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Abstract
Object-oriented and object-relational DBMS support set-
valued attributes, which are a natural and concise way to
model complex information. However, there has been lim-
ited research to-date on the evaluation of query operators
that apply on sets. In this paper we study the join of two
relations on their set-valued attributes. Various join types
are considered, namely the set containment, set equality,
and set overlap joins. We show that the inverted file, a
powerful index for selection queries, can also facilitate the
efficient evaluation of most join predicates. We propose join
algorithms that utilize inverted files and compare them with
signature-based methods for several set-comparison predi-
cates.

1. Introduction
Commercial object-oriented and object relational DBMS [14]
support set-valued attributes in relations, which are a nat-
ural and concise way to model complex information. Al-
though sets are ubiquitous in many applications (document
retrieval, semi-structured data management, data mining,
etc.), there has been limited research on the evaluation of
database operators that apply on sets.

On the other hand, there has been significant research in
the IR community on the management of set-valued data,
triggered by the need for fast content-based retrieval in doc-
ument databases. Research in this area has focused on pro-
cessing of keyword-based selection queries. A range of in-
dexing methods has been proposed, among which signature-
based techniques [2, 3, 9] and inverted files [16, 17] dominate.
These indexes have been extensively revised and evaluated
for various selection queries on set-valued attributes [15, 8].

An important operator which has received limited atten-
tion is the join between two relations on their set-valued
attributes. Formally, given two relations R and S, with set-
valued attributes R.r and S.s, R 1rθs S returns the subset
of their Cartesian product R × S, in which the set-valued
attributes qualify the join predicate θ. Two join operators
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that have been studied to date are the set containment join,
where θ is ⊆ [7, 13], and the all nearest neighbors operator
[11], which retrieves for each set in R its k nearest neighbors
in S based on a similarity function. Other operators include
the set equality join and the set overlap join.

As an example of a set containment join, consider the
join of a job-offers relation R with a persons relation S such
that R.required skills ⊆ S.skills, where R.required skills
stores the required skills for each job and S.skills captures
the skills of persons. This query will return qualified person-
job pairs. As an example of a set overlap join, consider two
bookstore databases with similar book catalogs, which store
information about their clients. We may want to find pairs
of clients which have bought a large number of common
books in order to make recommendations or for classification
purposes.

In this paper we study the efficient processing of set join
operators. We assume that the DBMS stores the set-valued
attribute in a nested representation (i.e., the set elements are
stored together with the other attributes in a single tuple).
This representation, as shown in [13], facilitates efficient
query evaluation. We propose join algorithms that utilize
inverted files and compare them with signature-based meth-
ods for several set-comparison predicates. Our contribution
is two-fold:

• We propose a new algorithm for the set containment
join, which is significantly faster than previous ap-
proaches [7, 13]. The algorithm builds an inverted file
for the “container” relation S and uses it to process the
join. We demonstrate the efficiency and robustness of
this method under various experimental settings.

• We discuss and validate the efficient processing of other
join predicates, namely set equality and set overlap
joins. For each problem, we consider alternative meth-
ods based on both signatures and inverted files. Ex-
periments show that using an inverted file to perform
the join is also the most appropriate choice for overlap
joins, whereas signature-based methods are competi-
tive only for equality joins.

The rest of the paper is organized as follows. Section 2
provides background about set indexing methods. Section
3 describes existing signature-based algorithms for the set
containment join and presents new techniques that employ
inverted files. Section 4 discusses how signature-based and
inverted file join algorithms can be adapted to process set
equality and set overlap joins. The performance of the al-
gorithms is evaluated experimentally in Section 5. Finally,



Section 6 concludes the paper with a discussion about future
work.

2. Background
In this section we provide a description for various methods
used to index set-valued attributes. Most of them originate
from Information Retrieval applications and they are used
for text databases, yet they can be seamlessly employed for
generic set-valued attributes in object-oriented databases.

2.1 Signature-based Indexes
The signature is a bitmap used to represent sets, exactly or
approximately. Let D be the (arbitrarily ordered) domain
of the potential elements which can be included in a set,
and |D| be its cardinality. Then a set x can be represented
exactly by a |D|-length signature sig(x). For each i, 1 ≤ i ≤
|D|, the i-th bit of sig(x) is 1 iff the i-th item of D is present
in x. Exact signatures are expensive to store if the sets are
sparse, therefore approximations are typically used; given
a fixed signature length b, a mapping function assigns each
element from D to a bit position (or a set of bit positions)
in [0, b). Then the signature of a set is derived by setting
the bits that correspond to its elements.

Queries on signature approximations are processed in two
steps (in analogy to using rectangle approximations of ob-
jects in spatial query processing [5]). During the filter step,
the signatures of the objects are tested against the query
predicate. A signature that qualifies the query is called a
drop. During the refinement step, for each drop the actual
set is retrieved and validated. If a drop does not pass the
refinement step, it is called a false drop.

Assume, for example, that the domain D comprises the
first 100 integers and let b = 10. Sets x = {38, 67, 83, 90, 97}
and y = {18, 67, 70} can then be represented by signatures
sig(x) = 1001000110 and sig(y) = 1000000110 if modulo
10 is used as a mapping function. Checking whether x =
y is performed in two steps. First we check if sig(x) =
sig(y), and only if this holds we compare the actual sets.
The same holds for the subset predicate (x ⊆ y ⇒ sig(x) ⊆
sig(y)) and the simple overlap predicate (e.g., whether x
and y overlap or not). The signatures are usually much
smaller than the set instances and binary operations on them
are very cheap, thus the two-step query processing can save
many computations. In the above example, since sig(x) 6=
sig(y), we need not validate the equality on the actual set
instances. On the other hand, the object pair 〈x, y〉 passes
the filter step for x ⊆ y, but it is a false drop. Finally,
for x ∩ y 6= ∅ 〈x, y〉 passes both the filter and refinement
steps. Naturally, the probability of a false drop decreases as
b increases. On the other hand, the storage and comparison
costs for the signatures increases, therefore a good trade-off
should be found.

For most query predicates the signatures can serve as a
fast preprocessing step, however, they can be inefficient for
others. Consider for instance the query |x ∩ y| ≥ ε, called
ε-overlap query and denoted by x∩ε y in the following, ask-
ing whether x and y share at least ε common items. Notice
that the signatures can be used to prune only sets for which
sig(x) ∧ sig(y) = 0 (the wedge here denotes logical AND).
Thus, if ε > 1 the signatures are not prune-effective. Con-
sider the running example instances x and y and assume that
ε = 2. The fact that sig(x) and sig(y) have three common
bits does not provide a lower bound for the actual overlap,

since different elements can map to the same bit. As another
example, assume that x = {18, 38, 68} and y = {18, 68, 70}.
The signatures now share just one bit, but they qualify the
query. This shows why we cannot prune signatures with
overlap smaller than ε.

