
Algorithms for Quantified Constraint Satisfaction
Problems

Nikos Mamoulis1 and Kostas Stergiou2

1 Department of Computer Science and Information Systems
University of Hong Kong

2 Department of Information and Communication Systems Engineering
University of the Aegean

Abstract. Many propagation and search algorithms have been developed for
constraint satisfaction problems (CSPs). In a standard CSP all variables are ex-
istentially quantified. The CSP formalism can be extended to allow universally
quantified variables, in which case the complexity of the basic reasoning tasks
rises fromNP-complete toPSPACE-complete. Such problems have, so far, been
studied mainly in the context of quantified Boolean formulae. Little work has
been done on problems with discrete non-Boolean domains. We attempt to fill
this gap by extending propagation and search algorithms from standard CSPs to
the quantified case. We also show how the notion of value interchangeability can
be exploited to break symmetries and speed up search by orders of magnitude.
Finally, we test experimentally the algorithms and methods proposed.

1 Introduction

The basic decision task in a CSP is to determine whether thereexist values for all
variables such that all constraints in the problem are satisfied. It is well known that in
standard CSPs, where all variables are existentially quantified, this task isNP-complete.
A natural generalization of the standard CSP formalism is toconsider the case where
some of the variables may be universally quantified. A CSP that allows universal quan-
tification of variables is called a Quantified Constraint Satisfaction Problem (QCSP) [3,
2]. The generalization of CSPs to QCSPs increases the expressiveness of the frame-
work, but at the same time the complexity of the decision taskrises fromNP-complete
to PSPACE-complete [2]. As an example consider the problem∃xi∃xj∀xk (xi >

xk ∧ xj 6= xk). This is a CSP where one of the variables is universally quantified, and
it reads “there exist values forxi andxj such that for every value ofxk the constraints
xi > xk andxj 6= xk are satisfied”.

QCSPs can be used to model variousPSPACE-complete problems from domains
like game playing, planning, and belief revision. Recently, there is an increasing interest
in algorithms for quantified constraint reasoning, especially in the cases of Quantified
Propositional Satisfiability (QSAT or QBF) and quantified CSPs with continuous do-
mains. Most of the proposed algorithms are extensions of already existing algorithms
from the standard case (e.g. SAT) to the quantified one. However, very little has been
done as far as algorithms for QCSPs with discrete non-boolean domains are concerned.



The only work we are aware of is [3], where ways to implement arc consistency for
some classes of constraints in QCSPs are proposed.

In this paper we extend standard propagation and search algorithms for binary CSPs
to the case of binary QCSPs. We describe an arc consistency (AC) algorithm that can
deal with arbitrary binary constraints. We then extend the BT, FC, and MAC algorithms
so that they can handle quantification. We then show how the notion of value inter-
changeability can be exploited in QCSPs to break symmetriesand speed up search by
orders of magnitude. Finally, we give some preliminary experimental results.

2 Preliminaries
A Constraint Satisfaction Problem(CSP) consists of a set of variablesX = {x1, . . . , xn},
a set of domainsD = {D(x1), . . . ,D(xn)}, whereD(xi) is the finite set of possible
values for variablexi, and a setC of constraints over subsets of the variables. A con-
straintc on variablesxi, . . . , xj is a subset of the Cartesian productD(xi)×. . .×D(xj)
that specifies the allowed combinations of values for variablesxi, . . . , xj . An assign-
ment of a valuea to variablexi is denoted by(xi, a). In standard CSPs all variables
are considered to be existentially quantified. In what follows we will focus on binary
constraints. A binary constraint on variablesxi, xj will be denoted bycij . The goal in
a QCSP can be either to determine satisfiability or to find a consistent instantiation of
the existential variables for all instantiations of the universal ones.

A constraintcij = (xi, xj) is arc consistent(AC) iff for each valuea in D(xi)
there exists a valueb in D(xj) so that the assignments(xi, a) and(xj , b) satisfycij . In
this case we say thatb is asupportfor a on constraintcij . The operation performed to
determine whether a constraint is satisfied by a given tuple of assignments is called a
consistency check. A binary CSP is arc consistent if all its constraints are arcconsistent.
We now give a formal definition of QCSPs.

Definition 1. ([3]) A Quantified Constraint Satisfaction Problem(QCSP) is a formula
of the formQ1x1 . . . Qnxn (c1 ∧ . . . ∧ cm), where eachQi denotes a quantifier (∀ or
∃) and eachci is a constraint relating some variables amongx1, . . . , xn.

3 Arc Consistency
[3] extends the definition of AC to QCSPs and gives rules to compute AC for constraints
on 0-1 variables (e.g.¬x = y) and numerical constraints (e.g.x + y = z). We com-
plement the work of [3] by describing simple rules that can beused to devise a generic
AC algorithm for QCSPs. When applying AC on a constraintcij , the filtering achieved
depends on the type of quantification for variablesxi, xj and on the order in which
the variables appear in the quantification formula. For a binary constraint there are four
possible orders. We can define AC for a constraintcij using the following general rules;
one for each order of quantification.

