveIndex, these records started before 𝑞.𝑡𝑒𝑛𝑑 . In contrast, comparisons against 𝑞.𝑡𝑒𝑛𝑑 are required

for the live records inside the last 𝐵𝑒𝑛𝑑 , i.e.,QueryLive handles 𝐵𝑒𝑛𝑑 as if the LiveIndex comprised a

single buffer. Regarding updates, inserting a new live record version to I𝐿 (Function OpenInterval)

Proc. ACM Manag. Data, Vol. 2, No. 1, Article 111. Publication date: February 2024.



LIT: Lightning-fast In-memory Temporal Indexing 111:11

B0 B1 B2 B3
<start
<num

<start
<num

<start
<num

0 154 712 945

0 99
timespan

100 199
timespan

200 299
timespan

300 399
timespan

On-top index (num→Bi)

OpenInterval(r.id=Bob)
tnow=360

Hr.id→num

…
Bob→980

…

CloseInterval(r.id=Bob)
tnow=390

next num=980

O1: insert 
(Bob,980)

O2: insert 
(980,360)

C1: find(Bob)

C2: findbuffer(980)

C3: find&delete(980)
C4: InsertDeadInterval

(Bob, 360, 380)

QueryLive(q.st, q,end=286)

Dead
Index

Q1: scan&report(Bi, i<286 div 100)
Q2: scan&compare(B286 div 100)

(a) duration-based

B0 B1 B2 B3
≤start
<num <num <num

0 34 245 712

0 99
num

100 199
num

200 299
num

300 399
num

On-top index (start→Bi)

OpenInterval(r.id=Bob)
tnow=860

Hr.id→num

…
Bob→340

…

CloseInterval(r.id=Bob)
tnow=982

next num=340

O1: insert 
(Bob,340)

O2: insert 
(340,860)

C1: find(Bob)

C2: find&delete(340)

C3: InsertDeadInterval
(Bob, 860, 982)

QueryLive(q.st, q,end=286)

Dead
Index

Q2: scan&report(B0,B1)
Q3: scan&compare(B2)

≤start ≤start

Q1: findbuffer(286)

(b) capacity-based

Fig. 5. LiveIndex: partitioning

is not significantly affected by the above partitioning, as the new entry will be added to the last

buffer, i.e., the one containing the most fresh records; extra action is required when 𝐷𝐿 time units

have already past and a new buffer needs to be created first. CloseInterval is more challenging,

as we need to fast determine the buffer which contains the 𝑠𝑡𝑎𝑟𝑡 of the dying record version. For

this purpose, we define an auxiliary, lightweight structure on top of the buffers. This structure

stores a ⟨𝑛𝑢𝑚, 𝑝𝑡𝑟 ⟩ entry for each buffer 𝐵 of I𝐿 , where 𝑛𝑢𝑚 is the lowest internal identifier of a

live record version inside 𝐵 and 𝑝𝑡𝑟 is a pointer to directly access 𝐵 in the chain. Recall at this point,

that LiveIndex is organized by 𝑛𝑢𝑚 and so is its on-top structure, by construction. When a version

of record 𝑟 .𝑖𝑑 dies, CloseInterval finds its 𝑛𝑢𝑚 usingH𝑟 .𝑖𝑑→𝑛𝑢𝑚 , then binary-searches the on-top

structure using 𝑟 .𝑛𝑢𝑚 and, lastly, follows the buffer pointer to locate the entry for 𝑛𝑢𝑚 inside the

corresponding buffer 𝐵. After deleting the entry from I𝐿 , CloseInterval, forwards the dead version

for insertion to I𝐷 . OpenInterval may update the on-top structure when the last buffer is full and a

new is created. Figure 5(a) exemplifies a duration-based partitioned LiveIndex, with the necessary

steps taken for each of the OpenInterval, CloseInterval, and QueryLive operations.

Capacity-based partitioning. Duration-based partitioning may define unbalanced buffers with

respect to the number of contained entries, rendering unbalanced query costs. An alternative

partitioning approach that results in balanced partitions is to use a capacity constraint𝐶𝐿 , allowing

each buffer to hold at most 𝐶𝐿 entries.
1
Different to the duration-based partitioning discussed

1
For array structure, tombstones are not excluded when counting the contained records.
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above, capacity-based partitioning can directly access the needed buffers during both types of

updates. ForOpenInterval, we simply append the new live record version at the last buffer, while for

CloseInterval, a simple 𝑛𝑢𝑚/𝐶𝐿 division exactly determines which buffer 𝐵 contains the recently

deceased version. Note that if the last buffer is already full, OpenInterval will create a new buffer

𝐵𝑛𝑒𝑤 after the last one and simply append the new live version in 𝐵𝑛𝑒𝑤 .

