
Efficient k-NN Search on Vertically Decomposed Data

Arjen P. de Vries† Nikos Mamoulis§
∗

Niels Nes† Martin Kersten†

†Centrum voor Wiskunde en Informatica
Kruislaan 413, 1098 SJ, Amsterdam

The Netherlands

{arjen,niels,mk}@cwi.nl

§University of Hong Kong
Pokfulam Road

Hong Kong

nikos@csis.hku.hk

Abstract
Applications like multimedia retrieval require efficient sup-
port for similarity search on large data collections. Yet,
nearest neighbor search is a difficult problem in high dimen-
sional spaces, rendering efficient applications hard to realize:
index structures degrade rapidly with increasing dimension-
ality, while sequential search is not an attractive solution for
repositories with millions of objects. This paper approaches
the problem from a different angle. A solution is sought
in an unconventional storage scheme, that opens up a new
range of techniques for processing k-NN queries, especially
suited for high dimensional spaces. The suggested (physi-
cal) database design accommodates well a novel variant of
branch-and-bound search, that reduces the high dimensional
space quickly to a small candidate set. The paper provides
insight in applying this idea to k-NN search using two simi-
larity metrics commonly encountered in image database ap-
plications, and discusses techniques for its implementation
in relational database systems. The effectiveness of the pro-
posed method is evaluated empirically on both real and syn-
thetic data sets, reporting the significant improvements in
response time yielded.

1. Introduction
Nearest neighbor search in high dimensional spaces finds

many applications in domains such as image retrieval, mul-
timedia systems, spatial databases, and data mining. For
example, in image retrieval [1] images are represented as
points (called feature vectors) in a high-dimensional space
constructed from color distribution (color histograms), tex-
ture patterns (like grayness or smoothness), or image struc-
ture (shape). Usually, these feature vectors have high di-
mensionality; color histograms alone vary from 64 to several
hundreds of bins. Images are considered similar if they are
located ‘close’ to each other in this high-dimensional space,
according to some distance metric.

∗This work was done while the author was with CWI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD’2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

The aim for image database research is to accommodate
interactive search on millions of images, using the feature
space as primary filter and guidance. The most typical query
type in image databases finds the k most similar images to
a given example. Simply comparing the query vector to all
feature vectors, while maintaining an array with the best
k answers so far, is too expensive for two reasons: (i) in-
specting all feature vectors infers a lot of I/O, and (ii) the
CPU cost of comparing each pair of vectors is significant,
even if you can quickly assess a vector is not a good candi-
date. Yet, the analysis in [22] shows that indexing methods
based on space partitioning methods, generalized from spa-
tial databases, break down in high dimensional spaces, a
problem that has been validated empirically. Another im-
portant drawback of these indexing methods is that they
are based on a static feature space decomposition, where all
dimensions are of equal importance. They are thus unable
to support efficiently weighted k-NN queries, where dimen-
sions can have different arbitrary importance at search, and
queries on arbitrary sub-spaces of the full-dimensional space.

This paper considers a novel direction for improving the
efficiency of k-NN search in high dimensional spaces, ap-
proaching it as a physical database design problem. The
main rationale is that the development of efficient query
processing techniques for nearest neighbor search may ben-
efit from physical data independence, i.e., on distinguishing
between the logical and physical organization of feature vec-
tors. An unconventional physical design alternative is used,
that maintains a separate table for each dimension, con-
taining, of all vectors in the repository, the coefficients of
that same dimension. This physical representation accom-
modates a novel search technique called Branch-and-bound
ON Decomposed data (BOND).

In BOND, the distance between the query point and all
data vectors is accumulated by scanning these dimensional
projections one-by-one. After processing few of them, partial
distances of each vector to the query are known; then, lower
and upper bounds on the complete distance of the k-nearest
neighbors are exploited to discard safely from further con-
sideration those vectors that cannot possibly participate in
the response set. Applying this process iteratively, reduces
the candidate set such that the last stages are performed on
just a small database sample. The resulting search process
is visualized in Figure 1. The first m dimension columns are
scanned, and the best partial scores are computed. Vectors
with a smaller best-case score than the worst-case score of
the k-th most similar vector are pruned. This process is re-
peated until the candidate set contains exactly k objects, or

�������
�������
�������
�������

�������
�������
�������
�������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Avoided work

���
���
���
���

Contains top k

...m=16m=8 m=24

Figure 1: BOND visualized.

all dimensions have been processed.
The advantages of BOND are summarized as follows:

• It avoids a large number of computations compared to
a full sequential scan;

• It is conceptually simple, causes practically no storage
overhead, and requires no preprocessing of the data;

• Its good performance is robust to increasing dimen-
sionality (assuming a meaningful search problem [3]);

• It is a novel technique, orthogonal to previous ap-
proaches based on compression of feature vectors (such
as [22]).

• On the same data representation different variants of
k-NN queries can be processed efficiently, including:
(i) queries with different weights of importance on the
various dimensions, (ii) queries in any dimensional sub-
space, (iii) queries with various (monotonic) similarity
metrics, and (iv) multi-feature queries that combine
similarities from various sources [7, 9].

The remainder of this paper is organized as follows. First,
related work is presented in Section 2. Section 3 summarizes
the notation used throughout the paper. We use image re-
trieval as an example application of k-NN search, so two
metrics frequently used in image retrieval are introduced.
Section 4 then presents BOND, and derives the necessary
bounds for these two metrics. Sections 5 and 6 discuss opti-
mization techniques for BOND and implementation details.
The proposed methodology is evaluated empirically in Sec-
tion 7 and Section 8 discusses its application to two addi-
tional types of k-NN queries. Finally, Section 9 concludes
by summarizing the contributions of this work.

2. Related Work
A variety of techniques have been proposed previously to

improve upon naive k-NN search. A brute-force solution
precomputes for each vector its k nearest neighbors [7], gen-
erating a similarity network. This method avoids expensive
run-time distance computations and ranking, offering per-
haps the only viable solution for very large data sets. Yet,
updates cannot be done incrementally and fixed constants
(like the number of neighbors per object and the similarity
metric used) support neither queries with arbitrary k nor
weighted ones. Also, it is impossible to query for objects
that are not selected from the indexed collection.

Another line of research applied a variety of indexing
techniques to speed up the search process. If the number
of dimensions is low, a spatial access method (SAM) (e.g.,

the R-tree [10]) stores the feature vectors, such that a k-
nearest neighbor search algorithm (e.g., [16]) facilitates effi-
cient search. In practice, however, the number of dimensions
in image databases is quite large, and scanning the complete
database can be faster [22, 3].

The two-step evaluation technique applied in [8, 13, 18]
alleviates these problems. Each original feature vector is
mapped onto a small number of dimensions (e.g., 16), such
that a (possibly different) distance metric in the low-dimen-
sional space lower-bounds the actual distance in the high-di-
mensional space (dimensionality reduction). The resulting
(low-dimensional) vectors are organized in a SAM, which is
used to (i) compute a worst-case distance of the k-th near-
est neighbor from the query vector and (ii) prune objects
with larger distances in the low-dimensional space. A dis-
advantage of this methodology is the problem of finding a
proper mapping that preserves enough information from the
original space, to filter as many objects as possible using the
SAM. Another drawback is the system overhead introduced
by the additional set of feature vectors, affecting negatively
its space requirements and update speed.