Signatures have been used to process selection queries on
set-valued attributes. The most typical query is the set con-
tainment query, which given a set q and a relation R, asks
for all sets R.r ∈ R such that q ⊆ r. As an example appli-
cation, assume that we are looking for all documents which
contain a set of index terms. Usually, signatures are orga-
nized into indexes to further accelerate search. The simplest
form of a signature-based index is the signature file [3]. In
this representation the signatures of all sets in the relation
are stored sequentially in a file. The file is scanned and each
of them is compared with the signature of the query. This is
quite efficient if the query selectivity is low (i.e., if the per-
centage of the qualifying signatures is large), but it is not an
attractive method for typical applications with sparse sets.

An improved representation of the signature file employs
bit-slicing [9]. In this representation, there is a separate bit-
slice vector stored individually for each bit of the signatures.
When applying query q the bit slices where sig(q) has 1
are ANDed to derive a bit slice, representing the record-ids
(rids) that pass the filter step (for containment and equality
queries). Figure 1 shows an example of a bit-sliced signature
file. If the query signature is 1001000100, we need to join
slices S0, S3, and S7 in order to get the candidate rids. If the
partial join of some slices sets only a few rids, it might be
beneficial not to retrieve and join the remaining slices, but
to validate q directly on the qualifying rids. Overlap queries
can be processed by taking the logical OR of the bit-vectors.
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Figure 1: A bit-sliced signature file

The signature-tree [2, 10] is a hierarchical index, which
clusters signatures based on their similarity. It is a dynamic,
balanced tree, similar to the R–tree [6], where each node en-
try is a tuple of the form 〈sig, ptr〉. In a leaf node entry
sig is the signature and ptr is the record-id of the indexed
tuple. The signature of a directory node entry is the logi-
cal OR of the signatures in the node pointed by it and ptr
is a pointer to that node. In order to process a contain-
ment/equality query we start from the root and follow the
entry pointers e.ptr, if sig(q) ⊆ e.sig, until the leaf nodes
where qualifying signatures are found. For overlap queries
all entries which intersect with sig(q) have to be followed.
This index is efficient when there are high correlations be-
tween the data signatures. In this case, the signatures at the
directory nodes are sparse enough to facilitate search. On
the other hand, if the signatures are random and uncorre-



lated the number of 1’s in the directory node entries is high
and search performance degrades. A strength of the index is
that it handles updates very efficiently, thus it is especially
suitable for highly dynamic environments.

Another method for indexing signatures is based on hash-
ing [8]. Given a small k, the first k bits are used as hash-
keys and the signatures are split into 2k partitions. The
first k bits of the query are then used to select the buckets
which may contain qualifying results. To facilitate locating
the qualifying buckets, a directory structure which contains
hash values and pointers is stored separately (even in mem-
ory if the number of buckets is small enough). In order to
control the size of the directory and partitions dynamically,
extendible hashing can be used. This index is very efficient
for equality selection queries, since only one bucket has to be
read for each query. The effect is the same as if we sorted
the signatures and imposed a B+–tree over them, using a
signature prefix as key. However, the performance of this
index is not good for set containment queries [8].

2.2 The Inverted File
The inverted file is an alternative index for set-valued at-
tributes. For each set element el in the domain D, an in-
verted list is created with the record ids of the sets that
contain this element in sorted order. Then these lists are
stored sequentially on disk and a directory is created on top
of the inverted file, pointing for each element to the offset
of its inverted list in the file. If the domain cardinality |D|
is large, the directory may not fit in memory, so its entries
〈el, offset〉 are organized in a B+–tree having el as key.

Given a query set q, assume that we want to find all
sets that contain it. Searching on the inverted file is per-
formed by fetching the inverted lists for all elements in q
and merge-joining them. The final list contains the record-
ids of the results. For example, if the set containment query
q = {el2, el3} is applied on the inverted file of Figure 2, only
tuple with rid=132 qualifies. Since the record-ids are sorted
in the lists, the join is performed fast. If the search predi-
cate is ‘overlap’, then the lists are just merged, eliminating
duplicates. Notice that the inverted file can also process
ε-overlap queries efficiently since we just need to count the
number of occurrences of each record-id in the merged list.
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Figure 2: An inverted file

Fetching the inverted lists can incur many random ac-
cesses. In order to reduce the access cost, the elements of
q are first sorted and the lists are retrieved in this order.
Prefetching can be used to avoid random accesses if two
lists are close to each other.

Updates on the inverted file are expensive. When a new

set is inserted, a number of lists equal to its cardinality have
to be updated. An update-friendly version of the index al-
lows some space at the end of each list for potential inser-
tions and/or distributes the lists to buckets, so that new disk
pages can be allocated at the end of each bucket. The in-
verted file shares some features with the bit-sliced signature
file. Both structures merge a set of rid-lists (represented in
a different way) and are mostly suitable for static data with
batch updates.

In recent comparison studies [15, 8], the inverted file was
proven significantly faster than signature-based indexes, for
set containment queries. There are several reasons for this.
First, it is especially suitable for real-life applications where
the sets are sparse and the domain cardinality large. In this
case, signature-based methods generate many false drops.
Second, it applies exact indexing, as opposed to signature-
based methods, which retrieve a superset of the qualifying
rids and require a refinement step. Finally, as discussed in
the next subsection, it achieves higher compression rates,
than signature-based approaches and its performance is less
sensitive to the decompression overhead.

2.3 Compression
Both signature-based indexes and inverted files can use com-
pression to reduce the storage and retrieval costs. Dense sig-
natures are already compressed representations of sets, but
sparse ones could require more storage than the sets (e.g.,
the exact signature representations of small sets). Thus, a
way to compress the signatures is to reduce their length b
at the cost of increasing the false drop probability. Another
method is to store the element-ids instead of the signature
for small sets or to encode the gaps between the 1’s instead
of storing the actual bitmap. However, this technique in-
creases the cost of query processing; the signature has to
be constructed on-the-fly if we want to still use fast bitwise
operations. The bit-sliced index can also be compressed by
encoding the gaps between the 1’s, but again this comes at
the expense of extra query processing cost [15].

The compression of the inverted file is much more effec-
tive. An inverted list is already sorted and can be easily
compressed by encoding the gaps (i.e., differences) between
consecutive rids. For example, assume that an inverted list
contains the following rids: {11, 24, 57, 102, 145, 173, ...}. It
can be converted to the run-length encoding of the rids:
{11, 13, 33, 45, 43, 28, ...}, i.e., the series of differences be-
tween successive rids [16]. Observe that this comes at no
cost for query processing, since the algorithm for merging
the lists can be easily adapted. Although the above list con-
tains small numbers there is no upper bound for them; a
fixed-length encoding would yield no compression. Thus a
variable-length encoding should be used.

