
Fast Mining of Spatial
Collocations∗

Xin Zhang, Nikos Mamoulis, David W. Cheung, Yutao Shou
Department of Computer Science

The University of Hong Kong
Pokfulam Road, Hong Kong

{xzhang,nikos,dcheung,ytshou}@cs.hku.hk

ABSTRACT
Spatial collocation patterns associate the co-existence of non-
spatial features in a spatial neighborhood. An example of
such a pattern can associate contaminated water reservoirs
with certain deceases in their spatial neighborhood. Previ-
ous work on discovering collocation patterns converts neigh-
borhoods of feature instances to itemsets and applies mining
techniques for transactional data to discover the patterns.
We propose a method that combines the discovery of spatial
neighborhoods with the mining process. Our technique is an
extension of a spatial join algorithm that operates on mul-
tiple inputs and counts long pattern instances. As demon-
strated by experimentation, it yields significant performance
improvements compared to previous approaches.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining, Spatial Databases and GIS

General Terms
Algorithms

Keywords
Collocation Pattern, Spatial Databases

1. INTRODUCTION
Spatial database management systems (SDBMSs) [17] man-

age large collections of multidimensional data which, apart
from conventional features, include spatial attributes (e.g.,
location). They support efficient operations of basic re-
trieval tasks like spatial range queries, nearest neighbor search,
spatial joins, etc. On the other hand, SDBMSs do not ex-
plicitly store patterns or rules that associate the spatial re-
lationships between objects with some of their non-spatial
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features. As a result, there is an increasing interest in the
automatic discovery of such information, which finds use
in a variety of disciplines including environmental research,
government services layout, and geo-marketing.

Classic spatial analysis tasks include spatial clustering [16,
14, 15], spatial characterization [8], spatial classification [6],
and spatial trend detection [9]. In this paper, we focus on a
recent mining problem; that of identifying groups of partic-
ular features that appear frequently close to each other in
a geo-spatial map. This problem is also referred to as the
mining collocation patterns problem [18, 4, 11]. As an ap-
plication, consider an E-commerce company that provides
different types of services, such as weather, timetabling and
ticketing queries [10]. The requests for those services may
be sent from different locations by (mobile or fixed-line)
users. The company may be interested in discovering types
of services that are requested by geographically neighboring
users, in order to provide location-sensitive recommenda-
tions to them for alternative products. For example, hav-
ing known that ticketing requests are frequently asked close
to timetabling requests, the company may choose to ad-
vertise the ticketing service to all customers that ask for
a timetabling service. As another example, a collocation
pattern can associate contaminated water reservoirs with a
certain decease in their spatial neighborhood.

As a more concrete definition of the problem, consider a
number n of spatial datasets R1, R2, . . . , Rn, such that each
Ri contains objects that have a common non-spatial fea-
ture fi. For instance, R1 may store locations of weather
requests, R2 may store locations of timetabling requests,
etc. Given a distance threshold ε, two objects on the map
(independently of their feature labels) are neighbors iff their
distance is at most ε. We can define a collocation pattern P
by an undirected connected graph, where each node corre-
sponds to a feature and each edge corresponds to a neigh-
borhood relationship between the corresponding features.
For example, consider a pattern with three nodes, labeled
“timetabling”, “weather”, and “ticketing”, and two edges
connecting “timetabling” with “weather” and “timetabling”
with “ticketing”. An instance of a pattern P is a set of
objects that satisfy the unary (feature) and binary (neigh-
borhood) constraints specified by the pattern’s graph. An
instance of our example pattern is a set {o1, o2, o3}, where
label(o1)=“timetabling”, label(o2)=“weather”, label(o3) =
“ticketing” (unary constraints) and dist(o1, o2) ≤ ε, dist(o1,
o3) ≤ ε (spatial binary constraints).

Interestingness measures for collocation patterns express
the statistical significance of their instances. They can as-
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sist the derivation of useful rules that associate the instances
of the features. We adopt the measures of [18, 4] (to be
reviewed in Section 2), which can be used to solve several
variants of the mining problem. Based on the interestingness
measures, we propose a method that combines the discov-
ery of spatial neighborhoods with the mining process. Note
that the discovery of object neighborhoods (or else pattern
instances) is in fact a (multi-way) spatial join problem. We
extend a hash-based spatial join algorithm to operate on
multiple feature sets in order to identify such neighborhoods.
The algorithm divides the map and partitions the feature
sets using a regular grid. While identifying object neigh-
borhoods in each partition, at the same time, the algorithm
attempts to discover prevalent and/or confident such pat-
terns by counting their occurrences at production time. If
the memory is not sufficient to discover the frequent patterns
in one pass over all partitions, we employ the partitioning
mining paradigm to solve the problem. As demonstrated
by experimentation, our technique yields significant perfor-
mance improvements compared to previous methods that
do not integrate the mining process with the spatial query
processing part.

The rest of the paper is organized as follows. Section 2
provides backgound in spatial data mining. Section 3 de-
scribes our method for discovering collocation patterns and
related association rules. Sections 4 and 5 present our ex-
perimental results and conclude the paper.

2. BACKGROUND
Past research on mining spatial associations is based on

two models; the reference feature model and the colloca-
tion patterns model. In this section we briefly review these
models and discuss their pros and cons.