Given the efficiency of sequential scan for high-dimensional
search, the Vector Approximation File (VA–File) [22] uses
a smaller, approximate representation of the feature vec-
tors (e.g., 8 bits per dimension instead of a double) for an
initial filter step; an idea similar to the use of signature
files for searching textual data. To compute the final an-
swers, a refinement step using the complete feature vectors
is performed. The filter step is fast because it requires small
bandwidth, and since the refinement step processes much
less data, computing the top-k answers is cheaper than se-
quential scanning the original vectors. This approximation
technique has also been applied to adapt R-trees for high-
dimensional problems, by compressing the leaf nodes (the
IQ-tree [2]) or storing a compressed representation of bound-
ing boxes of child nodes in the inner nodes (the A-tree [17]).

Summarizing, three approaches have been followed to tack-
le the curse of dimensionality: (1) indexing based on space
partitioning, (2) dimensionality reduction, and (3) data com-
pression. This paper considers techniques from physical
database design to represent a collection of feature vectors
in the database system. We use the decomposition storage
model [5] (also known as vertical fragmentation), which was
initially proposed for the physical storage of data in rela-
tional DBMSs in order to reduce the I/O cost of frequently
observed query patterns. It has proven its value in vari-
ous data management problems since, being applied effec-
tively in commercial products (Sybase-IQ [14]) and research
database systems [4].

BOND exploits the possibility of independent access to
each dimension provided by the vertical fragmentation. In-
stead of partitioning the space using all dimensions and
building an index for the data, it considers a dynamic or-
der of the dimensional fragments and prunes objects while
computing their partial distances to the query object. Fur-
thermore, BOND combines transparently with the advan-
tages of compression, resulting in additional performance
improvements. Thus, by combining a new query process-
ing technique (BOND) with a (rather neglected) physical
database storage schema, a novel way to solving k-NN search
problems has been discovered.

3. Definitions
In this section we introduce the notation used in this pa-

per, as well as the two image search problems used to illus-
trate the approach.

3.1 Notation
Let X be a collection of sequences (i.e., N -dimensional

vectors) x = x1 . . . xN . Let m be an integer: 1 ≤ m ≤ N .
Operators − and + on x define sequences with the first m
and the last N − m elements, respectively. Thus, x− =
x1 . . . xm and x+ = xm+1 . . . xN . Let T (x) be the sum of
the elements in the sequence, and let this function apply also
on the partial sequences x− and x+. Let S be an associative
and monotonic aggregate function, defined for sequences x
of any length N . Let X denote [x1, . . . ,x|X|]

T , a vector
representing collection X . We assume throughout the paper
an implicit mapping between collections X , H, V, and their
corresponding vectors X, H, V.

Operations are often applied to each element of a col-
lection. S = S(X) denotes the result of element-wise ap-
plication of aggregate function S to each xi in X. Anal-
ogously, operators − and + apply also on X and S, e.g.,
X− = [x−1 , . . . ,x−|X|]

T and S− = S(X−).

Symbols S+
min and S+

max denote the minimum and maxi-
mum bounds for each element in S+. Similarly, Smin and
Smax are the minimum and maximum bounds of S, pro-
vided that S− has been computed. Finally, let κmin (κmax)
be the k-th largest (smallest) element of Smin (Smax). Ta-
ble 1 summarizes the notation used throughout the paper.
Some symbols are implicitly parameterized by an index m
or a collection X .1

Table 1: Notation.
x Sequence x1 . . . xN .
x− Sequence x1 . . . xm.
x+ Sequence xm+1 . . . xN .
T (x)

∑N
i=1 xi

T (x−), T (x+)
∑m

i=1 xi,
∑N

i=m+1 xi

X Collection of sequences {x}.
X Vector of sequences [x1, . . . ,x|X|]

T .
S(x) Aggregate function S : x → IR.
S Vector S(X).
S+

max, S+
min Element-wise bounds for S+.

Smax, Smin S− + S+
max, S− + S+

min.
κmin, κmax The k−th element of Smin, Smax.

3.2 Two Common Metrics
Applications in image retrieval frequently use histogram

intersection as a metric for image similarity [21], summing
the overlap between the two histograms in each dimension.
Two images are considered similar if their histogram inter-
section is large. Another commonly used metric is the Eu-
clidean distance: images are considered similar if their dis-
tance in the feature space is small.

Histogram Intersection

Let H be a collection of normalized image histograms (N -
dimensional vectors h, ∀h ∈ H : T (h) = 1).

1We valued the readability of S+
max over the preciseness of

Smax
m+1(X).

Definition 1. Given two normalized histograms h and
q, we define histogram intersection as a measure of sim-
ilarity between them:

Sim(h,q) =

N∑
i=1

min(hi, qi) (1)

Using histogram intersection assumes that the different di-
mensions are uncorrelated. This metric was reported in [20]
to be superior to Euclidean distance for color histograms,
mainly because of its ability to reduce the contribution of
the irrelevant vectors in the query result. The intersection
of two histograms is approximately one if the histograms
are much alike, because ∀i, 1 ≤ i ≤ N : min(hi, qi) ' hi and
T (h) = 1. If the histograms differ significantly, their scalars
differ significantly in each dimension, and their intersection
is small.

Euclidean distance

Let V be a collection of N -dimensional feature vectors v in
the unit hyperbox (∀v ∈ V : 0 ≤ vi ≤ 1).

Definition 2. The squared Euclidean distance between
two vectors v and q of dimensionality N is defined as fol-
lows:

δ(v,q) =

N∑
i=1

(vi − qi)
2 (2)

The actual Euclidean distance is the square root of δ(v,q).
Using squared distance δ reduces computations; obviously,
the relation between the actual Euclidean distance and δ(v,q)
is monotonic. Two images are considered similar if the dis-
tance between them is small. So, we define the following
similarity metric:

Sim(v,q) = 1−
√

1

N
δ(v,q) (3)

4. BOND: Branch-and-bound ON Decomposed data
This section describes the generic search strategy applied

in BOND, followed by the derivation of algorithms for k
nearest neighbor search using histogram intersection and
Euclidean distance.

Algorithm 1 is a brute-force approach to finding the k
sequences with the largest value of aggregate S. Step 1
represents a naive loop over all elements of X . In practice,
N and |X | are large, and sequential search becomes very
expensive.

Algorithm 1. Sequential-Search(X ,k)

1. Compute S = S(X);

2. Rank S and return the k highest values.

Assuming that aggregate S is monotonically increasing,
we propose BOND; the following branch-and-bound alterna-
tive to improve efficiency:

Algorithm 2. BOND(X ,k,m)

1. Compute S− = S(X−);

2. Determine Smax and Smin;

3. Determine κmin from Smin;

4. Create candidate set C, by removing from X the xi for
which Smax[i] < κmin;

5. Apply iteratively steps 1-4 on C for a larger m until
|C| = k, or all dimensions have been processed.

Pruning step 4 states formally which sequences x may
still reach the top k while aggregating their remaining val-
ues xm+1 . . . xN . It is derived from the fact that each par-
tial score increases with S+

min at least, but never with more
than S+

max. Algorithm 2 is meant for finding the k elements
with the largest values in S. When we are interested in
the k smallest values of S, step 4 prunes each xi for which
Smin[i] > κmax.

