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Efficient Evaluation of Probabilistic Advanced
Spatial Queries on Existentially Uncertain Data

Man Lung Yiu, Nikos Mamoulis, Xiangyuan Dai, Yufei Tao, Michail Vaitis

Abstract —We study the problem of answering spatial queries in databases where objects exist with some uncertainty and they are
associated with an existential probability. The goal of a thresholding probabilistic spatial query is to retrieve the objects that qualify the
spatial predicates with probability that exceeds a threshold. Accordingly, a ranking probabilistic spatial query selects the objects with
the highest probabilities to qualify the spatial predicates. We propose adaptations of spatial access methods and search algorithms for
probabilistic versions of range queries, nearest neighbors, spatial skylines, and reverse nearest neighbors and conduct an extensive
experimental study, which evaluates the effectiveness of proposed solutions.

Index Terms —H.2.4.h Query processing, H.2.4.k Spatial databases
U

1 INTRODUCTION We can naturally define probabilistic versions of spatial

Conventional spatial databases manage objects located ogﬂgerg; t\t]vaet izgﬁlt% O{\IN c():clllecet;or;? SOJCEX'SESQS;I% tizngeggg
thematic map with 100% certainty. In real-life cases, however,J ' y yp P P

there may be uncertainty about the existence of spatial objediees- Given @onfidencahresholdt, a thresholdingquery

: - re?urns the objects (or object pairs, in case of a join), which
or events. As an example, consider a satellite image, where

interesting objects (e.g., vessels) have been extracted (e.g.qBa“fy. some spatial predlcatfas .W'th prqbabll|ty at. Iea.;t
a human expert or an image segmentation tool). Due to lgwal given a segmented satellite image with uncertain objects,

image resolution and/or color definitions, the data extrac:tgnSIder a port officer who wishes to find a set of vessels

may not be 100% certain about whether a pixel formatiowitﬁuggn;ir:jaetns\e/eg'{oIei 53%(7'5 ,tbr\]neotﬂzfrzi;rﬁhlls |tso atheolri)ge:t
corresponds to an actual objeet a probability £, could o b P

b . . . ' station asking for the emergencies in its vicinity, which have
e assigned ta, reflecting the confidence afs existence. high confidence. Aranking spatial query returns the objects
We call such objectgxistentially uncertainsince their exact 9 ' gsp query J '

locations are known and the uncertainty refers only to th which qualify the spatial predicates of the query, in order of

r. . ) . .
existence. As another example of existentially uncertain daialariea::oconifenne(;er.e;a:;lnﬁb?)lierfesrizgl s lsg bzr?rr:;;ggred (in
consider emergency calls to a police calling center, which afe gy =19 q yap

Instance, the port officer may want to retrieve the= 10

dialed from various map locations. Depending on the callers. : : . :
voice, for each call we can generate a spatial event associafé' Se\glct)rr]t the highest probability to be the nearest neighbor

with a potential emergency and a probability that the emer-
gency is actual. Events generated from sensors (e.g., smokBrevious work on managing spatial data with uncertainty
detection) can also be regarded as existentially uncertain dih [3]. [4]. [S]. [6], [7] focus on locationally uncertain
because each sensor is associated with a certain location @pigcts; i.e., objects which are known to exist, but their
the existence of each detected event depends on the sefigagertain) location is described by a probability density
sensitivity and the background noise. Existential probabilitidgnction. The rationale is that the managed objects are actual
are also a natural way to modglzzy classificatiof1]. In moving objects with unknown exact locations due to GPS
this case, the class label of a particular object is uncertafiffors or transmission delays. In Section 2, we elaborate

each label has an existential probability and the sum of &fe fundamental differences (e.g., location, existence, storage,
probabilities is 1. and probability computation) between existentially uncertain
objects and locationally uncertain objects, and explain why
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algorithms for probabilistic variants of spatial range A nearest neighbor (NN) query takes as input a query object
queries, nearest neighbor (NN) search, spatial skyligeand returns the closest object i to ¢. For instance, the
(SS) queries, and reverse nearest neighbor (RNN) querid® of ¢ in Figure 1 isp;. If R is indexed by an R-tree,