2.1 Reference feature collocations
The problem of mining association rules based on spa-

tial relationships (e.g., adjacency, proximity, etc.) of events
or objects was first discussed in [5]. The spatial data are
converted to transactional according to a centric reference
feature model. Consider a number n of spatial datasets
R1, R2, . . . , Rn, such that each Ri contains all objects that
have a particular non-spatial feature fi. Given a feature fi,
we can define a transactional database as follows. For each
object oi in Ri a spatial query is issued to derive a set of
features I = {fj : fj �= fi ∧ ∃oj ∈ Rj(dist(oi, oj) ≤ ε)}.1
The collection of all feature sets I for each object in Ri de-
fines a transactional table Ti. Ti is then mined using some
itemsets mining method (e.g., [1, 19]). The frequent feature
sets I in this table, according to a minimum support value,
can be used to define rules of the form:

label(o) = fi ⇒ o close to some oj ∈ Rj ,∀fj ∈ I

The support of a feature set I defines the confidence of the
corresponding rule. For example, consider the three object-
sets shown in Figure 1. The lines indicate object pairs within
distance ε from each other. The shapes indicate different fea-
tures. Assume that we want to extract rules having feature
a on their left-hand side. In other words, we want to find

1Note that we used a distance relationship (dist(oi, oj) ≤ ε)
in this definition; in general, any spatial relationship (i.e.,
topological, distance, directional) between Ri and Rj could
be prescribed by the data analyst.
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Figure 1: Mining example

features that occur frequently close to feature a. For each
instance of a, we generate an itemset; a1 generates {b, c}
because there is at least one instance of b (e.g., b1 and b2)
and one instance of c (e.g., c1) close to a1. Similarly, a2

generates itemset {b} (due to b2). Let 75% be the minimum
confidence. We first discover frequent itemsets (with min-
imum support 75%) in Ta = 〈{b, c}, {b}〉, which gives us a
sole itemset {b}. In turn, we can generate the rule

label(o) = a ⇒ o close to oj with label(oj) = b,

with confidence 100%. For simplicity, in the rest of the
discussion, we will use fi ⇒ I to denote rules that associate
instances of feature fi with instances of feature sets I , fi /∈ I ,
within its proximity. For example, the rule above can be
expressed by a ⇒ {b}. The mining process for feature a
can be repeated for the other features (e.g., b and c) to
discover rules having them on their left side (e.g., we can
discover rule b ⇒ {a, c} with conf. 100%). Note that the
features on the right hand side of the rules are not required
to be close to each other. For example, rule b ⇒ {a, c}
does not imply that for each b the nearby instances of a
and c are close to each other. In Figure 1, observe that
although b2 is close to instances a1 and a2 of a and instance
c2 of c, c2 is neither close to a1, nor to a2. Methods for
discovering rules requiring the right-hand side features to
form a neighborhood will be reviewed in the next subsection.

2.2 Collocation patterns
Recently [10, 18, 4, 11], the research interest shifted to-

wards mining collocation patterns, which are feature sets
with instances that are located in the same neighborhood.
A pattern P of length k is described by a set of features
{f1, f2, ..., fk}. A valid instance of P is a set of objects
{o1, o2, ..., ok} : (∀1 ≤ i ≤ k, oi ∈ Ri) ∧ (∀1 ≤ i < j ≤
k, dist(oi, oj) ≤ ε). In other words, all pairs of objects
in a valid pattern instance should be close to each other,
i.e., the closeness relationships between the objects should
form a clique graph. Consider again Figure 1 and the pattern
P = {a, b, c}. {a1, b1, c1} is an instance of P , but {a1, b2, c2}
is not.

[18, 4] define some useful measures that characterize the
interestingness of collocation patterns. The first is the par-
ticipation ratio pr(fi, P ) of a feature fi in pattern P , which
is defined by the following equation:

pr(fi, P ) =
# instances of fi in any instance of P

# instances of fi
(1)

Using this measure, we can define collocation rules that
associate features with the existences of other features in
their neighborhood. In other words, we can define rules of
the form label(o) = fi ⇒ o participates in an instance of
P with confidence pr(fi, P ). These rules are similar to the
ones defined in [5] (see previous subsection); the difference
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here is that there should be neighborhood relationships be-
tween all pairs of features on the right hand side of the rule.
For example, pr(b, {a, b, c}) = 0.5 implies that 50% of the
instances of b (i.e., only b1) participate in some instance of
pattern {a, b, c} (i.e., {a1, b1, c1}).

The prevalence prev(P ) of a pattern P is defined by the
following equation:

prev(P ) = min{pr(fi, P ), fi ∈ P} (2)

For example, prev({b, c}) = 2/3, since pr(b, {b, c}) = 1
and pr(c, {b, c}) = 2/3. The prevalence captures the mini-
mum probability that whenever an instance of some fi ∈ P
appears on the map, then it will participate in an instance
of P . Thus, it can be used to characterize the strength of
the pattern in implying collocations of features. In addi-
tion, prevalence is monotonic; if P ⊆ P ′ then prev(P ) ≥
prev(P ′). For example, since prev({b, c}) = 2/3, we know
that prev({a, b, c}) ≤ 2/3. This implies that the a priori
property holds for the prevalence of patterns and algorithms
like Apriori [1] can be used to mine them in a level-wise man-
ner [18].