On the other hand, it is no longer possible to directly determine the 𝐵𝑒𝑛𝑑 buffer for a [𝑞.𝑡𝑠𝑡𝑎𝑟𝑡,
𝑞.𝑡𝑒𝑛𝑑] query. In view of this, we define an on-top structure, which stores a ⟨𝑠𝑡, 𝑝𝑡𝑟 ⟩ entry for

each buffer 𝐵 of the LiveIndex, where 𝑠𝑡 is the lowest 𝑠𝑡𝑎𝑟𝑡 timepoint of a record version inside 𝐵

and 𝑝𝑡𝑟 is a pointer to directly access 𝐵. Note that the on-top search structure is by construction

sorted by version 𝑠𝑡𝑎𝑟𝑡 and that it may contain multiple entries for the same 𝑠𝑡𝑎𝑟𝑡 . Hence, given a

[𝑞.𝑡𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑡𝑒𝑛𝑑] query,QueryLive first binary-searches the on-top structure to identify the first
buffer that could contain 𝑞.𝑡𝑒𝑛𝑑 and sets this as 𝐵𝑒𝑛𝑑 . With 𝐵𝑒𝑛𝑑 , the function proceeds similarly to

the duration-based LiveIndex, by directly reporting records inside every buffer before 𝐵𝑒𝑛𝑑 and

conducting comparisons against 𝑞.𝑡𝑒𝑛𝑑 for 𝐵𝑒𝑛𝑑 . Lastly, besides updating buffers, OpenInterval
and CloseInterval also update accordingly the on-top structure. Figure 5(b) illustrates a detailed

example of the capacity-based partitioning of LiveIndex and operations on it.

5.1.3 Optimizations. As the timeline evolves and live records die, buffers may become under-

utilized or even completely empty. To deal with this issue, reorganization can be employed for

both types of partitioning. For the duration-based LiveIndex, such a sparsity issue is expected to

especially occur in the first (early) buffers. Hence, we could merge adjacent sparse buffers into

one and accordingly update also the on-top structure.
2
To answer time-travel queries, an extra

auxiliary structure is now needed to capture the time-range covered by this new buffer, as the

𝑞.𝑡𝑒𝑛𝑑/𝐷𝐿 division can only work for un-merged buffers. Intuitively, a second on-top structure

maintaining the lowest 𝑠𝑡𝑎𝑟𝑡 inside a buffer will allow us to deal with several rounds of buffer

merging. For the capacity-based LiveIndex, one solution would be to define a lower-bound for the

capacity of a buffer. When the capacity of a buffer drops below e.g., 50% of 𝐶𝐿 , we mark the buffer

and merge it with either its predecessor or its follower (if one of them is also marked), and then

update accordingly the on-top structure. Finally, similar to the duration-based LiveIndex, a new

on-top structure is again required, as the 𝑛𝑢𝑚/𝐶𝐿 division no longer works. This new structure

will hold the lowest 𝑛𝑢𝑚 inside a buffer, and will be binary searched by CloseInterval.

5.2 The DeadIndex Component
We now turn our focus on indexing dead record versions. Recall that these versions were evicted

from the LiveIndex I𝐿 by the CloseInterval function, after their 𝑒𝑛𝑑 was read from the input

stream. The DeadIndex I𝐷 offers two key operations. Specifically, (1) I𝐷 is updated to index a

new dead record version (Function InsertDeadInterval) and (2) it evaluates time-travel queries

(Function QueryDead). As the timeline evolves and new dead versions are added to I𝐷 , its domain

grows. Under this, a straightforward solution for indexing dead record versions is the 2D point

transformation approach from [41] as discussed in Section 2.1, where a 2D spatial index such as

the R-tree, can adapt to the growing domain.

An alternative solution is to modify the state-of-the-art interval index HINT [12, 13] to adapt to a

growing domain. Section 4.2 already discusses this for te-HINT. Implementing domain extension for

a HINT DeadIndex is simpler, because we do not have to deal with transfers of live intervals between

buckets as in te-HINT. Instead, we only have to add one more level and double the horizon 𝑡𝐻 , as

soon as we cannot accommodate a newly inserted interval 𝑠 having at least one of its endpoints

2
The number of buffers to be merged can be seen as a tunable system parameter.
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Fig. 6. Steps of dropping last level𝑚 of HINT (𝑚 = 2)

after 𝑡𝐻 . As in te-HINT, after the expansion operation, the existing partitions are renamed to reflect

their new level, but their contents remain intact.

Increasing the number of levels in a HINT that implements I𝐷 to a very large number may

negatively affect its search performance and size, as there could be far too many partitions for the

number of indexed intervals [12]. A naïve approach to reduce the number of HINT levels by one

is to construct a new HINT with one less level and insert all intervals in it. We propose a more

efficient algorithm for deleting the lowest level of HINT, which progressively moves intervals from

the deleted level to an appropriate partition above, while maintaining the HINT property (i.e., each

interval 𝑠 should be assigned at the smallest set of partitions from all level that define 𝑠). Each

interval at level𝑚 (to be deleted) is stored in at most two level-𝑚 partitions. Intervals that begin

and end in exactly one partition 𝑃𝑚,𝑖 are directly moved to 𝑃𝑚−1,𝑖÷2 and no further action is needed.

This is the case of 𝑠2 in Figure 6(a) which is moved to 𝑃1,0 in Figure 6(b). Intervals that begin in a

𝑃𝑚,𝑖 , for an odd 𝑖 , are temporarily moved to 𝑃𝑚−1,𝑖÷2; the same holds for intervals that end in a 𝑃𝑚,𝑖 ,

for an even 𝑖 . For instance, 𝑠3 in Figure 6(a) is temporarily moved to partition 𝑃1,1 because it ends

in 𝑃2,2, while 𝑠4 is temporarily moved to both 𝑃1,0 and 𝑃1,1 (see Figure 6(b)). Temporary partitions

𝑃𝑚−1, 𝑗 at each level ℓ < 𝑚 for an even 𝑗 are set-intersected with the next partition at the same

level holding replicas, at the potential of moving intervals to the previous level ℓ − 1 as finalized

or temporary. Symmetrically, temporary partitions 𝑃ℓ, 𝑗 at level ℓ for an odd 𝑗 are set-intersected

with the previous partition 𝑃ℓ, 𝑗−1. While there are temporary partitions at each level, intervals

may propagate upwards until their correct partition is found. For instance, intervals 𝑠3 and 𝑠4,

which, after the deletion of level 2, were stored in (temporary) partitions 𝑃1,0 and 𝑃1,1 at level 1 are

eventually propagated at 𝑃0,0 of level 0, as shown in the final HINT at Figure 6(c). A pseudocode of

the drop level algorithm is skipped due to space constraints. Note that the same method can be

used to delete the last level of te-HINT.