∃ xi ∃ xj : This is the case of standard CSPs. Constraintcij is AC iff each valuea ∈
D(xi) is supported by at least one valueb ∈ D(xj). If a valuea ∈ D(xi) has no
support inD(xj) then AC will removea from D(xi). If D(xi) becomes empty
then the problem is unsatisfiable.



∀ xi ∀ xj : Constraintcij is AC iff each valuea ∈ D(xi) is supported by all values
in D(xj). If a valuea ∈ D(xi) is not supported by all values inD(xj) then the
problem is unsatisfiable.

∀ xi ∃ xj : Constraintcij is AC iff each valuea ∈ D(xi) is supported by at least one
value inD(xj). If a valuea ∈ D(xi) has no support inD(xj) then the problem is
unsatisfiable.

∃ xi ∀ xj : Constraintcij is AC iff each valuea ∈ D(xi) is supported by all values in
D(xj). If a valuea ∈ D(xi) is not supported by all values inD(xj) then AC will
removea from D(xi). If D(xi) becomes empty then the problem is unsatisfiable.

Based on the above rules we can easily devise an AC algorithm for quantified binary
CSPs. The algorithm takes a QCSP with a setX of existentially or universally quantified
variables in a given order, and and a setC of binary constraints, and computes the arc
consistent sub-domains in case the problem is arc consistent or returns FALSE in case
the problem is not arc consistent. The algorithm uses the previously defined rules to
check the consistency of a constraint according to the type and order of quantification
of the variables involved in the constraint.

4 Search Algorithms
Algorithms BT and FC for binary QCSPs are easily devised by extending the corre-
sponding CSP algorithms. I we apply AC before search, we do not have to consider
constraints of the form∃ xi∀ xj , cij or ∀ xi∀ xj , cij in the algorithms. All values of
variablexi, in such constraints, are definitely consistent with all values of variablexj .
If some value was not consistent then it would have been removed by AC.

BT is a straightforward extension of the corresponding algorithm for standard CSPs.
It proceeds by checking assignments of values to variables until the truthness of the
quantified problem is proved or disproved. The extension of standard FC to QCSPs,
which we call FC0, operates in a way similar to BT with the difference that each vari-
able assignment is forward checked against values of futureexistential variables con-
strained with the current one. We have also experimented with a modified version of
FC, which we call FC1, that is better suited to QCSPs. FC1 has the exactly same behav-
ior as FC0 when the current variable is existentially quantified. If the current variable
xi is universally quantified then we forward check each value ofxi against all future
variables before assigning a specific value toxi. If one ofxi’s values causes a domain
wipeout then we backtrack to the last existential variable.Otherwise, we proceed in the
usual way. In this way we can discover dead-ends earlier and avoid fruitless exploration
of search tree branches. It is easy to see that FC1 will alwaysvisit at most the same
number of search tree nodes as FC0. The two algorithms are incomparable in the num-
ber of consistency checks they perform. That is, depending on the problem, FC0 may
perform less checks than FC1 and vice versa.

Based on the above, we can easily adapt the MAC algorithm to QCSPs. MAC can
also be modified in the same way as FC to yield MAC1, an algorithm analogous to FC1.
That is, when the current variablexi is universally quantified we can apply AC for each
instantiation(xi, aj), j ∈ {1, . . . , d} before committing to a particular instantiation. If
one of the instantiations causes a domain wipe-out then we backtrack. Otherwise, we
commit to one of the values and proceed with the next variable.



5 Symmetry Breaking via Value Interchangeability

Many CSPs contain symmetries which means that for a given solution there are equiva-
lent solutions. This can have a profound effect on the searchcost when looking for one
or (mainly) all solutions to a CSP. We propose the exploitation of value interchange-
ability as a dynamic symmetry breaking technique in QCSPs.

A valuea of a variablexi is neighborhood interchangeable(NI) with a valueb of
xi, if a andb are supported by exactly the same values of all variables adjacent toxi

[4] A set of NI values can be replaced by a single representative of the set without in
effect losing any solutions. In the context of QCSPs we can exploit interchangeability to
break symmetries by “pruning” the domains of universal variables. That is, for each set
(sometimes called bundle) of NI values we can keep one representative and remove the
others, either permanently before search, or temporarily during search. If the algorithm
proves that the representative value is consistent (i.e. satisfies the QCSP) then so are the
rest of the NI values. Therefore, checking the consistency of such values is redundant.
Consider the following example. We have the formula∀xi∃xj , xk (xi 6= xj , xi 6=
xk), where the domains of the variables areD(xi) = {0, 1, 2, 3, 4}, D(xj) = {0, 1},
D(xk) = {0, 2}. Values 3 and 4 ofxi are NI since they are supported by the same
values in bothxj andxk. Therefore, they can be replaced by a single value or to put it
differently one of them can be pruned out of the domain.