An example of such an encoding is the Golomb coding
[4]. Assume that the integers we want to encode follow a
geometric law with a probability parameter p. The Golomb
code takes a parameter g such that (1− p)g + (1− p)g+1 ≤
1 < (1 − p)g−1 + (1 − p)g. Now assume that we want to
encode an integer x, where x > 1. In order to save code
space, we encode x− 1 which is potentially 0. We represent
(x− 1) using two integers: l = b(x− 1)/gc and r = (x− 1)
modulo g. Finally, x is encoded using a unary encoding for
l + 1 followed by a binary encoding of r. Table 1 shows
the run-length integers in our running example and their
Golomb codes for g = 16. For example, to compute the



code of 45 we derive l = b(44/16)c = 2 and r = 44 modulo
16 = 12, and concatenate the unary 3 = 110 with the binary
12 = 1100. Additional coding techniques are also applicable.
See [16, 15] for more details on compressing inverted files.

number code
11 01011
13 01101
33 1100000
45 1101100
43 1101010
28 101011

Table 1: Example of Golomb codes for integers

Decoding the rids is quite fast and affects little the perfor-
mance of the inverted file. Moreover, the compression rate
increases with the density of the list, as the gaps between
the rids decrease. To exemplify this, consider a relation R
of 100,000 tuples, where each set R.r has 20 elements on the
average, and the set domain D has 10,000 elements. The

number of rids per inverted list is |R|×|R.r||D| = 200 on the av-

erage. This means that the expected difference between two
rids in an inverted list is |R|/200 = 500. If we use Golomb
coding with g = 128 we can encode each rid with 10-11 bits
on the average. Now assume that each set has 200 elements
on the average. In this case, the expected difference between
two rids is just 50 and we need fewer bits to encode them.
Thus the size (and retrieval cost) of the inverted file increases
sub-linearly with the average set cardinality. Moreover, the
Golomb coding can be applied independently for each in-
verted list adjusting the compression rate according to the
data skew. The two extreme cases are lists containing few
uncompressed integers, and lists which reduce to bitmaps.

3. Evaluation of Set Containment Joins
Several join operators can be applied on set-valued attributes,
including the set containment, the set equality and the set
overlap join. In this section we restrict our attention to the
set containment join, which is one of the most interesting
operators and also has been proven rather hard in past re-
search [7, 13]. We first describe existing signature-based join
algorithms. Then we propose and discuss the optimization
of new algorithms that utilize inverted files. Throughout
this section we will deal with the join R 1r⊆s S, where r
and s are set-valued attributes of relations R and S, respec-
tively. Unless otherwise specified, we will assume that none
of the relations is indexed.

3.1 The Signature Nested Loops Join
In [7] two main memory join algorithms were proposed for
the set containment join. One of them is also applicable for
large relations that do not fit in memory. The Signature
Nested Loops (SNL) Join consists of three phases. During
the signature construction phase, for each tuple tS ∈ S a
triplet 〈|tS .s|, sig(tS .s), tS .rid〉 is computed, where |tS .s| is
the cardinality of tS .s, sig(tS .s) is its signature, and tS .rid
is the record-id of tS . These triplets are stored in a signature
file Ssig. During the probe phase, each tuple tR ∈ R is read,
its signature sig(tR.r) is computed and the signature file
Ssig is scanned to find all pairs 〈tR.rid, tS .rid〉, such that
sig(tR.r) ⊆ sig(tS .s) and |tR.r| ≤ |tS .s|. These rid-pairs are

written to a temporary relation. During the final verification
phase the 〈tR.rid, tS .rid〉 pairs generated from the probe
phase are read, the corresponding tuples are fetched, and
tR.r ⊆ tS .s is verified.

This method requires a quadratic number (to the relation
size) of signature comparisons and is not attractive for large
problems. Notice that the verification phase could be com-
bined with the match phase if we fetch tS .s immediately af-
ter the signature comparison succeeds, however, this would
incur many random accesses. In [7] a hash-based method is
also proposed, however, it would result in a large number of
random I/Os if applied to secondary memory problems.

3.2 The Partitioned Set Join
Ramasamy et al. [13] introduced a hash-based algorithm
that aims at reducing the quadratic cost of SNL. The Par-
titioned Set Join (PSJ) hashes the tuples from R and S to a
number of P buckets R1, R2, . . . , RP and S1, S2, . . . , SP and
joins Rx with Sx for all 1 ≤ x ≤ P .

The algorithm also works in three phases. During the
first (partitioning) phase, the tuples from the two relations
are partitioned. Each tuple tR ∈ R is read, and the triplet
〈|tR.r|, sig(tR.r), tR.rid〉 is computed. A random element er
from tR.r is picked and the triplet is written to the bucket
determined by a hash function h(er). Then relation S is
partitioned as follows. Each tuple tS ∈ S is read, and the
triplet 〈|tS .s|, sig(tS .s), tS .rid〉 is computed. For each ele-
ment es in tS .s, the triplet is written to the partition de-
termined by the same hash function h(es). If two elements
es ∈ tS .s have the same hash value the triplet is sent to the
corresponding bucket only once. Thus, each triplet from R
is hashed to exactly one partition, but a triplet from S is in
general hashed to many partitions. The algorithm does not
miss join results, because if tR.r ⊆ tS .s then the random
element er ∈ tR.r will equal some es ∈ tS .s, and the triplets
will co-exist in the partition determined by h(er).

During the join phase, the pairs of partitions 〈Rx, Sx〉 cor-
responding to the same hash value x are loaded and joined.
Rx should be small enough to fit in memory; its contents are
loaded and hashed using a secondary hash function. More
specifically, a random set bit in each sig(tR.r) ∈ Rx is picked
and the triplet is assigned to the corresponding memory
bucket. Then each triplet from Sx is compared with all
triplets in the memory buckets determined by the set bits in
sig(tS .s). Qualifying rid-pairs are written to a temporary
file. Finally, the verification phase of PSJ is the same as
that of SNL.

Although PSJ is faster than SNL, if suffers from certain
drawbacks. First, the replication of the signatures from S
can be high if the set cardinality is in the same order as
the number of partitions P . Thus if c is the cardinality of
a tS .s ∈ S, the tuple will be hashed into c − c(1 − 1/c)P

partitions on the average [7, 13]. For example if P = 100
and c = 50, the quantity above shows that each tuple is
replicated to 43.3 partitions on the average. Thus the size
of each Sx is comparable to Ssig and the algorithm has sim-
ilar cost to SNL (actually to a version of SNL that employs
in-memory hashing; called PSJ-1 in [13]). On the other
hand, P should be large enough in order to partition R into
buckets that fit in memory. Second, PSJ carries the in-
herent drawback of signature-based evaluation methods; it
introduces false drops, which have to be verified. The verifi-
cation phase incurs additional I/O and computational over-



head which constitutes a significant portion of the overall
join cost, as shown in [13] and validated by our experiments.
In the rest of this section we introduce join algorithms based
on inverted files that alleviate these problems.

3.3 Block Nested Loops Using an Inverted File
As shown in [15], inverted files are more efficient than signa-
ture-based indexes for evaluating selection queries. Among
their other advantages once compression is taken into ac-
count, it is mentioned that they are also relatively cheap to
create.

This motivated us to study alternative methods for the
set containment join, based on inverted files. Even if the
relations are not indexed, it could be more beneficial to build
inverted files and perform the join using them, rather than
applying signature-based join techniques. Hopefully, this
would yield two advantages. First, the join will be processed
fast. Second, we would have built a powerful index that can
be used afterwards not only for other join queries, but also
for selections on the set-valued attribute, as described in
Section 2. We will now discuss how to build inverted files
fast and use them for evaluating set containment joins.

