Algorithms for Quantified Constraint Satisfaction
Problems

Nikos Mamouli¢ and Kostas Stergidu

! Department of Computer Science and Information Systems
University of Hong Kong
2 Department of Information and Communication Systems Engineering
University of the Aegean

Abstract. Many propagation and search algorithms have been developed for
constraint satisfaction problems (CSPs). In a standard CSP all variatdeex-
istentially quantified. The CSP formalism can be extended to allow universally
quantified variables, in which case the complexity of the basic reasonikg tas
rises fromNP-complete td®?SPACE-complete. Such problems have, so far, been
studied mainly in the context of quantified Boolean formulae. Little work has
been done on problems with discrete non-Boolean domains. We attemibt to fi
this gap by extending propagation and search algorithms from stan&id ©©

the quantified case. We also show how the notion of value interchangeaility c
be exploited to break symmetries and speed up search by orders bpitnoleg
Finally, we test experimentally the algorithms and methods proposed.

1 Introduction

The basic decision task in a CSP is to determine whether #aast values for all
variables such that all constraints in the problem arefgadislt is well known that in
standard CSPs, where all variables are existentially dfiethtthis task iSNP-complete.
A natural generalization of the standard CSP formalism isotosider the case where
some of the variables may be universally quantified. A CSPalhaws universal quan-
tification of variables is called a Quantified Constrainti§attion Problem (QCSP) [3,
2]. The generalization of CSPs to QCSPs increases the aymress of the frame-
work, but at the same time the complexity of the decision tass fromNP-complete
to PSPACEcomplete [2]. As an example consider the problém3z; vz (x; >
xi A x; # x1). This is a CSP where one of the variables is universally diieehtand
it reads “there exist values fay; andx; such that for every value af;, the constraints
x; >z, andx; # xy, are satisfied”.

QCSPs can be used to model variRBPACE-complete problems from domains
like game playing, planning, and belief revision. Recertligre is an increasing interest
in algorithms for quantified constraint reasoning, esplycia the cases of Quantified
Propositional Satisfiability (QSAT or QBF) and quantified ®Swith continuous do-
mains. Most of the proposed algorithms are extensions e&dyr existing algorithms
from the standard case (e.g. SAT) to the quantified one. Herveery little has been
done as far as algorithms for QCSPs with discrete non-bonaleeains are concerned.

The only work we are aware of is [3], where ways to implement@msistency for
some classes of constraints in QCSPs are proposed.

In this paper we extend standard propagation and searctitaige for binary CSPs
to the case of binary QCSPs. We describe an arc consistef@yaldorithm that can
deal with arbitrary binary constraints. We then extend theRC, and MAC algorithms
so that they can handle quantification. We then show how ttiemof value inter-
changeability can be exploited in QCSPs to break symmaedridsspeed up search by
orders of magnitude. Finally, we give some preliminary expental results.

2 Preliminaries

A Constraint Satisfaction Proble(€SP) consists of a set of variabl&s= {z1,...,z,},

a set of domaind = {D(z1),...,D(z,)}, whereD(x,) is the finite set of possible
values for variabler;, and a set” of constraints over subsets of the variables. A con-
straintc on variablesz,, . . ., x; is a subset of the Cartesian prodiittz;) x . .. x D(z;)

that specifies the allowed combinations of values for véemb;, ..., z;. An assign-
ment of a value: to variablez; is denoted byx;, a). In standard CSPs all variables
are considered to be existentially quantified. In what feiave will focus on binary
constraints. A binary constraint on variables x; will be denoted by;;. The goal in

a QCSP can be either to determine satisfiability or to find aistent instantiation of
the existential variables for all instantiations of theuamgal ones.

A constraintc;; = (z;, ;) is arc consisten{AC) iff for each valuea in D(x;)
there exists a valukin D(zx;) so that the assignmen(s;, a) and(z;, b) satisfyc;;. In
this case we say thatis asupportfor ¢ on constraint;;. The operation performed to
determine whether a constraint is satisfied by a given tupéssignments is called a
consistency checld binary CSP is arc consistent if all its constraints arecarsistent.
We now give a formal definition of QCSPs.

Definition 1. ([3]) A Quantified Constraint Satisfaction Problg@CSP) is a formula
of the formQyz1 ... Qnay (1 A ... A cp), Where eachf); denotes a quantifiel/(or
d) and each; is a constraint relating some variables ameng. . . , x,,.

3 Arc Consistency

[3] extends the definition of AC to QCSPs and gives rules toa AC for constraints
on 0-1 variables (e.g-z = y) and numerical constraints (eg+ y = z). We com-
plement the work of [3] by describing simple rules that carubed to devise a generic
AC algorithm for QCSPs. When applying AC on a constraint the filtering achieved
depends on the type of quantification for variablgsz; and on the order in which
the variables appear in the quantification formula. For atyilconstraint there are four
possible orders. We can define AC for a constrajntising the following general rules;
one for each order of quantification.

