
RPJ: Producing Fast Join Results on Streams through
Rate-based Optimization

Yufei Tao
Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong

taoyf@cs.cityu.edu.hk

Man Lung Yiu
Department of Computer Science

University of Hong Kong

Pokfulam Road, Hong Kong

mlyiu2@csis.hku.hk

Dimitris Papadias
Department of Computer Science

Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong

dimitris@cs.ust.hk

Marios Hadjieleftheriou
Department of Computer Science

University of California, Riverside,

Riverside, CA, USA

marioh@cs.ucr.edu

Nikos Mamoulis
Department of Computer Science

University of Hong Kong

Pokfulam Road, Hong Kong

nikos@csis.hku.hk

ABSTRACT
We consider the problem of “progressively” joining rela-
tions whose records are continuously retrieved from remote
sources through an unstable network that may incur tem-
porary failures. The objectives are to (i) start reporting the
first output tuples as soon as possible (before the partici-
pating relations are completely received), and (ii) produce
the remaining results at a fast rate. We develop a new al-
gorithm RPJ (Rate-based Progressive Join) based on solid
theoretical analysis. RPJ maximizes the output rate by op-
timizing its execution according to the characteristics of the
join relations (e.g., data distribution, tuple arrival pattern,
etc.). Extensive experiments prove that our technique de-
livers results significantly faster than the previous methods.

1. INTRODUCTION
Data streams have received considerable attention [8, 13,

14] in the past few years, due to their importance in numer-
ous applications (e.g., sensor data analysis, network moni-
toring, etc.) that manipulate records transmitted from re-
mote sources. Unlike traditional databases where all the tu-
ples are available before a query is raised, query processing
on streams is performed as records arrive through the under-
lying network. This property renders many “classical” algo-
rithms inefficient or inapplicable [2]. Consider, for example,
two finite stream relations R1, R2, and a join R1 ./ R2 with
an equality condition R1.A

join = R2.A
join on their common

attribute Ajoin. A “textbook” algorithm such as hash/sort-
merge join is inadequate because its partitioning/sorting
step requires one or both relations to be available in advance.
Therefore, it cannot produce any result until R1 and/or R2

have been completely received. Several stream algorithms
[12, 15, 17] have been proposed recently to process joins in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06$5.00.

a “progressive” manner. The objectives are to (i) generate
the first result as early as possible (soon after data trans-
mission begins), and (ii) output the remaining results at a
fast rate (as tuples continuously arrive).

The major difficulty in progressively joining stream rela-
tions lies in the fact that each arriving tuple must be handled
very efficiently in order to cope with the large volume of in-
coming data. In particular, the amortized processing cost
per record should be smaller than the time interval between
two consecutive arrivals. Otherwise, the number of tuples
that have been received but not yet processed will continu-
ously grow, eventually exceeding the memory capacity. An-
other challenge is that the underlying network may incur
unpredictable failures (e.g., congestion, packet loss, etc.),
causing delays of tuple transmission. In this case, a good
algorithm should be able to “hide” the delays by continu-
ing to output join results (using the records that have been
received earlier).

The existing algorithms consider that the memory is not
large enough to accommodate all the tuples received from
the input streams, such that part of the data must be mi-
grated to the disk. As reviewed in the next section, these
approaches adopt the architecture illustrated in Figure 1.
Tuples of R1 that have already arrived are stored in two
separate structures Rmem

1 , Rdisk
1 , which reside in memory

and disk, respectively (similarly for R2) . The join execution
switches among three stages. The mm-stage is active as long
as data transmission is not suspended. Assume, without loss
of generality, that a record t1 arrives at R1. The algorithm
searches Rmem

2 (i.e., the memory portion of R2), and reports
all the results that involve t1 and tuples in Rmem

2 . Then, t1
is inserted into Rmem

1 . If the memory is not exceeded, the
phase terminates; otherwise, a set of records are selected
from Rmem

1 , Rmem
2 , and flushed to Rdisk

1 , Rdisk
2 respectively.

The mm-stage switches to the md-stage when (i) both re-
lations are “blocked” (i.e., data transmission is currently
suspended), or (ii) the entire R1 and R2 have been received.
In this phase, the algorithm joins the tuples in Rmem

1 with
those of Rdisk

2 , and Rdisk
1 with Rmem

2 . When the md-stage
completes, if the data transmission has not resumed, the
algorithm starts the dd-stage, which joins Rdisk

1 with Rdisk
2 .

The efficiency of a progressive join algorithm is deter-
mined by its “flushing” strategy, i.e., in case the memory

���������		�

�
�

�

������	
�������

�
���
��� ���

���������������

�
�

�

�
���
���� ����

�

����
�

������	
�������

��� ���

���� ����

Figure 1: Architecture of progressive join

is full, which data should be moved (flushed) to the disk
in order to accommodate the subsequent traffic. The ex-
isting flushing methods, however, are not adequate because
they are based on several heuristics that do not have solid
theoretical foundation. In particular, they do not take into
account the tuple arrival rates (i.e., the number of incom-
ing records during a timestamp) of the input streams, which
significantly affect the performance of general stream algo-
rithms [16].

In this paper, we develop RPJ (Rate-based Progressive
Join), which continuously adapts its execution according to
the data properties (e.g., their distribution, arrival pattern,
etc.). RPJ utilizes a novel flushing algorithm which is op-
timal among all possible alternatives (based on the same
statistics about data distributions, arrival patterns, etc.),
and significantly enhances the efficiency of the mm-stage.
Furthermore, RPJ maximizes the output rate by invoking
the md- and dd-stages in a strategic order, i.e., the next
stage selected for execution is the one expected to produce
the highest output rate. Extensive experiments show that
RPJ delivers results significantly faster than the previous
methods.

The rest of the paper is organized as follows. Section 2 sur-
veys the previous work that is directly related to ours. Sec-
tion 3 formally defines the problem and presents an overview
of the proposed solutions. Sections 4 and 5 explain the de-
tails of RPJ, focusing on its operations in memory and disk,
respectively. Section 6 contains an extensive experimental
evaluation to demonstrate the efficiency of RPJ, and Sec-
tion 7 concludes the paper with directions for future work.

2. RELATED WORK
The existing join algorithms on streams can be classified

into two categories. The first one [4, 7, 10, 13] considers that
the participating relations R1 and R2 are “unbounded” (i.e.,
each contains an infinite number of tuples). The objective
is to report all pairs of records (t1, t2) ∈ R1 × R2 (i) that
qualify a join predicate, and (ii) their arrival times differ by
less than W timestamps (i.e., the so-called “window-join”).
Here, we focus on the second category, where the goal is
to provide progressive results for joining two finite relations
(“progressiveness” is not defined in window-joins). In the
sequel, we review the two existing techniques for solving
this problem: XJoin in Section 2.1 and HMJ in Section 2.2.

2.1 XJoin
XJoin [15] can be regarded as a variation of “symmetric

hash join” [9]. Records in Rmem
i , Rdisk

i (1 ≤ i ≤ 2) are orga-
nized in hash tables, using the same hash function H on the
join attribute Ajoin. Let H(t) be the partition assigned to

tuple t and npart be the number of hash partitions produced
by H (i.e., 1 ≤ H(t) ≤ npart). Rmem

i [j] (Rdisk
i [j]) represents

the j-th partition (1 ≤ j ≤ npart) of Rmem
i (Rdisk

i). In the
mm-stage, given an arriving tuple t1 from R1 (the case that
the tuple belongs to R2 is symmetric), XJoin joins it with
Rmem

2 [H(t1)], and then inserts it into Rmem
1 [H(t1)]. If the

memory is exceeded, XJoin flushes a memory partition using
the flush largest policy. Specifically, it identifies the Rmem

i [j]
(among all 1 ≤ i ≤ 2 and 1 ≤ j ≤ npart) with the highest
number of records, and appends all the data of Rmem

i [j] to
the end of Rdisk

i [j]. In the md-stage, the largest memory
partition (e.g., Rmem

1 [j]) joins with the corresponding disk
partition (Rdisk

2 [j]) of the other relation. XJoin assumes
that the transmission of R1 or R2 will resume before the
md-stage terminates. Hence, the dd-stage is invoked only
after the entire R1, R2 have been received. The stage sim-
ply joins Rdisk

1 [j] with Rdisk
2 [j] for each 1 ≤ j ≤ npart, using

the traditional hash-join algorithm.
The md- and dd-stages may generate duplicate results.

Consider a tuple t1 (t2) from R1 (R2) that arrives at time 0
(5), and pair (t1, t2) qualifies the join predicate (i.e., t1.A

join

= t2.A
join), indicating H(t1) = H(t2). Since t1 is in memory

when t2 arrives, the result pair (t1, t2) is reported at time 5
(in the mm-stage). Assume that, at time 10, the memory be-
comes full, and t1 (along with other data in Rmem

1 [H(t1)])
is flushed to the disk (while t2 still remains in memory).
At time 15, the transmission of R1, R2 is blocked, and the
memory partition Rmem

2 [H(t2)] is joined with the disk par-
tition Rdisk

1 [H(t1)] (in the md-stage), which discovers the
join result (t1, t2) for the second time. Continuing the ex-
ample, assume that at time 20, the memory is full again and
Rmem

2 [H(t2)] is flushed. Then, in the dd-stage, (t1, t2) will
be produced for the third time (when joining Rdisk

1 [H(t1)]
and Rdisk

2 [H(t2)]).
To avoid duplicate reporting, XJoin associates each tuple

t with an interval [t.ATS, t.DTS], where t.ATS (t.DTS) de-
notes the time that t arrives at the system (is flushed to the
disk). If t has not been flushed, t.DTS is set to ∞, indicating
the current time. Clearly, [t.ATS, t.DTS] corresponds to the
period when t stays in memory (e.g., in the previous exam-
ple, t1.ATS = 0, t1.DTS = 10, t2.ATS = 5, t2.DTS = 20).
Furthermore, for each Rmem

i [j] (1 ≤ i ≤ 2, 1 ≤ j ≤ npart),
XJoin remembers all the timestamps that this partition was
used in the md-stage (to join with the corresponding disk
partition of the other relation). Specifically, assume that
Rmem

i [j] is used totally cntmd
i [j] times; then XJoin stores

an array T md
i[j] [k] (1 ≤ k ≤ cntmd

i [j]), where T md
i[j] [k] is the

time that Rmem
i [j] was deployed (in the md-stage) for the

k-th time. In the previous example, cntmd
1 [H(t1)] = 0 (i.e.,

Rmem
1 [H(t1)] was never involved in any md-stage), while

cntmd
2 [H(t2)] = 1 and T md

2[H(t2)][1] = 15 (i.e., Rmem
2 [H(t2)]

was utilized to join with Rdisk
1 [H(t1)] at time 15).