4.1 Pruning bounds for histogram intersection
The remaining problem is to derive computationally inex-

pensive rules for determining S+
max and S+

min for our similar-
ity metrics. Let aggregate S() be the histogram intersection,
as given in Equation 1. We first break the sum into partial
sums S(h−,q−) and S(h+,q+):

S(h,q) =

m∑
i=1

min{hi, qi}︸ ︷︷ ︸
S(h−,q−)

+

N∑
j=m+1

min{hj , qj}︸ ︷︷ ︸
S(h+,q+)

(4)

The next inequality provides a rather straightforward up-
per bound for each S(h+,q+):

S(h+,q+) ≤
N∑

j=m+1

qj = T (q+) = 1− T (q−) (5)

The obvious lower bound for S(h+,q+) is 0. Thus, S+
max,

S+
min can be considered as arrays containing these constant

values, and Smax, Smin can be obtained trivially from the
already computed S−. κmin is then the k-th largest element
of S−, and no histogram hi with:

S(h−
i ,q−) + (1− T (q−)) < κmin (6)

can ever end up in the top k best vectors. We denote the
resulting criterion with Hq, since it only depends on the
query vector. Note that, in this special case, the derived
bounds are the same for each image.

Stricter upper and lower bounds for S(h+,q+) can be
defined using information from h:

S(h+,q+) ≤ min{T (h+), T (q+)}
= 1−max{T (h−), T (q−)} (7)

S(h+,q+) =

N∑
i=m+1

min{qi, hi}

≥
N∑

i=m+1

min{qmin, hi}

≥ min{qmin, T (h+)}
= min{qmin, 1− T (h−)}, (8)

where qmin is the minimum element of q+. In other words,
as long as T (h+) is larger than qmin, the histogram intersec-
tion of the remaining values is at least qmin; otherwise, it is
equal to T (h+).

Table 2: Example collection H.

H h ∈ H S− Smin Smax S
h1 < 0, 0.1, 0, 0.9 > 0.1 0.15 0.25 0.15
h2 < 0.05, 0.05, 0.9, 0 > 0.1 0.15 0.25 0.2
h3 < 0.8, 0.1, 0.05, 0.05 > 0.8 0.85 0.9 0.9
h4 < 0.2, 0.6, 0.1, 0.1 > 0.35 0.4 0.5 0.5
h5 < 0.7, 0.15, 0.15, 0 > 0.85 0.9 1 0.95
h6 < 0.925, 0, 0, 0.025 > 0.7 0.725 0.725 0.725
h7 < 0.55, 0.2, 0.15, 0.1 > 0.7 0.75 0.85 0.85
h8 < 0.05, 0.1, 0.05, 0.8 > 0.15 0.2 0.3 0.25
h9 < 0.45, 0.5, 0.05, 0.05 > 0.6 0.65 0.7 0.7

These (stricter) bounds differ for each hi. Thus, Smax and
Smin cannot be determined only from S−; we need partial
sum T (h−) for each image as well. Equations 7 and 8 then
define S+

max and S+
min, respectively. Now, if κmin is the k-th

largest element of Smin, a stricter pruning criterion Hh for
histogram intersection can be defined as follows:

S(h−
i ,q−) + 1−max{T (h−

i), T (q−)}︸ ︷︷ ︸
Smax[i]

< κmin (9)

The advantage of rule Hq over Hh is that it is computa-
tionally cheaper and requires less bookkeeping information.
Using Hq, we maintain only the essential table S− of partial
similarities at each iteration, which accumulates to the sim-
ilarity of the final solutions. Using Hh requires also keeping
the partial sums of the values accessed so far (i.e., T (h−) for
each h). Nevertheless Hh is more precise, so it is expected
to identify a larger number of disqualifying vectors.

4.2 An Example
A simple example illustrates how Algorithm 2 works for

histogram intersection. Consider collection H as shown in
Table 2, query histogram q =< 0.7, 0.15, 0.1, 0.05 >, and a
search problem in which we like to find the three nearest
neighbors (k = 3). The three best matches are {h3,h5,h7},
which could be found by computing S(hi,q) for each hi ∈
H, sorting the resulting sums, and returning the three best
results.

First, consider pruning rule Hq. With m = 2, our al-
gorithm first computes the partial sums for each histogram
(column S−). The trivial lower bound equals zero, we use
the third highest value κmin = 0.7 for the pruning step. His-
tograms {h1,h2,h4,h8} can be removed from the candidate
set, because S(h−

i ,q−) < κmin − 0.15 = 0.55; the resulting
candidate set is printed boldface in column S−. Only h6

and h9 take part in the next step without contributing to
the final result set.

Rule Hh takes advantage of the information in h− as well.
It computes columns Smin and Smax as shown in the table,
determines a (higher) κmin = 0.75 from Smin, and selects
the histograms hi with Smax[i] < κmin, which are shown in
boldface again. Hh removes h6 and h9 from the candidate
set as well, already identifying the three best results. Ob-
viously, in this small example, we have already seen half of
the data, so a good reduction of the data set is not so sur-
prising. The experiments in Section 7 demonstrate that this
branch-and-bound strategy works on real data sets indeed.

4.3 Pruning bounds for Euclidean distance
Similar pruning rules can be derived when Euclidean dis-

tance is used as similarity metric. Assume that the aggre-
gate function S() is defined by equation 2, i.e., it is the
squared Euclidean distance2. Unlike histogram intersection,
we are interested in the objects with the smallest values in
S. A simple pruning rule Eq depends on the query vector
q and the partially computed distances S− only. Obviously
Smin = S, i.e., the lower bound of the distance for each
vector is the already computed distance, since v+ may be
equal to q+. The upper bound of S(v+,q+) is also con-
stant. Geometrically, it is the distance between q+ and the
furthest corner in the hyperspace defined by the remaining
dimensions:

S(v+,q+) ≤
N∑

i=m+1

max{qi, 1− qi}2 (10)

Now define stricter bounds for S(v+,q+), assuming that
T (v+) is known.

Lemma 1. Assume that the values of q+ are in decreasing
order, i.e., qi > qi+1,∀i > m. Let l = N − bT (v+)c, ul =
T (v+) − bT (v+)c. The upper bound of S(v+,q+) is then
defined by:

S(v+,q+) ≤
l−1∑

i=m+1

q2
i + (ul − ql)

2 +

N∑
i=l+1

(1− qi)
2 (11)

Proof. Lemma 1 states that the distance is maximized
when the values of T (v+) are distributed such that the di-
mensions in increasing order of value in q+ have the largest
possible value. Let m = N−2 and qN−1 ≥ qN . First assume
that T (v+) ≤ 1. According to the lemma the additional dis-
tance is maximized if hN−1 = 0 and hN = T (v+). It suffices
to prove that if we ‘move’ a part x of T (v+) from hN to hN−1

the distance decreases. This can be shown by evaluating
the following inequality: (qN−1−x)2 +(qN −T (v+)+x)2 ≤
q2

N−1 +(qN −T (v+))2. The proof is similar for 1 < T (v+) ≤
2, where for any x, 0 < x ≤ 2 − T (v+) the following in-
equality holds: (T (v+)− 1 + x− qN−1)

2 + (1− x− qN)2 ≤
(T (v+)− 1− qN−1)

