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ABSTRACT
Spatial clustering deals with the unsupervised grouping of places
into clusters and finds important applications in urban planning
and marketing. Current spatial clustering models disregard infor-
mation about the people who are related to the clustered places.
In this paper, we show how the density-based clustering paradigm
can be extended to apply on places which are visited by users of a
geo-social network. Our model considers both spatial information
and the social relationships between users who visit the clustered
places. After formally defining the model and the distance measure
it relies on, we present efficient algorithms for its implementation,
based on spatial indexing. We evaluate the effectiveness of our
model via a case study on real data; in addition, we design two
quantitative measures, called social entropy and community score
to evaluate the quality of the discovered clusters. The results show
that geo-social clusters have special properties and cannot be found
by applying simple spatial clustering approaches. The efficiency of
our index-based implementation is also evaluated experimentally.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications—
Data mining, Spatial databases and GIS; H.3.3 [INFORMATION
STORAGE AND RETRIEVAL]: Information Search and Re-
trieval—Clustering

Keywords
geo-social network; density-based clustering; spatial indexing

1. INTRODUCTION
Clustering is commonly used as a method for data exploration,
characterization, and summarization. Density-based clustering [9],
in particular, divides a large collection of points into densely pop-
ulated regions and it is the most appropriate clustering paradigm
for spatial data, which have low dimensionality [30]. Density-
based clusters have arbitrary shapes and sizes and exclude objects
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in areas of low density (i.e., outliers). The DBSCAN model [9]
finds the spatial eps-neighborhood of each point p in the dataset,
which is a circular region centered at p with radius eps. If the eps-
neighborhood of p is dense, meaning that it contains no less than
MinPts places, p is called a core point. Dense eps-neighborhoods
are put into the same cluster if they contain the cores of each other.

In this paper, we investigate the extension of traditional density-
based clustering for spatial locations to consider their relation-
ship to a social network of people who visit them. In specific,
we consider the places of a Geo-Social Network (GeoSN) ap-
plication, which allows users to capture their geographic loca-
tions and share them in the social network, by an operation called
checkin. Online social networks with this functionality include
Gowalla1, Foursquare2, and Facebook Places3. A checkin is a
triplet ⟨uid ,pid , time⟩ modeling the fact that user uid visited
place pid at a certain time .

We define the new problem of Density-based Clustering Places
in Geo-Social Networks (DCPGS), to detect geo-social clusters in
GeoSNs. DCPGS extends DBSCAN by replacing the Euclidean
distance threshold eps for the extents of dense regions by a thresh-
old ε, which considers both the spatial and the social distances be-
tween places. For two places pi and pj , the spatial distance is con-
sidered to be the Euclidean distance between pi and pj , while the
social distance should consider the social relationships between the
two sets of users Upi and Upj which have checked in pi and pj , re-
spectively. We define and use such a social distance measure, based
on the intuition that two places are socially similar if they share
many common users in their checkin records or the users in these
records are linked by friendship edges. Figure 1(a) illustrates the
data of a GeoSN that includes eight users (u1–u8) and two places
(pi and pj). The dashed lines represent user friendships and the
solid lines annotated with timestamps (t1–t9) illustrate checkins of
users at places. For instance, user u1 is a friend with u2 and u3 and
has visited place pi at time t3 and pj at t5. As Figure 1(b) shows,
each place is modeled by its spatial coordinates (e.g., ⟨lai, loi⟩ for
the latitude and longitude of pi) and the set of users that have visited
it (e.g., Upi for pi). For the spatial distance between pi and pj , we
can use the Euclidean distance between ⟨lai, loi⟩ and ⟨laj , loj⟩,
while for the social distance component we use the set of com-
mon users in Upi and Upj (e.g., {u1, u2}) and the users in one
place’s record who are friends with visitors of the other place (e.g.,
u3 ∈ Upi and u6 ∈ Upj who are friends with each other). The
intuition is that users who are friends can influence each other to
visit the places included in their checkin history. The details of our
distance measure are presented in Section 2.

1http://gowalla.com
2https://foursquare.com
3https://www.facebook.com/about/location
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Figure 1: Example and storage structure of GeoSNs

To the best of our knowledge, there is no previous work on clus-
tering GeoSN places. While there exists a significant body of re-
search on analyzing and querying GeoSN data [4, 7, 27, 28, 36, 37],
most of these works are centered around users; i.e., they study user
behavior, user link prediction or recommendation, or the evaluation
of user queries. Thus, the places and checkins are only regarded as
some auxiliary information to facilitate user-centered analysis. On
the other hand, GeoSNs provide a new and rich form of geograph-
ical data, affiliated with the social network graph, the analysis of
which can provide new and interesting insights, compared to raw
spatial data. In specific, clustering of places in a GeoSN network
finds a number of interesting applications:

Generalization and characterization of places. In geographic
data analysis, a common task is to define regions (especially in ur-
ban areas), which include similar places with respect to the people
who live in them or visit them. For example, in urban planning,
land managers are interested in identifying regions which have uni-
form (i.e., consistent) demographic statistics, e.g., areas where el-
derly people prefer to visit, or people who belong to certain reli-
gious communities and have special transportation or living needs.
Our DCPGS framework is especially useful for such spatial gen-
eralization and characterization tasks, because it can identify ge-
ographic regions where places form dense regions and the people
who visit them are also socially connected to each other. On the
other hand, by simply using spatial clustering, we may not be able
to separate regions that are geographically close (e.g., neighboring
“districts”) but are visited by different social user groups.

Data cleaning. Intuitively, places that belong in the same geo-
social cluster, according to our DCPGS framework, should have
similar semantics. Therefore, our clustering results can help toward
the cleaning of semantics (e.g., tags), which are given to places
being in the same cluster (e.g., inspect tags that are inconsistent
with the ones given to the majority of places in the cluster). In
addition, as already mentioned, nearby GeoSN locations collected
by user checkins could belong to the same physical place (e.g., a
large restaurant) and our clusters can help toward identifying such
cases and integrating multiple locations to the same physical place
(i.e., region), possibly with the joint help of map-matching tools.

Marketing. GeoSN places may be commercial (e.g., restaurants).
The fact that two (or more) such places belong to the same geo-
social cluster indicates that there is a high likelihood that a user
who likes one place would also be interested to visit the other(s).
Therefore, by having knowledge of a place’s geo-social cluster, the
management of the place may initiate campaigns to users who vis-
ited other places in the same cluster, or a set of places could do
collaborative promotion (e.g., a discount for users who visit multi-
ple places in the cluster).

Compared to conventional density-based spatial clusters, geo-
social clusters detected by DCPGS exhibit larger intra-cluster so-
cial strength, as we confirm experimentally in Section 4. DCPGS

also has additional advantages. First, DCPGS uses geo-social split-
ting criteria; for example, DCPGS splits clusters, which are spa-
tially dense, but they are separated by barriers, such as rivers or
walls, or visitors’ weak social connections. Second, DCPGS finds
spatially loose clusters that include sets of places that (pairwise) are
not very close to each other (and therefore violate a typically tight
spatial density threshold), but have very tight social relationships
with each other. Such places satisfy our DCPGS criteria. On the
other hand, DBSCAN is less flexible in including them in the same
cluster as loosening its spatial distance threshold would result in
putting everything in a single huge cluster. Third, DCPGS can dis-
cover geo-social clusters with fuzzy spatial boundaries; such clus-
ters cannot be identified by spatial clustering, which defines strict
spatial boundaries between clusters. Our evaluation is based on
case studies and on the use of quantitative measures that we also
propose in this paper. In addition, we demonstrate that the social
distance measure we propose and use in DCPGS is more effective
compared to alternative measures (based on node-to-node proxim-
ity). Overall, the results of our evaluation indicate that the social
relationships between users who visit places have great impact in
the clustering of places and cannot be overlooked.