Whenever a pair of qualifying tuples (t1, t2) is found in
the md-/dd-stage, XJoin reports it if and only if none of
the following conditions holds: (i) [t1.ATS, t1.DTS] inter-
sects with [t2.ATS, t2.DTS], which shows that (t1, t2) was
reported in the mm-stage, (ii) there exists a k (1 ≤ k ≤
cntmd

i [H(t1)]) such that T md
1[H(t1)][k] ∈ [t1.ATS, t1.DTS] and

t2.DTS < T md
1[H(t1)][k], implying that (t1, t2) was produced

in the md-stage that joined Rmem
1 [H(t1)] with Rdisk

2 [H(t2)]
at time T md

1[H(t1)][k], and (iii) a condition similar to (ii) but
reversing the roles of t1 and t2. In [17], the XJoin is extended

��

� �

�����

� �

� ��
� ��

� ��

� �

�
�

�
�

�
	

��

�� ��

�� �
�

�� �
�� �

�� ��
�� ��

�
�

�
�

�
�
��
�
�

�
�
�
��
�
�

	 ��

�

�
�
��
�
�

�
�
�
��
�
�

�
�
� �� ��

�� �

	
��
��
�
�

	
��
��
�
�

�
�

�����

�
�

���
���

�
�

���
���

��

� �

� �

� �
� ��

� ��
� ��

��

�
��
��
�
	

	
�
��
�
	

� �	

�

�
��
��
�
	

	
�
��
�
	

�

�� ��

�� �

�� �

�	 �

�� �
�� ��

�� �	
�� ��

���	 ���	

�

���
���

�
�

���
���

(a) Before 1st merging (b) Before 2nd merging

Figure 2: Illustration of PSMJ

to joining multiple (more than 2) relations.

2.2 Hash Merge Join (HMJ)
HMJ [12] differs from XJoin in the following ways. First,

it uses more complex policies to select the memory parti-
tions for flushing. Second, it does not involve md-stages;
instead, whenever data transmission is blocked, the algo-
rithm invokes the dd-stage directly. Third, its dd-stage is
performed using the Progressive Sort Merge Join (PSMJ)
algorithm [5]. In the sequel, we explain these differences in
detail.

HMJ adopts “concurrent flushing”: whenever a partition
from one relation (e.g., Rmem

1 [j] for some 1 ≤ j ≤ npart) is
flushed, the corresponding partition Rmem

2 [j] from the other
relation is also evicted. Before flushing a partition, all its
records are sorted on the join attribute Ajoin. Four flush-
ing policies are empirically compared in HMJ. The first one,
called flush all, simply evicts all the memory partitions, i.e.,
the memory becomes empty afterwards. The second one
is the flush largest used in XJoin. The third policy is flush

smallest which is the opposite of flush largest, i.e., the mem-
ory partition Rmem

i [j] (for all 1 ≤ i ≤ 2, 1 ≤ j ≤ npart) with
the minimum number of records is expunged. The exper-
iments of [12] indicate that the best policy is an adaptive

one that aims at balancing the sizes of memory allocated to
Rmem

1 and Rmem
2 , respectively. Towards this, it flushes the

pair of Rmem
1 [j] and Rmem

2 [j] such that (i) their size differ-
ence is small, and (ii) the sum of their sizes is large. The
motivation of adaptive is that the algorithm should maintain
sufficient tuples in memory for both relations to increase the
probability that an arriving tuple t can produce join results,
no matter which relation t belongs to.

We illustrate the dd-stage of HMJ using Figure 2a, which
shows two disk partitions Rdisk

1 [j] and Rdisk
2 [j] correspond-

ing to the same hash value j (1 ≤ j ≤ npart). Each parti-
tion has 3 runs, where the k-th (1 ≤ k ≤ 3) run of Rdisk

1 [j]
and Rdisk

2 [j] contain the data in Rmem
1 [j] and Rmem

2 [j] when
they were flushed concurrently for the k-th time. Tuples
in each run are sorted on Ajoin, but such relative order
does not exist for records in different runs. To join Rdisk

1 [j]
with Rdisk

2 [j], the dd-stage applies PSMJ which sorts both
Rdisk

1 [j] and Rdisk
2 [j] simultaneously, as opposed to tradi-

tional SMJ (sort-merge join) that sorts the join relations
separately. PSMJ continuously outputs results soon after
the sorting starts.

Assume that 6 memory pages are available. In each merg-

ing operation, PSMJ assigns 3 pages to Rdisk
1 [j], Rdisk

2 [j] re-
spectively, and combines 2 runs1 of each partition into a

1At most 2 runs can be merged at a time because, as with

merged run (the merging for the two partitions is carried
out simultaneously). Specifically, PSMJ first loads the start-
ing pages d1, d3 (d5, d6) of the initial two runs of Rdisk

1 [j]
(Rdisk

2 [j]) into memory. Then, it identifies the record with
the smallest value on Ajoin (among all the tuples in these
4 pages). In Figure 2a, two tuples (with ids) 1, 12 have
the smallest Ajoin (=1). Therefore, they are reported as a
join result, and then written to the merged runs of Rdisk

1 [j],
Rdisk

2 [j] respectively.
Next, PSMJ obtains the records (2, 10) with the smallest

Ajoin (=3) among the remaining data in d1, d3, d5, d6. Tuple
2 (10), which comes from the first run of Rdisk

1 [j] (Rdisk
2 [j]),

is written to the merged run of this partition. However,
unlike the record pair (1, 12) processed earlier, (2, 10) is
not produced as a join result. Recall that the first runs of
Rdisk

1 [j] and Rdisk
2 [j] were flushed concurrently, which im-

plies that records 2, 10 appeared in memory at the same
time. Hence, they must have been reported in the mm-stage.
In general, HMJ avoids duplicate results as follows: given
tuple t1 (t2) from the k1- (k2-) th run of Rdisk

1 [j] (Rdisk
2 [j]),

if k1 = k2, then pair (t1, t2) is not output even if it satisfies
the join predicate.

Continuing the example, now the smallest Ajoin is given
by a single record 13, which is simply written to the merged
run of Rdisk

2 [j]. After this, all the data in d6 have been
processed, and PSMJ reads into memory the next page d7 of
the second run in Rdisk

2 [j] (d7 is placed in the same memory
page where d6 was stored). Then, the algorithm repeats
the above steps until all the records in the first two runs
of Rdisk

1 [j] and Rdisk
2 [j] have been examined. The resulting

merged runs are illustrated as the first runs in Figure 2b. So
far two join results have been reported: {(1, 10), (6, 11)}.

Having finished the first two runs, PSMJ proceeds to
merge the next two runs in Rdisk

1 [j] and Rdisk
2 [j]. In Fig-

ure 2a, only one run is left in each partition, and thus the
first merging pass is completed. Then, PSMJ starts the sec-
ond merging pass on the (merged) runs (in Figure 2b) ob-
tained from the previous pass. As before, two runs of each
relation are merged at a time (hence, after another merging,
the entire Rdisk

1 [j] and Rdisk
2 [j] are completely sorted). The

second merging pass is performed in the same manner as the
first one (including the mechanism for duplicate avoidance).
Finally, we mention that the dd-stage of HMJ joins Rdisk

1 [j]
with Rdisk

2 [j] for all 1 ≤ j ≤ npart before switching back to
the mm-stage.

3. PROBLEM DEFINITION AND SOLUTION
OVERVIEW

Assume that R1, R2 are two finite relations with a com-
mon discrete attribute Ajoin, which are stored separately at
two remote sites. We aim at answering join R1 ./ R2 with
condition R1.A

join = R2.A
join under the following settings:

(i) data of R1 and R2 are transmitted to the local system
in the form of continuous streams through a network, and
(ii) the network may incur temporary suspensions in trans-
mission. We do not assume any pre-processing on R1 or R2

so that tuples of each relation are received in random order.
The proposed algorithm RPJ (Rate-based Progressive Join)
is also based on the hashing methodology. For each relation
Ri (i = 1 or 2), RPJ stores the tuples that have already

SMJ, one memory page per relation is reserved as the output
buffer for writing the merged run to disk.