6 INDEXING RECORD ATTRIBUTES
We now discuss how to modify LIT and index record versions on a specific attribute 𝐴 for range

time-travel queries, where not only a timepoint/range is specified but also a selection predicate on

𝐴. We denote a LIT that indexes an attribute 𝐴 (besides time) by a-LIT.

Before describing a-LIT we discuss the requirements of a LiveIndex and a DeadIndex in the

presence of the attribute 𝐴. Figure 7 illustrates the information that should be stored about live

and dead record versions. As shown in Figure 7(a), to be able to answer range time-travel queries

against LiveIndex, we need for each live version its 𝑠𝑡𝑎𝑟𝑡 point and its 𝐴-value. So, the live version

is a 2D point in the time-𝐴 space. A range time-travel query can then be modeled as a rectangular

range {[𝑡0, 𝑞.𝑒𝑛𝑑], [𝑞.𝐴𝑠𝑡𝑎𝑟𝑡, 𝑞.𝐴𝑒𝑛𝑑]} in the time-𝐴 space. Regarding the DeadIndex, we need for

each dead version its 𝑠𝑡𝑎𝑟𝑡 , 𝑒𝑛𝑑 and its 𝐴-value. Figure 7(b) illustrates some dead versions in the

time-𝐴 space and a range time-travel query, which is modeled as a 2D rectangle, defined by the

query bounds.
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Fig. 8. Live and Dead space 𝐴-partitioning

6.1 The LiveIndex Component
The LiveIndex of a-LIT should index the 𝑠𝑡𝑎𝑟𝑡 timepoints of the current record versions and their

values on 𝐴 simultaneously.

2D space index. A natural approach to do so would be to use a native index for 2D points

(e.g., kd-tree, quadtree, R-tree). Besides the 2D-space index, we also need an auxiliary structure

H𝑟 .𝑖𝑑→(𝑠𝑡𝑎𝑟𝑡,𝐴) that maps record 𝑖𝑑𝑠 to the 𝑠𝑡𝑎𝑟𝑡 points of their live versions and their 𝐴 values.

Otherwise, it would not be possible to find and remove an indexed point from the 2D index, when

the corresponding version dies (i.e., CloseInterval). Hence, the OpenInterval operation inserts the

(𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑛𝑜𝑤, 𝐴) entry of a new live version to both the 2D index and H𝑟 .𝑖𝑑→(𝑠𝑡𝑎𝑟𝑡,𝐴) . Operation
CloseInterval uses H𝑟 .𝑖𝑑→(𝑠𝑡𝑎𝑟𝑡,𝐴) to find the coordinates of the ending version in the 2D index,

searches and removes it, and relays the dead record version to DeadIndex. Finally,QueryLive issues
a 2D query to the 2D index to retrieve the qualifying live versions.

Use multiple pure time indices. Another indexing approach is to divide the domain of 𝐴 into

partitions (e.g., equi-width) and develop a LiveIndex as described in Section 5.1 for each partition.

The data structures and temporal partitioning methods are defined separately for each partition.

The only difference is that the mapping mechanism H𝑟 .𝑖𝑑→𝑛𝑢𝑚 of record 𝑖𝑑𝑠 to 𝑛𝑢𝑚 values should

also capture the 𝐴-partition identifier wherein a live version is located. By this, CloseInterval can
identify and delete a live version from the correct𝐴-partition of the LiveIndex. Figure 8(a) illustrates

an 𝐴-partitioning of the live data space into four divisions (𝑃𝐴0 to 𝑃𝐴3). For each of them, we can

define a pure temporal LiveIndex, as described in Section 5.1. Given a range time-travel query, we

use the selection predicate on 𝐴 to identify the partitions that overlap with the query range in the

𝐴-domain (i.e., 𝑃𝐴1, 𝑃𝐴2, and 𝑃𝐴3 in Fig. 8(a)). If a partition is entirely covered by the 𝐴-range of
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the query (e.g., partition 𝑃𝐴2), we evaluate the temporal part of the query, as described in Sec. 5.1.

Otherwise (e.g., in 𝑃𝐴1 and 𝑃𝐴3), for each result obtained by the LiveIndex of the partition, we verify

the𝐴-predicate of the query. This verification is applied for at most two𝐴-partitions containing the

query boundaries. Updates on this 𝐴-partitioning approach are expected to be faster than updates

on a 2D index, due to the fast hashing mechanisms it incorporates.

6.2 The DeadIndex Component
Now we turn to DeadIndex options for a-LIT. Like before, we can follow either a pure geometric

approach or apply an 𝐴-partitioning technique to take advantage of the efficiency of pure time

indices.