o Regarding different variants of R-trees, we derive aphen thebest-first(BF) algorithm of [9] is the most efficient
propriate lower/upper probabilistic bounds for effectivelgolution for processing NN queries. Best-firstpriority queue
reducing the search I/O cost. Our search algorithms fé1Q, which organizes R—tree entries based on the (minimum)
NN, SS, RNN are carefully designed to handle disquald@istance of their MBRs tq, is initialized with the root entries.
fied entries in such a way that their removal is guarantedthe top entry of the queue is then retrieved; ife is a leaf
not to influence the probabilistic bounds of any potentismode entry, the corresponding object is returned as the NN
result object. (assuming point objects). Otherwise, the node pointed sy

The rest of the paper is organized as follows. Section 2 préecessed and all entries are inserted’@. In order to find
vides background on querying spatial objects with uncertaife NN of ¢ in Figure 1, BF first inserts t&°@Q) entriese,,
locations and extents. Section 3 defines existentially uncert4in 3, and their distances tg. Then the nearest entw, is
data and query types on them. In Section 4 we study tf@irieved fromPQ and object, pr7,ps are inserted Q.
evaluation of probabilistic spatial queries, when they are pl'€ next nearest entry ifQ) is p7, which is the NN ofg.
marily indexed on their spatial attributes, or when consideridg Section 4, we will extend BF for processing probabilistic
existential probability as an additional dimension. Section \&rsions of NN search on existentially uncertain data.
addresses probabilistic variants for interesting advanced spatial
gueries. Section 6 is a comprehensive experimental study 505
the performance of the proposed methods. Section 7 discussés
the case where the existential probabilities of objects aRecently, there is an increasing interest on the modeling,
correlated. Finally, Section 8 concludes the paper with iadexing, and querying of objects with uncertain location
discussion about future work. and/or extent. For instance, consider a collection of moving

objects, whose positions are tracked by GPS devices. Exact

locations are unknown due to GPS errors and transmission
2 BACKGROUND AND RELATED WORK delays; e.g., if the object is in motion its location might be

In this section, we review popular spatial query types arfitdated when reaching the listening server. As a result, the set

show how they can be processed when the spatial objects §r@0Ssible locations of an object is captured by a probability
indexed by R—trees. In addition, we provide related work difnsity function (PDF), which combines GPS measurement

modeling and querying spatial objects of uncertain locatid{fo". the last reported object location, and object velocity
and/or extent. [2]. Figure 2a exemplifies a locationally uncertain object

modeled by a 2D Gaussian PDF, with the regions of higher

probability marked in darker color. According to [10], [7],
2.1 Spatial Query Processing an arbitrary PDF can be approximated by a spatial histogram
g.g., 3 x 3 bins in Figure 2a), where each bin stores the

Locationally Uncertain Spatial Data

The most popular spatial access method is the R-tree
which indexes minimum bounding rectangles (MBRS) of o
jects. R—trees can efficiently process main spatial query types,
including spatial range queries, nearest neighbor queries, and
spatial joins. Figure 1 shows a collectidd = {p1,...,ps} 1
of spatial objects (e.g., points) and an R-tree structure that
indexes them. Given a spatial regibin, a spatial range query
retrieves fromR the objects that intersed?’. For instance,
consider a range query that asks for all objects within distance
3 from ¢, corresponding to the shaded area in Figure 1. Starting x

from the root of the tree, the query is processed by recursivelyo 0
following entries, having MBRs that intersect the query region. () |oc. uncertain PDF (b) PCR of, atg = 0.2
Y y
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Fig. 1. Spatial queries on R-trees Fig. 2. Locationally and Existentially Uncertainty Objects