In addition to the effectiveness of place clustering according to
our DCPGS framework, we are also concerned about the efficient
implementation of DCPGS in this paper. Real GeoSNs generate
millions of checkins and contain millions of places, the efficient
clustering of which is challenging. We present an intuitive imple-
mentation of DCPGS, which applies repetitive range searches on a
traditional spatial index (i.e., an R-tree), extending the original im-
plementation of DBSCAN. In view of its high cost, we propose a
much more efficient implementation, which relies on a dynamic
grid partitioning technique, used to efficiently compute densely
connected spatial neighborhoods of places. This grid-based im-
plementation can cluster millions of GeoSN places in just a few
seconds. Besides, the experiments demonstrate that our proposed
social distance measure between places is very efficient to compute.

Summing up, the contributions of this paper are as follows:

● We propose and formulate the problem of density-based clus-
tering GeoSN places.

● We define a simple but effective social distance measure be-
tween places in GeoSNs.

● We design efficient algorithms for implementing DCPGS.

● We demonstrate the effectiveness of DCPGS by case stud-
ies and quantitative evaluation through two quality measures
that are also devised in this paper.

● We experimentally analyze the efficiency of our methods.

The rest of the paper is organized as follows. Section 2 formu-
lates the DCPGS problem and defines the social distance measure
between places that we use. DCPGS algorithms based on R-tree
and grid partitioning are proposed in Section 3. The effectiveness
and efficiency of our framework are analyzed in Sections 4 and 5,
respectively. Related work is reviewed in Section 6. Finally, Sec-
tion 7 concludes this paper and discusses future work.

2. MODEL AND DEFINITIONS
Our data input includes three components: a social network, a set of
places and the checkins of users to the places. The social network is
an undirected graph G = (U,E), where U is the set of all users and
each edge (ui, uj) ∈ E indicates that users ui, uj ∈ U are friends.
Set P contains the set of all places visited by users, in the form
of ⟨latitude, longitude⟩ GPS points. Thus, identifiers are assigned
to places according to their distinct GPS coordinates. Set CK =
{⟨ui, pk, tr⟩∣ui ∈ U and pk ∈ P} includes all checkins generated



by users in U . For a place pk, the set Upk of visiting users of pk
is defined by Upk = {ui∣⟨ui, pk,∗⟩ ∈ CK}, where ∗ means any
time. Figure 1(b) shows Upi and Upj for the two places pi and
pj of the toy example in Figure 1(a). The figure also connects the
user pairs in the two sets who are linked by friendship edges in the
social network. Note that user u8 does not belong to either Upi or
Upj , but connects users u4 and u7 in the social graph.

2.1 DCPGS Model
Our Density-based Clustering Places in Geo-Social Networks
(DCPGS) model extends the model of DBSCAN [9]; for each place
pi in the GeoSN, DCPGS finds the geo-social ε-neighborhood
Nε(pi) of pi, which includes all places pj such that Dgs(pi, pj) ≤
ε, DS(pi, pj) ≤ τ , and E(pi, pj) ≤ maxD . For two places pi,
pj , E(pi, pj) is the Euclidean distance, DS(pi, pj) is the social
distance, and Dgs(pi, pj) = f(DS(pi, pj),E(pi, pj)) is the geo-
social distance, defined as a function of E(pi, pj) and DS(pi, pj).
Parameter ε is geo-social distance threshold, while τ and maxD
are two sanity constraints for the social and the spatial distances be-
tween places, respectively. We will give detailed definitions for all
above distance functions and parameters later on. If the geo-social
ε-neighborhood of a place pi contains at least MinPts places, then
pi is a core place; in this case, pi and all places in its geo-social
ε-neighborhood should belong to a cluster r(pi). If another core
place pj belongs to cluster r(pi), then r(pi) = r(pj), i.e., the clus-
ters defined by pi and pj are merged. After identifying all core
places and merging the corresponding clusters, DCPGS ends up
with a set of (disjoint) clusters and a set of outliers (i.e., places that
do not belong to the geo-social ε-neighborhood of any core place).
In Section 3, we present algorithms for generating DCPGS clusters.

Parameters. ε and MinPts are the main parameters of DCPGS.
MinPts (i.e., the minimum number of places in the neighborhood
of a core point) is set as in the original DBSCAN model (see [9]); a
typical value is 5. ε takes a value between 0 and 1, because, as we
explain later on, we define Dgs(pi, pj) to take values in this range.
Since the geo-social distance Dgs(pi, pj) is a function of a spatial
and a social distance, τ and maxD constrain these individual dis-
tances to avoid the following two cases that negatively affect the
quality of geo-social clusters.

● The geo-social distance between two places pi and pj could
be less than ε if they are extremely close to each other in
space, but have no social connection at all. This may lead
to putting places close to each other spatially, but having no
social relationship, into the same cluster.

● The geo-social distance between two places pi and pj could
be less than ε if they have very small social distance, but they
are extremely far from each other spatially. This may lead
to putting places with close social distances, but large spatial
distances, into the same cluster.

Constraints τ and maxD are defined for quality control and can
be set by experts or according to the analyst’s experience. We ex-
perimentally study how clustering quality is affected by the two
constraints and ε in Section 4.

Distance Functions. The social distance DS(pi, pj) takes as in-
puts the sets of users Upi and Upj who have visited pi and pj , re-
spectively, and returns a value between 0 and 1. In Section 2.2, we
present our definition for DS(pi, pj) and alternative ways to de-
fine it based on previous work. Before defining the geo-social dis-
tance Dgs(pi, pj), we normalize the Euclidean distance E(pi, pj)
to a spatial distance DP (pi, pj) = E(pi,pj)

maxD
that takes values be-

tween 0 and 1. Finally, Dgs(pi, pj) is defined as weighted sum of

DS(pi, pj) and DP (pi, pj), i.e.,

Dgs(pi, pj) = ω ⋅DP (pi, pj) + (1 − ω) ⋅DS(pi, pj), (1)

where ω ∈ [0,1].
2.1.1 Alternatives to DCPGS

Our place clustering model (DCPGS) extends density-based clus-
tering in spatial databases. GeoSN places can alternatively be clus-
tered by the use of graph clustering models. The main idea of
such a model is to construct a place network PN , which connects
places according to their social and spatial distances and then apply
an off-the-shelf community detection algorithm on PN . Specif-
ically, given two places pi and pj , if E(pi, pj) ≤ maxD and
DS(pi, pj) ≤ τ , an undirected and weighted edge with geo-social
weight Wgs(pi, pj) = 1 − Dgs(pi, pj) is added between pi and
pj . Community detection algorithms like Link Clustering [1, 6] or
Metis [16] can then be applied to derive the clusters. Link Clus-
tering constructs a dendrogram of network communities (that may
overlap) in a hierarchical manner. Metis is another multilevel graph
partition paradigm that includes three phases: graph coarsening,
initial partitioning, and uncoarsening; Metis divides a network into
k non-overlapping communities. As we will show in Section 4,
these graph clustering methods are inferior to DCPGS.

2.2 Social Distance Between Places
The social distance DS(pi, pj) between pi and pj naturally de-
pends on the social network relationships between the sets Upi and
Upj of users who visited pi and pj , respectively. Our definition for
DS(pi, pj) is based on the set CU ij of contributing users between
two places pi and pj :

Definition 1. (Contributing Users) Given two places pi and pj
with visiting users Upi and Upj , respectively, the set of contributing
users CU ij for the place pair (pi, pj) is defined as

CU ij = {ua ∈ Upi ∣ua ∈ Upj or ∃ub ∈ Upj , (ua, ub) ∈ E}
∪ {ua ∈ Upj ∣ua ∈ Upi or ∃ub ∈ Upi , (ua, ub) ∈ E} (2)

Specifically, if a user ua has visited both pi and pj , then ua is
a contributing user. Also if ua has visited place pi, ub has visited
pj , and ua and ub are friends, both ua and ub are contributing
users. Users in CU ij contribute positively (negatively) to the social
similarity (distance) between pi and pj . Formally:

Definition 2. (Social Distance) Given two places pi and pj with
visiting users Upi and Upj , respectively, the social distance be-
tween pi and pj is defined as

DS(pi, pj) = 1 − ∣CU ij ∣
∣Upi ∪Upj ∣ (3)

The above definition of DS(pi, pj) takes both the set similarity
between sets Upi and Upj and the social relationships among users
in Upi and Upj into account. In addition, the distance measure pe-
nalizes pairs of places pi and pj which are popular (i.e., Upi and/or
Upj are large) but their set of contributing users is relatively small
(see Equation 3). The reason is that such place pairs are not charac-
teristic to their (loose) social connections. As an example, consider
places pi and pj of Figure 1. To compute DS(pi, pj), we first set
Upi = {u1, u2, u3, u4} and Upj = {u1, u2, u5, u6, u7}. All users
in Upi and Upj are checked one by one to obtain the contributing
users between pi and pj . We derive CU ij = {u1, u2, u3, u5, u6},
since (i) both u1 and u2 have visited pi and pj , (ii) user u3, who
visited pi, has a friend u6 who visited pj , (iii) symmetrically, user



u6, who visited pj , has a friend u3 who visited pi, and (iv) u5

(∈ Upj ) has a friend u2 having been to pi. According to Definition
2, the social distance DS(pi, pj) between pi and pj in Figure 1 is
1 − ∣CU ij ∣/(∣Upi ∪Upj ∣) = 1 − 5/7 ≈ 0.2857.