3.3.1 Constructing an inverted file

The inverted file for a relation R can be constructed fast
using sorting and hashing techniques [12]. A simple method
is to read each tuple tR ∈ R and decompose it to a number
of binary 〈el, tR.rid〉 tuples, one for each element-id el that
appears in the set tR.r. Then these tuples are sorted on el
and the index is built. For small relations this is fast enough,
however, for larger relations we have to consider techniques
that save I/O and computational cost. A better method is
to partition the binary tuples using a hash function on el
and build a part of the index for each partition individu-
ally. Then the indexes are concatenated and the same hash
function is used to define an order for the elements.

In order to minimize the size of the partitions, before we
write the partial lists of the partitions to disk, we can sort
them on tR.rid and compress them. This comes at the ad-
ditional cost of decompressing them and sort the tuples on
el to create the inverted lists for the partition. An alterna-
tive method is to sort the partial lists on el in order to save
computations when sorting the whole partition in memory.

The cost of building the inverted file comprises the cost
of reading the relations, the cost of writing and reading the
partitions and the cost of writing the final inverted file. As
we demonstrate in Section 5, if compression is used, the over-
all cost is not much larger than the cost of reading R. This
is due to the fact that the compressed partial information is
several times smaller than the actual data.

3.3.2 A simple indexed nested-loops join method

The simplest and most intuitive method to perform the set
containment join using inverted files is to build an inverted
file SIF for S and apply a set containment query for each
tuple in R. It is not hard to see that if SIF fits in memory,
this method has optimal I/O cost.

However, for large problems SIF may not fit in memory
and in the worst case it has to be read once for each tuple
in R. Therefore, we should consider alternative techniques
that apply in the general case.

3.3.3 Block Nested Loops Join

Since it is not efficient to scan the inverted file for each tuple
from R we came up with the idea of splitting the inverted
file in large blocks that fit in memory and scan R for each
block. Our Block Nested Loops (BNL) algorithm reads SIF
sequentially in blocks B1, B2, . . . , BN , such that each block
fits in memory and there is enough space for loading a page
from R. Assume that currently block Bi is loaded in mem-
ory, and let Li be the set of elements whose inverted list is
in Bi. For each tuple tR ∈ R, three cases may apply:

1. tR.r ⊆ Li; the lists of all elements in tR.r are in Bi. In
this case the lists are joined and the qualifying results
are output.

2. tR.r ∩ Li = ∅; the list of no element in tR.r is in Bi.
In this case tR is ignored and we go to the next tuple.

3. tR.r ∩ Li 6= ∅ ∧ tR.r * Li; the lists of some (but not
all) elements in tR.r are in Bi. This is the hardest case
to handle, since we may need information from other
blocks in order to verify whether tR has any superset
in S. We call tR a dangling tuple.

The first two cases are trivial; thus we concentrate on han-
dling dangling tuples efficiently. A simple way to manage a
dangling tuple tR is to merge the lists in tR.r ∩ Li (these
are currently in memory), compute a partial rid list, and, if
non-empty, write it to a temporary file Ti. The partial lists
are of the form 〈tR.rid, n, tS1.rid, tS2.rid, . . . tSn.rid〉, where
n is the number of tuples from S that currently match with
tR.rid. If n is large, the list is compressed to save space.
After we have scanned SIF , a second phase begins, which
loads the temporary files and merge-joins them. The con-
tents of each Ti are already sorted on tR.rid, thus merging
them in memory is very efficient.

Figure 3 shows the pseudocode of BNL. lel denotes the
inverted list of element el. In the implementation, Li is
not computed explicitly, but the number m of elements el ∈
tR.r∧ lel ∈ Bi is used to validate whether tR.r ⊆ Li; if |tR.r|
equals m we know that all elements of tR.r are in Li. As
a final comment, we assume that the directory for each Bi
can fit in memory, since it should be much smaller than the
block itself. We further compress it, by storing the offsets of
each inverted list, with respect to the absolute offset of the
first list in Bi.

3.3.4 Optimizing BNL
The partial lists are many if the memory blocks Bi are not
large, and so is the overhead of writing (and reading) tem-
porary results to disk. Therefore we have to minimize this
temporary information at no additional cost in the join pro-
cess.

3.3.4.1 KeepingπS.|s| in memory.
A fact that we have not exploited yet, is that a tuple tR ∈ R
could join with a tuple tS ∈ S only if the cardinalities of the
sets qualify |tR.r| ≤ |tS .s|. If we use this information, we
could shrink or prune many partial lists. The basic version
of the inverted file does not include any information about
|tS .s|. We can obtain this information in two ways. The
first is to store |tS .s| with every appearance of tS .rid in the
inverted lists. This method is also used in [8]. However, the
size of the inverted file may increase dramatically (it may



Algorithm BNL(R, SIF ) {
i := 0;
while there are more lists in SIF {

i := i+ 1;
Bi := read next block of SIF that fits in memory;
Li := elements whose inverted list is in Bi;
Initialize temporary file Ti;
for each tuple tR ∈ R do {

list(tR) :=
⋂
lel

, el ∈ tR.r ∧ el ∈ Li;
if list(tR) 6= ∅ then

if tR.r ⊆ Li then output results;
else write list(tR) to Ti;

}
}
n := i;
merge-join all Ti, 1 ≤ i ≤ n and output results;

}

Figure 3: Block-Nested Loops join

even double). In a compressed inverted file, we only need few
bits (e.g., 10) to encode each tS .rid, and storing |tS .s| could
require that many extra bits. On the other hand, we observe
that in typical applications, where sets are small, |tS .s| does
not require more than a byte to store. Thus we can keep
the cardinalities of all tS .s ∈ S in memory (we denote this
table by πS.|s|) without significant overhead. For example,
if |S|=1M tuples, we need just a megabyte of memory to ac-
commodate πS.|s|. This information can be computed and
stored in memory while reading S at the construction phase
of SIF . It is then used to (i) accelerate the merging of in-
verted lists, (ii) reduce the number and length of the partial
lists that have to be written to temporary files.

3.3.4.2 Pipelining the partial lists.
Even with the availability of πS.|s|, the partial lists could
be many and long. If an object’s elements are spanned to
multiple blocks, multiple lists may have to be written to
the temporary files. To make things worse, an object which
is pruned while joining block Bi with R, because its lists
there have empty intersection, may qualify at a later block
Bj , i < j, although it should never be considered again.
For example, assume that a tR ∈ R has two elements in B1

and their inverted lists have empty intersection. This means
that there is no set in S containing both elements, and as a
result no set in S joins with tR. When B2 is loaded, we can
find some elements in tR with lists in B2, which should not
normally be processed, since we already know that t does
not join with any tuple from S.