Finally, the confidence conf(P ) of a pattern P is defined
by the following equation:

conf(P ) = max{pr(fi, P ), fi ∈ P} (3)

For example, conf({b, c}) = 1, since pr(b, {b, c}) = 1 and
pr(c, {b, c}) = 2/3. The confidence captures the ability of
the pattern to derive collocation rules using the participa-
tion ratio. If P is confident with respect to a minimum
confidence threshold, then it can derive at least one collo-
cation rule (for the attribute fi with pr(fi, P ) = conf(P )).
In Figure 1, conf({b, c}) = 1 implies that we can find one
feature in {b, c} (i.e., b) every instance of which participates
in an instance of {b, c}. Given a collection of spatial objects
characterized by different features, a minimum prevalence
threshold min prev, and a minimum confidence threshold
min conf , a data analyst could be interested in discover-
ing prevalent and/or confident patterns, and the collocation
rules derived by them. The confidence of a collocation rule
between two patterns, P1 → P2, P1 ∩ P2 = �, can be de-
fined by the conditional probability that an instance of P1

participates in some instance of P1 ∪P2 (given that P1 ∪P2

is prevalent with respect to min prev) [18].
Previous methods on mining (prevalent or confident) col-

location patterns [10, 18, 4, 11] separate the part that evalu-
ates the spatial relationships from the mining part. The typ-
ical approach is to initially perform a spatial (distance) join
[17] to retrieve object pairs within distance ε to each other
to generate the instances of 2-length patterns. The preva-
lence of these patterns is then evaluated and only prevalent
ones (and their instances) are kept. From two k-length pat-
terns P1 and P2, a candidate pattern P3 of length k + 1
is generated, by Apriori-based candidate generation [1] (the
first k − 1 features of P1 and P2 should be common and the
last ones are the additional features in P3). Each candidate
pattern (whose subsets are all prevalent) is then validated
by joining the instances of P1 and P2 where the first k − 1
feature instances are common. The distance of the last two
feature instances in P3 is then checked to validate whether
they are close to each other. After finding all valid instances
of a candidate pattern P3, we need to validate whether they
are prevalent by counting the participation ratio of each fea-
ture in them.

Consider again the example of Figure 1. After spatially
joining the object-set pairs (a, b), (b, c), and (a, c), we re-
trieve the instances of the corresponding patterns. For ex-
ample, the instances of P1 = {a, b} are {(a1, b1), (a1, b2),
(a2, b2)}. Moreover, their prevalences are computed (100%
for P1). Note that in order to compute the prevalences, we
need a bitmap for each set, that marks the objects that are
found in each pattern. For example we use a bitmap for a to
mark its instances that participate in P1 and after counting
the number of 1’s in it, we can find that pr(a, {a, b}) = 100%.
If min prev = 30%, observe that also P2 = {b, c} and
P3 = {a, c} are prevalent. From P1 and P3, we can gen-
erate P4 = {a, b, c} (since its subset P2 is also prevalent).
The instances of P4 are generated by joining the instances
of P1 with those of P3 on their agreement on the instance of
a. Since the only instance of P3 is (a1, c1), the only poten-
tial instance of P4 is (a1, b1, c1), which is committed after
verifying that b1 is close to c1. The prevalence of P4 (=1/3)
is then verified.

This technique is adapted in [18, 4, 11] to mine preva-
lent and confident patterns. For confident patterns [4], the
method is slightly changed since confidence is not mono-
tonic, but has a weak monotonicity property; given a k-
length pattern P at most one (k − 1)-length sub-pattern P ′

of P may have lower confidence than P . In [10], a simi-
lar approach is followed. However, a particular instance of
a feature fi is not allowed to participate into multiple in-
stances of a pattern P that includes fi. This affects the
quality of the results, since the actual number of pattern
instances is underestimated. Also, depending on which pat-
tern instance a particular feature is assigned to, we can have
different mining results.

The techniques discussed so far suffer from certain effi-
ciency problems. First, they require a potentially large num-
ber of (k−1)-length pattern instances to be computed before
k-length patterns can be discovered. As discussed in [11],
these instances can be too many to fit in memory. Also the
computational cost of processing them and computing par-
ticipation ratios from them is very high. In addition, spatial
joins are only used to find the instances of 2-length patterns
only, and afterwards no special techniques are used to prune
the space using the distribution of the feature instances in
space. In this paper, we build on the work of [18, 4] and pro-
pose an efficient technique that integrates the computation
of spatial neighbor relationships with the mining algorithm.

3. EFFICIENT MINING OF SPATIAL COL-
LOCATIONS

Before we describe our methodology, let us briefly discuss
the requirements for an efficient spatial collocations mining
tool that operates on a SDBMS:

• It should be able to operate on large datasets. Modern
SDBMS can potentially store huge amounts of infor-
mation. Clearly, mining tools that operate on main
memory data only are insufficient.

• It should perform mining fast. Computational tech-
niques for deriving the patterns and their essential in-
terestingness measures should be optimized.

• It should take advantage by spatial reasoning and spa-
tial query processing techniques to optimize search as
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much as possible. Techniques from Spatial Databases
and Computational Geometry should be utilized wher-
ever appropriate to improve mining efficiency.

• It should be able to operate on data that are not in-
dexed. The input of a mining tool is a number of
object-sets with ad-hoc features. As discussed in [5],
we may apply some operations on the database first
to extract the features to be mined. Thus the object-
sets may not always be supported by spatial indexes
(e.g., R-trees [3]). For example, if we want to mine
relationships between expensive houses and luxurious
beaches, we may not expect that there is an exclusive
index for expensive houses (even though there could
be an index for houses of any type). As another exam-
ple, consider raw data (e.g., mobile user requests) that
are produced on-the-fly and there are no pre-existing
indexes for them. As argued in [12], it might be more
beneficial to operate on raw spatial data, than building
indexes especially for the operations.