Observe that only direct friendship edges between users of Upi

and Upj are considered in our social distance definition. Longer
network paths, such as friend-of-friend relationships, are ignored
(e.g., the case of users u4 and u7 in Figure 1(b) who are connected
via user u8). According to the small world effect [20], a user in a
social network can reach a large portion of other users within only
few hops. For instance, the 90-percentile effective diameter [17] of
Gowalla GeoSN, used in our experiments, is just 5.7.4 This means
within quite a few hops most users can reach a very large percent-
age of all users. In Gowalla, only 8 users can access more than
1% of all the users in 1 hop, while 40516 users (20.61% of all
the users) can access more than 1% of all the users in 2 hops and
141582 users (72.02% of all the users) can reach more than 1% of
all the users in 3 hops. The number of users who can reach more
than 1% users in 2 or 3 hops increases dramatically compared to
the percentage of those visited within 1 hop. Thus, paths longer
than 1 hops are too common and cannot be considered as (indirect)
user relationships; i.e., their impact is much weaker compared to di-
rect friendship edges. Hence, Definition 2 introduces a simple, but
powerful social distance measure. Properties of DS(pi, pj) include
symmetry (i.e., DS(pi, pj) =DS(pj , pi)) and self-minimality (i.e.,
DS(pi, pj) ∈ [0,1], and DS(pi, pj) = 0 for Upi = Upj ). On the
other hand, DS(pi, pj) does not obey the triangular inequality, but
this does not affect our clustering algorithm.

2.2.1 Alternatives to DS

Our DCPGS model is independent of the social distance definition
between places (i.e., DS). As an alternative to our Definition 2,
the following measures can be used. In Section 4, we evaluate the
effectiveness of these alternatives.

Jaccard. Based on the Jaccard similarity J(pi, pj) = (∣Upi ∩
Upj ∣)/(∣Upi ∪ Upj ∣) between the sets of visiting users for pi and
pj , we can define the following distance:

DJac
S (pi, pj) = 1 − J(pi, pj)

DJac
S (pi, pj) is not intuitive; it disregards the social network, as-

suming that two users who are friends do not affect each other in
visiting GeoSN places.

SimRank. SimRank is a structural-context model for measuring
the similarity between nodes in a graph. The idea is that two nodes
are equivalent if they relate to equivalent nodes. We can define a
SimRank-based social distance Dsim

S (pi, pj), using the Minimax
version of SimRank [14].5 This measure compares each of pi’s
visiting users upi

r with the visiting user u
pj
s of pj who is the most

similar to upi
r , to compute the similarity between places s(pi, pj).

The similarity between users s(upi
r , u

pj
s ) is computed in an analo-

gous way. Specifically,

Dsim
S (pi, pj) = 1 − s(pi, pj),

where s(pi, pj) =min(spi(pi, pj), spj (pi, pj)),
spi(pi, pj) = φ

∣Upi
∣ ∑
ur∈Upi

max
us∈Upj

s(ur, us),
where φ = 0.8 is a decay factor [14],
s(ur, us) = min(sur(ur, us), sus(ur, us)), and assuming that

4http://snap.stanford.edu/data/index.html
5The original SimRank measure is only meant for node-to-node
similarity; in our case, we need a measure between Upi and Upj .

Pur is the set of places visited by ur ,
sur(ur, us) = φ

∣Pur ∣
∑

pi∈Pur

max
pj∈Pus

s(pi, pj).
Katz. The Katz similarity measure [34] sums over all possible
paths from user ur to us with exponential damping by length, i.e.,

K(ur, us) = ∞∑
l=1

βl∣paths lur,us
∣, where paths lur,us

is the set of all

length-l paths from ur to us, and damping factor β is typically set
to 0.05. Due to the poor scalability of this measurement, in practice
only paths up to length L are considered [33]; i.e., an approximated

Katz score Ka(ur, us) = L∑
l=1

βl∣paths lur,us
∣ can be used. Accord-

ingly, we can define a Katz-based social distance between places pi
and pj , by averaging the normalized Katz similarities between all
pairs of users from Upi and Upj :

DKatz
S (pi, pj) = 1 − 1

∣Upi ∣∣Upj ∣ ∑ur∈Upi

∑
us∈Upj

Ka(ur, us)

CommuteTime. The hitting time h(ur, us) from ur to us is the
expected number of steps required for a random walk starting at ur

to reach us. The commute time between ur and us is defined by
ct(ur, us) = h(ur, us) + h(us, ur). However, the commute time
is sensitive to long paths and favors nodes of high degree. Thus, the
truncated commute time [26], which considers only paths of length
no longer than L, can be used to model the social distance between
a pair of users. Finally, we can define a commute time based social
distance between places pi and pj as follows:

Dct
S (pi, pj) = 1

∣Upi ∣∣Upj ∣ ∑ur∈Upi

∑
us∈Upj

ctL(ur, us)

where ctL(ur, us) is the normalized truncated commute time.

3. ALGORITHMS
We propose two algorithms for DCPGS. DCPGS-R (Section 3.1)
is based on the R-tree index, while DCPGS-G (Section 3.2) uses a
grid partitioning.

3.1 Algorithm DCPGS-R: R-tree based
Algorithm DCPGS-R is a direct extension of the DBSCAN algo-
rithm; it uses an R-tree to facilitate the search of the geo-social
ε-neighborhood for a given place. Initially, all places in the GeoSN
are bulk-loaded into an R-tree. Then, DCPGS-R examines all
places and, given a place pi, it performs a range query centered
at pi with radius maxD to get a set of candidate places that may
fall in the geo-social ε-neighborhood of pi, i.e., Nε(pi). Recall
that maxD is the maximum allowed spatial distance between place
pi and places in its geo-social ε-neighborhood. Then, DCPGS-R
keeps in Nε(pi) only the candidates that satisfy the social distance
constraint τ and the geo-social distance threshold ε.

For the sake of efficiency, the social network is stored in a hash
table. Specifically, each pair of friends in the social network is
recorded as an entry in the hash table, such that checking whether
two users are friends or not only incurs constant cost. In addition,
for each place pi, we keep track of its visiting users Upi . The com-
putation of the social distance (Definition 2) between two places pi
and pj involves finding the pairs of friends between sets Upi and
Upj and has insignificant cost compared to the range queries used
to compute the set of candidate places.

Algorithm 1 is the pseudocode of DCPGS-R. The identity of the
current cluster cid is initialized to 1 in line 1. Queue Q (initialized
in line 2) stores the places that have the potential to be added to the



current cluster. Hash table H records whether the geo-social dis-
tances between pairs of places have been computed before (line 3)
and its use will be explained later. For each unprocessed place pi,
its geo-social ε-neighborhood Nε(pi) is obtained by calling func-
tion GETNEIGH(pi, ε, τ , maxD , MinPts , ω, H), outlined in Al-
gorithm 2. A place is unprocessed if its geo-social ε-neighborhood
has not been computed before. If Nε(pi) contains at least MinPts
places, then pi is a core place, i.e., pi belongs to a cluster and all
places in Nε(pi) should be given the same cid as pi (lines 6-11).
Next, all unprocessed places in Nε(pi) are pushed into Q for later
processing. Lines 12-20 expand the current cluster cid as much as
possible by checking the geo-social ε-neighborhood of the unpro-
cessed places in Q. No more places can be included in the current
cluster when Q is empty. In this case, the algorithm proceeds to
find the next cluster (cid is increased in line 21).