3D index. A straightforward approach is to index the line segments of the dead space (see Fig. 7(b))

directly by a native 2D index for geometric objects (e.g., an R-tree). However, such a method is not

expected to perform well because some record versions in temporal databases are long-lived and
correspond to very long segments that require large node MBRs, rendering the index inefficient. A

more effective approach is to model each dead version as a 3D point (𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑠 .𝑒𝑛𝑑, 𝑟 .𝐴) in the (time,

time, 𝐴) space, and index these points using a 3D index (e.g., a 3D R-tree). Figure 2(a) shows how

this can be done for pure time intervals; the idea is to add one more dimension for 𝐴. Every query

in this 3D space is then modeled as a ( [0, 𝑞.𝑡𝑒𝑛𝑑], [𝑞.𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑛𝑜𝑤], [𝑞.𝐴𝑠𝑡𝑎𝑟𝑡, 𝑞.𝐴𝑒𝑛𝑑]) 3D box.

Use multiple pure time indices. Similar to the case of LiveIndex, we may also partition the

domain of𝐴 to define a number of partitions, as shown in Figure 8(b). For each partition (e.g., 𝑃𝐴0 to

𝑃𝐴3), we use an optimized interval index, such as the modified HINT to support domain extension,

discussed in Section 5.2. Given a range time-travel query, we first identify the 𝐴-partitions that

overlap with the query 𝐴-range (e.g., 𝑃𝐴1, 𝑃𝐴2, 𝑃𝐴3) and then evaluate a pure time-travel query in

each such partition, verifying the 𝐴-predicate against its results if necessary (e.g., in 𝑃𝐴1 and 𝑃𝐴3).

7 PERSISTENCE, RECOVERY, AND CONCURRENCY CONTROL
LIT is a main-memory index that facilitates real-time analytics, high-performance querying, and

handling large volumes of rapidly changing temporal data. However, since main memory is volatile,

we should ensure durability and recoverability, after power or system failures. Figure 9 illustrates

how LIT is integrated into a temporal database system, to support fault tolerance and recovery. For

this, each update event is written to a log file. In addition, a backup of LIT is taken periodically

and written to the hard disk for persistence and faster recovery. The backup is merely a dump of
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Table 1. Characteristics of tested datasets

TAXIS-F TAXIS-P BIKES FLIGHTS WILDFIRES BOOKS

Cardinality 169290307 169290307 101472950 61328124 778410 2050707

Domain extent 1 year 1 year 8 years 10 years 24 years 1 year

Size [MBs] 5498 5498 3247 1963 26 66

t
e
m
p
o
r
a
l

Min duration 1 min 1 min 1 min 5 min 1 min 1 hour

Max duration 5 hours 5 hours 7.5 months 12 hours 4 months 1 year

Avg. duration 12 mins 12 mins 16 mins 2.5 hours 28 hours 67 days

s
e
a
r
c
h
-
k
e
y Description trip fare [USD] passengers count rider’s birth year departure delay [secs] fire extent [acres] num of books lent

Type real integer integer real real integer

Value range [2.5, 235.5] [1, 6] [1940, 2005] [0, 233400] [0.0001, 606945] [1, 38]
Distribution normal zipfian normal zipfian zipfian zipfian

Table 2. Query extents; default values in bold

input query extent
stream temporal search-key
TAXIS-F 1, 6, 12, 18, 24 [hours] 3, 5, 10, 30, 50 [dollars]
TAXIS-P 1, 6, 12, 18, 24 [hours] 1, 2, 3, 4, 5 [passengers]
BIKES 1, 6, 12, 18, 24 [hours] 10, 20, 30, 40, 50 [years]

FLIGHTS 1, 2, 3, 4, 5 [days] 5, 10, 30, 60, 120 [mins]

WILDFIRES 1, 7, 14, 21, 30 [days] 10, 50, 100, 500, 1000 [acres]
BOOKS 1, 7, 14, 21, 30 [days] 5, 10, 15, 20, 25 [books]

the main memory data structures for LiveIndex and DeadIndex. Assuming that the last checkpoint

where the last backup has been taken is 𝑡𝐵 , to recover LIT at a time 𝑡𝑛𝑜𝑤 > 𝑡𝐵 (e.g., due to a power

failure at that time), we first load the backups of LiveIndex and DeadIndex in main memory, then

find the first event after 𝑡𝐵 in the log file, and finally ingest all events after 𝑡𝐵 to evolve LiveIndex

and DeadIndex to their current state at 𝑡𝑛𝑜𝑤 . Since all states up to 𝑡𝐵 are captured by the LIT backup,

we can even “cleanup” the log file by removing all entries up to 𝑡𝐵 , to avoid searching it.

As in SAP HANA [24], concurrency control is operated by the transaction manager of the DBMS,

which manages the current database state, and is independent to our proposed index. LIT ingests

committed updates by the transaction manager, as shown in the Events sequence table of Figure

1. As the time-travel queries refer to the past, they do not conflict with insertions, which always

happen at 𝑡𝑛𝑜𝑤 . So, a newly inserted item cannot be a query result. Time-travel queries do not

conflict with deletions/modifications, since only the start timepoint of a currently deleted item

determines whether it is the result of a concurrent query. Regardless whether the item is in the

LiveIndex (before the deletion) or in the LiveIndex (after the deletion) it will be reported as a query

result if its start is before the end timepoint of the query. However, when a query is evaluated

after the deletion of an item from LiveIndex and before the insertion of that item to DeadIndex, we

may get incorrect query results. To ensure correctness, the migration of an item from LiveIndex to

DeadIndex is done serially (i.e., it is not interleaved with concurrent queries). The total cost of a

migration is extremely low (around 150 nanoseconds, as shown in our experiments), so the serial

migration requirement does not affect the performance.

8 EXPERIMENTAL ANALYSIS
We last present our experiments. All indices were implemented in C++3, compiled with gcc (v9.4.0)
and -O3, -mavx, -march=native.4 The tests ran on an AMD Ryzen 9 3950X, at 3.5GHz with 1MB L1

Cache, 8MB L2 Cache, 64MB L3 Cache, running Ubuntu Linux.