2 + (1− qN)2. By induction, inequality
11 is proven for every m < N − 2. 2

Lemma 2. The lower bound of S(v+,q+) is defined by:

S(v+,q+) ≥ (T (v+)− T (q+))2

N −m
(12)

Proof. Lemma 2 suggests that the increase of δ is mini-
mized if the differences in each of the remaining dimensions
are all minimal and equal. This stems from the basic fact
that when

∑n
i=1 xi is constant, then

∑n
i=1 x2

i is minimized
when ∀i, xi = (

∑n
i=1 xi)/n. 2

Figure 12 in the appendix visualizes geometrically the spe-
cial case in which only the last two dimensions remain, i.e.
m = N − 2, and T (v+) ≤ 1. Lemmas 1 and 2 provide
the required bounds to apply Algorithm 2.3 Notice that
T (v+) is needed for each vector in order to define the precise

2The reason we do not use the metric defined by equation 3
is that it is far more complex and gives essentially the same
result.
3Let diff = (T (v+)− T (q+))/(N −m) and assume that the
values in q− are in decreasing order (like in the definition

bounds. Unlike the histogram intersection case, for which
T (v+) equals 1 − T (v−), T (v+) cannot be computed from
T (v−) only, since T (v) differs for each vector v. A simple
solution materializes and uses this extra table. T (v+) is
then initially a copy of T (v) and it is updated at each step.
In the rest of the paper, criterion Ev refers to pruning using
the lemmas and T (v).

5. Optimization Issues
Algorithm 2 can be applied directly using the bounds de-

rived above. This section discusses some optimization tech-
niques that enhance its efficiency. More specifically, it in-
vestigates the importance of choosing a good ordering of di-
mensions, and discusses how to tune the frequency by which
pruning is attempted.

5.1 Finding a good order of the dimensions
The aggregates used are not only associative and mono-

tonic, but also commutative: the sequence in which we pro-
cess the dimensions does not affect the final result, so it is a
good idea to define an order that prunes a large percentage
of the vectors early. Of course, it is not possible to know a
priori the effectiveness of each dimension in pruning. But,
a combination of the distribution of values in q with sta-
tistical information about H guides the definition of a good
order.

Without additional knowledge about the distribution in
H, condition Hq in histogram intersection can be expected
to prune the candidate set most succesfully if the right-
hand side of the inequality has the highest value, i.e., pro-
cessing the dimensions in decreasing order of scalars in q.
In other words, had q in the example of Section 4.1 been
< 0.15, 0.1, 0.7, 0.05 >, dimensions 3 and 1 should be con-
sidered to compute partial scores S−. Notice that this order-
ing is not necessarily optimal, and a better estimate could
be obtained if more were known about H.

Rules Hh and Ev consider also the distribution of values
in H. Figure 2 shows statistics from a real dataset con-
taining 59,619 166-dimensional vectors (color histograms of
images from the Corel collection [6]). The upper diagram
plots the mean value of each bin, the lower one shows the
distribution of values in a histogram if taken in decreasing
order. Notice that for a specific image, the histogram values
follow a Zipfian distribution. Of course, the bins that take
the highest values are not the same in every image, as in-
dicated by the leftmost plot. Given this data distribution,
processing the dimensions in decreasing order of the values
maximizes the chances to find images that are part of the
top k early for rules Hh and Ev as well: the dimensions
with high values are skewed, so most images are expected
to have low values in these dimensions and will be pruned
early. Of course, were the distribution of values different, a
different processing order should be considered to take the
most skewed dimensions first.

5.2 How many dimensions count?
Choosing a small m prunes the candidate set sooner, pos-

sibly avoiding a lot of query processing. However, it adds
a non-trivial overhead in computing the k-th element more

of lemma 1). In the special cases (i)diff < 0 ∧ |diff| < qN

and (ii) diff > 0 ∧ qm+1 + |diff| > 1, we use a stricter lower
bound than inequality 12. Details are omitted for sake of
readability.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

32 64 96 128 160

bins

Average value per bin

Corel HSV histograms

0

0.1

0.2

32 64 96 128 160

bins

Average distribution of values per histogram

Corel HSV histograms

Figure 2: Statistics from a real dataset

frequently as well as updating the candidate set. Thus, m
should be sufficiently large for the number of pruned images
at each step to be non-trivial, and sufficiently small to have
impact on the search speed, compared to full-scanning the
images of the previous step.

An optimal choice of m takes into account both data
statistics and the query vector. For instance, Hq will not
prune any image until the right-hand side of equation 6 is
positive. This can happen only when T (q−) > 0.5, since
κmin ≤ T (q−). Thus, attempting to reduce the data set
is futile until this condition applies. As we will see later,
after the number of candidates has shrunk to a small su-
perset of the final result, the effect of pruning reduces sig-
nificantly and the benefit of pruned search is negligible in
comparison to performing a full scan on the remaining can-
didates. Therefore, the significant effects of pruning occur
only within a range of dimensions; the optimization problem
is reduced to estimating this range and choosing a good m
for it. A variant that we have not studied yet is whether
m should be adapted dynamically to the expected pruning
effect.

6. Implementation
An interesting property of branch-and-bound on decom-

posed data is that it can be expressed in standard rela-
tional algebra; it does not require user-defined types or ad-
vanced indexing structures. The proposed query processing
techniques have been implemented in Monet [4], a research
DBMS which provides a variety of highly efficient implemen-
tations of common algebraic operators (join, select, etc.),
using strategies such as positional lookup, hash lookup, or
binary search. Administration of so-called ‘properties’ (e.g.

Set

Histogram

i1
i2
i3
.

.

.

.

.

.
.

.

.
.

.

.

1
2
3
.

.

. 1
2
3
.

.

.
.

.

.

1
2
3

1
2
3
.

.

.

...
v11
v12
v13

v21
v22
v23

vN1
vN2
vN3

Img

H1 H2 HN

.

.

1
2
3
.
.

v12
v13

v11

Hm+1

.

.

1
2
3
.
.

vN2
vN3

vN1

HN

1
2
.

C.rev
...

2
8
.

(a) stored histograms (b) step 3 of BOND

Figure 3: Implementation in a relational database.

sorted, keyed, dense) propagates fragmentation information
through operators, to avoid unnecessary joins if possible.

6.1 Basic algorithm
We vertically fragment the collection of histograms H into

N binary relations Hi of length |H|, storing tuples with
a histogram identifier and the value of the i-th histogram
bin hi. The resulting tables are shown in Figure 3, in
which histogram h2, with histogram identifier 2, has value
< v12, v22, . . . , vN2 >, and belongs to image i2. Exploiting
the known, densely ascending order of histograms, avoids
materialization of the histogram identifiers; illustrated in
Figure 3 by italic numbers. This serves two goals: it allows
positional lookup of scalar values given a histogram identi-
fier, and, it saves storage.4 BOND with rule Hq is expressed
in the Monet Interpreter Language (MIL) as follows:

1. for i in 1..m do
Di := [min](Hi, const Qi);

Smin := [+](D1, ..., Dm);

2. sumQ := Q1 + .. + Qm;
sk := Smin.kfetch(k);
maxbound := sk + sumQ - 1;
C := Smin.uselect(maxbound, 1.0);

3. for i in m+1..N do
Hi := C.reverse.join(Hi);

Step 1 computes partial similarity S(h−) for each his-
togram in the collection. The [f]() construct is the multi-
join map, which performs an implicit equi-join on the left-
hand attribute of multiple binary relations, and executes its
operator (f) on the right-hand arguments of the join result.
The const keyword denotes its parameter as a constant into
all operator executions. Thus, the [min] takes the minimum
of hi and qi for all histograms, whereas the [+] joins these
results and adds them together; because these tables are
aligned, a positional join (with negligible cost) is chosen as
physical operator.