• It should be able to operate on one or multiple (spa-
tial) relations. Going back to our previous examples,
we may want to mine data from more than one spa-
tial relations (e.g., one storing houses and one stor-
ing beaches), or a single relation (e.g., one storing re-
quests), after classifying its contents into multiple sets;
one for each feature.

Our proposed mining tool is designed to meet the above
requirements. In addition, it is appropriate for mining collo-
cation patterns based on prevalence and/or confidence and
deriving the rules from them. Last but not least, it can dis-
cover patterns and rules based on both reference feature and
collocation models, discussed in Sections 2.1 and 2.2. The
next paragraphs describe our approach in detail.

3.1 Representing patterns as graphs
The model described and used in [18, 4, 11] considers

only collocation patterns, in each valid instance of which all
pairs of objects should satisfy some spatial relationship (e.g.,
they should be close to each other). The same requirement
should hold for the patterns mined in [10]. On the other
hand, the data analyst may be interested in patterns with
arbitrary or no relationships between some feature pairs. In
general, we can represent a pattern by a graph, where each
node represents a variable labeled by a feature and each edge
represents the spatial relationship that should hold between
the corresponding variables in valid pattern instances.

Figure 2 shows examples of a star pattern, a clique pat-
tern and a generic one. A variable labeled with feature fi

is only allowed to take instances of that feature as values.
Variable pairs that should satisfy a spatial relationship (i.e.,
constraint) in a valid pattern instance are linked by an edge.
In the representations of Figure 2, we assume that there is a
single constraint type (e.g., close to), however in the general
case, any spatial relationship could label each edge. More-
over, in the general case, a feature can label more than two
variables. Patterns with more than one variables of the same
label can be used to describe spatial autocorrelations on a
map.

By definition, the instances of a k-length pattern are the
results of a multi-way spatial join that combines k spatial
datasets (indicated by the labels of the variables) using the

a
b

c

d

a b

cd

a b

cd

(a) star (b) clique (c) generic

Figure 2: Three pattern representations

spatial relationships described by the graph edges [7]. For
example, the instances of the pattern in Figure 2a can be de-
scribed by the following extended SQL statement, assuming
that the instances of feature fi are stored in relation Rfi :

SELECT Ra.id, Rb.id, Rc.id, Rd.id
FROM Ra, Rb, Rc, Rd

WHERE Ra.location close to Rb.location
AND Ra.location close to Rc.location
AND Ra.location close to Rd.location

Note that this generic definition for spatial patterns, does
not affect the definitions of interestingness measures. For
example, the participation ratio of a variable in a pattern
P is the percentage of its instances that participate in in-
stances of P . The participation ratios of pattern variables
can be used to derive useful rules, associating the label (i.e.,
feature) of the variable with the existence of instances of
other variables that qualify the specified constraints of the
pattern graph. The participation ratio of the variable la-
beled c in the pattern of Figure 2c captures the probability
that the existence of c implies an instance of b in its neigh-
borhood, which forms a clique with an instance of a and an
instance of d.

We will initially confine our discussion in patterns that
form a star or clique graph and no label constrains more
than one variable, because of their high relevance to previous
work. Later, we will discuss how our methods can be used
to mine more generic patterns.

3.2 Reference feature collocation patterns
We will first focus on methods for mining star-like pat-

terns (like the one in Figure 2a), which have been defined
by Koperski and Han [5] (see Section 2.1). In other words
we want to find rules that associate the existence of a fea-
ture with the existence of other feature instances near it.
As an example, consider the rule: “given a pub, there is a
restaurant and a snack bar within 100 meters from it with
confidence 60%”.

Without loss of generality, we assume that the input is
n datasets R1, R2, ..., Rn, such that for each i, Ri stores
instances of feature fi. A dataset Ri may already exist as a
spatial relation in the SDBMS (e.g., a relation with cities)
or it can be constructed on-the-fly by the analyst (e.g., a
relation with large cities, not explicitly stored). Our method
imposes a regular grid over the space to mine and hashes
the objects into partitions using this grid. Given a distance
threshold ε, each object is extended by ε to form a disk and
hashed into the partitions intersected by this disk. Figure 3
shows an example. The space is partitioned into 3× 3 cells.
Object a1 (which belongs to dataset Ra, corresponding to
feature a) is hashed to exactly one partition (corresponding
to the central cell C5). Object b1 is hashed to two partitions
(C2 and C5). Finally, object c1 is hashed into four partitions
(C4,C5,C7, and C8). The reason for extending the objects
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Figure 3: A regular grid and some objects

and hashing them to potentially multiple partitions will be
explained shortly. The size of the grid is chosen in a way
such that (i) the total number of feature instances (for all
features) that are assigned to a grid cell are expected to fit in
memory and (ii) the side of a cell is at least 2ε long. Due to
(i), we can find the patterns using an efficient main memory
algorithm for each cell. Due to (ii), no feature instance is
assigned to more than four cells (replication is controlled).