3
Code available in https://github.com/GiorgosChristodoulou/LIT.

4
Timeline was re-implemented according to the details provided in [24].
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8.1 Setup

Datasets. We experimented with six real temporal datasets with an additional search-key𝐴; Table 1

summarizes their characteristics. TAXIS-F(-P) contain the pick-up and drop-off timepoints of taxi

trips (same intervals in both datasets) in NYC from 2009.
5
In TAXIS-F, 𝐴 is the paid fare, and in

TAXIS-P𝐴 is the number of passengers. BIKES contains the pick-up and drop-off timepoints of bike

rides in NYC from 2014 to 2021; the search-key 𝐴 is the birth year of the rider.
6
FLIGHTS contains

the take-off and landing timepoints of flights recorded by the US Transportation Department from

2013 to 2022, and the occurred departure delay.
7
WILDFIRES specifies when fire events from 1992

to 2015 in US, were discovered and when declared contained/controlled.
8
As search-key 𝐴, we

use an estimate of the area burnt. BOOKS contains the periods of time when books were lent out

by Aarhus libraries in 2013, and the number of books during each period.
9
BOOKS, WILDFIRES

include objects with long validity intervals, while in TAXIS, BIKES intervals are extremely short;

FLIGHTS lies in the middle of the spectrum. As search-key, we consider both real and integer

values; 𝐴’s domain varies from extremely small (TAXIS-P) to extremely large (WILDFIRES). Last,

the values of 𝐴 follow either a normal or a Zipfian distribution.

Input streams. We created an event stream (workload) for every dataset, by splitting each interval

to an insert and a deletion event, and interleaving 10K queries. Queries are positioned uniformly

inside the active timeline, i.e., the period between the 𝑠𝑡𝑎𝑟𝑡 of the very first interval until current

𝑡𝑛𝑜𝑤 . The nature of the created streams varies from extremely update-heavy for TAXIS, BIKES

and FLIGHTS with a 34000/1, 20000/1 and 13000/1 ratio of updates over queries, respectively, to

moderate for BOOKS and WILDFIRES, with a 410/1 and 156/1 ratio, respectively. We considered

two types of query extents; for pure time-travel queries, the extent of the [𝑞.𝑡𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑡𝑒𝑛𝑑] interval
while for range time-travel queries, additionally the extent of the [𝑞.𝐴𝑠𝑡𝑎𝑟𝑡, 𝑞.𝐴𝑒𝑛𝑑] range. Table 2
lists the values for the query extents; the defaults are in bold. In each test, we measure the update

time (for some indices, broken down to insert and delete time) and the query time.

8.2 Pure time-travelQueries
We start our evaluation with pure time-travel queries (Query 1). As we ignore the search-key 𝐴,

we consider a single TAXIS stream.

8.2.1 Tuning LIT. We first investigate the best setting for the LiveIndex and the DeadIndex of LIT.

LiveIndex: data structure. We implemented the alternative structures from Section 5.1.1; STL C++

vector class was used for the append-only array, STL C++ ordered_map class (Red-Black tree) for

the search tree and the Gapless hashmap from [35] for the enhanced hashmap.10 Table 3 summarizes

the results of our tests; for the interest of space, we report only TAXIS and BOOKS, which contain

long and short intervals, respectively. The tests back up our intuition from Section 5.1.1. The

append-only array exhibits the best (lowest) update times due to its simplicity. The enhanced

hashmap however is always competitive, even for the update-heavy stream of TAXIS. The search

tree on the other hand is outperformed by an order of magnitude for both inserts and deletions.

Regarding queries, the enhanced hashmap is the most robust structure; the efficiency of the other

two is affected by the nature of the input stream and/or the length of the intervals. Update-heavy

5
https://www1.nyc.gov/site/tlc/index.page

6
https://citibikenyc.com/system-data

7
https://www.bts.gov

8
https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires

9
https://www.odaa.dk

10
Source code was provided by the authors.
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Table 3. LiveIndex for LIT; time in secs, default query extents

TAXIS

𝑞 extent Append-only array Search tree Enhanced hashmap
[hours] insert delete query total insert delete query total insert delete query total

1 4.61 5.31 409 418.9 18.6 29.3 0.001 47.90 5.10 7.32 0.011 12.43
6 4.61 5.31 410 419.9 18.6 29.3 0.001 47.90 5.10 7.32 0.011 12.43
12 4.61 5.31 409 419.1 18.6 29.3 0.001 47.90 5.10 7.32 0.011 12.43
18 4.61 5.31 411 420.9 18.6 29.3 0.001 47.90 5.10 7.32 0.011 12.43
24 4.61 5.31 412 421.9 18.6 29.3 0.001 47.90 5.10 7.32 0.011 12.43

BOOKS

𝑞 extent Append-only array Search tree Enhanced hashmap
[hours] insert delete query total insert delete query total insert delete query total

1 0.057 0.068 14.4 14.52 0.336 0.967 38.0 39.30 0.065 0.142 6.41 6.61
7 0.057 0.068 14.8 14.92 0.336 0.967 37.9 39.20 0.065 0.142 6.45 6.65
14 0.057 0.068 14.9 14.93 0.336 0.967 39.7 41.0 0.065 0.142 6.46 6.66
21 0.057 0.068 15.2 15.32 0.336 0.967 41.9 43.20 0.065 0.142 6.47 6.66
30 0.057 0.068 15.6 15.72 0.336 0.967 42.8 44.10 0.065 0.142 6.43 6.63
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Fig. 10. LiveIndex for LIT tuning; default query extent

Table 4. LiveIndex for LIT; in msecs; default extents

input duration-based capacity-based

stream insert delete query total insert delete query total

TAXIS 4653 7462 4 12121 5252 7418 11.4 12681

BIKES 5667 2358 5 8030 3305 4140 4.3 7449

FLIGHTS 3059 2018 4 5083 1742 2653 11.1 4405

WILDFIRES 27 33 3 63 23 27 2.8 52.8

BOOKS 83 270 352 706 82.6 204 319 606

streams will incur a large number of tombstones and significantly slow down the append-only

array, while long-lived intervals increase the size of LiveIndex and slow down the search tree.