Another observation is that while processing B2, we can
merge the partial lists generated by it with the lists in T1,
i.e., the temporary file created by the previous pass. Thus
during the iteration where we join Bi with R, we keep in
memory (i) block Bi, (ii) one (the current page) from R,
and (iii) one (the current) page from Ti−1. Since we scan R
sequentially and the lists in Ti−1 are sorted on tR.rid, we can
merge efficiently the lists produced by the previous passes
with the ones produced by the current one. This makes it
easier also to discard all tR which disqualified at the previous
steps; if there is any element el ∈ tR.r whose inverted list lel

was at a previous Bj , j < i and there is no list in Ti−1 for
tR.rid, then we know that tR has been pruned before and
we can ignore it at the current and next blocks. Another
way to avoid processing tuples which disqualified during a
previous block-join is to maintain a memory-resident bitmap
indicating the pruned tuples from R.

The pseudocode of this version of BNL that employs pi-
pelining is shown in Figure 4. At each step, the qualifying
lists from the current block B ∈ SIF are merged with the
temporary file Tprev from the previous step. To perform
merging efficiently we run a pointer on Tprev showing the
current list lp. This serves multiple purposes. First, each
tR ∈ R which disqualified in some previous step is easily
spotted (condition at line 1). Indeed, if the inverted list of
some element from tR has been loaded before (this can be
easily checked using the order of the elements in tR.r) and
tR.rid does not match the current lp.tR.rid in Tprev, then we
know that tR.rid has been pruned before, because otherwise
there would be an entry for it in Tprev. The second use of
lp is to join its contents with the lists in B. If the current
tR has elements in the current block and matches with the
current lp, the lists in B are joined with lp. If the resulting
list is not empty, the results are either output, or written to
the next temporary file Tnext, depending on whether there
are elements in tR yet to be seen at a next step (cf. line 4 in
Figure 4). lp is updated after the corresponding tuple lp.tR
is read from R (conditions at lines 2 and 3).

Algorithm BNL(R, SIF ) {
Tprev := NULL;
while there are more lists in SIF {

B := read next block of SIF that fits in memory;
L := elements whose inverted list is in B;
Initialize temporary file Tnext;
lp := get next list from Tprev; /*if applicable*/
for each tuple tR ∈ R do {

(1) if some el ∈ tR.r was in some previous B
and lp.tR.rid 6= tR.rid then

continue; /*prune this tuple*/
if tR.r ∩ L = ∅ then {

(2) if lp.tR.rid = tR.rid then
lp := get next list from Tprev; /*if applicable*/

continue; /*goto next tuple*/
}
list(tR) :=

⋂
lel

, el ∈ tR.r ∧ el ∈ Li;
(3) if lp.tR.rid = tR.rid then {

list(tR) := list(tR) ∩ lp;
lp := get next list from Tprev; /*if applicable*/
}
if list(t) 6= ∅ then

(4) if all inv. lists for tR.r have been seen so far then
output results;

else write list(tR) to Tnext;
}
Tprev := Tnext;

}
}

Figure 4: Block-Nested Loops with pipelining



3.3.4.3 Optimizing the computational cost.
Another factor which requires optimization is the join al-

gorithm that merges the inverted lists in memory. We ini-
tially implemented a multiway merge join algorithm with
a heap (i.e., priority queue). The algorithm scans all lists
synchronously increasing all pointers if all rids match, or
the smallest one if they do not. The current positions of all
pointers were organized in the heap to facilitate fast update
of the minimum pointer. However, we found that this ver-
sion performed rather slow, whereas most of the joined lists
had high selectivity or gave no results.

Therefore, we implemented another version that performs
a binary join at a time and joins its results with the next list.
We experienced great performance improvement with this
version, since since many sets from R with large cardinality
were pruned much faster.

3.3.5 Analysis of BNL

The cost of BNL heavily depends on the size of SIF . Clearly,
given a memory buffer M , the smaller SIF is, the fewer the
number of passes on R required by the algorithm. Also the
more the inverted lists in a block, the fewer the temporary
partial lists generated by each pass. The number of bits to
store a compressed inverted file I that uses Golomb coding is
in the worst case (assuming each inverted list has the same
number of rids) given by the following formula [15]:

bits(I) = cN(1.5 + log2

|D|
c

), (1)

where N is the number of indexed tuples, c is the average set
cardinality and |D| is the domain size of the set elements.
The factor in the parentheses is the average number of bits
required to encode a “gap” between two rids in an inverted
list. We can use this formula to estimate the size of SIF .
The I/O cost of BNL can then be estimated as follows:

IOBNL = size(SIF ) + size(R)
⌈ size(SIF )

M

⌉
+ 2

∑
size(Ti) (2)

The last component in Equation 2 is the cost of reading
and writing the temporary results Ti for each block Bi. As-
suming that the simple version of BNL is applied (without
pipelining), all Ti will be equal, each containing the partial
lists for the dangling tuples in Bi. Assuming that rids are
uniformly distributed in the inverted list, the probability
Probdng(tR) of a tR ∈ R to become a dangling tuple can
be derived by the probability that all elements of tR to be
contained in Li and the probability that no element in tR is
part of Li, or else:

Probdng(tR) = 1−
(|Li|
c

)
+
(|D|−|Li|

c

)(|D|
c

) (3)

Li can be estimated by size(SIF )
M

since we assume that all
lists have the same size. The number of dangling tuples can
then be found by |R|Probdng(tR). Not all dangling tuples
will be written to Ti, since some of them are pruned. The
expected number of qualifying dangling tuples, as well as
the size of their partial lists can be derived by applying
probabilistic counting, considering the expected lengths of
the lists and other parameters. The analysis is rather long
and complex, therefore we skip it from the paper.

As shown in Section 5, the size of the temporary results
is small, especially for large c, where the chances to prune
a tuple are maximized. Moreover, the pipelining heuristic
decreases fast the temporary results from one iteration to
the next. For our experimental instances, where M is not
much smaller than SIF (e.g., M ≥ SIF /10), Ti is typically
a small fraction of SIF , thus the I/O cost of BNL reduces
roughly to the cost of scanningR times the number of passes.

3.4 An algorithm that joins two inverted files
The set containment join can also be evaluated by joining
the two inverted files RIF and SIF . Although this may re-
quire preprocessing both relations, at a non-negligible cost,
the resulting inverted files may accelerate search, and at the
same time compress the information from the original rela-
tions.

The join algorithm traverses synchronously both inverted
files. At each step, the inverted lists are merged to par-
tial lists 〈tR.rid, n, tS1.rid, tS2.rid, . . . tSn.rid〉, where n is
the number of tuples from S that match so far with tR.rid.
Each inverted list pair generates as many partial lists as
the number of tuples in the list of RIF . After scanning
many inverted list pairs, the number of generated partial
lists exceeds the memory limits and the lists are merged.
The merging process eliminates lists with empty intersec-
tion and outputs results if the number of merged lists for
a tuple tR is equal to |tR.r|. The rest of the merged lists
are compressed and written to a temporary file. In the final
phase, the temporary files are loaded and joined. We call
this method Inverted File Join (IFJ).