Step 2 computes the maximum bound derived in rule Hq,
and selects the identifiers of the candidate histograms with
partial scores that may still end up in the best k results. The
kfetch operator selects the k-th largest element of Smin us-
ing a priority queue implemented as a heap, with worst-case
cost O(n log k). The uselect operator is the ‘unary range
select’, which returns the left-hand values of tuples from
Smin with right-hand values in the specified range, setting
the right-hand side of the result to a densely ascending range
of (virtual) oids. Finally, step 3 reduces the remaining tables

4A third of the tablesize, assuming that an oid value is
represented in 4 bytes and a dbl value in 8 bytes.

of H+ to the candidate set (Figure 3b, assuming histograms
2 and 8 are in the candidate set).

Positional joins construct the results of each iteration of
the algorithm cheaply. In early iterations, however, when
selectivity is still rather low, copying a large proportion of
the table into the result consumes too many resources. As a
more efficient alternative, we initially use another physical
implementation of uselect, creating a bitmap index on the
histogram identifiers to represent the pruned candidate set.
After several iterations, when the candidate set has reduced
significantly, the query processor switches to the ‘standard’
positional joins approach, resulting in much smaller base ta-
bles for the subsequent iterations. Another advantage of the
bitmap index is its usage to speed up complex queries in-
volving both k-NN and other predicates, by initializing the
bitmap with the result of a prior selection predicate such
as ‘photographs taken in 1992’. CPU cost is reduced as dis-
tances only need be computed for those candidates satisfying
the predicate.

6.2 Updates
By their nature, large collections of high-dimensional vec-

tors (e.g., image databases) is relatively static. Yet, in case
of updates, or more likely when appending new images to
extend a collection, the cost for our storage scheme are the
‘normal’ cost of updating vertically fragmented collections.
As argued already in [5], update performance will approx-
imate the efficiency of updates in a normal relational stor-
age scheme, especially when using differential files and per-
forming mainly batch updates. In our implementation, the
same bitmap as used in step 3 marks the deleted image his-
tograms, until periodic reorganization of the collection.

7. Experiments
This section evaluates pruning efficiency and run-time cost

for various instances of Algorithm 2. Experiments on a real
dataset verify the pruning effects of the four criteria. The
effects (on performance) of the choice of k and the ordering
of dimensions are measured on the same data set. The next
experiment validates BOND’s robustness to dimensionality.
A run-time cost comparison between BOND and sequential
scan follows, with and without compression. Finally, the ef-
fectiveness of pruning is validated on synthetic datasets with
varying data distributions. Unless otherwise stated, in all
experimental instances k was set to 10. Experiments were
run on a PC with an AMD Athlon MP 1500+ (1333MHz)
processor.5

7.1 Pruning effects of the criteria
We evaluated the pruning criteria using a 166-dimensional

dataset created from the Corel image database (59,619 im-
ages) [6]. The histograms were created using the methodol-
ogy and parameters described in [19]. The HSV values of all
pixels were extracted and quantized to a space that consists
of (18 hues)·(3 saturations)·(3 values) + (4 grays) = 166
bins. The values of each histogram were then normalized to
sum up to 1. Figure 2 provides statistical information about
this dataset.

For each pruning metric, we ran 100 queries randomly
selected from the collection. The dimensions are ordered
5The experiments have been repeated on a SGI Origin 2000
workstation with a MIPS R12000 300MHz processor, with
similar results.

by decreasing values in q and m = 8. Figure 4 plots the
best, average, and worst pruning efficiency using Hq and
Hh. Our technique manages to shrink fast the search space;
more than 98% of the images are discarded after on average
just 1/5 of the dimensions. Observe, that the average prun-
ing efficiency of Hq is close to the one of Hh, which has larger
overhead (due to the maintenance of T (h−)). The best case
is a ‘perfect one’; every false hit is pruned after just one it-
eration (8 dimensions). Another interesting statistic is that
on the average the top-k images are identified after 64 di-
mensions, which means that 102 tables need not be accessed
at all. This shows another advantage of BOND; even if the
worst memory settings apply, dimension-wise pruned search
would do much better than sequential scan.

Figure 5 plots the pruning efficiency of BOND with prun-
ing criteria Eq and Ev and Euclidean distance as metric.
Since we know for this specific dataset that T (v) = 1 for
each v, we replaced the upper bound in Eq (defined by in-
equality 10) by the stricter bound max{q2

max, (1 − qmin)2}.
We again ordered the dimensions in decreasing value in q,
because this ordering considers the most skewed dimensions
first. In contrast to the small difference between Hq and
Hh, Eq prunes hardly any image. This can be explained
by the large upper bound of S(v+,q+), which cannot be
practical without knowledge about T (v+). On the other
hand, Ev manages to prune well, but not as fast as the
histogram intersection methods. In the rest of the paper,
we will not consider criterion Eq again. Notice that, al-
though we performed the Euclidean distance experiments
on the same dataset for comparability, the actual distance
distribution between points in the dataset suggests that his-
togram intersection is a more appropriate metric for image
similarity.

7.2 Effects ofk and ordering of dimensions
We tested the effect of k in the pruning of Hq by running

the sample queries and averaging the number of pruned im-
ages per dimension (Figure 6). Observe that even with as
large values as 1000, BOND manages to prune the space
early. The large difference between k=1 and k=10 is due to
the fact that the queries are taken from the dataset, thus for
k=1 the top-k element is a perfect match with high pruning
efficiency. Recall that no images are pruned until the 15-th
dimension, where T (q−) becomes larger than 0.5.

The nature of skew in the dataset (few dimensions with
large values in q and many with values close to zero) favors
considering the dimensions in decreasing order of value in q
for both similarity metrics. Figure 7 verifies this reasoning.
The three lines show the pruning effect of Hq when dimen-
sions are taken (i) in decreasing value in q, (ii) at random,
and (iii) in increasing value (worst setting). The fact that
the best ordering depends on q (so it is not static) favors
the application of BOND in comparison to sequential scan
and other methods, because of its flexibility to consider the
dimensions in any order without penalty in access cost.