Algorithm 1 DCPGS-R(GeoSN, ε, τ , maxD , MinPts , ω)

1: cid = 1
2: Q = empty
3: Geo-social distance cache H
4: for each unprocessed place pi in GeoSN do
5: Nε(pi) = GETNEIGH(pi, ε, τ , maxD , MinPts , ω, H)
6: if ∣Nε(pi)∣ ≥MinPts then
7: assign cid to pi
8: for each place pj ∈ Nε(pi) do
9: assign cid to pj

10: if pj is unprocessed then
11: Q.push(pj)

12: while !Q.isEmpty() do
13: pk = Q.pop()
14: if pk is unprocessed then
15: Nε(pk) = GETNEIGH(pk , ε, τ , maxD , MinPts , ω, H)
16: if ∣Nε(pk)∣ ≥MinPts then
17: for each place pm ∈ Nε(pk) do
18: assign cid to pm
19: if pm is unprocessed then
20: Q.push(pm)

21: cid = cid + 1

Function GETNEIGH, shown in Algorithm 2, is used to get the
geo-social ε-neighborhood of place pi. Initially Nε(pi) is empty.
Lines 2-4 first perform a spatial range query centered at the current
place pi with radius maxD to get a candidate set CandSet con-
taining the places that may fall in Nε(pi). If the size of CandSet
is less than MinPts , Nε(pi) definitely includes less than MinPts
places and, therefore, pi is a non-core place. Otherwise, the al-
gorithm tries to compute the social distance between every point
pj ∈ CandSet and pi. However, before this, given the fact that the
spatial distance between pi and every candidate place pj is already
obtained in the spatial range query step, a spatial filter is employed
to avoid unnecessary social distance computations (line 6).

PROPOSITION 1. Spatial filter. Given two places pi and pj
with spatial distance DP (pi, pj), if ω ⋅ DP (pi, pj) > ε, then
ω ⋅DP (pi, pj) + (1 − ω) ⋅DS(pi, pj) > ε.

PROOF. Since ω ∈ [0,1] and DS(pi, pj) ∈ [0,1], (1 − ω) ⋅
DS(pi, pj) ≥ 0. Consequently, if ω ⋅ DP (pi, pj) > ε, then ω ⋅
DP (pi, pj) + (1 − ω) ⋅DS(pi, pj) > ε.

Note that distances Dgs and DS and DP are all symmetric.
Hence, given a place pi, if pj is (not) in Nε(pi), then pi is also
(not) in Nε(pj), and vice versa. Therefore, we keep track in a
hash table H (line 14) whether pi and pj are in each other’s geo-
social ε-neighborhood once their geo-social distance has been com-
puted. This information is used when computing the geo-social ε-
neighborhood of pj later (line 7-9), in order to avoid computing

the distance between the same pair of places twice. Lines 11-15
compute distances, verify candidates, and update H if necessary.
Line 16 is another filter, called sufficient filter, to check whether
there are enough remaining candidate places in CandSet to render
pi’s geo-social ε-neighborhood dense. If no, the algorithm can stop
without checking the remaining candidate places and return.

Algorithm 2 GETNEIGH(pi, ε, τ , maxD , MinPts , ω, H)

1: Nε(pi) ← ∅
2: CandSet = RANGEQUERY(pi,maxD )
3: if ∣CandSet ∣ <MinPts then
4: return Nε(pi)

5: for each place pj ∈ CandSet do
6: if ω ⋅DP (pi, pj) ≤ ε then
7: if H.exists((pi, pj)) then
8: if H[(pi, pj)] is TRUE then
9: Nε(pi).insert(pj)

10: else
11: Compute DS(pi, pj) and Dgs(pi, pj)
12: if DS(pi, pj) ≤ τ && Dgs(pi, pj) ≤ ε then
13: Nε(pi).insert(pj)
14: H[(pi, pj)] ← TRUE
15: CandSet .erase(pj)
16: if ∣CandSet ∣ + ∣Nε(pi)∣ <MinPts then break
17: return Nε(pi)

3.2 Algorithm DCPGS-G: Grid based
DCPGS-R conducts a spatial range query for each place in the
GeoSN to obtain the candidate places for the purpose of discov-
ering geo-social clusters. Even though individual R-tree based
range queries are very efficient, discovering geo-social clusters in a
GeoSN with millions of places requires millions of such queries
(e.g., there are 1,280,969 places in the Gowalla dataset used in
our experiments). Given two places pi and pj that are spatially
close to each other, as Figure 2(a) shows, the results of the two
range queries with radius maxD centered at pi and pj , respectively,
are almost identical. In algorithm DCPGS-R, to get the candidate
places CandSet for each place in Figure 2(a), 8 independent range
queries are issued on the R-tree that search almost the same space,
resulting in redundant traversing paths and computations. To over-
come this drawback, we develop a dynamic grid partitioning tech-
nique and a new algorithm DCPGS-G.

pi pj

maxD
maxD

(a) Nearby spatial range queries

2
maxD

maxD

2
maxD

maxD

maxD

maxD

(b) Grid partitioning

Figure 2: Nearby spatial range queries and grid partitioning

Grid Partitioning. The area covered by the dataset is partitioned
by a regular grid with cells of size maxD/√2 ×maxD/√2. The
non-empty cells of the grid are indexed by a hash table with the
grid cell coordinates as search keys.

Neighbor Cells. The neighbor cells of a cell c are the cells that
intersect the union of four circles, each centered at a corner of cell



c with radius maxD . For example, in Figure 2(b), the 20 gray cells
(except c) are the neighbor cells of c, denoted as NC (c). We can
trivially show that for any place p inside c, the content of p’s geo-
social ε-neighborhood is contained in NC (c) and c itself.

Cluster Discovery. Algorithm 3 is a pseudocode for DCPGS-G. It
includes three phases. First, the algorithm maps all places into grid
cells (line 1). Second, it obtains the geo-social ε-neighborhoods
of all places (lines 2-6). The third phase discovers all geo-social
clusters in the GeoSN (line 7). The geo-social ε-neighborhoods of
places are computed at the grid cell level. Specifically, for each
nonempty and unprocessed cell c, function GETNEIGHCELLS re-
trieves its neighbor cells NC (c) (GETNEIGHCELLS is trivial and
thus details are omitted). A cell is ‘unprocessed’ if its neighbor
cells have not been retrieved before. Function COMPCELLPAIR

(Algorithm 4) first filters out the pairs of places (pi, pj) with spa-
tial distance greater than maxD , where pi ∈ c, pj ∈ NC (c) and
pi ≠ pj . This step is not needed if pi and pj are in the same cell (in
this case, the spatial distance between pi and pj is certainly at most
maxD). Next, the pairs of places (pi, pj) that satisfy the social
distance constraint τ and the geo-social distance threshold ε are se-
lected. If pi and pj are in each others’ geo-social ε-neighborhood,
their corresponding Nε(pi) and Nε(pj) are updated. After all cells
have been processed, meaning that the geo-social ε-neighborhoods
of all places in the GeoSN are acquired, function GETCLUSTERS

is called to discover geo-social clusters following the framework
of DCPGS-R (Algorithm 1), except that the Nε(pi) of each place
pi has already been computed. Note that an unprocessed place pi
in function GETCLUSTERS means that the size of pi’s geo-social
ε-neighborhood, ∣Nε(pi)∣, has not been checked.