IFJ can be optimized in several ways. First, the projec-
tion πR.|r| can be held in memory, to avoid fetching |tR.r|
for verification. Alternatively, this information could be em-
bedded in the inverted file but, as discussed above, at the
non-trivial space cost. Another, more critical optimization
is to minimize the size of the temporary files. For this, we
use similar techniques as those for the optimization of BNL.
We keep πS.|s| in memory, and use it to prune fast rid pairs,
where |tR.r| > |tS .s|. Another optimization is to use the
pipelining technique. Before we output the partial lists, the
previous temporary file Tprev is loaded and merged with
them. This may prune many lists. In addition, if we know
that tR.r has no elements in inverted lists not seen so far,
we can immediately output the 〈tR.rid, tSi.rid〉 pairs, since
they qualify the join.

However, this comes at the cost of maintaining an addi-
tional table Rcount, which counts the number of times each
tR.rid has been seen in the inverted lists we have read so
far from RIF . Since the sets are relatively sparse, we will
typically need one character per tuple to encode this infor-
mation. In other words, the size of this array is at most
the size of πR.|r| and can be typically maintained in mem-
ory. Rcount is initialized with 0s. Whenever we read an
inverted list l in RIF we add 1 for each tR.rid present in
l. After a partial list has been finalized, we output the
results if Rcount[tR.rid] = |tR.r|, otherwise we write the
list to the temporary file. An additional optimization uses
the equivalent table Scount for S, which can be used to
prune some tSi.rid from the partial lists, as follows. If
|tR.r|−Rcount[tR.rid] > |tSi.s|−Scount[tSi.rid] we can prune
tSi.rid because in future lists the occurrences of tR.rid are
more than the occurrences of tSi.rid. In other words, the
elements of tR.r we have not seen yet are more than the



elements of tSi.s we have not seen yet, thus tR.r * tSi.s.

4. Evaluation of Other Join Predicates
In this section we discuss the evaluation of other join oper-
ators on set-valued attributes, namely the set equality join
and the set overlap join.

4.1 The Set Equality Join
Adaptations of the signature-based and inverted-file based
algorithms discussed in Section 3 can also be applied for the
set equality join, since it is not hard to see that it is a special
case of the set containment join.

From signature-based techniques, we do not consider SNL,
since this algorithm compares a quadratic number of signa-
tures and we can do much better for joins with high selec-
tivity. PSJ on the other hand can be very useful for set
equality queries. We propose an adapted version of PSJ for
set equality joins. The main difference from the algorithm
described in Section 3.2 is that we use a single method to
partition the data for both relations. While computing the
signature of each tuple in tR ∈ R we also find the smallest
element er ∈ tR.r (according to a predefined order in the
domain D) and send the triplet 〈|tR.r|, sig(tR.r), tR.rid〉 to
the partition determined by a hash function h(er). Tuples
from S are also partitioned in the same way. The rationale
is that if two sets are equal, then their smallest elements
should also be the same.

The join phase is also similar; each pair of partitions is
loaded in memory and the contents are re-hashed in memory
using a prefix of their signature (e.g., the first byte). Then
all pairs of memory buckets (one pair for each value of the
prefix) are joined by applying a signature equality test. The
set cardinality is also used before the signature comparison
to prune early disqualifying signature pairs. We expect that
this version of PSJ will do much better than the one for
set containment joins, since replication is avoided in both
partitioning and join phases.

The inverted file algorithms BNL and IFJ, can also be
adapted to process set equality joins. The only change in
BNL is that πS.|s| is now used to prune fast inverted list
rids of different cardinality than the current tR ∈ R. In
other words, the condition |tR.r| ≤ |tS .s| is now replaced by
|tR.r| = |tS .s| for each |tS .rid| found in the lists of Bi. IFJ
is also changed accordingly (using both πS.|s| and πR.|s|).

4.2 The Set Overlap Join
The set overlap join retrieves the pairs of tuples which have
at least one common element. For the more general ε-overlap
join, the qualifying pairs should share at least ε elements.
In this paragraph we describe how these operators can be
processed by signature-based methods and ones that use in-
verted files.

The relaxed nature of the overlap predicate makes inap-
propriate the application of hashing techniques, like PSJ, on
signature representations. Indeed it is hard to define a par-
titioning scheme which will divide the problem into joining
P pairs of buckets much smaller than R and S. An idea we
quickly abandoned is to partition both R and S by replicat-
ing their signatures to many hash buckets, after applying a
hash function on each of their elements. This approach does
not miss any solution, but the size of partitions becomes
so large that the overall cost becomes higher than apply-
ing nested loops on two signature files. Another problem

with this partitioning approach is that it introduces dupli-
cate drops. Thus, for this operator we use the simple SNL
algorithm. Finally, notice that whatever signature-based
method we use, the filtering step will be the same for all
ε-overlap queries independent to the value of ε, as discussed
in Section 2.

On the other hand, algorithms that use inverted files could
process overlap joins more efficiently. We propose an adap-
tation of BNL as follows. At each pass BNL merges the
inverted lists found in Bi for each tR. During merging, the
number of occurrences for each tS .rid is counted. If this
number is larger or equal to the threshold ε (i.e., we already
found a matching pair of rids), the pair 〈tR.rid, tS .rid〉 is
written to a temporary file Qi. The remainder of the list is
written to a file Ti, as before. Notice that if ε = 1, there will
be no temporary files Ti. In this special case we also com-
press the temporary Qi’s, since each tR joins with numerous
tS . After processing all blocks, BNL merges all Ti’s to pro-
duce a last file Qi+1 of qualifying results. The final phase
scans all Qi’s (including the last one) and merges them to
eliminate duplicates. Notice that each multiway merge is
performed with a single scan over the temporary lists or re-
sults, since these are produced sorted. This version of BNL
is described in Figure 5. We comment only on the marked
line (1), which avoids writing a partial list to Ti if all ele-
ments of tR are in the current block. If tR.r ⊆ Li, tR cannot
produce more qualifying pairs, since no more lists for tR will
be (or have been) produced.

Algorithm BNL(R, SIF , ε) {
i := 0;
while there are more lists in SIF {

i := i+ 1;
Bi := read next block of SIF that fits in memory;
Li := elements whose inverted list is in Bi;
Initialize temporary file Ti;
Initialize temporary file Qi;
for each tuple tR ∈ R do {

list(tR) :=
⋃
lel

, el ∈ tR.r ∧ el ∈ Li;
for each tS .rid in list(tR) do

if tS .rid appears at least ε times then {
remove all tS .rid from list(tR);
append 〈tR.rid, tS .rid〉 to Qi; }

(1) if list(tR) 6= ∅ and tR.r * Li then
write list(tR) to Ti;

}
}
n := i;
merge all Ti, 1 ≤ i ≤ n to produce Qi+1;
merge all Qi, 1 ≤ i ≤ n+ 1 to eliminate duplicates;

}

Figure 5: Block-Nested Loops (set overlap)

IFJ can also be adapted the same way as BNL for overlap
joins. A set of temporary files and result files Ti and Qi
are produced as the algorithm merges the inverted lists. A
special feature of IFJ is that, for ε = 1 and if we ignore
duplicate elimination, it can output results immediately and
at the minimal cost of reading the inverted files.