7.3 Effects of dimensionality
The next experiment validates the robustness of our method

to the dimensionality of the dataset. From the Corel image
database, we generated four HSV histogram datasets of di-
mensionality 26, 52, 166 and 260. Figure 8 shows the pruned
images as a percentage of processed dimensions, when Ev

is used. Observe that the effectiveness decreases with di-

0

10000

20000

30000

40000

50000

0 16 32 48 64 80 96 112 128 144 160

#p
ru

ne
d

ve
ct

or
s

�

processed dimensions

best Hq
best Hh

average Hq
average Hh

worst Hq
worst Hh

Figure 4: Pruning effects of Hq and Hh

0

10000

20000

30000

40000

50000

0 16 32 48 64 80 96 112 128 144 160

#p
ru

ne
d

ve
ct

or
s

�

processed dimensions

best Eq
best Ev

average Eq
average Ev

worst Eq
worst Ev

Figure 5: Pruning effects of Eq and Ev

0

10000

20000

30000

40000

50000

0 16 32 48 64 80 96 112 128 144 160

#p
ru

ne
d

ve
ct

or
s

�

processed dimensions

k=1
k=10

k=100
k=1000

Figure 6: Effects of k in search (m = 1)

0

10000

20000

30000

40000

50000

0 16 32 48 64 80 96 112 128 144 160

#p
ru

ne
d

ve
ct

or
s

�

processed dimensions

decreasing order
random order

increasing order

Figure 7: Effects of dimensional orderings

0

10000

20000

30000

40000

50000

0 10 20 30 40 50 60 70 80 90 100

#p
ru

ne
d

ve
ct

or
s

�

% of processed dimensions

26 dim
52 dim

166 dim
260 dim

Figure 8: Impact of dimensionality

0

10000

20000

30000

40000

50000

0 16 32 48 64 80 96 112 128 144 160

#p
ru

ne
d

ve
ct

or
s

processed dimensions

average Hq
average Hq on VA-file

Figure 9: Pruning with approximated vectors.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 16 32 48 64 80 96 112 128

#p
ru

ne
d

ve
ct

or
s

�

processed dimensions

theta=0
theta=1
theta=2

Figure 10: Effects of skew on the data (Ev)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 16 32 48 64 80 96 112 128

#p
ru

ne
d

ve
ct

or
s

�

processed dimensions

theta=0
theta=1
theta=2

Figure 11: Effects of skew on the weights (Ev)

mensionality, although not dramatically. With the increase
of dimensionality the search space becomes less appropri-
ate for nearest neighbor search: the distance ratio between
the nearest and the furthest vector from a random point in
space drops [3]. In our case, the scores of the best-k matches
become lower and more indistinguishable as dimensionality
increases. Nevertheless, experiments on synthetic datasets
with well-defined clusters (see also Section 7.5) have shown
that the pruning efficiency of the proposed method does not
degrade with dimensionality.

7.4 Search performance improvement
The practical value of BOND is evaluated by measuring

the response time of the implementation described before.
The measurements reported have been acquired from exe-
cuting 100 sample queries on the dataset with 166-dimen-
sional HSV histograms, using both similarity metrics with
pruning criteria Hq, Hh, and Ev. These response times are
compared to the times measured with an optimized imple-
mentation of sequentially scanning a single table with all
vectors. For each vector v, sequential scan computes its sim-
ilarity with q and adds it to a heap of the k-best matches
so far.6 The two versions of this method for histogram in-
tersection and Euclidean distance are denoted as SSH and
SSE , respectively.

Table 3 presents statistics for the measured response times;
all reported times are in milliseconds. Hq is the best prun-
ing heuristic for histogram intersection due to its simplicity
and very good pruning efficiency. Although Hh prunes more
effectively than Hq, the difference is not large enough for
the additional bookkeeping to pay off. Both criteria reduce
significantly the cost of sequential scan, up to an order of
magnitude. Ev is not that efficient in terms of CPU-cost,
mainly due to the relatively complex bounds of S(v+,q+),
which add computational overhead. In addition, it prunes
less space on the average as shown in Figure 5. However,
this method is still much faster than sequential scan.

Table 3: BOND vs. sequential scan; times in msec.
method min max average median
Hq 21 121 40 35
Hh 27 140 50 45
SSH 215 242 229 231
Ev 29 224 108 108
SSE 181 190 183 184

As discussed before, related research has shown perfor-
mance improvements using compressed approximations of
the feature vectors, for both sequential search (VA–File) as
well as space partitioning methods. A similar improvement
can be expected using this approximation technique in com-
bination with BOND. Figure 9 plots the average pruning
of Hq on exact and compressed dimensional fragments (an
8-bit approximation of each double coefficient is used per
dimension). Pruning on the compressed fragments finishes

6We also tried a more sophisticated approach, where the
partial score of v was regularly compared to the top-k score
found so far and search was abandoned for v if it was found
impossible to reach that score. However, this version of
sequential scan was slower on the average (due to the over-
head of comparisons, and its incapability to consider first
the most promising dimensions).

with 1000 candidates after processing 72 dimensions and fol-
lows a similar trend as using the original fragments. Table 4
shows the cost of applying Hq on the compressed fragments,
compared to sequentially scanning the equivalent VA–File
[22]. Essentially, both approaches return the same sets of
candidates, that need to be checked in the additional refine-
ment step. A runtime comparison between BOND applied
to approximations (using Hq) and a sequential scan of the
equivalent VA–file [22] results in an overall improvement of
a factor 3-5 in favour of BOND (on the 166-dimensional
dataset). This experiment demonstrates further that the
benefit obtained by compressing the feature vectors is or-
thogonal to our technique: in both cases, the results using
approximate feature vectors are roughly two to three times
better than the results without compression.

Table 4: Experiments with approximations of the
original feature vectors; times in milliseconds.

method min max average median
filter step Hq 13 96 28 21
filter step SSH 65 107 81 81
refinement step 1 34 3 2

The improvement of BOND over the VA–file is expected to
decrease with dimensionality on the same image set, because
the k-NN search becomes less meaningful (as commented in
Section 7.3). Experimental results using the A-tree access
structure given in [17] show an improvement of factor 4 on
a very similar dataset, also decreasing with higher dimen-
sionality. This indicates that BOND offers competitive per-
formance improvements when compared to advanced tree-
based indexing structures, while being much simpler to im-
plement. Additional advantages of the proposed technique
include the ability to process other variants of k-NN queries
efficiently, like weighted and multi-feature queries (as dis-
cussed in Section 8).

7.5 Effects of data skew
While BOND seems effective for content-based image re-

trieval, a natural question arises: is it good for generic k-NN
search, and if so, under which conditions? Notice that in the
color histogram datasets examined so far the values of a ran-
dom vector follow a skewed Zipfian distribution (see Figure
2). In such cases, an ordering that considers the most skewed
dimensions in the query first, is expected to have nice prun-
ing effect. We also expect our approach to do well when the
data are clustered in the high-dimensional space, and k-NN
search is meaningful [3]. On the other hand, if there is no
skew in the vector values, the best partial solutions after
less than half of the dimensions may still turn out to be the
worst solutions overall. So, we do not expect the pruning
effect to be significant when the average values of a vector
follow a uniform distribution, i.e., they have equal ‘weight’
for the specific vector.

We generated synthetic datasets in order to evaluate the
assertion that skew favors pruning. All datasets contain
100,000 128-dimensional vectors, defined in a unit hyper-
cube. In this hypercube, 1000 points define the centers of
the clusters; 95% of the generated vectors belong to some
random cluster, whereas 5% of them take random values
(noise). The distance from each vector to the cluster where
it belongs to is defined by a Gaussian distribution around

the cluster’s center. This dataset has the nice properties
that make NN-search meaningful [3]; the k-nearest neigh-
bor of a point that falls into a cluster is close compared to
points from other clusters, and there is a small percentage of
outliers that do not fall into a cluster and essentially do not
have ‘meaningful’ nearest neighbors. The coordinates of the
clusters’ centers follow a Zipfian distribution. If the skew
parameter θ is 0 the centers follow a uniform distribution.
The larger θ is the more skewed the cluster centers are.