Overall, the enhanced hashmap offers the best trade-off between updates and queries, exhibiting

always the lowest total time. For the rest of our experiments, we use the enhanced hashmap to

store the LiveIndex.

LiveIndex: partitioning. We implemented both partitioning approaches from Section 5.1.2. To

determine the best value for the duration constraint𝐷𝐿 and the capacity constraint𝐶𝐿 , we conducted

the experiments in Figure 10 where the total time (update plus query time) is reported, while varying
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Table 5. DeadIndex for LIT; times in secs

TAXIS

q. extent 2D R-tree [41] HINT

[hours] insert query total insert query total
1 69.7 3.21 72.9 8.43 0.28 8.71

6 69.7 15.5 85.2 8.43 1.54 9.97

12 69.7 29.8 99.5 8.43 2.96 11.4

18 69.7 44.3 114 8.43 3.39 11.8

24 69.7 59.2 128 8.43 6.20 14.6

BOOKS

q. extent 2D R-tree [41] HINT

[days] insert query total insert query total
1 0.63 45.9 46.5 0.15 0.27 0.42

7 0.63 47.8 48.6 0.15 1.05 1.20

14 0.63 51.2 51.8 0.15 1.86 2.01

21 0.63 55.2 55.7 0.15 1.74 1.89

30 0.63 59.1 59.7 0.15 2.96 3.11

Table 6. Pure time-travel queries: total update time [secs]

input
Timeline te-HINT

LIT

stream LiveIndex DeadIndex total

TAXIS 12.3 1886 14.5 8.43 22.89

BIKES 10.4 357 7.93 5.13 13.06

FLIGHTS 4.08 526 4.68 3.01 7.69

WILDFIRES 0.05 0.38 0.07 0.04 0.11

BOOKS 0.19 349 0.49 0.14 0.63

Table 7. Pure time-travel queries: in secs; default extents

Component input stream
TAXIS BIKES FLIGHTS WILDFIRES BOOKS

LIT: LiveIndex 0.157 0.005 0.011 0.001 0.371

LIT: DeadIndex 2.96 0.203 0.504 0.019 1.85

𝐷𝐿 and 𝐶𝐿 . Note that as the value of both constraints increases, the number of LiveIndex buffers

always drops. With the best observed values for each input stream in place, we compare the two

approaches in Table 4 for the default query extents, which also includes a runtime breakdown for

each approach. We observe that the capacity-based partitioning always outperforms the duration-

based by 10%, on average. For the rest of our analysis, the LiveIndex of LITwill use the capacity-based

partitioning; also, based on Figure 10’s experiment, we set 𝐶𝐿 = 10000 for all streams.

DeadIndex. We compare HINT in the role of DeadIndex as discussed in Section 5.2, against the

2D transformation approach proposed in [41], powered by a 2D R-tree from the highly optimized

Boost.Geometry library.11 Table 5 reports the insert time and the query time for each DeadIndex

approach, while varying the query extent. Due to lack of space, we show again only the numbers

for TAXIS and BOOKS. HINT outperforms the 2D R-tree on computing pure time-travel queries by

at least one order of magnitude (usually two orders), while for ingesting dead records, the 2D R-tree

is competitive only in case of BOOKS, which contains significantly fewer updates than TAXIS. In

contrast, for the update-heavy TAXIS, the 2D R-tree is an order of magnitude slower than HINT for

indexing new dead records. In view of the above, LIT will use HINT as its DeadIndex component

for the rest of our analysis.

8.2.2 LIT against the competition. We now compare the LIT hybrid index against te-HINT (Sec-

tion 4) and the state-of-the-art Timeline index [24] for transactional DBs. Figure 11 (first row)

reports the total time (updates and queries) for each index to ingest the input streams, while

varying the query extent. Our tests clearly show that LIT is the most efficient index for all input

streams, followed in almost all cases by the Timeline index, while te-HINT ranks last, with the

exception of WILDFIRES. To better understand these results, the second row of the figure reports

11
Benchmark in [27] showed that Boost.Geometry (https://www.boost.org) R-tree implementations outperform the libspa-

tialindex library (https://libspatialindex.org/).
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Fig. 11. Pure time-travel queries

the accumulated time over the 10K queries of the stream and Table 6 reports the accumulated

update time. The query costs of LIT and te-HINT are always lower compared to those of Timeline;

te-HINT is competitive to LIT but in all cases slower. For updates, Table 6 shows the advantage

of Timeline; recall from Section 2 that Timeline is designed for the support of fast updates in

transaction-time DBs. Nevertheless, LIT is competitive to Timeline. Also, observe that the total

updating cost is almost equally divided in between the LiveIndex and the DeadIndex. In contrast,

te-HINT is orders of magnitude slower than LIT and Timeline in updates, mainly due to the high

cost of moving intervals between partitions at different levels, as the timeline evolves and deletion

events arrive. Overall, LIT offers the best tradeoff between updates and queries, resulting in the

lowest total time, even for update-heavy streams such as TAXIS and BIKES. Lastly, we provide a

breakdown to the query time of LIT in Table 7.