Algorithm 3 DCPGS-G(GeoSN, ε, τ,maxD ,MinPts, ω)

1: Map all places into grid cells
2: for each nonempty && unprocessed cell c do
3: COMPCELLPAIR(c, c, ε, τ,maxD , ω)
4: NC (c)=GETNEIGHCELLS(c)
5: for each nonempty && unprocessed cell c′ ∈ NC (c) do
6: COMPCELLPAIR(c, c′, ε, τ,maxD , ω)

7: GETCLUSTERS(Nε, MinPts)

Complexity. With the help of grid partitioning, the geo-social ε-
neighborhood of all places in cell c can be obtained by checking
all c’s neighbor cells; the whole process can be completed within a
single pass of the data. Thus, the complexity of DCPGS-G is O(n),
as each of its three phases makes one pass over the data. However,
algorithm DCPGS-R computes the geo-social ε-neighborhoods of
each place one by one. Hence its cost is O(n logn), given that the
expected cost of a single range query on the R-tree is O(logn).

Algorithm 4 COMPCELLPAIR(cell c, cell c′,ε, τ,maxD , ω)

1: for each pair (pi, pj) where pi ∈ c, pj ∈ c
′, pi ≠ pj do

2: if c = c′ || E(pi, pj) ≤maxD then
3: Compute DP (pi, pj)
4: if ω ⋅DP (pi, pj) ≤ ε then
5: Compute DS(pi, pj) and Dgs(pi, pj)
6: if DS(pi, pj) ≤ τ && Dgs(pi, pj) ≤ ε then
7: Nε(pi).insert(pj)
8: Nε(pj).insert(pi)

4. QUALITATIVE ANALYSIS
This section analyzes the quality of the geo-social clusters dis-
covered by our proposed DCPGS framework. First, we compare

Algorithm 5 GETCLUSTERS(Nε, MinPts)

1: cid = 1
2: Q = empty
3: for each unprocessed place pi in GeoSN do
4: if ∣Nε(pi)∣ ≥MinPts then
5: assign cid to pi
6: for each place pj ∈ Nε(pi) do
7: assign cid to pj
8: if pj is unprocessed then
9: Q.push(pj)

10: while !Q.isEmpty() do
11: pk = Q.pop()
12: if pk is unprocessed then
13: if ∣Nε(pk)∣ ≥MinPts then
14: for each place pm ∈ Nε(pk) do
15: assign cid to pm
16: if pm is unprocessed then
17: Q.push(pm)

18: cid = cid + 1

DCPGS with the graph clustering approaches discussed in Sec-
tion 2.1.1, in order to demonstrate the suitability of the density-
based clustering model for this application. Second, we compare
with two extreme versions of DCPGS: PureSocialDistance applies
density-based clustering by using the social distance DS(pi, pj)
only, while DBSCAN uses only the Euclidean distance E(pi, pj).
This comparison shows the appropriateness of using both social
and spatial distances in clustering. In the implementation of Pure-
SocialDistance, we do not put place pairs with spatial distance
more than 1000m in the same cluster; otherwise this method be-
comes too expensive. Finally, we assess the suitability of our social
distance measure (Section 2.2) by evaluating versions of DCPGS,
which use the alternative social distance definitions discussed in
Section 2.2.1. All tested methods were implemented in C++ and
the experiments were performed on a 3.4 GHz quad-core machine
running Ubuntu 12.04 with 16 GBytes memory.

Data. We use two publicly available datasets6 from historical
geo-social networks. Gowalla contains a social network with
∣U ∣ =196,591 users and ∣E∣ =950,327 undirected friendship edges.
There are ∣CK ∣ =6,442,892 checkins performed by those users
on ∣P ∣ =1,280,969 places over a period from Feb. 2009 to
Oct. 2010. Brightkite includes a social network of ∣U ∣ =58,228
users and ∣E∣ =214,078 undirected friendship edges. It contains
∣CK ∣ =4,491,143 checkins on ∣P ∣ =772,783 distinct places col-
lected over the period from Apr. 2008 to Oct. 2010.

Default Parameter Settings. The density requirement of the clus-
tering is determined by parameters MinPts and ε (or DBSCAN’s
eps). We set MinPts = 5 for all approaches; various density set-
tings can be achieved by just tuning ε (or DBSCAN’s eps). For
instance, a large MinPts has similar effect as a small ε (or DB-
SCAN’s eps). By default, parameter ω in the geo-social distance
is set to 0.5 to equally weigh the social and spatial distances. By
default, parameter τ is set to 0.7, and maxD is set to 100m for
dataset Gowalla and 120m for dataset Brightkite.

4.1 Visualization-based Analysis
We first visualize and compare the clusters found by DCPGS and
alternative approaches in the area of Manhattan, on the Gowalla
dataset. Figures 3(a)-(c) show the clusters by DCPGS, DBSCAN
(which disregards the social network behind the places) and Pure-
SocialDistance (which disregards the spatial information). DCPGS
finds geo-social clusters with the following features.

6downloaded from snap.stanford.edu/data/index.html



(a) DCPGS: ε = 0.4, τ = 0.7,
maxD = 100m

′

′

(b) DBSCAN: eps = 40m (c) PureSocialDistance: ε = 0.2,
τ = 1, maxD = 1000m

(d) LinkClustering: τ = 0.7,
maxD = 100m

A

C
B

(e) Jaccard: ε = 0.4, τ = 0.7,
maxD = 100m

A

C
B

(f) SimRank: ε = 0.3, τ = 0.7,
maxD = 100m

Figure 3: Place clusters of Gowalla found in Manhattan

Geo-Social Splitting/Merging Criteria. Geo-social clusters that
are very close to each other are split correctly by DCPGS, while
DBSCAN may consider them as a single cluster due to their spatial
closeness; in other cases, clusters split by DBSCAN due to rel-
atively low spatial density between them are merged by DCPGS
because of their strong social ties. For example, consider region
A in Figures 3(a) and the corresponding region A′ in Figure 3(b),
where DCPGS and DBSCAN detect clusters with totally different
layouts. By tuning the parameters of DBSCAN, we are not able
to find the clusters found by DCPGS, because the densities of the
two clusters in region A are similar and the two clusters are close
to each other. Thus, DBSCAN can only consider the places in re-
gion A′ as either a single cluster or as several fragmented clusters
(Figure 3(b)), under different parameter settings. In certain cases,
spatially dense clusters may be split by DCPGS because of some
natural barriers, such as rivers, and walls. These barriers make it
inconvenient to travel from one side to the other, resulting in a split-
ting effect. As an example, in Figure 4, a cluster (region D) found
by DBSCAN is split into two DCPGS clusters (regions D1 and D2)
by the river, since the users on different river sides are proved to
have weak social connection. While it is possible for DBSCAN to
find the two DCPGS clusters by reducing the value of eps , its pa-
rameter settings in this case make some existing clusters disappear,
resulting in too many outliers.

Spatially Loose Clusters. Some geo-social clusters detected by
DCPGS in region B of Figure 3(a) are considered as outliers by
DBSCAN in the corresponding region B′ of Figure 3(b). Region
B′ is spatially too sparse to satisfy the density requirement of DB-
SCAN, and thus most places inside it are filtered out as outliers.
However, the users who checked in those places have strong social
relationships. Hence, geo-social clusters are discovered in region
B by DCPGS in Figure 3(a). While it is possible for DBSCAN to
discover such spatially loose clusters by reducing the density pa-

rameters, this would result in merging too many clusters together,
making denser clusters indistinguishable.

Fuzzy Boundary Clusters. Some DCPGS geo-social clusters have
fuzzy boundaries with each other, which is reasonable in the real
world, since groups of socially connected users may spatially over-
lap. On the other hand, DBSCAN produces clusters with strict
boundaries. For instance, in Figure 3(a), there is no strict bound-
ary between the two clusters enclosed in region C. Although Pure-
SocialDistance, which is the other extreme method, also produces
clusters with fuzzy boundaries (see Figure 3(c)), the clusters are
spatially indistinguishable and they are not interesting, i.e., for the
applications mentioned in the Introduction.

(a) DBSCAN: eps = 60m (b) DCPGS: ε = 0.4 s.t. τ =
0.7, maxD = 120m

Figure 4: Clusters of Brightkite found by DBSCAN and
DCPGS in Chicago

We also visually analyzed the results of the alternative graph-
based clustering models LinkClustering and Metis, described in
Section 2.1.1. These two approaches produce similar results; in-
dicatively, we show the clusters produced by LinkClustering in Fig-
ure 3(d). LinkClustering produces thousands of small clusters (av-
erage size around 3), which are typically not well-separated spa-



tially. Due to the sparsity of geo-social network data, the con-
structed place network contains many connected components that
are disconnected with each other (e.g., the place network built when
τ = 0.7, maxD = 100, and ω = 0.5 contains 34,496 connected
components with 4.3 nodes and 8.2 edges on average. The clusters
found by Metis are fewer and larger, but also spatially indistin-
guishable. Metis ignores outliers; as a result, places belong to the
same cluster may have low spatial proximity and social similarity.