Algorithm mm-stage
1. if the whole R1 and R2 have been received
2. invoke clean-up
3. if transmission of R1 and R2 is blocked
4. invoke reactive-stage
5. if the arriving tuple t ∈ R1

6. scan Rmem
2 [H(t)] to report t ./ Rmem

2 [H(t)]
//H is the hash function

7. insert t to Rmem
1 [H(t)]

/* the case t ∈ R2 is omitted as it is similar */
8. if |Rmem

1 | + |Rmem
2 | > Msize // |Rmem

i | and Msize are the
sizes of Rmem

i and memory, respectively
9. invoke optimal-flush
10. go to line 1
End mm-stage

Algorithm reactive-stage
1. maxOR = 0, besttask = bestpart = ∅
2. for j = 1 to npart // npart is the total number of partitions
3. estimate the output rates ORmd

12 , ORmd
21 , ORdd of

Rmem
1 [j] ./ Rdisk

2 [j],Rmem
2 [j] ./ Rdisk

1 [j],
Rdisk

1 [j] ./ Rdisk
2 [j], respectively

4. if ORmd
12 > maxOR

5. maxOR = ORmd
12 , besttask = md12, bestpart = j

6. if ORmd
21 > maxOR

7. maxOR = ORmd
21 , besttask = md21, bestpart = j

8. if ORdd > maxOR
9. maxOR = ORdd, besttask = dd, bestpart = j
10. if besttask = mdi1i2

11. perform md-task Rmem
i1

[bestpart] ./ Rdisk
i2

[bestpart]
12. else
13. perform dd-task Rdisk

1 [bestpart] ./ Rdisk
2 [bestpart]

14. if data transmission has not resumed
15. go to line 1
End reactive-stage

Algorithm clean-up
1. for j = 1 to npart

2. flush Rmem
1 [j], Rmem

2 [j] to Rdisk
1 [j], Rdisk

2 [j], respectively
3. for j = 1 to npart

4. perform dd-task Rdisk
1 [j] ./ Rdisk

2 [j]

Figure 3: High-level algorithms of RPJ

arrived in two separate parts Rmem
i and Rdisk

i , which reside
in memory and disk, respectively. Data in Rmem

i and Rdisk
i

are organized into npart partitions, according to a hash func-
tion H that generates an integer in the range of [1, npart].
Following the terminology in Section 2, we denote the j-th
(1 ≤ j ≤ npart) partition of Rmem

i as Rmem
i [j], and similarly,

Rdisk
i [j] for the j-th partition of Rdisk

i .
RPJ is motivated by the following observations on the

performance of XJoin and HMJ: first, the efficiency of the
mm-stage depends strongly on the content of Rmem

1 and
Rmem

2 . Intuitively, the memory should maintain only tuples
that are likely to join with subsequent arrivals. The join

probability, therefore, should be taken into account when de-

signing flushing policies.
Second, in general, the md-stage is expected to produce

faster results than the dd-stage because: (i) one of the two
joining partitions is memory-resident, while the dd-stage
must retrieve both partitions from the disk, and (ii) the
md-stage performs mostly sequential (I/O) accesses, while
the dd-stage requires a large number of random accesses.
Hence, the md-stage should not be discarded (as opposed to
the design of HMJ).

Third, under certain circumstances, joining two disk par-

titions may actually produce faster results than the md-stage.
Consider, for example, that, for any j ∈ [0, npart], Rmem

1 [j]

Symbol Description

npart the number of hash partitions
s the number of Ajoin values in a partition

Rmem
i [j]/Rdisk

i [j] the j-th memory/disk partition in Ri

nmem
i [j]/ndisk

i [j] the number of tuples in
Rmem

i [j]/Rdisk
i [j]

ntotal
i [j] the number of tuples in Rmem

i [j] ∪

Rdisk
i [j]

parr
i [j] the arrival probability at Rmem

i [j]
t.ATS/t.DTS the arrival/flushing time of tuple t

T md
1 [i] the timestamp when the md-task be-

tween Rmem
1 [1] and Rdisk

2 [1] was per-
formed for the i-th time in history

Table 1: Frequently used symbols

and Rmem
2 [j] have very few records, while the sizes of Rdisk

1 [1]
and Rdisk

2 [1] are large. As a result, joining Rmem
1 [j] with

Rdisk
2 [j] (or Rdisk

1 [j] with Rmem
2 [j]) is expected to produce

much fewer results than Rdisk
1 [j] ./ Rdisk

2 [j]. Therefore, the
output rate of Rdisk

1 [j] ./ Rdisk
2 [j], calculated as the ratio

between the number of reported results and the execution
time, may be considerably higher.

The design of RPJ incorporates the above observations
through a two-phase architecture. A mm-stage joins an in-
coming tuple with the memory-resident data in the other
relation. RPJ deploys a new flushing algorithm to maximize
the expected number of join results using the current arrival
pattern of R1, R2 and the data distribution on Ajoin. The
second phase of RPJ is a reactive stage that mixes the tradi-
tional md- and dd-stages. There are totally 2npart possible
“md-tasks” (Rmem

1 [j] ./ Rdisk
2 [j], Rdisk

1 [j] ./ Rmem
2 [j] for all

1 ≤ j ≤ npart) and npart “dd-tasks” (Rdisk
1 [j] ./ Rdisk

2 [j],
for 1 ≤ j ≤ npart). Each iteration performs the task with
the highest expected output rate defined as Er/Et, where
Er equals the (expected) number of results that can be re-
ported from the task, and Et the task execution time. It is
important to note that the conventional md- and dd-stages
in XJoin and HMJ are essentially restricted versions of the
reactive stages of RPJ, where all the iterations perform md-
and dd-tasks respectively. Therefore, RPJ can be regarded
as an optimized combination of these algorithms based on a
sophisticated probabilistic analysis.

After all the tuples have arrived, RPJ starts the “clean-
up” process, which simply performs a full join over the re-
ceived relations, returning the results that have not been
output before. For this purpose, all the memory data are
first flushed to their corresponding disk partitions, and then
Rdisk

1 [j] is joined with Rdisk
2 [j] for each 1 ≤ j ≤ npart.

Rdisk
1 [j] ./ Rdisk

2 [j] can be computed using the dd-task al-
gorithm with, however, one difference. Specifically, in a
“normal” dd-task (during data transmission), only a small
amount of memory can be utilized for performing the join
(most memory is occupied by Rmem

1 and Rmem
2), while in

a “clean-up” dd-task, almost the entire memory is available
(i.e., Rmem

1 and Rmem
2 are no longer retained).

Figure 3 summarizes the high-level functionality of RPJ.
Next, we explain the details of RPJ, starting with the mm-
stage in Section 4, and then clarifying the reactive stage in
Section 5. Table 1 shows the most frequently used symbols.

4. THE MM-STAGE OF RPJ
In Section 4.1, we present an optimal flushing policy de-

ployed by RPJ to maximize the output rate of the mm-stage.

Then, Section 4.2 clarifies the maintenance of the necessary
statistics for applying this policy. Finally, Section 4.3 pro-
vides a detailed explanation on the superiority of our strat-
egy over the existing ones.

4.1 Optimal Flush
When the total size of Rmem

1 and Rmem
2 equals the ca-

pacity of the allocated memory, a flushing algorithm moves
some records from Rmem

1 and Rmem
2 to the disk, such that

the data that remain in memory are expected to produce
the largest number of join results with the subsequent ar-
riving tuples until the next memory overflow. In order to
analyze the best flushing strategy, we first represent the ex-
pected number of join results to be obtained until the next
flushing, as a function of the content of Rmem

1 and Rmem
2 .

Then, the targeted strategy can be naturally obtained by
maximizing this function.

Theoretical Foundation. Consider every value v in the
domain of the join attribute Ajoin. Let nmem

i (v) (1 ≤ i ≤ 2)
be the number of tuples with values v that are still in Rmem

i

after flushing. Denote parr
i (v) as the probability that the

next incoming tuple belongs to Ri and has value v (on
Ajoin). Assume that, starting from now, the system will
receive narr

i (v) records in Ri with values v before the mem-
ory is exceeded again. Then, the number nrslt of join results
reported in the mm-stage before the next flushing equals:

nrslt =
�

∀v∈Ajoin

(nmem
1 (v) · narr

2 (v) + narr
1 (v)·

nmem
2 (v) + narr

1 (v) · narr
2 (v)) (1)

The above equation is due to the fact that a join result
(t1, t2) can be produced in one of the following ways: (i)
t1 is currently in Rmem

1 (a remaining record after the pre-
vious flushing) while t2 is to be received later, contributing
nmem

1 (v) · narr
2 (v) results in Equation 1; (ii) t1 will arrive

subsequently and t2 exists in Rmem
2 , contributing narr

1 (v) ·
nmem

2 (v); (iii) neither t1 nor t2 is in the memory, that is,
both of them will be received before the next overflow oc-
curs, contributing narr

1 (v) · narr
2 (v).

Let nflush, a system parameter, be the number of tu-
ples to be flushed to disk to solve a memory overflow. It
is also the number of arrivals that will be received from
now until the memory becomes full next time. Recall that
there is probability parr

i (v) for each of these records to have
value v and at the same time belong to relation Ri. Thus,
the expected value of narr

i (v), the number of to-be-obtained
Ri-tuples having value v before the next flushing, equals
nflush · parr

i (v). Replacing narr
i (v) with this representation,

Equation 1 becomes:

nrslt = nflush ·
�

∀v∈Ajoin

(nmem
1 (v) · parr

2 (v) + parr
1 (v)·

nmem
2 (v) + nflush · parr

1 (v) · parr
2 (v)) (2)

In Equation 2, parr
i (v) (for all v ∈ Ajoin) is decided by

the data arrival pattern (i.e., independent of the records in
Rmem

1 , Rmem
2), and cannot be controlled by the flushing al-

gorithm. Therefore, to maximize nrslt, an optimal algorithm
should decide the values of nmem

1 (v) and nmem
2 (v) (for all

v ∈ Ajoin) that maximize:

η =
�

∀v∈Ajoin

(nmem
1 (v) · parr

2 (v) + parr
1 (v) · nmem

2 (v)) (3)

subject to the constraint �∀v∈Ajoin (nmem
1 (v)+nmem

2 (v)) =
M −nflush, where M is the memory capacity (i.e., the sum
of the sizes of Rmem

1 and Rmem
2 before flushing).

To illustrate the idea of optimal flushing, let us consider
a special case, where we want to keep only one tuple after
flushing, namely, nflush = M − 1. Assume, without loss of
generality, that the best record to retain is from relation R1,
and its value on Ajoin equals v′. In other words, nmem

1 (v) =
0 and nmem

2 (v) = 0 for all v except nmem
1 (v′) = 1. Then,

η in Equation 3 is equivalent to parr
2 (v′). Since this is the

largest possible value of η, parr
2 (v′) is the maximum among

the arrival probabilities parr
1 (v) and parr

2 (v) for all v. That
is, the optimal flushing algorithm should identify the largest
arrival probability parr

2 (v′), and then keep a tuple with value
v′ from relation R1.