Jz; dx; : This is the case of standard CSPs. Constrainis AC iff each valuex €
D(x;) is supported by at least one vallie= D(z;). If a valuea € D(z;) has no
support inD(z;) then AC will removea from D(z;). If D(z;) becomes empty
then the problem is unsatisfiable.

Vx; ¥V z; : Constraintc;; is AC iff each valuea € D(x;) is supported by all values
in D(z;). If a valuea € D(x;) is not supported by all values iP(z;) then the
problem is unsatisfiable.

V x; 3 x; : Constraint;; is AC iff each valuen € D(x;) is supported by at least one
value inD(x;). If avaluea € D(z;) has no support itD(«;) then the problem is
unsatisfiable.

dz,; Vz; :Constraint;; is AC iff each valuex € D(z;) is supported by all values in
D(z;). If avaluea € D(x;) is not supported by all values ifi(z;) then AC will
removea from D(z;). If D(z;) becomes empty then the problem is unsatisfiable.

Based on the above rules we can easily devise an AC algorghquéntified binary
CSPs. The algorithm takes a QCSP with a)setf existentially or universally quantified
variables in a given order, and and a 6ebf binary constraints, and computes the arc
consistent sub-domains in case the problem is arc conswteeturns FALSE in case
the problem is not arc consistent. The algorithm uses thequsly defined rules to
check the consistency of a constraint according to the typdeoader of quantification
of the variables involved in the constraint.

4 Search Algorithms

Algorithms BT and FC for binary QCSPs are easily devised hgreding the corre-
sponding CSP algorithms. | we apply AC before search, we ddaee to consider
constraints of the formd «;V x;,¢;; orV «;V z;, ¢;; in the algorithms. All values of
variablex;, in such constraints, are definitely consistent with allieal of variablex;.
If some value was not consistent then it would have been rethby AC.

BT is a straightforward extension of the corresponding itlym for standard CSPs.
It proceeds by checking assignments of values to variabiékthe truthness of the
quantified problem is proved or disproved. The extensiontarfidard FC to QCSPs,
which we call FCO, operates in a way similar to BT with the @lifince that each vari-
able assignment is forward checked against values of f@xistential variables con-
strained with the current one. We have also experimented avinodified version of
FC, which we call FC1, that is better suited to QCSPs. FC1lHmexactly same behav-
ior as FCO when the current variable is existentially queadi If the current variable
x; is universally quantified then we forward check each value;adgainst all future
variables before assigning a specific value:tolf one of x;’s values causes a domain
wipeout then we backtrack to the last existential variaDberwise, we proceed in the
usual way. In this way we can discover dead-ends earlieraoid &uitless exploration
of search tree branches. It is easy to see that FC1 will alwesjtsat most the same
number of search tree nodes as FCO. The two algorithms asmjparable in the num-
ber of consistency checks they perform. That is, dependmntpe problem, FCO may
perform less checks than FC1 and vice versa.

Based on the above, we can easily adapt the MAC algorithm t8R3CMAC can
also be modified in the same way as FC to yield MAC1, an algordhalogous to FC1.
That is, when the current variahilg is universally quantified we can apply AC for each
instantiation(z;, a;), j € {1,...,d} before committing to a particular instantiation. If
one of the instantiations causes a domain wipe-out then wiettagk. Otherwise, we
commit to one of the values and proceed with the next variable

5 Symmetry Breaking via Value Interchangeability

Many CSPs contain symmetries which means that for a givenisolthere are equiva-
lent solutions. This can have a profound effect on the semwshwhen looking for one
or (mainly) all solutions to a CSP. We propose the explatatf value interchange-
ability as a dynamic symmetry breaking technique in QCSPs.

A value a of a variablex; is neighborhood interchangeab(®&ll) with a valueb of
x;, if a andb are supported by exactly the same values of all variablescad} tox;
[4] A set of NI values can be replaced by a single represemetati the set without in
effect losing any solutions. In the context of QCSPs we catoédnterchangeability to
break symmetries by “pruning” the domains of universalafales. That is, for each set
(sometimes called bundle) of NI values we can keep one reptative and remove the
others, either permanently before search, or temporauiiing search. If the algorithm
proves that the representative value is consistent (tisfisa the QCSP) then so are the
rest of the NI values. Therefore, checking the consistefisyich values is redundant.
Consider the following example. We have the formute,3z;, x, (z; # x;,2; #
x1,), Where the domains of the variables d¢x;) = {0,1,2,3,4}, D(z;) = {0,1},
D(zx) = {0,2}. Values 3 and 4 of; are NI since they are supported by the same
values in bothr; andz;,. Therefore, they can be replaced by a single value or to put it
differently one of them can be pruned out of the domain.