Finally, we analyzed the results of DCPGS, if our DS definition
(Definition 2) is replaced by the alternatives described in Section
2.2.1. For DKatz

S and Dct
S , we set L = 3; for bigger L values, these

measures become extremely expensive. We observed that DJac
S ,

DKatz
S , and Dct

S produce similar results to each other. Indicatively,
Figure 3(e) shows the clusters found by DCPGS if DJac

S is used
instead of DS . All these measures produce small clusters and too
many outliers since they give large distance values for most pairs
of places pi and pj . The set of common users for two places in Jac-
card (i.e., Upi ∩ Upj ) is expected to be small and the decay factor
of Katz dampens the effect of long connections between Upi and
Upj . The expected CommuteTime distance between places is also

high due to the effect of normalization. On the other hand, Dsim
S

produces clusters of slightly larger sizes compared to DS . We ob-
served that the probability distribution of Dsim

S is skewed towards
low values, meaning that many pairs of places have low bipartite
minimax SimRank social distance, because SimRank is based on
the most similar pair of visiting users. The clustering results of
SimRank (Figure 3(f)) and DCPGS are visually similar; it is hard
to tell which results are better based on visualization.

4.2 Social Quality Evaluation
In this section, we design and use two measures for assessing the
social coherence between places in the discovered clusters. Based
on these measures, we assess the quality of DCPGS and the alter-
native approaches for clustering GeoSN places.

4.2.1 Social Entropy based Evaluation
The first measure, called social entropy, measures the social quality
of the clusters based on the network communities that the GeoSN
users form. Given a social network G = (U,E), we first partition
all the users in U into several disjoint network communities. Let
PC be a cluster of GeoSN places. According to the detected net-
work communities, the visiting users of PC , i.e., ∪p∈PCUp, can
be divided into several disjoint sets in CPC = {C1,C2, . . . ,Cm},
such that each set Ci is a subset of users in CPC belonging to the
same network community. We call CPC the community set of PC .

Definition 3. (Social Entropy) Given a cluster PC , let UPC be
the set of users who visit the places in PC , i.e., UPC = ∪p∈PCUp.
The social entropy of PC is then defined as:

E = ∑
Ci∈CPC

− ∣Ci∣
∣UPC ∣ log

∣Ci∣
∣UPC ∣

The social entropy, analogous to the entropy used in decision tree
induction, measures the impurity of a cluster PC with respect to the
participation of its users into different communities. A low social
entropy means that the great majority of the visitors of PC come
from the same community (i.e., low impurity), indicating that the
places in PC have tighter social relationships between each other,
which is favored.

We applied the METIS community detection algorithm [16] to
divide the set of users in the GeoSN into k non-overlapping com-

munities7, providing a baseline for social entropy evaluation. To
avoid a comparison that is biased to parameter k, we evaluate the
social entropy of clustering results obtained by DCPGS and the
competitors for two different values of k. One value of k is cho-

sen based on the following rule of the thumb [19], i.e., k = √N/2
where N is the number of users in the social network. The other
value of k is decided by Dunbar’s number that suggests humans can
only comfortably maintain 150 stable relationships and the mean
community size is around 150. For dataset Gowalla, these values
are k = 313 and k = 1310, respectively.

Figures 5(a) and 5(b) show the average social entropy for
DCPGS, versions of DCPGS with alternative DS (SimRank, Com-
muteTime, Katz, and Jaccard) and PureSocialDistance when vary-
ing ε. CommuteTime, and Katz have the lowest social entropy;
however, these methods produce small clusters and have too many
outliers as explained in Section 4.1. Within each small cluster, the
places are only visited by few people and this explains the low en-
tropy. Jaccard also has low social entropy for the same reason.
PureSocialDistance has low social entropy in most cases; this indi-
cates that our proposed social distance between places is effective
in putting places with close social relationships together. When
ε = 0.1, the social entropies of DCPGS and PureSocialDistance are
similar, both good, since only those places with very close social
distances are clustered. When ε = 1, PureSocialDistance has no so-
cial distance constraint τ thus its entropy becomes higher than that
of DCPGS. DCPGS outperforms SimRank-based DCPGS, mean-
ing that our proposed social distance is better than the SimRank-
based Dsim

S (pi, pj) distance. When k = 1310, the average social
entropy of all the methods is larger than in the case where k = 313,
since a larger number of network communities increases the prob-
ability that users in a single cluster belong to diverse communities.
The average cluster size increases with ε, increasing the probability
that the visitors of a cluster belong to different communities; thus,
the average social entropy increases. In addition, the clustering
result becomes stable at large values of ε, thus the social entropy
converges. By visualization, we observed that ε should be set to a
value smaller than 0.5 for the clustering results to be interesting.

Figures 5(c) and 5(d) show the average social entropies of
DCPGS, DCPGS based on SimRank, CommuteTime, Katz, and
Jaccard, and the graph-based clustering methods Metis and
LinkClustering, when varying the social distance constraint τ .
Similar to the case when ε varies, the social entropy increases
and then stabilizes as τ increases, except for the entropy of Metis,
which keeps increasing due to the network partitioning method-
ology of Metis with the increase of τ , the constructed place net-
work becomes less connected, however, due to its partitioning na-
ture, Metis puts disconnected places in the constructed place net-
work into same cluster. When τ is less than 0.5, the social entropy
of CommuteTime is zero, since with these distance measures the
places in each cluster are visited by only one person when τ < 0.5.
Jaccard has low social entropy also due to the small sizes of its clus-
ters. For τ ≤ 0.1 SimRank-based DCPGS fails to find any clusters,
therefore the entropy is 0. After investigation, we found that there
is no pair of places pi, pj with Dsim

S (pi, pj) < 0.2 because of the
decay factor φ. When τ = 0.2, SimRank has a low social entropy,
since only few (987) clusters of small size are found compared to
the 3605 clusters discovered by DCPGS. After the point where the
two approaches find a similar number of clusters (e.g., at τ = 0.5,
SimRank finds 5880 clusters, while DCPGS finds 6742 clusters),
DCPGS has constantly lower entropy than SimRank. In addition,

7This is different from Metis used as a competitor of DCPGS in
GeoSN place clustering (discussed in Section 2.1.1).



△ DCPGS ▽ DBSCAN ▼ PureSocialDistance
☆ Jaccard × SimRank ◻ Katz
● CommuteTime ∎ LinkClustering ▷ Metis
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Figure 5: Social entropy evaluation in Gowalla

DCPGS is less sensitive to τ compared to SimRank. DCPGS out-
performs the two graph-based competitors Metis and LinkCluster-
ing. As we observed by visualization, in practice τ should be set
to a value higher than 0.5, because a very tight social distance con-
straint creates too few and too small geo-social clusters.

Figures 5(e) and 5(f) show the average social entropies of the
various versions of DCPGS and all the competitor approaches
when varying the spatial distance constraint maxD (eps for DB-
SCAN). DCPGS is superior to SimRank-based DCPGS, DBSCAN,
LinkClustering and Metis for all values of maxD (eps). In gen-
eral, the social entropies of all methods are not very sensitive to
maxD . For Gowalla, a good value for maxD is around 100m;
large maxD values result in clusters that are spatially too loose.