Extending the idea to the general case (evicting any num-
ber nflush of tuples), the best flushing strategy that maxi-
mizes η works as follows. We first identify the smallest ar-
rival probability parr

i (v) among all possible i (1 or 2) and v.
If the smallest probability is parr

1 (v1), then we evict nflush

records from Rmem
2 with values v1 — note that the evic-

tion is applied on the stream opposite to the relation where
parr
1 (v1) belongs. If Rmem

2 does not contain enough such
tuples (i.e., less than nflush), we apply the above process
repeatedly. Specifically, nflush is decreased by the number
of records in Rmem

2 with values v after migrating them to the
disk. Then, the next smallest parr

i (v) (other than parr
1 (v1))

is identified, and a set of tuples with values v but from the
relation different than stream Ri (that parr

i (v) belongs to)
are expunged. If more tuples need to be removed, this pro-
cess is repeated again.

We illustrate the strategy using a concrete example. As-
sume that the domain of Ajoin includes only two values 1
and 2. The arrival probabilities for R1 are parr

1 (1) = 35%
(i.e., with 35% chance the next incoming record belongs to
relation R1 and has value 1), parr

1 (2) = 25%, and the cor-
responding values for R2 are parr

2 (1) = 10% and parr
2 (1) =

30%. When the memory overflows, Rmem
1 and Rmem

2 have
20 tuple respectively, half of which have values 1 and the
other half have values 2. Suppose that our target is to evict
totally nflush = 15 records from memory. Towards this,
we identify the smallest arrival probability parr

2 (1) = 10%,
and hence, migrate the 10 tuples in Rmem

1 with values 1
to the disk. After this, nflush is reduced to 5. Since the
next smallest probability is parr

1 (2) = 25%, we remove 5
records in Rmem

2 with value 2, and complete the flushing,
after which nmem

1 (1) = 0 (no tuple remaining in Rmem
1 has

value 1), nmem
1 (2) = 10, nmem

2 (1) = 10, and nmem
2 (2) = 5.

Practical Consideration. Maintaining nmem
i (v), parr

i (v)
for all 1 ≤ i ≤ 2 and v ∈ Ajoin is impractical if the domain
of Ajoin is large. Our goal is to limit the amount of statis-
tics to be proportional to npart (the number of different hash
values). For this purpose, instead of nmem

i (v), our system
records the number nmem

i [j] of records in Rmem
i [j] (i.e., the

j-th partition of Rmem
i). Similarly, instead of parr

i (v), we
store the probability parr

i [j] that the next arriving record
falls in Rmem

i [j]. Since statistics are maintained only at the
“partition” level, we infer nmem

i (v) and parr
i (v) for individ-

Algorithm optimal-flush
/* flush npart tuples from Rmem

1 , Rmem
2 ; when the algorithm

starts, nmem
i [j] (i = 1 or 2, and 1 ≤ j ≤ npart) equals the

number of records in partition Rmem
i [j] */

1. L = the list of all parr
i [j] in ascending order

1 ≤ i ≤ 2, 1 ≤ j ≤ npart

2. while (npart > 0) //need to flush more
3. get the next smallest parr

i [j] from L
4. if i = 1
5. if nmem

2 [j] ≥ nflush

6. sort the first nflush tuples in Rmem
2 [j] and append

them to the end of Rdisk
2 [j]

7. nmem
2 [j] = nmem

2 [j] − nflush; nflush = 0
8. else
9. append everything in Rmem

2 [j] to the end of Rdisk
2 [j]

10. nflush = nflush − nmem
2 [j]; nmem

2 [j] = 0;
/* similarly for the case i = 2 */
End optimal-flush

Figure 4: Optimal flush

ual values v using the local uniformity assumption. Let s
be the number of distinct values in one partition, namely,
s = |Ajoin|/npart, where |Ajoin| is the total number of dis-
tinct values in Ajoin. Then, for each value v in Rmem

i [j],
nmem

i (v) ≈ nmem
i [j]/s, and parr

i (v) ≈ parr
i [j]/s. Accord-

ingly, Equation 2 can be re-written into:

nrslt =
nflush

s
·

npart�
j=1

(nmem
1 [j] · parr

2 [j] + parr
1 [j] ·

nmem
2 [j] + nflush · parr

1 [j] · parr
2 [j]) (4)

The results derived earlier for Equation 2 also hold for Equa-
tion 4, except that here the operations are performed on par-
titions, instead of individual values. Figure 4 demonstrates
the pseudo-code for the optimal flush in RPJ. The algorithm
first obtains the smallest parr

i [j] among all 1 ≤ i ≤ 2 and
1 ≤ j ≤ npart. Given such a parr

i [j], it flushes records in
the j-th partition of the opposite relation. If the number
of records from the partition is smaller than nflush (i.e.,
the target number of tuples to evict), the algorithm selects
the next smallest parr

i [j], and flushes another partition. We
close this section by claiming the optimality of optimal flush.

Lemma 1. Given the same statistics about the arrival prob-

abilities and the number of records in each relation with par-

tition values on column Ajoin, optimal flush achieves the

largest nrslt among all the alternative flushing strategies.

4.2 Statistics Maintenance
Next, we explain how to dynamically maintain nmem

i [j]
and parr

i [j] for each partition Rmem
i [j]. Updating nmem

i [j] is
trivial: we simply increase (decrease) it by 1 whenever a tu-
ple arrives at (is flushed from) Rmem

i [j]. To compute parr
i [j],

we consider its equivalent form P (Ri)·P (j|Ri), where P (Ri)
denotes the probability that the next arriving tuple t belongs
to Ri, and P (j|Ri) gives the conditional probability that t
falls in the j-th partition, knowing that t ∈ Ri. In the sequel,
we first elaborate P (j|Ri) and then discuss the maintenance
of P (Ri).

Since tuples of each relation arrive in random order, the
data obtained earlier can be used to infer the distribution
of the tuples to be retrieved subsequently. For this purpose,
we store the number ntotal

i [j] of records that have ever been

received in the j-th partition Ri[j] of Ri since the beginning

of the join operation (note that Ri[j] includes both Rmem
i [j]

and Rdisk
i [j]). Then, P (j|Ri) corresponds to the percentage

of ntotal
i [j] over the total number of Ri tuples currently in

the system, or formally:

P (j|Ri) = ntotal
i [j]/

npart�
j=1

ntotal
i [j] (5)

Tuples that have already been received for each relation Ri

constitute a random sample set of Ri, whose size increases
with time. Since a larger sample set reflects the overall data
distribution more accurately, the precision of Equation 5
continuously improves with time.

The probability P (Ri), on the other hand, is not related
to the data that have arrived, but instead depends on the
relative speeds of the networks delivering R1 and R2 respec-
tively. Furthermore, unlike P (j|Ri) which tends to stabi-
lize as time progresses (converging to the final percentage
of Ri[j] in the entire Ri), P (Ri) may vary with time con-
siderably. For example, assume that currently R1 tuples
arrive faster than R2, implying P (R1) > P (R2) (i.e., the
next record is more likely to be from R1). At some later
time when the network of R1 incurs congestion, P (R1) may
become smaller than P (R2).

We estimate P (R1) and P (R2) by maintaining a value
nrcnt

i for each relation Ri as follows. The initial nrcnt
i is set

to the number of arriving Ri records in the first time unit
[0, 1]. During each subsequent unit [t, t + 1] (t ≥ 1 is an
integer), the system counts the amount αi(t) of incoming
Ri records. At time t + 1, nrcnt

i is updated to λ · nrcnt
i +

(1 − λ) · αi(t), where λ is a constant in [0, 1].
The value of nrcnt

i reflects the volume of “recent” ar-
rivals in Ri. To see this, observe that the influence of αi(t)
(the number of incoming records during a particular inter-
val [t, t + 1]) on the current nrcnt

i decays exponentially with
time. For example, αi(0) is exactly nrcnt

i at time 1, but
contributes (to nrcnt

i) by only λ ·αi(0) at time 2. In general,
the contribution of αi(0) at time t equals λt−1 ·αi(0), which
eventually becomes negligible (for large t). The constant λ
controls the “rate” of decay – a low (high) λ quickly (slowly)
reduces the effect of historical αi(t) to the current nrcnt

i .
Therefore, using 4 values, namely, nrcnt

1 , nrcnt
2 , and α1(t),

α2(t) for the latest time interval [t, t+1] (the historical αi(t)
need not be retained), we collect sufficient information for
estimating P (Ri): Out of the “recent” nrcnt

1 + nrcnt
2 tu-

ples, nrcnt
i come from Ri (1 ≤ i ≤ 2). Hence, P (Ri) is

approximately nrcnt
i /(nrcnt

1 +nrcnt
2). Combining with Equa-

tion 5, we can represent parr
i [j] using Equation 6 (recall that

parr
i [j] = P (Ri) · P (j|Ri)).

parr
i [j] =

ntotal
i [j]

�npart

j=1 ntotal
i [j]

·
nrcnt

i

nrcnt
1 + nrcnt

2

(6)

If relation Ri has been completely received (indicated by a
special “end-of-stream” symbol), parr

i [j] is set to 0 for all
1 ≤ j ≤ npart.

4.3 Comparison of Flushing Policies
In this section, we analytically compare optimal flush with

the alternative flushing policies (i.e., flush all, flush smallest,
flush largest, adaptive, reviewed in Section 2) using Equa-
tion 4. Towards this, we discuss two “extreme” arrival pat-
terns. The first one, referred to as harmony, is such that, if
the arrival probability parr

1 [j] is high (low), then parr
2 [j] (for

the same partition in R2) is also high (low). The other one,
reverse, is the opposite of harmony: if parr

1 [j] is high (low),
then parr

2 [j] is low (high). Note that other arrival patterns
are between harmony and reverse, in which case the relative
performance of each method can be inferred accordingly. To
facilitate discussion, we consider the networks for R1, R2 are
equally fast (i.e., P (R1) = P (R2)), unless specifically stated.