We can detect NI values as a preprocessing step in QCSPs tveeralues from
the domains of universal variables, and we can also deteat thynamically during
search to avoid repeated exploration of similar subtrees.

6 Experimental Evaluation

To compare the performance of the algorithms presenteckigrvious sections, we
ran experiments on randomly generated QCSPs. The randoanagenwe used takes
five parametersz n,ny, d, p,q >, wheren is the total number of variables,, is the
number of universally quantified variabless the uniform domain size of the variables,
p is the density of the constraint graph (i.e., the fractiocaistrained variable pairs),
andgq is the uniform looseness of the constraints (i.e., the ifvactf allowed tuples).
To generate an instance, we first randomly assign universaitiication tony out
of then variables, and then generate the constraint graph and tigtramt matrices
according to the widely used model B of standard CSPs. Fdr gawcerated constraint
ci; the quantification of the variables is eith&r; Jx; or Vz; Jx;. That is, we do not
generate constraints that can be handled by preprocedsimgy a

[5] showed that models for random generation of QCSPs cdersuém a local
flaw that makes almost all of the generated instances falea,fer small problem sizes.
Since no satisfactory flawless model for QCSPs has been gedpm the experiments
reported below we disregard flawed instances.

Figures 1 and 2 present a comparison of algorithms FCO, FGICO MAC1,
FC1+NI, MAC1+NI on problems witm = 20, d = 5, p = 0.15, ny = 5, and varying
q. For each value of shown in the figures, 100 problem instances were generated. W
measure the number of node visits and consistency checi@ped. As we can see,
there is an easy-hard-easy pattern in the search cost anatestt CSPs and QSAT.

1e+008 ;i T T T T 1e+008

1e+007 +
1e+007 r

1e+006 +

100000 L 1e+006 |

10000 ¢

100000 +

mean visited nodes

1000 ¢

mean consistency checks

10000 a2
100 ¢ i
10 : i : : : 1000 : . : : :
0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1
looseness q of constraints looseness q of constraints
Fig. 1. Average visited nodes. Fig. 2. Average consistency checks.

The MAC variants outperform the corresponding FC ones, asard. FC1 and
MAC1 are able to detect dead-ends early, which makes thesidsnably better than
FCO and MACO respectively. The best algorithm is MAC1+Nljdaed by MACL1.
Note that MAC1+NI is competitive with the QSAT solver opéngton encodings of
QCSPs into QSAT used in [5]. While FC1+NI was significantlypmrformed by the
QSAT solver (see [5]), preliminary experiments showed MAC1+NI is five times
faster (median cpu times) ir 20,5,5,0.15,0.72 > problems. However, mean cpu
times showed a similar advantage in favor of the QSAT solver.

7 Conclusion

In this paper we studied algorithms for QCSPs with discrete-lboolean domains.
The QCSP framework can be used to model varR8PACE-complete problems from
domains such as planning and game playing. We first descaibe&C algorithm that
can deal with arbitrary binary constraints. We then extdnithe BT, FC, and MAC
algorithms so that they can handle quantification. We alspgsed modifications of FC
and MAC that are better suited to QCSPs. We showed how valehangeability can
be exploited in QCSPs to break symmetries and speed up sBanctiers of magnitude.
Finally, we tested experimentally the algorithms and méshmroposed. There is a lot of
future work to be done. We intend to follow two directionssfito further improve the
presented algorithms through dynamic variable orderingibtics and techniques like
backjumping and learning, and second to apply the QCSP frankdn real problems,
such as planning under uncertainty, and compare it witliiegisppproaches .

Acknowledgements

Kostas Stergiou is a member of the APES research group anidl Wl to thank all
other members. We especially thank |. Gent, P. Nightingaid,A. Rowley.

References

1. C. Besgire and J.C. Bgin. Refining the basic constraint propagation algorithnPrbteed-
ings of IJCAI-2001pages 309-315, 2001.

2.

3.

4.

F. Boerner, A. Bulatov, P. Jeavons, and A. Krokhin. Quantifietstaints: algorithms and
complexity. InProceedings of CSL-200Bages 244—258, 2003.

L. Bordeaux and E. Monfroy. Beyond NP: Arc-consistency foamfified constraints. In
Proceedings of CP-2002002.

E. Freuder. Eliminating interchangeable values in constraint satisfgmtidlems. InPro-
ceedings of AAAI-9lpages 227-233, 1991.

. |. Gent, P. Nightingale, and A. Rowley. Encoding quantified csps asttied boolean for-

mulae. Technical Report APES-79-2004, APES Research Gralpu&ry 2004. Available
from http://www.dcs.st-and.ac.uk/"apes/apesreports.html.