4.2.2 Community Score based Evaluation
Given a GeoSN place cluster PC , let UPC be the set of users
who visit the places in PC , i.e., UPC = ∪p∈PCUp. Assume each
UPC is a community in the GeoSN. We adopt the eight network
community multi-criterion scores surveyed in [18] to compute the
community score of UPC for each cluster PC . Figure 6 com-
pares the results of DCPGS and its alternatives on Gowalla (Katz
is omitted because its result is quite similar to that of Commute-
Time), in terms of the internal density and conductance scores. We
group the clusters discovered by each method by size and com-
pute and plot the average community score (i.e., internal density
and conductance) for each cluster size group. The results based
on the other six criteria of [18] are similar and we omit them

due to lack of space. The internal density of UPC is defined by
1 −mUPC /(∣UPC ∣(∣UPC ∣ − 1)/2), where mUPC is the number of
edges in UPC , mUPC = ∣{(u, v)∣u ∈ UPC , v ∈ UPC}∣. Conduc-
tance is the fraction of edges from nodes of UPC that point outside
UPC , i.e., oUPC /(2mUPC + oUPC ), where oUPC = ∣{(u, v)∣u ∈
UPC , v ∉ UPC}∣. Let f(UPC ) be the community score of PC ,
based on either internal density or conductance; a smaller value of
f(UPC ) indicates better social quality.

As Figures 6(a) and 6(c) show, the internal density increases with
the cluster size. As the size of a place cluster increases, the de-
nominator of the internal density formula increases quadratically
while the number of social links between users in the cluster (i.e.,
the numerator) does not increase at the same pace. On the other
hand, Figures 6(b) and 6(d) show that conductance initially de-
creases as the size of a cluster increases and fluctuates randomly
for larger UPC sizes, which is in line with the observations in [18].
In Figure 6, we observe that the geo-social clusters discovered by
DCPGS have better community scores (i.e., lower internal density
and conductance scores) compared to all competitors, except Pure-
SocialDistance. Since PureSocialDistance uses our social distance
in clustering and disregards spatial proximity, its social quality is
expected to be better than that of DCPGS; still, as shown in Fig-
ure 3(c), its clusters are not distinguishable spatially. DCPGS out-
performs DBSCAN and SimRank-based DCPGS. The quality gap
between DCPGS and the 3 competitors in Figure 6(a) and 6(b) nar-
rows as the size of clusters increases, since it is more difficult for
a larger UPC (usually obtained from a larger PC ) to maintain a
community-like structure compared to a smaller UPC [18]. This
indicates that our social distance is effective in finding geo-social
clusters with small or medium size. DCPGS is also generally better
than the four competitors in Figures 6(c) and 6(d). CommuteTime
has better community scores when the cluster size is around 50.
Most community scores of Jaccard, CommuteTime, LinkCluster-
ing, and Metis concentrate at the top-left corner of Figures 6(c) and
6(d), which indicates that these competitors have limited ability
to discover geo-social clusters of various sizes. Furthermore, the
quality gap between DCPGS and the five competitors in Figures
6(c) and 6(d) grows when the cluster size increases. We conclude
that DCPGS (paired with our social distance measure) is the most
effective method in finding geo-social clusters with both good so-
cial quality and identifiable spatial contour.

5. EFFICIENCY EVALUATION
In this section, we investigate the efficiency and scalability of
DCPGS and its competitors. In Section 3, we presented two al-
ternative implementations of DCPGS, an R-tree based (DCPGS-
R) and a grid-based (DCPGS-G). We also implemented the corre-
sponding R-tree based and grid-based versions of DBSCAN, and
DCPGS based on Jaccard, SimRank, Katz, and CommuteTime.
Linkclustering and Metis are also compared with DCPGS. In our
comparison, we do not include PureSocialDistance, because this
method is too slow (it takes roughly 1 day to finish) and it is not
appropriate for spatial clustering.
Effect of data size. In the first experiment, we test the scalabil-
ity of all methods. For this purpose, we use subsets of the two
GeoSN datasets, Gowalla and Brightkite, of various sizes. The sub-
sets are determined by continuous spatial ranges, which contain the
desired cardinality of places. All place subsets are associated with
the original social network data. Five subsets with 200K, 400K,
600K, 800K, and 1000K places are obtained from Gowalla. Sim-
ilarly, five subsets of sizes 200K, 300K, 400K, 500K, and 600K
are extracted from Brightkite. When varying the data size, we keep
ε = 0.4, maxD = 100m, τ = 0.7 and ω = 0.5 for all methods in
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Figure 6: Community score evaluation in Gowalla

Gowalla and ε = 0.4, maxD = 120m, τ = 0.7 and ω = 0.5 for all
methods in Brightkite. (LinkClustering and Metis have no ε param-
eter.) Figures 7(a) and 7(b) display the runtime of all tested meth-
ods. DCPGS-G is much faster than DCPGS-R and maintains its
performance gap as the database size grows. In all cases, DCPGS-
G (DCPGS-R) is only a bit slower than DBSCAN-G (DBSCAN-
R) and Jaccard-G (Jaccard-R)8, while DCPGS has much higher
effectiveness as shown in Section 4. SimRank-G, (SimRank-R),
Katz-G, and CommuteTime-G are much slower than DBSCAN-
G (DBSCAN-R). This indicates that the time overhead imposed
by DCPGS over the pure-spatial DBSCAN clustering algorithm
is low, proving that our effective social distance is also efficient
to compute. The costs of SimRank, Katz, and CommuteTime are
all dominated by the expensive Dsim

S (pi, pj), DKatz
S (pi, pj), and

Dct
S (pi, pj) computations; optimizing their spatial search compo-

nent (i.e., replacing the R-tree search by a grid-based search) has
little effect on their overall performance.9 Metis has similar cost to
DCPGS-G, while LinkClustering is slower; these methods are not
effective for geo-social place clustering as discussed in Section 4.

Effect of ε. Figures 7(c) and 7(d) show the performance of all
methods when varying ε, except LinkClustering and Metis, which
do not use parameter ε. We keep τ = 0.7 and ω = 0.5 for both
datasets and maxD = 100m for Gowalla and maxD = 120m
for Brightkite. Note that DCPGS-G is faster than DCPGS-R in all
cases, which again indicates that grid partitioning greatly improves
the efficiency of DCPGS. DCPGS-G (DCPGS-R) is slightly more
expensive than Jaccard-G (Jaccard-R). The runtimes of SimRank-
G, SimRank-R, Katz-G, and CommuteTime-G increase signifi-
cantly when ε increases from 0.1 to 0.5, because the increase
weakens the power of the spatial filter (Proposition 1) and more
(expensive) social distances (Dsim

S (pi, pj), DKatz
S (pi, pj), and

Dct
S (pi, pj)) are computed. DCPGS-G and DCPGS-R remain

8To make the plots clearer, we omit the runtime of Jaccard-G
(Jaccard-R) from some of them; the time of Jaccard-G (Jaccard-
R) always falls between the time of DCPGS-G (DCPGS-R) and
DBSCAN-G (DBSCAN-R).
9This is the reason why we omit the runtimes of Katz-R and
CommuteTime-R from the comparison.

▷ DCPGS-G * DCPGS-R ◁ Katz-G
+ DBSCAN-G ◻ DBSCAN-R ☆ CommuteTime-G
▽ SimRank-G × SimRank-R ∎ Jaccard-G� LinkClustering ● Metis ▲ Jaccard-R
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Figure 7: Runtime experiments

quite stable for all ε values since the computational cost of our so-
cial distance is insignificant.

Effect of maxD (eps in DBSCAN). Parameter maxD (eps in DB-
SCAN) decides the spatial ranges of the geo-social (spatial) neigh-
borhoods of places and the size of the constructed place network for
LinkClustering and Metis. Thus, maxD (eps) greatly influences
the efficiency of all methods. Figures 7(e) and 7(f) display the run-
time of all methods when varying maxD (eps). We set τ = 0.7,
ε = 0.4, and ω = 0.5 for all the methods except DBSCAN on both
Gowalla and Brightkite datasets. Note that SimRank-G, SimRank-
R, Katz-G and CommuteTime-G are more sensitive to maxD com-
pared to the other methods, due to the high cost of Dsim

S (pi, pj),
DKatz

S (pi, pj), and Dct
S (pi, pj) distance computations. The cost



of DCPGS-G stays below 100 seconds as maxD ranges from 10m
to 300m and remains close to that of DBSCAN-G and Jaccard-G.
DCPGS-R is also close to DBSCAN-R and Jaccard-R. DCPGS-
G remains faster than DCPGS-R, but their performance gap nar-
rows with maxD ; the reason is that grid-based computations be-
come more expensive as the grid cell size (i.e., maxD) increases.
DCPGS-R eventually becomes faster than DCPGS-G for a very
large maxD , e.g. maxD > 1000m; however, as shown in Fig-
ure 3(c), geo-social clusters with a very large maxD are not spa-
tially identifiable. At an appropriate maxD value (around 100m),
DCPGS-G is clearly the best choice. Metis has similar cost to
DCPGS-G while LinkClustering is slower.