5. Experiments
In this section we evaluate the performance of join algo-
rithms on set-valued attributes. We first compare the pro-
posed algorithms for set containment joins with PSJ, the
previously proposed signature-based method. Afterwards,
we evaluate the performance of signature-based and inverted
file methods for other join predicates. The experiments were
performed on a PC with a Pentium III 800MHz processor
and 256MB of memory, running Linux 2.4.7-10. In the next
subsection we describe the generator we used for our test
data.

5.1 Data Generation
We generated synthetic relations with set-valued data us-
ing the same generator as in [13]. The parameters of the
generator are the relation cardinality, the average set car-
dinality in a tuple, the domain size of set elements, and a
correlation percentage corr. The domain of size |D| is rep-
resented by the set of first |D| integers for simplicity, and
without loss of generality (such a mapping is typically used
in real applications to reduce the space requirements of the
tuples and the comparison costs). The domain is split into
50 equal-sized subdomains. Elements which fall in the same
subdomain, model elements falling in the same real-world
class (i.e., correlated elements).

The correlation percentage is used to tune the number of
elements in a set which are correlated (i.e., fall in the same
class). Thus, the relation is generated as follows. For each
tuple, we pick a class according to a distribution (unless
otherwise stated, we consider a uniform distribution). Then
corr% of the set elements are picked from this sub-domain
and the rest of them are randomly chosen from the remain-
ing 49 subdomains. For set containment joins the data were
generated, such that the size of the join result was controlled
to be in the order of |R|. Finally, in all experiments, unless
otherwise stated, R and S were generated to have the same
cardinality, the correlation is set to 10%, and |D|=10,000.
The same settings are used in the experiments of [13].

5.2 Set Containment Joins
In this subsection, we compare the performance of three
algorithms for set containment joins. The first is the state-
of-the-art PSJ algorithm proposed in [13]. The other two
are BNL (described in Section 3.3) and IFJ (described in
Section 3.4). We do not consider SNL, since it is inferior to
PSJ, as shown in [13]. Unless otherwise specified, we used all
optimization techniques for our proposed algorithms, (i.e.,
keeping the set cardinality projections in memory, pipelin-
ing, pairwise join implementation). For fairness to PSJ, in
the overall cost we included the construction of the inverted
files, wherever applicable.

In the first experiment, we compare the performance of
the three methods for the following setting: |R| = |S|, the
average set cardinality c is set to 20, the relation cardinality
ranges from 20K to 180K and the memory buffer is set to
15% of the size of S on disk. Figure 6 shows the cost of the
three methods for various relation cardinalities.

BNL is clearly the winner. The other algorithms suffer
from the drawbacks discussed in Section 3. In terms of
scalability, BNL is also the best algorithm; its cost is sub-
quadratic to the problem size. This is due to the fact that
even with only a small memory buffer, SIF is split to a few
blocks and R is scanned only a few times. In our experimen-

tal settings and for all instances of Figure 6, the number of
blocks was just 2. On the other hand, both PSJ and IFJ
do not scale well with the problem size. IFJ, in specific,
produces a huge number of intermediate results, once the
number of rids in the inverted lists increase. This is some-
how expected, because IFJ generates a quadratic number of
candidate rid pairs for each pair of inverted lists it joins.

Figure 7 shows the number of pages accessed by each al-
gorithm. The page size is set to 4K in all experiments. The
figure indicates that the I/O cost is the dominant factor for
all algorithms, especially for IFJ, which generates a large
number of temporary lists. The majority of the page ac-
cesses are sequential, thus the I/O cost translates mainly to
disk transfer costs.

Figure 12 shows “where the time goes” in the experimen-
tal instance |R| = |S| = 100K. Notice that the bar for IFJ
has been truncated for better visualization. Starting from
the bottom, each bar accumulates the I/O and computa-
tional costs for partitioning (PSJ) or building the inverted
files (BNL and IFJ), for joining (join phase of PSJ and over-
all join costs of BNL and IFJ), and for verifying the candi-
date rid-pairs (this applies only to PSJ). The burden of each
algorithm can be easily spotted.
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Figure 12: Cost breakdown (set containment)

The cost of PSJ is split evenly in all three phases. The
algorithm generates a large number of replicated triplets for
each tS ∈ S. The triplets have to be written to the tem-
porary files, re-read and joined with the partitions of R.
Thus, PSJ spends a lot of time in partitioning (much more
than the time needed to construct an inverted file). The
join phase of PSJ is also slow, requiring many computations
to derive the candidate pairs. Finally, the verification cost
is also high due to the large number of false drops. Notice
that the parameters of PSJ have been tuned according to
the analysis in [13] and they are optimal for each experi-
mental instance. For example, if we increase the signature
length the I/O cost of partitioning and joining the data in-
creases at the same rate, but the number of candidates and
the verification cost drop. On the other hand, decreasing the
signature length leads to smaller partitions but explodes the
number of candidate rid-pairs to be verified.

The burden of IFS is the I/O cost of writing and reading
back the temporary lists. The algorithm is less systematic
than BNL, since it generates at a huge number of lists at a
time, which cannot be managed efficiently. Apart from this,
its computational cost is also high (mainly due to sorting a
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Figure 6: Scalability to the relation
size
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Figure 7: Scalability to the relation
size (I/O)
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Figure 8: Scalability to set cardi-
nality
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Figure 9: Scalability to memory
buffer
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Figure 10: Effect of pipelining in
BNL
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Figure 11: Effect of compression

large number of lists prior to merging them), indicating that
this method is clearly inappropriate for the set containment
join. Thus, we omit it from the remainder of the evaluation.

On the other hand, BNL processes set containment joins
very fast. Notice that SIF is constructed quite fast, due to
the employment of the compression techniques. The join
phase is slightly more expensive that the inverted file con-
struction. In this experimental instance, R is scanned twice,
dominating the overall cost of the algorithm, since the gen-
erated temporary results and SIF are small (SIF is just 28%
of S), compared to the size of the relation.

The next experiment (Figure 8) compares PSJ with BNL
for |R| = |S| = 100K and various values of the average set
cardinality c. The performance gap between the two meth-
ods is maintained with the increase of c; their response time
increases almost linearly with c. This is expected for BNL,
since the lengths of the inverted lists are proportional to
c. The I/O cost of the algorithm (not shown) increases
with a small sublinear factor, due to the highest compression
achieved. PSJ also hides a small sublinear factor, since the
ratio of false drops decreases slightly with the increase of c.
Finally, we have to mention that the cost of IFJ (not shown
in the diagram) explodes with the increase of c, because of
the quadratic increase of the produced rid-lists; the higher
|tR.r| is, the larger the number of inverted lists that contain
tR.rid, and the longer the expected time to visit all these
lists in order to output the matching pairs for this tuple.

We also compared the algorithms under different condi-
tions, (e.g., |R| 6= |S|, different correlation values, etc.), ob-
taining similar results. BNL is typically an order of mag-
nitude faster than PSJ. Notice, however, that the efficiency
of BNL depends on the available memory. In the next ex-
periment, we validate the robustness of the algorithm for a
range of memory buffer values. The settings for this and
the remaining experiments in this section are |R| = |S| =

100K and c = 20. Figure 9 plots the performance of PSJ
and BNL as a function of the available memory buffer. No-
tice that even with a small amount of memory (case 5% is
around 350Kb), BNL is significantly faster than PSJ. The
algorithm converges fast to its optimal performance with the
increase of memory. On the other hand, PSJ joins a large
amount of independent partitioned information and exploits
little the memory buffer.