Figure 10 shows the average pruning efficiency of Ev for
various values of the skew parameter θ. As expected, the
efficiency of BOND depends on the skew in the data set:
data skew favors pruning, but the technique is not efficient
when the centers of the clusters are uniform. In real-life
applications however, where datasets are skewed (like the
color histograms), we can expect good results from the pro-
posed method. Also, weighted search puts implicit skew in
data and therefore increases the value of our approach, as is
discussed in the next section.

8. Weighted Search and Multi-Feature Queries
We have already seen how BOND evaluates efficiently the

basic type of k-NN queries: given a collection of high dimen-
sional vectors X and a query vector q, find the k most similar
vectors x ∈ X with respect to a similarity metric Sim(x,q).
This section demonstrates how the proposed storage scheme
and query processing techniques are also suitable for two
common extensions of this basic query type, often found in
practical applications. In the first extension, called weighted
k-NN query, weights are assigned on the dimensions of the
query vector. Queries of second extension, called complex or
multi-feature queries, have multiple components, whose sim-
ilarity is tested against various feature sets, possibly using
a different metric for each component.

8.1 Weighted Queries
So far, all dimensions of the query vector have been as-

sumed equally important. In many applications, however,
users may assign different weights to the query features.
This is especially true if the dimensions in the feature space
can be interpreted as concepts which are clear in the user’s
mind. Even when this case does not apply, relevance feed-
back mechanisms often put weights at dimensions, in order
to refine the query results according to what seems to be the
user’s request [12].

The Appendix describes how to derive the required bounds
for weighted Euclidean search. A non-uniform distribution
of weights introduces skew in the transformed space, so
BOND is expected to perform well. The following exper-
iment validates its efficiency on weighted queries. We used
the synthetic dataset described in Section 7.5 with θ=0,
which yields the worst-case pruning of Ev (the cluster cen-
ters are uniformly distributed). Figure 11 shows the pruning
efficiency for various values of the skew on weights. Observe
that efficiency improves only if the skew in the weights is
large: 10% of the dimensions should get more than 90% of
the weights. In real-life situations we believe skewed weight-
ing occurs frequently, a fact that makes our approach espe-
cially useful.

An inherent advantage of vertical fragmentation not dis-
cussed so far is that having stored independently the vector
coordinates, we can process seamlessly k-NN queries in any
dimensional subspace. For example, if the user or the query

processor decides to consider any arbitrary set of color bins,
BOND avoids accessing information irrelevant to those di-
mensions. This flexibility cannot be achieved in tree struc-
tures that index the space using all dimensions. As stated
in [11], it is typical for queries in high dimensional spaces to
be meaningful only for a subset of dimensions, which may
well be different for each query. Notice that k-NN search in
a dimensional subspace is a special case of weighted search,
where all weights in the search dimensions are positive and
equal, and all weights in irrelevant dimensions are zero.

8.2 Multi-feature Queries
In image database systems it is common for a user to

ask queries related to more than one visual attribute of the
image. For instance, a query may ask for images that are
similar to image A in color and to image B in texture. The
similarity between two images with respect to multiple at-
tributes is defined as an aggregate of the individual similar-
ities for each attribute.

Previous work in this area [7, 9] has focused on the effi-
cient merging of multiple streams that contain the most sim-
ilar results with respect to each query component. Stream
merging, although generic enough to be used for any search
problem, has certain disadvantages. While k defines the
number of desired global results and not the output of each
stream, it is difficult to determine a priori how many ob-
jects are required from each stream in order to identify the
k most similar objects. Therefore, the search algorithm re-
quests incrementally nearest neighbors from each stream,
until the global stopping condition has been satisfied. The
number of candidates selected from each stream affects how-
ever the performance of the search algorithm used within
that stream; the larger the number of retrieved objects, the
higher the retrieval cost (cf. Figure 6). Furthermore, com-
bining different streams requires random accesses in order
to compute the global similarity of the best objects in one
stream, which are not present in the other(s).

If the dimensional data are fragmented vertically in each
feature collection, the separate ranking and merging steps
can be integrated. BOND can compute the best global k-
matches in one step by simultaneously applying dimension-
wise search in all relevant feature collections. This demon-
strates another powerful feature of vertical fragmentation;
BOND can be applied for numerous types of complex queries
including, (i) queries with weights assigned to the various
components, (ii) queries having different similarity metrics
for each component, provided that the global similarity is
well defined from the merging of the individual ones, and (iii)
queries with various aggregate functions, including arith-
metic ones [9] like average and fuzzy logic [7, 15], like min
and max.

As an example, consider a complex query where we are
looking for k images with the best weighted average color
similarity with A and texture similarity with B. We con-
sider the union of color and texture dimensions as one large
set of dimensions. For such dimension, the partial similarity
of a candidate object with the query object is defined by the
actual partial similarity (using the corresponding metric, de-
pending on which feature set this dimension belongs) mul-
tiplied by the corresponding weight. The worst/best case
pruning bounds are calculated using the global partial sim-
ilarities and the query values in the remaining dimensions.
The optimization methods for ordering of dimensions and

choice of m are also applicable here: the most skewed query
dimensions (after normalization using the weights) are cho-
sen first. Fuzzy logic aggregates can be handled in a similar
way. The pruning bounds are calculated using the partial
similarities and the query values in the remaining dimen-
sions in each component and the aggregate function. For
instance, the worst case global similarity using the min ag-
gregate can be computed by its worst case similarities at
each component (with potentially different similarity func-
tions).

Optimizing multi-feature queries using BOND is an in-
teresting research topic. Preliminary experimental results
have shown that synchronized search in multiple feature col-
lections is a promising technique for multi-feature queries.
For Hq, we compared this method with one that uses Hq

in each individual dataset and merges the results using the
algorithm of [9]. The experiment was performed on two
synthetic datasets, representing different feature collections
with 100,000 objects and having dimensionality 64 and 128,
respectively. The datasets were generated using the method-
ology described in Section 7.5, i.e., they contain clusters of
points, and the query instances were taken from the datasets.
On the average, the synchronized search method was found
20% faster than stream merging when the aggregate func-
tion is average and 70% faster when the aggregate function
is min. Given the fact that the k used to search each individ-
ual stream was the optimal (which is unknown in reality),
the performance improvement of synchronized search over
stream merging can only be larger in practice.

9. Conclusions
This paper provides insight into the potential benefits of

a different storage scheme for high-dimensional data, that
supports efficient k-NN search. By fragmenting a collection
of 166-dimensional image histograms vertically into 166 dis-
tinct tables, significant performance gains have been demon-
strated using the proposed query processing techniques. Even
more performance gains are achieved if some dimensions are
more important than others, making the approach particu-
larly suited for interactive image retrieval applications.

BOND is simple and introduces negligible storage over-
head. It is a novel application of the well-known ‘push-
select-down’ heuristic, turning a selection predicate captured
by a complex mathematical formula (the metric) into se-
lection predicates on the individual dimensions. The ap-
proach is easily integrated in a relational database system,
without interfering with the database optimizer. Like most
high-dimensional k-NN search methods, BOND is efficient
on skewed data where search is meaningful. Unlike tree-
based indexing methods, its efficiency is versatile to various
types of k-NN queries, including weighted and multi-feature
queries, and to different similarity metrics, while it can be
applied on a single, non-redundant data representation.