Flush All. This is a radical policy that actually mini-

mizes the efficiency of the mm-stage (observe that nrslt in
Equation 4 obtains its minimum when nmem

1 = nmem
2 = 0).

Hence, we do not discuss it further.

Flush Smallest. The strategy (very probably) performs
well for harmony. To explain this, consider the first flushing
after the join starts. Since P (R1) = P (R2), nrcnt

1 is equiva-
lent to nrcnt

2 in Equation 6, meaning that the same number
of tuples have been received from each stream. Furthermore,
no flushing has happened before, so nmem

i [j] = ntotal
i [j] for

all partitions (1 ≤ i ≤ 2, 1 ≤ j ≤ npart), where nmem
i [j] is

the number of records in Rmem
i [j], and ntotal

i [j] denotes the
size of both Rmem

i [j] and Rdisk
i [j] (which is empty). As a

result, Equation 6 can be simplified to parr
i [j] = 1

2
nmem

i [j]/

�npart

j=1 nmem
i [j]. Since the denominator is the same for

all parr
i [j], the arrival probability parr

i [j] is proportional to
nmem

i [j].
Assume that the victim partition of the first flushing is

Rmem
1 [1] (the first partition of Rmem

1), i.e., it receives the
smallest number nmem

1 [1] of records among all partitions in
Rmem

1 and Rmem
2 . Hence, parr

1 [1] is the smallest among all
the arrival probabilities parr

i [j]. Due to the property of har-

mony, parr
2 [1] is also small (but is not the smallest). Hence,

decreasing nmem
1 [j′] is not expected to lower nrslt, quanti-

fied in Equation 4, considerably, although the best strategy
should decrease nmem

2 [1], as in optimal flush.
On the other hand, flush smallest is inefficient for reverse.

To illustrate this, assume again parr
1 [1] is the smallest so

that nmem
1 [1] will decrease after flushing. Since parr

2 [1] is
expected to be large (by the definition of reverse), reducing
nmem

1 [1] brings down the value of nrslt significantly accord-
ing to Equation 4, resulting in much lower output rate than
optimal flush.

Flush Largest. Since flush largest is the opposite of
flush smallest, it is expected to perform well for reverse, but
poorly for harmony, which can be verified in a way similar
to the above analysis.

Adaptive. Recall that adaptive aims at balancing the
numbers of records in Rmem

1 , Rmem
2 . It is indeed the best

choice if (i) tuples of both relations arrive equally fast, and
(ii) no further statistics are available about the arrival status
in individual partitions. In this case, adaptive is equivalent
to a special version of optimal flush, where each relation con-
tains a single partition (i.e., npart = 1 and parr

1 [1] = parr
2 [1]

in equaiton 4). Thus, it is expected to perform reasonably
well for both harmony and reverse.

The rationale of adaptive, however, is not correct if the
arrival rates of R1 and R2 are different. For example, if
data of R1 are faster, then (by Equation 4) more tuples
from R2 should be maintained in memory to maximize the
join probability (for incoming records), as is captured by
optimal flush. Finally, adaptive does not take advantage of
the additional statistics about individual partitions, which

are utilized by optimal flush to maximize the output rate.

5. THE REACTIVE STAGE
The reactive stage is invoked when the transmission from

both streams is being suspended. The execution of this stage
is divided into multiple iterations. Specifically, each itera-
tion selects the most “beneficial” task, from the possible
2npart md-tasks and npart dd-tasks, that is expected to of-
fer the fastest output rate. In Sections 5.1 and 5.2, we first
explain the details of the md- and dd-tasks, respectively.
Then, Section 5.3 proposes an efficient way to accurately
estimate the output rate of each possible task.

5.1 Performing an Md-task
Recall that an md-task performs a join between a chosen

memory partition (how to make this choice is the topic of
Section 5.3) with the corresponding disk partition of the
other relation. Without loss of generality, in the sequel, we
assume that the selected partition is the first one in Rmem

1 ,
i.e., Rmem

1 [1], which is to be joined with Rdisk
2 [1] in the md-

task.
To perform the task, we first sort all the data in Rmem

1 [1]
in ascending order of their Ajoin values (if they are not al-
ready sorted). Then, we simply scan each page of Rdisk

2 [1],
and for each record t2 encountered, a binary search is in-
voked to identify the tuples t1 in Rmem

1 [1] with the same
(Ajoin) values as t2. Although such pairs of records (t1, t2)
satisfy the join predicate, only a subset of them are output
— those that have not been reported before. There are two
possible cases where this could happen: (t1, t2) was already
identified in the mm-stage, or in a previous md-task involv-
ing Rmem

1 [1] and Rdisk
2 [1].

To avoid a duplicate result (t1, t2) that has been produced
before in the mm-stage, we associate each tuple t with an
interval [t.ATS, t.DTS] where, as in XJoin, t.ATS is the
time that t is received, and t.DTS the time it is flushed (if t
is still in memory, t.DTS equals ∞). Hence, [t.ATS, t.DTS]
denotes the period during which t stays in memory. Then,
(t1, t2) is reported in the mm-stage if and only if the intervals
of the two tuples, [t1.ATS, t1.DTS] and [t2.ATS, t2.DTS],
intersect. Hence, a pair (t1, t2) encountered in the md-stage
is ignored if the two intervals overlap.

Next we elaborate how to avoid a duplicate (t1, t2) al-
ready generated in a previous md-task between Rmem

1 [1] and
Rdisk

2 [1]. Note that this is possible only if t1 and t2 already
appeared in Rmem

1 [1] and Rdisk
2 [1] respectively, when the

md-task was performed. Denote T as the execution time of
this md-task. It follows that, (i) T is larger than t1.ATS, the
arriving timestamp of t1 (note that t1.DTS = ∞ because t1
is still in memory), and (ii) T is larger than t2.DTS since
t2 started being in Rdisk

2 [1] only after t2.DTS.
Motivated by this, we adopt a mechanism similar to, but

simpler than, that of XJoin. In particular, RPJ records all
the timestamps in the history when Rmem

1 [1] was deployed
in an md-task to join with Rdisk

2 [1]. Specifically, assume
that Rmem

1 [1] was used in an md-task c times; then the time
of the i-th (1 ≤ i ≤ c) execution is recorded in the i-th ele-
ment T md

1 [i] of array T md
1 (subscript 1 indicates the memory

partition in the md-task comes from relation R1). For each
(t1, t2) encountered, we check whether this result was pro-
duced in the last md-task between Rmem

1 [1] and Rdisk
2 [1],

that is, whether T md
1 [c] > t1.ATS and T md

1 [c] > t2.DTS. If
yes, (t1, t2) is ignored. Although the values T md

1 [1], T md
1 [2],

Algorithm md-task
/* without loss of generality, we assume that the md-task is
between the first partitions of Rmem

1 and Rdisk
2 , denoted as

Rmem
1 [1] and Rdisk

2 [1], respectively; also assume that these
partitions have been involved in md-tasks c times before, at
timestamps T md

1 [1], T md
1 [2], ..., T md

1 [c], respectively */

1. sort the records in Rmem
1 [1] by their Ajoin values

2. sequentially scan the tuples in Rdisk
2 [1]

3. for each tuple t2 in Rdisk
2 [1]

4. perform a binary search on the data of Rmem
1 [1] to identify

the tuples t1 with the same Ajoin value as t2
5. for each such tuple t1
6. if [t1.ATS, t1.DTS] intersects [t2.ATS, t2.DTS]
7. continue to the next tuple at line 5
8. if T md

1 [c] > t1.ATS and T md
1 [c] > t2.DTS

9. continue at line 5
10. report (t1, t2) as a join result
End md-task

Figure 5: The algorithm of an md-task

..., T md
1 [c−1] are not used in the above procedures, they are

needed in dd-tasks (as will be clarified shortly), and hence,
must be stored. Figure 5 formally presents the pseudo-code
of an md-task.

5.2 Performing a Dd-task
In this section, we elaborate the details of a dd-task, us-

ing as an example the join between the first disk partition
Rdisk

1 [1] of Rdisk
1 and that Rdisk

2 [1] of Rdisk
2 (the discussion

about joining other partitions is similar). As with HMJ,
a dd-task applies the PSMJ algorithm (reviewed in Sec-
tion 2.2), but eliminates duplicate results in a different way.
The elimination approach of HMJ is not applicable to RPJ,
because it is limited to the HMJ’s concurrent flushing policy.

Since the execution of PSMJ in a dd-task is the same as
that in HMJ, in the sequel we focus on duplicate elimina-
tion. Assume that PSMJ encounters a pair of records (t1, t2)
where t1 (t2) is from Rdisk

1 (Rdisk
2), and the two tuples sat-

isfy the join condition. There are three possible cases for
(t1, t2) to have been identified before. Next we discuss each
of them in turn, together with the corresponding mechanism
for avoiding duplicate reporting.

The first possibility is that (t1, t2) was reported in the
mm-stage. As explained in the previous section, this hap-
pens if and only if t1 appeared in Rmem

1 [1] at some times-
tamp when t1 was also present in Rmem

2 [1]. This can be
detected by checking whether their memory-alive intervals,
[t1.ATS, t1.DTS] and [t2.ATS, t2.DTS], intersect. If yes,
(t1, t2) is ignored in the current dd-task.