The next experiment demonstrates the effectiveness of the
pipelining heuristic in BNL. We ran again the previous ex-
perimental instance for the case where the memory buffer is
5% the size of S. The number of blocks SIF is divided to is
8 in this case. Figure 10 shows the number of intermediate
results generated by BNL at each pass, compared to the re-
sults generated by the basic version of BNL that does not
use pipelining. The results are lists of variable size (some
compressed, some not) and we measure them by the num-
ber of pages they occupy on disk. Observe that pipelining
reduces significantly the size of intermediate results as we
proceed to subsequent iterations. Many lists are pruned in
the latter passes, because (i) they are unsuccessfully merged
with the ones from the previous pass, (ii) the corresponding
tuple has already been pruned at a previous pass, or (iii) no
more elements of the tuple are found in future lists and the
current results are output. On the other hand, the basic ver-
sion of BNL generates a significant amount of intermediate
results, which are only processed at the final stage.

Finally, we demonstrate the effectiveness of compression
in BNL. Figure 11 shows the performance of BNL and a
version of the algorithm that does not use compression, as
a function of the available memory. The effects of using
compression are two. First, building the inverted file is now
less expensive. Second, the number of inverted lists from
SIF that can be loaded in memory becomes significantly
smaller. As a result, more passes are required, more tempo-



rary results are generated, and the algorithm becomes much
slower. The performance of the two versions converges at
the point where the uncompressed SIF fits in memory. A
point also worth mentioning is that the version of BNL that
does not use compression is faster than PSJ (compare Fig-
ures 10 and 11) even for small memory buffers (e.g., 10% of
the size of S).

To conclude, BNL is a fast and robust algorithm for the
set containment join. First, it utilizes compression for better
memory management. Second, it avoids the extensive data
replication of PSJ. Third, it exploits greedily the available
memory. Fourth, it employs a pipelining technique to shrink
the number of intermediate results. Finally, it avoids the
expensive verification of drops required by signature-based
algorithms.

5.3 Other Join Operators
In this section, we compare signature-based methods with
inverted file methods for other join predicates. In the first
experiment, we compare the performance of the three meth-
ods evaluated in the previous section for set equality joins
under the following setting: |R| = |S|, the average set cardi-
nality c is set to 20, the relation cardinality varies from 20K
to 180K and the memory buffer is set to 15% of the size of
S on disk. Figure 13 shows the cost of the three methods
for various relation cardinalities.
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Figure 13: Varying |R| (set equality join)

Observe that PSJ and BNL perform similarly in all ex-
perimental instances. They both manage to process the join
fast for different reasons. PSJ avoids the extensive replica-
tion (unlike in the set containment join). It also manages to
join the signatures fast in memory, using the prefix hashing
heuristic. On the other hand, it still has to verify a signifi-
cant number of candidate object pairs. The verification cost
of the algorithm sometimes exceeds the cost of partitioning
and joining the signatures.

BNL is also fast. Its performance improves from the set
containment join case, although not dramatically. Many
partial lists and rids are pruned due to the cardinality check
and the temporary results affect little the cost of the algo-
rithm. The decrease of the join cost makes the index con-
struction an important factor of the overall cost. Finally,
IFJ performs bad for set equality joins, as well. The arbi-
trary order of the generated lists and the ad-hoc nature of
the algorithm make it less suitable for this join operation.

Figure 14 shows the performance of the algorithms, when
the relation cardinality is fixed to 100K and the set cardinal-

ity varies. The conclusion is the same: PSJ and BNL have
similar performance, whereas the cost of IFJ explodes with
the set cardinality, because of the huge number of inverted
lists that need to be merged.
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Figure 14: Varying c (set equality join)

In the final experiment we compare SNL, BNL and IFJ
for set overlap joins. Figure 15 shows the performance of
the algorithms for |R| = |S| = 20K and c = 20. The ex-
treme cost of the signature-based method makes it clearly
inappropriate for set overlap joins. The selectivity of the
signatures is low, even if a large signature length is picked,
and the ratio of false drops is huge. In this setting, 86% of
the pairs qualified the signature comparison, whereas only
4% are actual results for ε=1. Moreover, the increase of ε
(and the selectivity of the join) does not affect the signature
selectivity (as discussed in Section 2). BNL is faster than
IFJ, although it generates many temporary results. There
are two reasons for this. First, some results are output im-
mediately because we know that they cannot match with
lists in other blocks. Second, IFJ spends a lot of time in
sorting, due to the less systematic production of the tempo-
rary lists. Notice that for ε = 1 the cost of BNL is higher
than for other values of ε due to the higher overhead of the
result size. On the other hand, IFJ is less sensitive than
BNL to the value of ε.
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Figure 15: Varying ε (set overlap join)

As an overall conclusion, BNL the most appropriate algo-
rithm for set overlap joins, too. In the future, we plan to
optimize further this algorithm for this join operator, and
also study its adaptation to other related query types, like
the set similarity join. Arguably, the present implementa-



tion is not output sensitive; although the query result size
reduces significantly with ε, this is not reflected to the evalu-
ation cost, due to the a large number of temporary lists. An
optimization we have not studied yet is to consider which of
R and S should be placed as the “outer” relation in equality
and overlap joins, since these operators are symmetric (as
opposed to the set containment join).

6. Conclusions
In this paper, we studied the efficient processing of various
join predicates on set-valued attributes. Focusing on the
set containment join, we introduced a new algorithm which
creates an inverted file for the “container” relation S and
uses it to find in a systematic way for each object in the
“contained” relation R its supersets in S. This algorithm
is a variation of block nested loops (BNL) that gracefully
exploits the available memory and compression to produce
fast the join results. BNL consistently outperforms a pre-
viously proposed signature-based approach, typically by an
order of magnitude. If the relations are already indexed by
inverted files1, join processing can be even faster.

We also devised adaptations of signature-based and in-
verted file methods for other two join operators; the set
equality join and the set overlap join. The conclusion is
that signature-based methods are only appropriate for set
equality joins. For the other join types, a version of BNL is
always the most suitable algorithm. On the other hand, a
method that joins two inverted files was found inappropriate
for all join types.

In the future, we plan to study additional, interesting set
join operators. The set similarity join, retrieves object pairs
which exceed a given similarity threshold. This join type
is very similar to the ε-overlap join, however, the similarity
function is usually more complex, depending on both overlap
and set cardinality. Another variation is the closest pairs
query [1], which retrieves from the Cartesian product R×S
the k pairs with the highest similarity (or overlap). A similar
operation is the all nearest neighbor query, which finds for
each set in R its nearest neighbor in S. This query has
been studied in [11], where inverted files were used, but the
proposed algorithms were not optimized and only the I/O
cost was considered for evaluating them.
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