Thus the mining algorithm operates in two phases; the
hashing phase and the mining phase. During the hashing
phase, each dataset Ri is read and the instances of the cor-
responding feature are partitioned into a number of buckets
(as many as the cells of the grid). The mining phase employs
a main memory algorithm to efficiently find the association
rules in each cell. This method is in fact a multi-way main
memory spatial join algorithm based on plane sweep [13, 2,
7]. The sketch of the algorithm is given in Figure 4. The
synch sweep procedure extends the plane sweep technique
used for pairwise joins to (i) apply for multiple inputs and
(ii) find for each instance of one input if there is at least one
instance from other inputs close to it.

synch sweep takes as input a feature fi (also denoted by
the index i) and a set of partitions of all feature instances
hashed into the same cell C, and finds the maximal patterns
each feature instance is included directly (without comput-
ing their sub-patterns first). The objects in the partition RC

i

(corresponding to feature fi) in cell C are scanned in sorted
order of their x-value (lines 3–17). Objects outside the cell
are excluded for reasons we will explain shortly. For each
object oi, we initialize the maximal star pattern L, where oi

can participate as L’s center. Then for each other feature,
we sweep a vertical line along x-axis to find if there is any
instance (i.e., object) within ε distance from oi; if yes, we
add the corresponding feature to L. Finally, L will contain
the maximal pattern that includes fi; for each subset of it we
increase the support of the corresponding collocation rule.

The algorithm requires two database scans; one for hash-
ing and one for reading the partitions, performing the spatial
joins and counting the pattern supports. If the powerset of
all features but fi cannot fit in memory, we can still ap-
ply the algorithm with three database scans instead of two.
First, the instances are hashed as usual. Then for each cell
C, for each feature fi: (i) the maximal patterns for all in-
stances of fi in C are found and stored locally as itemsets,
(ii) a itemsets mining method (e.g., [19]) is used to find
the locally frequent patterns in cell C and the itemsets are

written to a temporary file T C
i corresponding to fi and C.

Finally, after all cells have been visited, for each feature fi,
the global frequences of patterns which are locally frequent
in at least one cell are counted at a single scan of all T C

i ’s,
and from the globally frequent patterns corresponding spa-
tial collocation rules are generated. Note that the number
of local max-patterns for a particular feature fi and cell C
are at most as many as the number of instances of fi in C,
and therefore are guaranteed to fit in memory (and mined
there). Finally, note from Figure 3 that an object oi can
be hashed to many cells. However the maximal pattern in-
stance that contains oi as center will be counted only once,
since we peform mining for oi as center only at the (exactly
one) cell, where the object is inside (line 5 of synch sweep).
However, we still need the replicated instances at the neigh-
bor cells (if any) to assist finding the patterns having other
features as center and oi as neighbor object.

Our algorithm is related to hash-based spatial join tech-
niques [12] and multiway spatial joins [7]. [12] proposes an
algorithm that joins two spatial datasets, retrieving the sub-
set of their cartesian product that qualifies a spatial predi-
cate (usually overlap). It hashes the two datasets into buck-
ets using a grid, in the same way as our algorithm and then
joins bucket pairs to find the qualifying join pairs. [7] pro-
poses methods that extend binary join algorithms to apply
on multiple inputs. In this case, the problem is to find the
subset of the Cartesian product of multiple relations, where
the instances qualify some constraint graph, like the ones
shown in Figure 2. Our method is essentially different since,
even though it applies (and joins) multiple datasets, it finds
the maximal patterns that each instance of a relation qual-
ifies. Thus, the join results in our case may contain fewer
feature instances than the total number of features.

3.2.1 Optimizing the multi-way join
The algorithm of Figure 4 may need to perform a large

number of computations in order to find the maximal collo-
cation pattern for each object oi. In the worst case, we may
need to compute the distance between oi and every instance
of every other feature fj , fj �= fi, in cell C. In order to de-
crease this cost (exponential to the number of features), we
propose the following heuristic. For a given cell C, before
processing the join, we perform a secondary spatial hashing
in memory, this time using a fine grid F ; we divide C into
smaller cells with δ = ε/

√
2 length side. Then the objects of

all buckets RC
i (for every feature fi) are hashed into smaller

buckets in memory, this time without replication; each ob-
ject goes to exactly one micro-cell that includes it. Figure 5a
shows an example of a cell C, where a number of instances
of feature a have been hashed. C corresponds to the shaded
region. Observe that the bucket RC

a also contains two in-
stances which are outside C (but they are within distance ε
from it). The area defined by C extended by ε at all sides is
divided into smaller micro-cells as shown in Figure 5.2 Af-
ter partitioning the instances using the micro-cells, we know
the number of objects of Ra in each of them, as indicated
by the numbers in the figure. Figure 5b shows partition RC

b ,
corresponding to another feature b, but to the same cell C.

While trying to find patterns that are centered with an a
in C, recall that we need to see for every instance of a, which

2For the ease of discussion, in this example we assume that
the side of each cell C is a multiple of δ; this technique is
still applicable in the general case.
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/* Ri stores the coordinates of all objects with feature fi */
Algorithm find centric collocations(R1, R2, ..., Rn)
1. /* 1. Spatial-hashing phase */
2. super-impose a regular grid G over the map;
3. for each feature fi

4. hash the objects from Ri to a number of buckets:
5. each bucket corresponds to a grid cell;
6. each object o is hashed to the cell(s) intersected by
7. the disk centered at o with radius ε;
8. /* 2. Mining phase */
9. for each cell C of the grid;
10. for each feature fi

11. load bucket RC
i in memory;

12. /* RC
i containing objects in Ri hashed into C */

13. sort points of RC
i according to their x co-ordinate;

14. for each feature fi

15. synch sweep(fi, RC
1 , RC

2 , ..., RC
n );

function synch sweep(feature fi, buckets RC
1 , RC

2 , ..., RC
n )

1. for each 1 ≤ j ≤ n, j �= i
2. aj = 1; /* pointer to the first object in RC

j */
3. while there are more objects in RC

i

4. oi := next object in RC
i ;