We can detect NI values as a preprocessing step in QCSPs to remove values from
the domains of universal variables, and we can also detect them dynamically during
search to avoid repeated exploration of similar subtrees.

6 Experimental Evaluation

To compare the performance of the algorithms presented is the previous sections, we
ran experiments on randomly generated QCSPs. The random generator we used takes
five parameters:< n, n∀, d, p, q >, wheren is the total number of variables,n∀ is the
number of universally quantified variables,d is the uniform domain size of the variables,
p is the density of the constraint graph (i.e., the fraction ofconstrained variable pairs),
andq is the uniform looseness of the constraints (i.e., the fraction of allowed tuples).
To generate an instance, we first randomly assign universal quantification ton∀ out
of the n variables, and then generate the constraint graph and the constraint matrices
according to the widely used model B of standard CSPs. For each generated constraint
cij the quantification of the variables is either∃xi ∃xj or ∀xi ∃xj . That is, we do not
generate constraints that can be handled by preprocessing alone.

[5] showed that models for random generation of QCSPs can suffer from a local
flaw that makes almost all of the generated instances false, even for small problem sizes.
Since no satisfactory flawless model for QCSPs has been proposed, in the experiments
reported below we disregard flawed instances.

Figures 1 and 2 present a comparison of algorithms FC0, FC1, MAC0, MAC1,
FC1+NI, MAC1+NI on problems withn = 20, d = 5, p = 0.15, n∀ = 5, and varying
q. For each value ofq shown in the figures, 100 problem instances were generated. We
measure the number of node visits and consistency checks performed. As we can see,
there is an easy-hard-easy pattern in the search cost as in standard CSPs and QSAT.



10

100

1000

10000

100000

1e+006

1e+007

1e+008

0.4 0.5 0.6 0.7 0.8 0.9 1

m
ea

n 
vi

si
te

d 
no

de
s

looseness q of constraints

FC0
FC1

MAC0
MAC1

FC1+NI
MAC1+NI

Fig. 1. Average visited nodes.

1000

10000

100000

1e+006

1e+007

1e+008

0.4 0.5 0.6 0.7 0.8 0.9 1

m
ea

n 
co

ns
is

te
nc

y 
ch

ec
ks

looseness q of constraints

FC0
FC1

MAC0
MAC1

FC1+NI
MAC1+NI

Fig. 2.Average consistency checks.

The MAC variants outperform the corresponding FC ones, as expected. FC1 and
MAC1 are able to detect dead-ends early, which makes them considerably better than
FC0 and MAC0 respectively. The best algorithm is MAC1+NI, followed by MAC1.
Note that MAC1+NI is competitive with the QSAT solver operating on encodings of
QCSPs into QSAT used in [5]. While FC1+NI was significantly outperformed by the
QSAT solver (see [5]), preliminary experiments showed thatMAC1+NI is five times
faster (median cpu times) in< 20, 5, 5, 0.15, 0.72 > problems. However, mean cpu
times showed a similar advantage in favor of the QSAT solver.

7 Conclusion
In this paper we studied algorithms for QCSPs with discrete non-boolean domains.
The QCSP framework can be used to model variousPSPACE-complete problems from
domains such as planning and game playing. We first describedan AC algorithm that
can deal with arbitrary binary constraints. We then extended the BT, FC, and MAC
algorithms so that they can handle quantification. We also proposed modifications of FC
and MAC that are better suited to QCSPs. We showed how value interchangeability can
be exploited in QCSPs to break symmetries and speed up searchby orders of magnitude.
Finally, we tested experimentally the algorithms and methods proposed. There is a lot of
future work to be done. We intend to follow two directions; first to further improve the
presented algorithms through dynamic variable ordering heuristics and techniques like
backjumping and learning, and second to apply the QCSP framework in real problems,
such as planning under uncertainty, and compare it with existing approaches .

Acknowledgements
Kostas Stergiou is a member of the APES research group and would like to thank all
other members. We especially thank I. Gent, P. Nightingale,and A. Rowley.

References

1. C. Bessìere and J.C. Ŕegin. Refining the basic constraint propagation algorithm. InProceed-
ings of IJCAI-2001, pages 309–315, 2001.



2. F. Boerner, A. Bulatov, P. Jeavons, and A. Krokhin. Quantified constraints: algorithms and
complexity. InProceedings of CSL-2003, pages 244–258, 2003.

3. L. Bordeaux and E. Monfroy. Beyond NP: Arc-consistency for quantified constraints. In
Proceedings of CP-2002, 2002.

4. E. Freuder. Eliminating interchangeable values in constraint satisfaction problems. InPro-
ceedings of AAAI-91, pages 227–233, 1991.

5. I. Gent, P. Nightingale, and A. Rowley. Encoding quantified csps as quantified boolean for-
mulae. Technical Report APES-79-2004, APES Research Group, February 2004. Available
from http://www.dcs.st-and.ac.uk/˜apes/apesreports.html.