8.3 Range time-travelQueries
We next switch gears and evaluate range time-travel queries (Query 2), which include selections

on the search-key 𝐴. For a-LIT, we considered an equi-width partitioning of the 𝐴 domain in 6-7

partitions.
12

8.3.1 Tuning a-LIT. We first investigate the best setup for a-LIT.

LiveIndex. We implemented the two alternative solutions for the LiveIndex discussed in Section 6.1;

a Boost 2D R-tree which directly indexes the 𝑠𝑡𝑎𝑟𝑡-A 2D space and a series of pure time indices

(using enhanced hashmap and capacity-based partitioning), one for each partition of the 𝐴 domain.

For completeness, we also include the approach of a single pure time index (again with enhanced

hashmap and capacity-based partitioning); this captures the case of an extremely skewed distribution

of 𝐴-values, where the vast majority of the objects fall inside one 𝐴-partition. Table 8 reports the

total insert, delete times, and the total query time for each solution while varying the search-key

query extent. Due to lack of space, we only report for the TAXIS-F and BOOKS streams. The

performance of the 2D R-tree LiveIndex is severely affected by the cost of updates, especially by

deletions, rendering this solution impractical.
13
Even a single pure time index is still a better option

12
Our tests (not included due to lack of space) showed that this number of partitions is sufficient to provide good total times

in all tested streams.

13
This is expected, as R-trees typically suffer from high maintenance costs.
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Table 8. LiveIndex for a-LIT; time in secs, default query extents

TAXIS-F

search-key 2D R-tree single pure multiple pure
query extent time index time indices

[dollars] insert delete query total insert delete query total insert delete query total

3 57.8 1105.5 0.002 1163.3 6.7 9.5 0.02 16.2 8.4 11.3 0.002 19.7
5 57.8 1105.5 0.002 1163.3 6.7 9.5 0.02 16.2 8.4 11.3 0.002 19.7
10 57.8 1105.5 0.002 1163.3 6.7 9.5 0.02 16.2 8.4 11.3 0.002 19.7
30 57.8 1105.5 0.002 1163.3 6.7 9.5 0.02 16.2 8.4 11.3 0.002 19.7
50 57.8 1105.5 0.002 1163.3 6.7 9.5 0.02 16.2 8.4 11.3 0.002 19.7

BOOKS

search-key 2D R-tree single pure multiple pure
query extent time index time indices

[books] insert delete query total insert delete query total insert delete query total

5 0.9 1621.4 1.6 1623.9 0.1 0.3 0.4 0.8 0.1 0.4 0.04 0.54
10 0.9 1621.4 1.9 1624.2 0.1 0.3 0.4 0.8 0.1 0.4 0.04 0.54
15 0.9 1621.4 2.2 1624.5 0.1 0.3 0.4 0.8 0.1 0.4 0.04 0.54
20 0.9 1621.4 3.2 1625.5 0.1 0.3 0.4 0.8 0.1 0.4 0.04 0.54
25 0.9 1621.4 4.5 1626.8 0.1 0.3 0.4 0.8 0.1 0.4 0.04 0.54

for the LiveIndex than a 2D R-tree which indexes both time and 𝐴 dimensions. Finally, regarding

the comparison between the single and the multiple time indices solutions, we observe an expected

tradeoff. The single time index solution is faster for updates, especially in update-heavy streams

like TAXIS-F, while using multiple indices has an order of magnitude lower time on queries. As the

decrease in the total time from using a multiple time indices LiveIndex for query-intensive streams

(BOOKS) is larger than the increase of the total time on update-heavy streams (TAXIS-F), in the

rest of our analysis, a-LIT will use the multiple time indices solution, i.e., maintaining a LiveIndex

for each partition of the search-key 𝐴 domain.

DeadIndex. We implemented the two options discussed in Section 6.2; a 3D R-tree which directly

indexes both the validity interval of a dead version and its search-key 𝐴, and a series of pure

time indices powered by HINT, one for each partition of the 𝐴-domain. For completeness, we also

include the case when a single HINT is used as the DeadIndex, which again captures the case of an

extremely skewed data distribution, where the vast majority of the objects are indexed by a single

HINT. Table 9 reports the total update (insert) and query time for each approach, while varying the

search-key query extent; again, due to lack of space, we only report on the TAXIS-F and BOOKS

streams. The table clearly shows the advantage of the multiple pure time indices option in the role

of the DeadIndex for a-LIT. The 3D R-tree DeadIndex is always slower both for updating (insertions

of dead record versions) and querying, while using a single pure time index is only competitive

for updating. In the rest of our analysis, a-LIT will maintain a HINT powered DeadIndex for each

partition of the search-key 𝐴 domain.