The second scenario is that, (t1, t2) was already reported
in a previous md-task, which can be a task joining Rmem

1 [1]
with Rdisk

2 [1], or Rdisk
1 [1] with Rmem

2 [1]. Due to symmetry,
we discuss the case involving Rmem

1 [1] and Rdisk
2 [1]. Then,

at the time T of this md-execution, t1 was still in memory,
but t2 was already flushed to the disk, or equivalently, T falls
in the interval [t1.ATS, t1.DTS], but is larger than t2.DTS.
Assume that in history there have been c md-tasks involving
Rmem

1 [1] and Rdisk
2 [1], and their happening timestamps are

recorded in array T md
1 [1], ..., T md

1 [c] (as mentioned in the
previous section). From these timestamps, we collect the
ones that are within [t1.ATS, t1.DTS], and check if any of
them is larger than t2.DTS. If yes, the result (t1, t2) is
ignored.

�
�

� �
�

� �
�

� �
�

�

�
�

� �
�

� �
�

�

����������	
�����	�

��������	
���

�

�

�

�

�

�

�

�

	��
����	���
�����

(a) Before the first dd-task (b) After the 1st merging pass

��������	
��

�

�

�

�

�
�

�

�
�

�

�����

�����

��������

(c) After the 2nd merging pass (d) Before the 2nd dd-task

Figure 6: Duplicate avoidance in dd-tasks

As the third case, (t1, t2) can also have been produced
in one of the previous dd-tasks (for Rdisk

1 [1] and Rdisk
2 [1]).

To explain how duplicates of this type are avoided, we need
to clarify the concept of matching runs of PSMJ. Figure 6a
shows the situation before the first dd-task between Rdisk

1 [1]
and Rdisk

2 [1], which contain 4 and 3 runs, respectively. Note
that, unlike HMJ, the number of runs in the two disk parti-
tions may be different.

Assume that in each merging operation PSMJ combines
(at most) 2 runs of each partition into a merged run. Fig-
ure 6b shows the situation after the first merging pass, which
involves two merging operations. The first operation com-
bines r1

1, r2
1 of R1 into run r5

1, and at the same time r1
2 and

r2
2 of R2 into r4

2. The second operation combines only r3
1 , r4

1

of R1 into r6
1 (no combination is necessary for R2 because

there is only one run r3
2 left). In the second merging pass,

(Figure 6c), runs r5
1 and r6

1 (r4
2 and r3

2) are merged into r7
1

(r4
2). Figure 6d shows the situation before the second dd-

task involving these two disk partitions, where some new
runs have been flushed to each partition.

We say two runs in partitions Rdisk
1 [j], Rdisk

2 [j] match each
other if they are produced from the same merging operation.
For example, recall that the first merging pass in Figure 6b
involves two operations, and accordingly, run r5

1 matches
r4
2, and r6

1 matches r3
2. Similarly, the second merging pass

involves a single merge, creating matching runs r7
1 and r5

2.
These are the only matching pairs in all examples of Fig-
ure 6.

To eliminate duplicates produced in previous dd-tasks (on
Rdisk

1 [j], Rdisk
2 [j]), we do not report (t1, t2) if the two tuples

are obtained from matching runs. For example, if t1 (t2)
comes from r5

1 (r4
2), then (t1, t2) must have already been

reported in the merging operation that combined r1
1 and r2

1

(r1
2 and r2

2) into r5
1 (r4

2). Similarly, if t1 (t2) comes from r7
1

(r5
2), then (t1, t2) has already been checked when r5

1 , r6
1 and

r4
2, r3

2 were combined. Figure 7 explains the pseudo-code for
performing a dd-task.

5.3 Task Output Rate Estimation
As mentioned earlier, the output rate of an (md- or dd-)

task is Er/Et, where Er is the number of new results to
be produced, and Et the task execution time. The reactive
stage of RPJ depends on accurate estimation of the output
rate of individual tasks, so that each iteration can select the
one that promises to produce the fastest results. Predicting
the output rate involves the estimation of both Er and Et.
We start with the analysis of Et since it is relatively simple.

Algorithm dd-task
/* assume that the dd-task is between the first partitions
Rdisk

1 [1] and Rdisk
2 [1] of Rdisk

1 and Rdisk
2 , respectively;

the md-tasks involving Rmem
1 [1] and Rdisk

2 [1] have been
performed c1 times before, at timestamps T md

1 [1], ..., T md
1 [c1],

respectively; similarly the md-tasks involving Rdisk
1 [1] and

Rmem
2 [1] have been performed c2 times at timestamps

T md
2 [1], ..., T md

2 [c2] */

1. use PSMJ to join Rdisk
1 [1] and Rdisk

2 [1]
2. for each join result (t1, t2)
3. if [t1.ATS, t1.DTS] intersects [t2.ATS, t2.DTS]
4. continue at line 2
5. if t1, t2 come from matching runs then continue at line 2
6. for i = 1 to c1
7. if T md

1 [i] ∈ [t1.ATS, t1.DTS] and T md
1 [c1] > t2.DTS

8. continue at line 2
9. for i = 1 to c2
10. if T md

2 [i] ∈ [t2.ATS, t2.DTS] and T md
2 [i] > t1.DTS

11. continue at line 2
12. report (t1, t2) as a join result
End dd-task

Figure 7: The algorithm of an dd-task

Estimating Et. For an md-task, e.g., joining Rmem
1 [1]

with Rdisk
2 [1]), Et is dominated by the cost of scanning

Rdisk
2 [1] — the time accessing the memory-resident Rmem

1 [j]
is negligible. Records in each run of Rdisk

2 [1] are stored in
sequential pages (as in Figure 6, a run contains data flushed
together or produced from the same merging operation in
PSMJ). Hence, if Rdisk

2 [1] has x runs and occupies y pages,
scanning it requires x random and y−x sequential accesses.
Let cran (cseq) represent the cost of one random (sequential)
access; then Et = x · cran + (y − x) · cseq .

Deriving Et for a dd-task, e.g., Rdisk
1 [1] ./ Rdisk

2 [1], is
reduced to the cost analysis of PSMJ [6], which gives the
following formula: Et = 2cran · (y1 + y2) · ps, where y1 (y2)
is the number of disk pages in Rdisk

1 [1] (Rdisk
2 [1]), ps the

number of merging passes given by max(dlogfy1e, dlogfy2e),
and f the number of runs in a partition that can be combined
in each merging.

Main Idea of Estimating Er. An obvious attempt
to predict Er would be to use join selectivity estimation
techniques. For example, the Er of a dd-task Rdisk

1 [1] ./
Rdisk

2 [1] could be computed using the cardinalities ndisk
1 [1],

ndisk
2 [1] of Rdisk

1 [1], Rdisk
2 [1] respectively, and the number

s of values covered by each partition [1]. Unfortunately,
this method does not give the accurate Er since it cannot
distinguish the results that have been reported earlier.

Motivated by this, instead of computing Er, our system
incrementally maintains it as tuples are received and flushed
to the disk. Specifically, for each memory partition, e.g.,
Rmem

1 [1], we keep a value Ermem which equals the expected
number of new results if an md-task is performed now using
Rmem

1 [1] to join with the first disk partition of R2. Similarly,
for each disk partition, e.g., Rdisk

1 [1], we maintain a number
Erdisk that gives the (new) result size if a dd-task Rdisk

1 [1] ./
Rdisk

2 [1] is invoked at the current time. In the sequel, we first
discuss the maintenance of Ermem and then clarify Erdisk.

Maintaining Ermem. Recall that Ermem quantifies the
number of join results not previously reported if an md-
task between Rmem

1 [1] and Rdisk
2 [1] is performed immedi-

ately (the computation of Ermem for other md-tasks is sim-
ilar). Obviously, once such an md-task is performed, Ermem

should be reset to 0 — if the same md-task is performed right
after the previous one (without receiving any incoming tu-
ple), no new result is expected. In general, since Ermem de-
pends on the tuples of Rmem

1 [1] and Rdisk
2 [1], its value can

be affected only when the content of Rmem
1 [1] or Rdisk

2 [1]
changes, for which there are three cases:

• case 1: A new tuple arrives at Rmem
1 [1];

• case 2: A tuple in Rmem
1 [1] is flushed;

• case 3: A tuple in Rmem
2 [1] is flushed.

In the sequel, we discuss the updates to Ermem for each
scenario. For case 1, let t be the incoming tuple. Evi-
dently, compared to the situation before receiving t, joining
Rmem

1 [1] and Rdisk
2 [1] now is expected to produce additional

results — those that are produced by t. Hence, we should
increase Ermem by the number of join results involving t,
which equals the cardinality of tuples in Rdisk

2 [1] that have
the same value on Ajoin as t. Recall that a partition includes
tuples with s different Ajoin-values, where s equals |Ajoin|
/ npart, |Ajoin| is the total number of distinct values in the
domain of Ajoin, and npart is the number of different values
produced by the hash function H used to hash tuples into
the corresponding partitions. As a result, t is expected to
satisfy the join condition with ndisk

2 [1]/s records in Rdisk
2 [1],

where ndisk
2 [1] is the cardinality of Rdisk

2 [1]. In other words,
for case 1, Ermem should be increased by ndisk

2 [1]/s.
For case 2, let t be the record flushed from Rmem

1 [1] to
Rdisk

1 [1]. At the first glance, it appears that Ermem should
be reduced by ndisk

2 [1]/s — since Rmem
1 [1] does not contain

t any more, joining it with Rdisk
2 [1] would lose all the results

that could be produced by t. This, however, is true only
if no md-task involving Rmem

1 [1] and Rdisk
2 [1] has been per-

formed since t arrived. In fact, as indicated in the following
lemma, if such an md-task exists, the value of Ermem before
expunging t already excludes the results produced by t, and
hence, no change to Ermem is necessary after flushing t.

Lemma 2. Assume that t is a tuple being flushed to Rdisk
1 [1].

If an md-task between Rmem
1 [1] and Rdisk

2 [1] has been exe-

cuted since the arrival of t, all the results involving t and the

data in Rdisk
2 [1] must have been reported before.