Indeed, the vertical fragmentation of high dimensional
data opens the road to novel processing techniques of queries
on high dimensional data. A promising direction of future
work is to develop new techniques for other search problems
in high dimensional spaces (e.g., clustering), when applied
to dimension-wise decomposed data. Another extension of
this work is the application of the same method to searching
large audio and video databases, especially for the combina-
tion of various search strategies. Using branch-and-bound
over different feature spaces simultaneously allows for ad-

vanced query optimization techniques.
The quality of a k-NN query is defined in [11] to be para-

metric to subsets of the full dimensional space. In our frame-
work, queries with significant skew seem to correspond to
useful queries, a property that may be exploited as a mea-
sure of the quality of a query vector to describe information
needs. In other words, the search quality may not be simply
a parameter of a dimensional subset, but depend on a distri-
bution of weights on all dimensions. As already pointed out
in Section 8, subspace search is a special case of weighted
search, and the definition of [11] becomes a special case of
our concept of usefulness. We intend to investigate the the-
oretical soundness of this generic definition, as well as its
practical value in problems like clustering.

Acknowledgements

We would like thank to Jan-Mark Geusebroek, for inspir-
ing this research. Many thanks to our colleagues Menzo
Windhouwer, Peter Bosch for their help with the datasets
used in this paper, and to Peter Boncz for believing in this
work and keeping us going in spite of several set-backs.

References

[1] M. Annamalai, R. Chopra, S. DeFazio, and S. Mavris.
Indexing images in oracle8i. In Proc. of ACM SIGMOD
Int’l Conference, 2000.

[2] S. Berchtold, C. Böhm, H. Jagadish, H.-P. Kriegel, and
J. Sander. Independent quantization: An index com-
pression technique for high-dimensional spaces. In Proc.
of Int’l Conf. on Data Engineering (ICDE), 2000.

[3] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is “nearest neighbor” meaningful? In Proc. of
Int’l Conference on Database Theory (ICDT), 1999.

[4] P. Boncz and M. Kersten. MIL primitives for querying
a fragmented world. The VLDB Journal, 8(2):101–119,
1999.

[5] G. Copeland and S. Koshafian. A decomposition stor-
age model. In Proc. of ACM SIGMOD Int’l Conference,
1985.

[6] http://www.corel.com.

[7] R. Fagin. Fuzzy queries in multimedia database sys-
tems. In J. Paredaens, editor, Proceedings of the Sev-
enteenth ACM Symposium on Principles of Database
Systems (PODS ’98), 1998.

[8] C. Faloutsos and K.-I. Lin. Fastmap: A fast algorithm
for indexing, data-mining and visualization of tradi-
tional and multimedia datasets. In Proc. of ACM SIG-
MOD Int’l Conference, 1995.

[9] U. Güntzer, W.-T. Balke, and W. Kiessling. Optimizing
multi-feature queries for image databases. In Proc. of
VLDB Conference, 2000.

[10] A. Guttman. R-trees: a dynamical index structure for
spatial searching. In Proc. of ACM SIGMOD Int’l Con-
ference, 1984.

[11] A. Hinneburg, C. Aggarwal, and D. Keim. What is the
nearest neighbor in high dimensional spaces? In Proc.
of VLDB Conference, 2000.

[12] Y. Ishikawa, R. Subramanya, and C. Faloutsos. Min-
dreader: Querying databases through multiple exam-
ples. In Proc. of VLDB Conference, 1998.

[13] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and

Z. Protopapas. Fast nearest neighbor search in medical
image databases. In Proc. of VLDB Conference, 1996.

[14] P. E. O’Neil and D. Quass. Improved query perfor-
mance with variant indexes. In Proc. of ACM SIGMOD
Int’l Conference, 1997.

[15] M. Ortega, Y. Rui, K. Chakrabarti, S. Mehrotra, and
T. Huang. Supporting similarity queries in MARS. In
Proc. of ACM Multimedia Conference, 1997.

[16] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In Proc. of ACM SIGMOD Int’l Con-
ference, 1995.

[17] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima.
The A-tree: an index structure for high-dimensional
spaces using relative approximation. In Proc. of VLDB
Conference, 2000.

[18] T. Seidl and H.-P. Kriegel. Optimal multi-step k-
nearest neighbor search. In Proc. of ACM SIGMOD
Int’l Conference, 1998.

[19] J. Smith and S.-F. Chang. Tools and techniques for
color image retrieval. In Storage & Retrieval for Image
and Video Databases IV, volume 2670 of IS & T/SPIE
Proceedings, 1994.

[20] J. Smith and S.-F. Chang. Automated image retrieval
using color and texture. Technical Report 414-95-20,
Columbia University CTR, New York, 1995.

[21] M. J. Swain and D. H. Ballard. Color indexing. Inter-
national Journal of Computer Vision, 7(1):11–32, 1991.

[22] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In Proc. of VLDB
Conference, 1998.

APPENDIX

A. Pruning Rules for Weighted Search
The simple and adaptive nature of branch-and-bound makes

the definition of pruning rules for weighted search straight-
forward. Definition 2 becomes:

Definition 3. The weighted squared Euclidean dis-
tance between two vectors v and q of dimensionality N is
defined as follows:

δw(v,q) =

N∑
i=1

wi(vi − qi)
2 (13)

Each dimension is assigned a weight wi which reflects its
importance in the query. If

∑N
i=1 wi = N , equation 3 defines

the similarity of the two vectors. Figure 13 visualizes the
special case where m = N − 2; basically, each dimension is
stretched or shrinked with a different factor. In the presence
of weights, the upper bound of S(v+,q+) becomes:

S(v+,q+) ≤
l−1∑

i=m+1

wiq
2
i + wl(ul − ql)

2 +

N∑
i=l+1

wi(1− qi)
2

(14)
Equation 14 assumes that the values of q+ are ordered

such that wiq
2
i ≥ wi+1q

2
i+1,∀i > m. Values l and ul are

defined as in Lemma 1. The lower bound is similarly defined

qi

q
δm

in

δmax

T (v+)

T (v+)

δmax

δmin

vj

Figure 12: The lower- and upper bound on the Eu-

clidean distance between q and any possible v visualized

for m = N − 2 and T (v+) ≤ 1.

q

q′ =< qx
√

wx, qy
√

wy >

δm
in

δ
′ min

T (v+)

√
wy · T (v+)

T (v+)√
wx · T (v+)

v′j

vj

Scaling by w

Figure 13: The lower- and upper bound on the Eu-

clidean distance with weighting vector w, visualized for

m = N − 2.

by extending equation 12 as follows:

S(v+,q+) ≥
∏N

i=m+1 wi∑N
j=m+1

∏N
i=m+1,i6=j wi

(T (v+)− T (q+))2

(15)
The proofs of equations 14 and 15 can be derived after

squaring the maximum and minimum distance of the trans-
formed vector q′

+
, q′

+
i =

√
wiq

+
i ,∀m < i ≤ N from the

hyperplane defined by all possible distributions of T (v+) to
the dimensions after m.