8.3.2 a-LIT against competition. We compare a-LIT against two competitors. The first is a time-first
baseline, which directly employs the pure LIT and does not index the search-key attribute 𝐴. Pure

LIT employs the same setup considered for pure time-travel queries comparison in Section 8.2.2,

i.e., an enhanced hashmap with capacity-based partitioning as the LiveIndex and HINT as the

DeadIndex. To answer a range time-travel query 𝑞, this (pure) LIT first executes a pure time-travel

query with [𝑞.𝑡𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑡𝑒𝑛𝑑] and then, checks the attribute 𝐴 of every intermediate result against

the [𝑞.𝐴𝑠𝑡𝑎𝑟𝑡, 𝑞.𝐴𝑒𝑛𝑑] range. The second competitor is the state-of-the-art index for multi-versioned

DBs, MVB-tree [1]. The first and the third rows in Figure 12 report the total time of the indices,

Proc. ACM Manag. Data, Vol. 2, No. 1, Article 111. Publication date: February 2024.
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Table 9. DeadIndex for a-LIT; time in secs, default query extents

TAXIS-F

search-key 3D R-tree [41] HINT multiple HINTs
query extent [dollars] insert query total inset query total insert query total

3 81.9 40.6 123 9.49 4.11 13.6 9.48 0.49 9.97
5 81.9 40.5 122 9.49 4.12 13.61 9.48 0.51 9.99
10 81.9 40.6 123 9.49 4.11 13.6 9.48 0.40 9.88
30 81.9 40.6 123 9.49 4.12 13.61 9.48 0.41 9.89
50 81.9 40.5 122 9.49 4.11 13.6 9.48 0.41 0.89

BOOKS

search-key 3D R-tree [41] HINT multiple HINTs
query extent [books] insert query total insert query total insert query total

5 0.74 4.80 5.52 0.15 0.85 1.0 0.15 0.26 0.41
10 0.74 5.35 6.07 0.1 5 1.75 1.9 0.15 0.25 0.40
15 0.74 7.86 8.60 0.15 2.53 2.68 0.15 0.28 0.43
20 0.74 9.14 9.88 0.15 2.63 2.78 0.15 0.27 0.42
25 0.74 11.6 12.3 0.15 4.14 4.14 0.15 0.27 0.42

Table 10. Range time-travel queries: total update time [secs]

input stream MVB-tree [1] LIT (pure) a-LIT

TAXIS-F(-P) 341 27.9 29.3

BIKES 57.8 15.7 16.5

FLIGHTS 61.6 8.76 9.89

WILDFIRES 0.28 0.12 0.14

BOOKS 1.86 0.85 0.87

while varying the 𝐴-range of the query and the temporal query extent, respectively. Observe that

both LIT-based indices outperform the MVB-tree, in all tests. The reason is the high cost of update

handling by the MVB-tree; the performance gap is larger for the TAXIS and BIKES (update-heavy

streams). As Table 10 shows, LIT (pure) and a-LIT capitalize on the LiveIndex to cope with updates.

In fact, the MVB-tree is competitive only in BOOKS, which has the smallest number of updates

and so, queries significantly contribute to the total time. a-LIT always outperforms LIT (pure)

as expected for range time-travel queries (second and fourth row in Figure 12), since LIT (pure)

cannot prune the search space using the search-key attribute. Overall, a-LIT exhibits a good tradeoff

between updating and querying, being able to efficiently handle both update-heavy and moderate

streams. Based on our tests, we expect an even bigger advantage over LIT (pure) for query-heavy

streams.

8.4 Index Size
We conclude our analysis with a study on the index size. First, we compare LIT and a-LIT against

the competition; Tables 11 and 12 report the maximum size for each index for pure time-travel

and range time-travel queries, respectively. For all indices, this maximum value is observed after

the entire input stream was ingested. In Table 11, observe that for all streams LIT occupies less

space than the Timeline index. On the other hand, te-HINT has an identical maximum footprint to

LIT because both approaches eventually build identical HINT indices. As Table 12 shows, a-LIT

always occupies less space than the MVB-tree. Compared to a-LIT, (pure) LIT has a slightly smaller

footprint due to building a single HINT, but at the expense of an inferior performance, in almost
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Fig. 12. Range time-travel queries
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Fig. 13. Size growth over time

Table 11. Pure time-travel queries: index size
[MBs]

input stream Timeline [24] te-HINT LIT

TAXIS 3086 2042 2042

BIKES 1851 1226 1226

FLIGHTS 1129 747 747

WILDFIRES 15 10 10

BOOKS 69 45 45

Table 12. Range time-travel queries: index size
[MBs]

input stream MVB-tree [1] LIT (pure) a-LIT

TAXIS-F(-P) 8522 3404 3744

BIKES 5433 2043 2247

FLIGHTS 4739 1246 1370

WILDFIRES 35 16 18

BOOKS 282 75 83

all cases as shown in Figure 12. Finally, we study the growth of the LIT’s size of time; Figure 13

plots its size as a function of the percentage of the updates in each stream. Observe that LIT’s

space increases linearly with the number of updates, which makes it appropriate for in-memory

management of time-evolving data.

9 CONCLUSIONS AND FUTUREWORK
We proposed LIT, a hybrid index for time-evolving databases, which decouples the handling of

current (live) record versions from the management of past (dead) record versions. We studied

options for implementing the live and dead index components, focusing on minimizing the cost

of index updates and queries. We considered pure time-travel queries that retrieve active record

versions at some time point or period in the past, and range time-travel queries, which additionally

apply a selection predicate on a search-key attribute. Our tests unveil the best approaches for

handling live and dead record versions in LIT and shows that LIT is orders of magnitude faster than

temporal indices that index live and dead versions in the same structure. LIT uses linear space to

the number of record versions, which renders it suitable for in-memory indexing of temporal data.

In the future, we will study the applicability and effectiveness of LIT for other query types (e.g.,

temporal aggregation, temporal joins) and its integration into an open-source database system. We

will also investigate the (partial) storage of dead records on disk-based data structures, to support

the indexing of big temporal data.
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