5. if oi is in C then /* exclude objects outside C */
6. L := �; /* initialize an empty feature-set */
7. for each 1 ≤ j ≤ n, j �= i
8. while aj ≤ |RC

j | and RC
j [aj ].x < oi − ε

9. aj := aj + 1;
10. p := aj ; /* start moving a pointer from aj */
11. while p ≤ |RC

j | and RC
j [p].x ≤ oi + ε then

12. /* oi is x-close to RC
j [p] */

13. if dist(oi, R
C
j [p]) ≤ ε then

14. L := L ∪ fj ; /* found feature fj near oi */
15. j := j + 1; go to line 8;
16. for each I ⊆ L
17. conf(fi ⇒ I) := conf(fi ⇒ I) + 1;

Figure 4: An algorithm for reference feature collo-
cations

is in RC
a and inside C, if there are some nearby instances

of the other features. By only looking at the numbers of
the small cells in Figure 5a and Figure 5b, we can directly
know that the objects in the first two circled micro-cells
certainly have a b neighbor since the corresponding micro-
cell in RC

b is occupied. Also, we can infer that the objects
in the circled micro-cell at the bottom-right corner can have
no b neighbor, since this and the surrounding cells (marked
by the thick line) are empty in RC

b . Thus, we can adjust the
algorithm of Figure 4 as follows:

• for each object oi ∈ RC
i in a microcell cx, we can know

that it joins with at least those features fj for which
the corresponding microcell cx is not empty. We need
not include these combinations in the synch sweep
function (we add extra checks at lines 5 and 7)

• for each object oi ∈ RC
i that is not filtered, we perform

the synch sweep join only for those features fj for
which the neighbor cells (up to two neighborhoods)
are not empty.

This optimization is expected to be effective when the fea-
ture instances are skewed in space. In this case, we can save
a lot of computations, by (i) inferring patterns directly (if
the corresponding micro-cells are non-empty) and (ii) ex-
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Figure 5: Using the finer grid to infer patterns

cluding features (if the corresponding and neighbor micro-
cells are empty).

3.3 Clique collocation patterns
The methodology described in the previous paragraphs

can be extended to mine (prevalent or confident) clique col-
location patterns. In this case, we are interested in finding
patterns like the one in Figure 2b. In instances of such pat-
terns every feature instance is close to every other feature
instance.

The algorithm of Figure 4 stops when it finds the features
with at least one instance close to the current object oi. This
suffices to discover the unique maximal pattern instance cen-
tered at oi. However, when it comes to discovery of cliques
the problem becomes more complicated, since there could be
multiple maximal cliques that can contain the current object
oi. For example, consider an instance a1 of feature a which
is part of two cliques; {a1, b1, c1} and {a1, b1, d1}; although
b1, c1, and d1 they are all close to a1, they do not form
a clique. As another example, consider cliques {a1, b1, c1}
and {a1, b2, d1}; in this case, a1 is in instances of patterns
{a, b, c} and {a, b, d}, but the instances of b in them is not
common.

The implication is that for each instance oi (i) we have to
find all maximal clique patterns it participates in ({a, b, c}
and {a, b, d} for a1 in the previous example) and (ii) we
should not count the subpatterns more than once (we should
not count the occurence of a1 in {a, b} twice, although it
participates in two super-patterns of {a, b}).

Our algorithm extends the synch sweep function to com-
pute instances (and prevalences) of clique patterns as fol-
lows. For a given oi, the plane sweep algorithm finds all
clique pattern instances where oi participates in. This is
performed by checking the distance between the instances
of other features that are close to oi, using a search heuris-
tic based on backtracking [7]. After obtaining all clique in-
stances that contain oi, we then mark the corresponding
patterns and all their subpatterns, such that each distinct
pattern where oi takes part is marked only once. The preva-
lences and confidences of all those marked patterns are then
increased accordingly, before the algorithm proceeds to the
next oi. For example, consider an instance a1 of feature a
which is part of two cliques; {a1, b1, c1} and {a1, b2, d1}; the
patterns whose prevalences and confidences will be increased
are {a, b}, {a, c}, {a, d}, {a, b, c}, and {a, b, d}.

We note here that, since our method attempts to count
at one scan the instances of the powerset of all possible pat-
terns, the space required is too high for a large number of
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database features (exponential to the total number of fea-
tures). This makes our approach slow (for clique patterns)
when the total number of features is large. However, we
observe that in typical applications, although there can be
a large number of features only few of them usually partic-
ipate in long patterns [17]. In order to alleviate the bot-
tleneck of our approach, when there are many features we
perform mining in two steps; first we apply our technique
to find the prevalences (and/or confidences) of all pairs of
features only. We then prune those features which do not
appear in any prevalent (and/or confident) 2-pattern and
reduce the powerset of patterns, which we have to count in
our algorithm.

3.4 Generic collocation patterns
Generic collocation patterns associate the existence of fea-

tures by an arbitrary (connected) graph (like the one of Fig-
ure 2c). We could find patterns that form arbitrary graphs,
by extending the synch sweep function to find all combi-
nations of feature instances where oi appears. However, the
space of possible patterns is huge in this case. For a given
set of features the number of possible graphs that connect
them is exponential to the size of the set. Moreover, we have
to consider the powerset of the total number of features to
consider. For example, if we have 4 features {a, b, c, d}, we
should consider all possible graphs that connect {a, b, c, d},
all possible graphs that connect {a, b, c}, etc. Nevertheless
our techniques are still applicable when the space of con-
sidered graphs is restricted (e.g., patterns where all but one
features form a clique). In the future, we plan to investigate
the discovery of arbitrary patterns by alternative means (i.e.,
use of Apriori-based methods).