Proof. Let Sbfr (Saft) be the set of tuples in Rdisk
2 [j]

that were flushed before (after) t arrived. Apparently, the
union of Sbfr and Saft constitutes the entire Rdisk

2 [j]. All
results produced by t and the data of Sbfr have been re-
ported in the md-task between Rmem

1 [j] and Rdisk
2 [j] after

the arrival of t1. Furthermore, every tuple in Saft stayed si-

multaneously with t in memory for some time. Hence, all the
results generated by t and the records in Saft must have been
reported in the mm-stage, thus completing the proof.

Checking if an md-task has been executed since the ar-
rival of t is easy — recall that the timestamps of each md-
execution involving Rmem

1 [1] and Rdisk
2 [1] are recorded in an

array T md
1 , where T md

1 [j] equals the timestamp of perform-
ing the j-th md-task in history. Hence, it suffices to examine
whether there exists an element T md

1 [j] of T md
1 that is larger

than the arrival time t.ATS of t.
Finally for case 3, no modification for Ermem is needed

in any case. Let t be the tuple that is being flushed to
Rdisk

2 [1]. Obviously, t and the tuples in Rmem
1 [1] existed in

the memory at the same time (right before the eviction of
t), and hence, the join results produced by them must have
been reported before in the mm-stage. Therefore, the cur-
rent Ermem already excludes these results (remember that
Ermem only counts the results that have not been reported
before).

Maintaining Erdisk. Erdisk corresponds to the size of
the new results in a dd-task joining Rdisk

1 [1] with Rdisk
2 [1],

i.e., the first partitions of Rdisk
1 and Rdisk

2 (the maintenance
of Erdisk for other dd-tasks follows the same idea). Clearly,
similar to resetting Ermem described earlier, Erdisk is reset
to 0 every time a dd-task Rdisk

1 [1] ./ Rdisk
2 [1] is executed.

Other than this, potential updates to Erdisk are necessary
only when a tuple t is flushed to Rdisk

1 [1] or Rdisk
2 [1]. Due

to symmetry, it suffices to discuss the case where t is flushed
from Rmem

1 [1] to Rdisk
1 [1].

No change to Erdisk is necessary if an md-task joining
Rmem

1 [1] with Rdisk
2 [1] has been performed since the arrival

of t. In fact, by Lemma 2, the results involving t and the
data in Rdisk

2 [1] must have already been produced before,
and hence, were not counted in Erdisk before t was ex-
punged.

It remains to clarify the scenario where no such md-task
was performed since t arrived. For this purpose, we divide
the tuples in Rdisk

2 [1] into two parts: the set Sbfr of tuples
that were flushed (to Rdisk

2 [1]) before the arrival of t, and
the set Saft of records flushed after. After incorporating
t into Rdisk

1 [1], the dd-task joining Rdisk
1 [1] with Rdisk

2 [1]
will produce additional join results, corresponding to those
produced by t and records in Sbfr. The results generated
by t and the data in Saft must have been produced in the
mm-stage before (see the proof of Lemma 2), and hence,
have been excluded from Erdisk. Tuple t is expected to
have the same Ajoin values with around |Sbfr|/s records in
Sbfr, where s is the number of distinct values in the domain
of Ajoin hashed into a single partition (as mentioned before,
s = |Ajoin|/npart). Therefore, Erdisk should be increased
by |Sbfr|/s.

Obtaining |Sbfr| is straightforward. Assume that the con-
tent of Rmem

2 [1] has been flushed to Rdisk
2 [1] totally c times

in history. We maintain two arrays T flush and nflush both
with size c, such that T flush[j] (1 ≤ j ≤ c) equals the time
of the j-th flushing, and nflush[j] is the number of records
written to the disk in this flushing. As a result, the size
|Sbfr| of Sbfr equals the sum of the numbers migrated to
disk during all flushings that happened before time t.ATS,
i.e., the arrival time of t.

6. EXPERIMENTS
In this section, we empirically demonstrate the efficiency

of RPJ by comparing it against XJoin and HMJ. All the
experiments are performed using a 2.4Ghz CPU. The mem-
ory/disk page size is fixed to 1024 bytes. Each record has
a length of 10 bytes. The available memory contains 1000
pages (i.e., it is large enough to accommodate roughly 100k
records). The datasets are generated as follows. The do-
main of the join attribute Ajoin consists of integers in the
range [1, 10000]. All algorithms adopt a hash function
(H(t) = t.Ajoin modulo 20) that produces npart = 20 par-
titions (each covering 500 Ajoin values). The first record
is received at time 0, and two successive tuples are sep-
arated by an interval with length larr

intv , which may vary

with time. Each record t belongs to R1 (R2) with prob-
ability P (R1) (P (R2)), which is fixed during the entire exe-
cution. After deciding the relation (e.g., R1) of t, the parti-
tion to which t belongs is selected according to probabilities
P (j|R1) (1 ≤ j ≤ npart) (i.e., Rmem

1 [j] is selected with prob-
ability P (j|R1)). Finally, t.Ajoin is set to a random value
covered by the chosen partition. The total number of tu-
ples is fixed to 2 million, i.e., the expected cardinality of
R1 (R2) equals 2 · P (R1) (2 · P (R2)) million. We examine
alternative algorithms with respect to the following stream
characteristics.

• Network reliability. A reliable network never incurs
suspensions of data transmission. For achieving this,
we set larr

intv to a fixed value 10−3 (seconds). To sim-
ulate an unreliable network, we generate larr

intv in the
range [10−3, 0.03] (seconds) according to the Zipfian
distribution (skewed towards 10−3), i.e., the longest
transmission delay is 0.03 seconds. The algorithm han-
dles a suspension after waiting for 0.025 seconds.

• Arrival distribution. We create arrival patterns har-

mony and reverse (discussed in Section 4.3) by first
fixing P (j|R1) (1 ≤ j ≤ 20) for R1 and then adjust-
ing P (j|R2) accordingly. In particular, P (j|R1) equals
1% + (8/19)% × (j − 1) (i.e., P (20|R1) = 9% is the
largest and P (1|R1) = 1% is the smallest). For har-

mony, P (j|R2) = P (j|R1) for all (1 ≤ j ≤ npart),
while for reverse, P (j|R2) = P (20 − j|R1).

• Relative speed. To create transmissions of R1 and R2

with different speeds, we vary the ratio between P (R1)
and P (R2) (keeping P (R1) + P (R2) = 1). Following
the settings in [12], we show the results with ratios 1
(i.e., the two streams are equally fast), and 5 (i.e., R1

is 5 times faster).

We measure the quality of a method in terms of: (i) the
“progressiveness”, i.e., how fast the algorithm can deliver
join results, and (ii) efficiency, i.e., what is the “amortized
processing cost” for each result produced. In particular,
the cost shown in the sequel involves both CPU and I/O
time. We implement the following optimization (proposed
in [12]) to reduce the CPU overhead. Each memory partition
Rmem

i [j] (1 ≤ i ≤ 2, 1 ≤ j ≤ npart) is organized using an-
other hash-table with 5 (sub-)partitions. Given an incoming
tuple t ∈ R1, for instance, approximately 1/5 of Rmem

2 [H(t)]
is inspected to find records of Rmem

2 that can join with t. In
the sequel, we present the results in two parts: Section 6.1
focuses on reliable networks, and Section 6.2 on unreliable
transmission.

6.1 Reliable Networks
The first experiment uses the harmony dataset where both

streams are equally fast (the last record arrives at the 2000-
th timestamp). Figure 8a plots the number of reported tu-
ples as a function of the elapsed time for RPJ, HMJ, and
XJoin. RPJ produces the largest number of results during
data transmission. All algorithms demonstrate similar per-
formance in the “clean-up” stage (after timestamp 2000).
This is expected because, the clean-up stage is in fact a join
between two relations that have been completely received,
for which the join algorithms deployed by the three methods
have comparable performance.

 1e+06

 1e+07

 1e+08

 0 500 1000 1500 2000 2500

n
u
m

b
e
r

o
f
re

s
u
lt
s

elapsed time (s)

RPJ
HMJ

XJOIN

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

n
u

m
b

e
r

o
f

re
s
u

lt
s

elapsed time (s)

RPJ
HMJ

XJOIN

(a) Harmony (same speed) (b) Reverse (same speed)

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

n
u
m

b
e
r

o
f
re

s
u
lt
s

elapsed time (s)

RPJ
HMJ

XJOIN

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

n
u

m
b

e
r

o
f

re
s
u

lt
s

elapsed time (s)

RPJ
HMJ

XJOIN

(c) Harmony (diff. speeds) (d) Reverse (diff. speeds)

Figure 8: Progressiveness comparison (Reliable
Networks)

Figure 8b illustrates the progressiveness of alternative meth-
ods for reverse till the end of data transmission. Since the
performance of alternative methods in the clean-up state is
similar to that shown in Figure 8a, the results for this stage
are omitted to enhance the clarity of the diagram. It is
worth mentioning that, since data delivery is never blocked,
the mm-stage is the only stage in the entire execution of each
approach (i.e., md- and dd-stages never occur). Hence, the
efficiency of RPJ essentially demonstrates the superiority of
optimal flush.

Figures 8c and 8d present the results of similar experi-
ments for the case where R1 is transmitted 5 times faster
than R2. Note that the numbers of join results differ from
those in Figures 8a and 8b due to the difference in the car-
dinalities of the participating relations. RPJ again outper-
forms its competitors in all cases. Figure 9 shows the amor-
tized cost (per result) as time evolves for the previous exper-
iments. RPJ has the lowest overhead at all times because
its result size is always larger than those of the competitors.
The cost surge of each method at the initial join phase is
caused by the flushing operation for handling the first mem-
ory overflow. Specifically, the processing cost involves only
CPU time prior to the overflow, while the flushing performs
considerable disk accesses, thus significantly increasing the
average processing time. As time progresses, the increase
in the result size compensates the flushing overhead, thus
gradually stabilizing the amortized cost.