Effect of ω. Figures 7(g) and 7(h) display the runtimes of the clus-
tering methods when varying ω. We keep τ = 0.7 and ε = 0.4 for all
methods on both datasets, while setting maxD = 100m in Gowalla
and maxD = 120m in Brightkite. The costs of all methods are not
much sensitive to ω; an exception is the runtimes of SimRank-G,
SimRank-R, Katz-G, and CommuteTime-G which decrease when
ω > 0.5. The reason is again the high effect of the spatial filter
(Proposition 1), when ω is large, due to which many expensive so-
cial distance computations are avoided. As a final note, the social
distance constraint τ is only applied as an ultimate filter and has no
influence on the runtimes of all methods. It only slightly influences
the costs of LinkClustering and Metis because it affects the size of
the place network, on which these methods operate.

6. RELATED WORK
Our clustering problem is related to various research topics, in-
cluding traditional spatial clustering, using mobility data to analyze
places, clustering using spatial and non-spatial attributes, studying
the relationship between spatial and social attributes, community
detection, and other work on GeoSNs.

Spatial Clustering. Spatial clustering algorithms, surveyed in
[12], are divided into three categories: partitioning, hierarchi-
cal and density-based clustering. Partitioning methods, includ-
ing k-means, k-medoids, and CLARANS [23], are good at find-
ing spherical-shaped clusters in small and medium-sized datasets.
They need a pre-defined parameter k to specify the number of
clusters obtained. However, partitioning methods are not able to
detect clusters of arbitrary shapes. Hierarchical clustering tech-
niques, such as BIRCH [41], Chameleon [15] and CURE [11], as-
sign objects to clusters in two fashions: agglomerative (bottom-up)
and divisive (top-down). Hierarchical clustering methods do not
have well-defined termination criteria and cannot correct the re-
sult if some objects are assigned to the wrong clusters at an early
stage. Density-based clustering methods, like DBSCAN [9], dis-
cover clusters of arbitrary shapes and sizes. Objects in dense re-
gions are grouped as clusters, while objects in sparse regions are la-
beled as outliers. OPTICS [3] is an extension of DBSCAN, which
generates an augmented ordering of the dataset that captures its
density-based clustering structure at different granularities. DEN-
CLUE [13] models the overall point density analytically as the
sum of influence functions of the data points. Clusters can then
be identified by determining density-attractors and clusters of ar-
bitrary shapes can be easily described by a simple equation based
on the overall density function. GDBSCAN [25] is a generaliza-
tion of DBSCAN that clusters point objects as well as spatially ex-
tended objects according to both their spatial and their non-spatial
attributes. Our work adopts the density-based clustering framework
to find place clusters in a geo-social network, by considering both
the spatial distance and the social coherence of the places.

Analysis of Places based on Mobility Data. Brilhante et al. [6]
detect “communities” of places of interest (POIs) on a map based
on how strongly the places are correlated in sequences of visits
by mobile users. Different from our work, the social relationships
between the users who visit the places and the spatial distances be-
tween places are disregarded. The co-existence of places in the vis-
iting histories of users is the only criterion used for clustering. The
proposed solution generates a graph G that connects pairs POIs ac-
cording to the nature of their co-existence in sequences of user vis-
its and then employs a classic algorithm for community detection
on G to identify the place communities. Andrienko et al. [2] present
an analysis and visualization tool, which first identifies interesting
events of moving objects (e.g., instances of slow car movements),
then spatially clusters these events, using density-based clustering
to derive a set of significant places (e.g., regions where traffic jams
occur), and finally applies visual analytics to aggregate and ana-
lyze the events with respect to parameters such as location, time
and direction of movement.

Clustering based on Spatial and Non-Spatial Attributes. Clus-
tering objects based on spatial and non-spatial attributes finds ap-
plications in different areas, such as computer vision, GIS, and so-
cial networks. Yu et al. [39] cluster pixels considering both the
RGB color vectors and spatial proximity that is useful in natural
image segmentation. Gennip et al. [32] use spectral clustering to
identify communities in a graph where nodes are gang members
and weighted edges indicate the gang members’ social interactions
and geographic locations. Zhang et al. [40] apply clustering by ad-
justing the spatial distance between two objects according to the
non-spatial attribute values between them.

Spatial-Social Relationship. The relationship between geography
and social structure has been long studied by sociologists. Re-
searchers have found that the likelihood of friendship with a per-
son is decreasing with distance, which has been observed within
colleges [29], new housing developments [10], and projects for the
elderly [21]. Scellato et al. [27] performed a quantitative study
on the socio-spatial properties of users in GeoSNs. By utilizing
social and spatial properties of GeoSNs, the same research group
proposed a link prediction model [28]. Ye et al. [37] designed a
location recommendation system in the context of GeoSNs. Back-
strom et al. [5] predict the location of an individual from a sparse set
of known user locations using the relationship between geography
and friendship. Wang et al. [34] find that the similarity between the
movements of two individuals strongly correlates with their prox-
imity in the social network. This correlation is used as a tool for
link prediction in a social network. Pham et al. [24] propose an
entropy-based model (EBM) that not only infers social connections
but also estimates the strength of social connections by analyzing
people’s co-occurrences in space and time. Different from exist-
ing work, we neither study the spatial-social relationship nor do
prediction or recommendation utilizing this relationship. We per-
form density-based clustering of GeoSN places considering both
the spatial distances between them and the social relationships be-
tween users that visit the places.

Detecting and Evaluating Communities in Networks. There are
many existing works on network community detection and cluster-
ing of nodes in a graph using only the network distance between
nodes [8, 22, 31, 35, 38]. SCAN [35] is an algorithm that detects
clusters, hubs, and outliers in networks. [38] proposed partition-
ing, hierarchical and density-based algorithms to cluster objects on
spatial networks, based on shortest-path distance. [18] summarized
and empirically evaluated algorithms for network community de-
tection. In Section 4.2.2, we have used network community quality



measures [18] to evaluate the social quality of the place clusters
found by our algorithms.

Orthogonal Works in GeoSNs. Cho et al. [7] studied the problem
of using social relationships to explain human movement. Yang
et al. [36] introduced a Socio-Spatial Group Query (SSGQ) that re-
trieves a group of users who have certain social connection strength
and the sum of their spatial distances is minimized. Most recently,
a general framework for Geo-Social query processing that supports
Range Friends (RF), Nearest Friends (NF), and Nearest Star Group
(NSG) queries was proposed in [4].

7. CONCLUSION
In this paper, we studied for the first time the problem of Density-
based Clustering Places in Geo-Social Networks (DCPGS). Our
clustering model extends the density-based clustering paradigm to
consider both the spatial and social distances between places. We
defined a new measure for the social distance between places, con-
sidering the social ties between users that visit them. Our measure
is shown to be more effective and efficient to compute, compared
more complex ones based on node-to-node graph proximity. We
analyzed the effectiveness of DCPGS via case studies and demon-
strated that DCPGS can discover clusters with interesting proper-
ties (i.e., barrier-based splitting, spatially loose clusters, clusters
with fuzzy boundaries), which cannot be found by merely using
spatial clustering. Besides, we designed two evaluation measures
to quantitatively evaluate the social quality of clusters detected
by DCPGS or competitors, called social entropy and community
score, which also confirm that DCPGS is more effective than alter-
native approaches. Finally, we optimized the efficiency of DCPGS
clustering with the help of a grid-based data structure. Our opti-
mized DCPGS algorithm can cluster millions of places within just
a few seconds. In the future, we plan to consider the influence of
the time-span of user visits to places and the multiplicity of user
visits to a place to cluster places.
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