4. EXPERIMENTAL EVALUATION
In this section, we compare our methods with previous

bottom-up Apriori-based approaches [5, 18, 4, 11]. We eval-
uate the performance of the algorithms using synthetic and
real datasets. The algorithms were implemented in C++
and the experiments were run using a 700MHz Pentium III
machine with 4Gb of main memory. In the next subsection,
we describe the synthetic data generator. Section 4.2 com-
pares the algorithm of Section 3.2 with the methods pro-
posed by [5, 18] for reference feature collocation patterns
(i.e., star patterns). Our algorithm for clique patterns (Sec-
tion 3.3) is compared with the methods of [18] and [4] in
Section 4.3. Last, Section 4.4 compares the performance of
the algorithms using a real dataset.

4.1 Synthetic Data Generation
Table 1 summarizes the parameters used in the data gen-

erator. Firstly, we set L features, which we call non-noise
features and can appear in the longest collocation pattern
which is generated. We also set n noise noise features. The
number of points for noise features is r noise×N . We assign
these points to the noise features uniformly. The remaining
points are assigned to non-noise features uniformly. The
participation ratio of a feature in the longest pattern which
has participation ratio larger than the confidence threshold
is δmax + θ. The number of points Ni, which must ap-
pear in the instances of longest pattern of a feature fi is

(δmax + θ) × N×(1−r noise)
L

. For other features, the partici-
pation ratios are δmin + θ and the number of points in the

instances of longest pattern is (δmin + θ) × N×(1−r noise)
L

.

Parameter Meaning
L # features in the longest pattern
m # confident features in the longest pattern
N # points on the map
d # generated longest pattern instances
θ min. prevalence/confidence threshold

δmin min. difference between prevalence of longest
pattern and θ

δmax max. difference between prevalence of longest
pattern and θ

ε distance threshold
map the x- and y- extent of the map

n noise the number of noise features
r noise number of points with noise features

N

Table 1: Data Generation Parameters

We generate instances of the longest pattern as follows.
We divide the map using a regular grid of cell-side length ε.
At first, we generate a point randomly. We use the point as
the center and r as the radius to generate points for a feature
in the longest pattern around a circle. The coordinates for
the i − th point of the feature fj is (xc + r × sin 2πi

nj
, yc +

r × cos 2πi
nj

), (nj =
Nj

d
). Because r is in (0, ε

2
], we can

assign rs the value s( ε
2L

), (1 ≤ s ≤ L). In this way, any
point in the cell can participate in an instance of the longest
pattern. After selecting the first center point, we mark the
cells in the grid which intersect the circle centered at it with
radius ε, such that no other longest pattern instance can be
generated in them. Next, we continue generating pattern
instances from random points, whose extended circle does
not intersect used cells. After generating pattern instances d
times, the process ends. The remaining points of the features
which appear in the longest pattern, are generated randomly
on the map. Finally, we generate the points of noise features
randomly on the map.

The generator described above generates instances of a
long pattern with length L. The number of features which
have participation ratios larger the confidence threshold in
the longest pattern is set to m.

4.2 Mining star patterns
First, we experimented with the discovery of star patterns.

We compare the performance of the algorithm of Section 3.2
(called FC for “fast collocations”) with the methods pro-
posed by [5, 18] that (i) generate 2-patterns using binary
spatial joins (ii) perform level-wise mining [1] to discover
the patterns from the instances of 2-patterns (called LW for
“level-wise” approach). For this set of experiments, we used
synthetic datasets.

First, we study the effect of the number of points in a
dataset generated using a square map 7070 × 7070. Table 2
shows the standard generation parameter values used in this
set of experiments. Note that we use a rather small dataset
size (30K), because the level-wise mining methods are quite
slow and it would be quite hard to compare our technique
with them for larger databases. Because the constraints in
star patterns are quite loose compared to those of clique
patterns, the number of patterns and their instances is very
large. This causes the Apriori-like algorithm to be very slow
as shown in Figure 6. However, our algorithm is scalable,
since the long patterns are discovered directly, without going
through the discovery (and TID-join) of their subpatterns.
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Figure 11: Effect of m (clique)

Parameter value
N 30000
L 6
m 3
d 1500
θ 0.3

δmin −0.23
δmax 0.08

ε 10
n noise 2
r noise 0.1

Table 2: Standard parameter values for star pattern
mining

In the next experiment, we compare the performance of
the two techniques as a function of the number of non-noise
features in the datasets. Figure 7 shows that our algo-
rithm maintains great advantage compared to the Apriori-
like technique.

In the previous experiments, we used only 2 noise fea-
tures. When the number of noise features increases, the
number of 2-patterns increases since more combinations of
features are likely to be found frequently together. Figure 8
shows that the time for Apriori-like mining is not affected
by the change of this parameter. The cost of our technique
increases slightly, however, it is still much faster.

4.3 Mining clique patterns
In this section, we validate the performance of our algo-

rithm in mining clique patterns, by comparing it with the
previous approaches proposed in [18] and [4].