6.2 Unreliable Networks
Having evaluated RPJ in the absence of transmission sus-

pensions, we proceed to examine its performance for unreli-
able networks. Figure 10 shows the progressiveness during
the entire join, for different arrival distributions and rela-
tive speeds of R1 and R2. The performance gain of RPJ
over XJoin and HMJ is more significant than the reliable
case, confirming that RPJ is superior not only in its flush-
ing policy, but also in its reactive processing (at transmis-
sion delays). In particular, notice that before the clean-up
stage (starting at around the 14000-th timestamp), RPJ has
reported most of the results, while the other methods can
produce only about 20% of the final output.

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
m

o
rt

iz
e
d
 c

o
s
t
p
e
r

re
s
u
lt
 (

s
)

elapsed time (s)

RPJ
HMJ

XJOIN

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
m

o
rt

iz
e

d
 c

o
s
t

p
e

r
re

s
u

lt
 (

s
)

elapsed time (s)

RPJ
HMJ

XJOIN

(a) Harmony (same speed) (b) Reverse (same speed)

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
m

o
rt

iz
e
d
 c

o
s
t
p
e
r

re
s
u
lt
 (

s
)

elapsed time (s)

RPJ
HMJ

XJOIN

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
m

o
rt

iz
e

d
 c

o
s
t

p
e

r
re

s
u

lt
 (

s
)

elapsed time (s)

RPJ
HMJ

XJOIN

(c) Harmony (diff. speeds) (d) Reverse (diff. speeds)

Figure 9: Efficiency comparison (Reliable Networks)

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 0 2000 4000 6000 8000 10000 12000 14000 16000

n
u

m
b

e
r

o
f

re
s
u

lt
s

elapsed time (s)

RPJ
HMJ

XJOIN

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 0 2000 4000 6000 8000 10000 12000 14000 16000

n
u
m

b
e
r

o
f
re

s
u
lt
s

elapsed time (s)

RPJ
HMJ

XJOIN

(a) Harmony (same speed) (b) Reverse (same speed)

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000

n
u

m
b

e
r

o
f

re
s
u

lt
s

elapsed time (s)

RPJ
HMJ

XJOIN

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000

n
u

m
b

e
r

o
f

re
s
u

lt
s

elapsed time (s)

RPJ
HMJ

XJOIN

(c) Harmony (diff. speeds) (d) Reverse (diff. speeds)

Figure 10: Progressiveness comparison (Unreliable
Networks)

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 0 2000 4000 6000 8000 10000 12000 14000 16000

n
u
m

b
e
r

o
f
re

s
u
lt
s

elapsed time (s)

RPJ
RPJ-md
RPJ-dd

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 0 2000 4000 6000 8000 10000 12000 14000 16000

n
u

m
b

e
r

o
f

re
s
u

lt
s

elapsed time (s)

RPJ
RPJ-md
RPJ-dd

(a) Harmony (same speed) (b) Reverse (same speed)

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000

n
u
m

b
e
r

o
f
re

s
u
lt
s

elapsed time (s)

RPJ
RPJ-md
RPJ-dd

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000

n
u

m
b

e
r

o
f

re
s
u

lt
s

elapsed time (s)

RPJ
RPJ-md
RPJ-dd

(c) Harmony (diff. speeds) (d) Reverse (diff. speeds)

Figure 11: Progressiveness comparison of RPJ vari-
ants (Unreliable Networks)

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0 2000 4000 6000 8000 10000 12000 14000 16000

a
m

o
rt

iz
e
d
 c

o
s
t
p
e
r

re
s
u
lt
 (

s
)

elapsed time (s)

RPJ
RPJ-md
RPJ-dd

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0 2000 4000 6000 8000 10000 12000 14000 16000

a
m

o
rt

iz
e

d
 c

o
s
t

p
e

r
re

s
u

lt
 (

s
)

elapsed time (s)

RPJ
RPJ-md
RPJ-dd

(a) Harmony (same speed) (b) Reverse (same speed)

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0 2000 4000 6000 8000 10000 12000 14000 16000

a
m

o
rt

iz
e
d
 c

o
s
t
p
e
r

re
s
u
lt
 (

s
)

elapsed time (s)

RPJ
RPJ-md
RPJ-dd

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0 2000 4000 6000 8000 10000 12000 14000 16000

a
m

o
rt

iz
e

d
 c

o
s
t

p
e

r
re

s
u

lt
 (

s
)

elapsed time (s)

RPJ
RPJ-md
RPJ-dd

(c) Harmony (diff speeds) (d) Reverse (diff. speeds)

Figure 12: Efficiency comparison of RPJ variants
(Unreliable Networks)

To further study the reactive characteristics of RPJ, we
implement two interesting variations: RPJ-md (RPJ-dd),
whose re-active stage chooses only md- (dd-) tasks. Par-
ticularly RPJ-md (RPJ-dd) can be regarded as an opti-
mized version of XJoin (HMJ), since XJoin (HMJ) performs
only md- (dd-) stages during the suspensions of data trans-
mission. Figure 11 compares the progressiveness of RPJ,
RPJ-md, and RPJ-dd using the same data as in Figure 10
(omitting the clean-up stage). Observe that RPJ-dd has a
faster output rate than RPJ-md, which confirms the phe-
nomenon in Figure 10 that HMJ has better progressiveness
than XJoin. As expected, RPJ yields the largest output size
by effectively mixing md- and dd-tasks.

Finally, Figure 12 plots the amortized costs of RPJ varia-
tions as a function of time. The overhead of RPJ-dd surges
to a high value soon after the join starts. This is because,
as shown in Figure 11, at the early stage of the join all
algorithms output approximately the same number of re-
sults while RPJ-dd performs considerable random accesses
(md-tasks involve mostly sequential accesses). As time pro-
gresses, however, the cost of RPJ-dd decreases, and even-
tually becomes lower than that of RPJ-md. These observa-
tions indicate that at the beginning of the join it is advan-
tageous to invoke md-tasks (at transmission suspensions),
while as more data are flushed, dd-tasks become more ben-
eficial. RPJ combines the advantages of RPJ-dd and RPJ-
md, and indeed has the smallest amortized cost.

7. CONCLUSIONS
This paper proposes RPJ, a novel algorithm for progres-

sively joining stream relations. Unlike the previous heuris-
tic approaches, RPJ is based on a probabilistic study of
the problem characteristics that maximizes the output rate.
We empirically verify that RPJ delivers results significantly
faster than its competitors and incurs lower processing over-
head. This work also initiates several directions for fu-
ture work. For example, the existing algorithms focus on
joins with equality conditions, while it would be interest-
ing to investigate their extensions to range predicates (e.g.,
R1 ./|R1.Ajoin−R2.Ajoin|<ε R2, where ε is a constant). An-

other challenging problem is the progressive join processing
between multi-dimensional relations [11]. For instance, let
R1 (R2) be a 2D dataset containing the location of hotels
(restaurants). A “spatial distance join” would return all
pairs of hotels t1 and restaurants t2 such that t1 and t2
are within 1 kilometers. Further, in practice, the volume
of arriving tuples may exceed the computation capacity of
the system, such that some data must be discarded. In this
case, a load shedding technique should minimize the number
of join outputs missed [3].

ACKNOWLEDGEMENTS
This work was fully supported by 3 grants from the Re-
search Grants Council of Hong Kong SAR, China: CityU
1163/04E, HKU 7380/02E, and HKUST 6178/04E. We would
like to thank the anonymous reviewers for their insightful
comments.

8. REFERENCES
[1] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.

Join synopses for approximate query answering. In
SIGMOD, pages 275–286, 1999.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems. In
PODS, pages 1–16, 2002.

[3] B. Babcock, M. Datar, and R. Motwani. Load shedding for
aggregation queries over data streams. In ICDE, pages
350–361, 2004.

[4] A. Das, J. Gehrke, and M. Riedewald. Approximate join
processing over data streams. In SIGMOD, pages 40–51,
2003.

[5] J.-P. Dittrich, B. Seeger, D. S. Taylor, and P. Widmayer.
Progressive merge join: A generic and non-blocking
sort-based join algorithm. In VLDB, pages 299–310, 2002.

[6] J.-P. Dittrich, B. Seeger, D. S. Taylor, and P. Widmayer.
On producing join results early. In PODS, pages 134–142,
2003.

[7] L. Golab and M. T. Ozsu. Processing sliding window
multi-joins in continuous queries over data streams. In
VLDB, pages 500–511, 2003.

[8] S. Guha, C. Kim, and K. Shim. Xwave: Approximate
extended wavelets for streaming data. In VLDB, pages
288–299, 2004.

[9] W. Hong and M. Stonebraker. Optimization of parallel
query execution plans in xprs. Distributed and Parallel
Databases, 1(1):9–32, 1993.

[10] J. Kang, J. F. Naughton, and S. Viglas. Evaluating window
joins over unbounded streams. In ICDE, pages 341–352,
2003.

[11] G. Luo, J. F. Naughton, and C. Ellmann. A non-blocking
parallel spatial join algorithm. In ICDE, pages 697–705,
2002.

[12] M. F. Mokbel, M. Lu, and W. G. Aref. Hash-merge join: A
non-blocking join algorithm for producing fast and early
join results. In ICDE, pages 251–263, 2004.

[13] U. Srivastava and J. Widom. Memory-limited execution of
windowed stream joins. In VLDB, pages 324–335, 2004.

[14] N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, and
M. Stonebraker. Load shedding in a data stream manager.
In VLDB, pages 309–320, 2003.

[15] T. Urhan and M. J. Franklin. Xjoin: A reactively-scheduled
pipelined join operator. TKDE, 23(2):27–33, 2000.

[16] S. Viglas and J. F. Naughton. Rate-based query
optimization for streaming information sources. In
SIGMOD, pages 37–48, 2002.

[17] S. Viglas, J. F. Naughton, and J. Burger. Maximizing the
output rate of multi-way join queries over streaming
information sources. In VLDB, pages 285–296, 2002.