The effect of number of points in the dataset was evalu-
ated with datasets generated on a square map 8000 × 8000.
Table 3 shows the generator’s parameters for this set of ex-
periments. Figure 9 shows the results. LW-prev corresponds

Parameter Value
N 30000
L 10
m 3
d 1000
θ 0.2

δmin −0.13
δmax 0.08

ε 10
n noise 2
r noise 0.1

Table 3: Standard parameter values for clique pat-
tern mining

to the method that mines prevalent patterns using θ (as de-
scribed in [18]). LW-conf corresponds to the method that
mines confident patterns using θ (as described in [4]). Our
method (FC) can mine prevalent and confident patterns at
the same cost (and at the same time) since it is not a level-
wise technique. As we can see from the figure, it is much
faster compared to the previous techniques. As the number
of points increases, the number of instances for all patterns
is increases greatly and this affects all algorithms; the level-
wise methods are affected more by the boost of the pattern
instances at the various levels.

Next, we evaluated the performance of the three tech-
niques as a function of the number L of non-noise features.
We used the same parameters as the previous experiment,
after fixing N = 30K. Figure 10 plots the results. Ob-
serve that as the number of features increases, with fixed
number N of points, the number of points for each feature
decreases. On the other hand, the number of candidates
increases, which in general affects more the cost of the algo-
rithms. When the effect of the number of candidates domi-
nates the reduction of points per feature, the time for mining
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Figure 13: Layers Mapped for Minnesota

increases. Note that in all cases, our method maintains sig-
nificant advantage over level-wise techniques.

Next, we test the performance effect of the number of
m confident features in the longest pattern (i.e., the num-
ber of features with participation ratio larger than θ in the
longest pattern). As m increases, the number of confident
sub-patterns of the longest pattern increases. For the level-
wise algorithms, the number of candidates increases as m
increases. FC, on the other hand, needs to discover longer
maximal patterns. Figure 11 compares the three methods.
The x-axis is the number of confident features in the longest
pattern. Note that the level-wise methods are more sensitive
to m, due to the larger number of candidates to be gener-
ated and counted for both prevalent and confident patterns.
On the other hand, our technique is almost insensitive to m.

Finally, we test the performance of the algorithms as a
function of the number of noise features in the database.
Figure 12 illustrates the effects. Observe that our algorithm
maintains its advantage over previous techniques, due to
the heuristic we apply to remove irrelevant features after
a preprocessing step that discovers the prevalent/confident
2-pattens (discussed in Section 3.3).

4.4 Experiments on Real Datasets
We downloaded a real dataset from Digital Chart of the

World3 (DCW), which is an Environmental Systems Re-
search Institute. We downloaded 8 layers of Minnesota state,
as shown in Figure 13 and described in Table 4. We treat
each layer as a feature so that there are 8 features in our
experiments.

Figure 14 compares the mining algorithms for star pattern

3http://www.maproom.psu.edu/dcw/

Name No. of Points
Populated Places 517

Drainage 6
Drainage Supplemental 1338

Hypsography 72
Hypsography Supplemental 687

Land Cover 28
Aeronautical 86

Cultural Landmarks 103

Table 4: Layer Names
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Figure 14: Mining Star Patterns in a Real Dataset

mining. The performance of our algorithm for star patterns
is almost not affected by the the distance threshold. On
the other hand, the LW approach deteriorates fast with ε.
Figure 15 shows the performance of algorithms for clique
pattern mining. Both figures plot the mining cost as a func-
tion of the distance threshold ε used for mining. Note that
the performance trends are the same compared to the ex-
periments with synthetic data; our method is always much
faster compared to the level-wise approaches.

Figure 16 shows the relative performance for clique pat-
tern mining as a function of the prevalence (confidence)
threshold θ. Note that our method is very fast even for small
values of θ, as opposed to level-wise methods which are very
sensitive to it. Notably, the prevalent patterns mining algo-
rithm is also quite fast. This is attributed to the fact that
there are very few (and short) prevalent patterns, which are
discovered quite fast.

Some long real patterns found include a reference feature
pattern with “populated places” as center and “Aeronauti-
cal”, “Drainage Supplemental”, “Hypsography”, “Hypsog-
raphy Supplemental”, “Land Cover” as neighbor features;
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Figure 15: Mining Clique Patterns in a Real Dataset
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Figure 16: Mining Clique Patterns in a Real Dataset

and a confident clique pattern with “Cultural Landmarks”,
“Drainage”, “Drainage Supplemental”, “Hypsography”, “Hyp-
sography Supplemental”. Both are found for ε = 600 and
θ = 0.05.

5. CONCLUSION
In this paper, we have extended the collocation pattern

model and proposed a fast technique for mining collocation
patterns. The extended model generalizes collocation pat-
terns by a constraint graph, where each node corresponds
to a feature and the edges correspond to spatial constraints.

As stated in [17] (p. 205), there are typically much fewer
features in a spatial mining problem (never more than a few
dozens), compared to the number of items in transactional
mining problems. Thus the enumeration of spatial neigh-
borhood computations for each feature instance dominates
the mining cost. Based on this ground truth, we proposed a
mining technique which naturally extends multi-way spatial
join algorithms to discover pattern instances of any length
and directly compute the participation ratios of features in
them, which can be used to derive confidences and preva-
lences of collocation patterns. We proposed a number of
heuristics that optimize the mining process and deal with
memory constraints.

Finally, we conducted a comprehensive experimental eval-
uation using synthetic and real datasets. The results show
that our technique is orders of magnitude faster in the dis-
covery of long collocation patterns, compared to previous
methods. Another notable advantage of our method is that
it can compute both prevalent and confident patterns for
multiple values of prevalence and confidence thresholds at a
single process, since no candidate pruning takes place. Thus,
after the join process it suffices to scan the features and their
participation ratios in pattern instances in order to derive
the prevalences and confidences of all patterns, and finally
keep the ones that are more interesting.
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