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 3

. TABLE 1 ) to the minimumA. Since the PDF 06, sums to 1 within the
Fundamental Differences between Two Notions of circle (centered ag with radius)), it is clear that, any object
Uncertainty 0" (e.g.,04) With mind(q,0”) > A has no chance of being
the NN of q. For any remaining objeat (e.g.,01, 02, 03), its
Property Locationally Existentially probability of being the NN ofg is denoted byP,, (o, q).
Uncertain Object Uncertain Object Assuming independent PDFs between different objects, [6]
Location uncertain certain define ., (0, ¢) as follows:
Existence certain uncertain A
Storage a spatial histogram a pointo with Pon(o,q) = / 0.pdf (©q(r)) -
existence probability?, mind(q,0)
Probability expensive constant time H (1 — 0 .pdf (®4(r))) dr
computation| numerical integration constant time o € R0’ o mind(q,0)) <A

where ©4(r) and ®,(r) represent the hollow ring and the
_ _ ) ) concrete circle respectively, centeredgawvith radiusr. The

Given a locationally uncertain objegiand a query rang®/  eyajuation of the above probability is expensive for arbitrary
(see Figure 2b), the probability thatintersects a query rangepprs so [6] focuses on basic PDFs and develops efficient com-
W is formally defined by:Prng(0, W) = [y, 0.pdf(v) dv  pytation techniques foP,, (o, q). Note that the above prob-
whereo.pdf (v) denotes the probability that coincides with apjlistic NN search technique is inapplicable to existentially
pointv. Probabilistic threshold range queries [10], [7] retrievgncertain data. Figure 2d depicts a set of existentially uncertain
result pairs(o, Prng (0, W)) such thatP,,.4(o, W) > t, where  gpiacts, with a similar spatial configuration as in Figure 2c. In
t is a user-specified threshold. The filter-refinement framewoykig casep; is still the object causing the minimurh value.
is adopted to accelerate their evaluation. An inexpeniitez  owever, since its existence probability is not 1, it cannot be
stepis applied to determine fast whether an objectn belong |,sed to bound the search space. For instance, the objaotv
to the result. Only when may potentially become a result, thenzs non-zero probability of being the NN of this happens
refinementtep is executed to compute ti, (o, W) value. ith the probability (1 — 0.1)(1 — 0.2)(1 — 0.3)0.9 = 0.454,
In the state of the art method of [pfobabilistic constrained \yhen 04 exists butor, 02, 03 do not exist.
rectangle(PCR) is used for the filter step of the queries. Given other work on locationally uncertain data includes indexing
a system parametes, modeling a minimum value fof, the  the trajectory of an object as a cylindrical volume around the
PCR of a 2D objecb is pre-computed by sliding each axisyracked polyline (e.g., by a GPS), capturing uncertainty up to
parallel line inwards until the swept area over the PDF of certain distance from the polyline [11]. A similar approach
o equals tog. Figure 2b illustrates the PCR of an objecis followed in [3], where recorded trajectories are converted
o, for g = 0.2; o, appears in the region on the left oty sequences of locations connected by elliptical volumes. [5]
line [, with probability 0.2. Similarly,o, appears in regions 4150 models the uncertain locations of spatial objects by (circu-
on the right/bottom/top of lines; /i, /i,; respectively, With |ary yncertainty regions and discuss how to process simple and
probability 0.2. To answer the threshold range qui(with  4ggregate spatial range queries using the fuzzy representations.
t = 0.5), we first comparéV” with the linesl, /I.'/L, /] . Since 4] studies the evaluation of spatial joins between two sets of
W does not intersect the PCR of (i.e., it is above lind7),  opjects, for the case where the object extents are ‘floating’
we can immediately infer thak,.,,, (o1, W) < 0.2 <. ThuS, according to uncertainty distance bounds. An extension of the
o1 is discarded during the filter step of queiy/, saving the R_tree that captures uncertainty in directory node entries is
expensive computation of the exact probability,, (o1, W). proposed, and R-tree join techniques are adapted to process

Table 1 summarizes the fundamental differences betweg join efficiently. Cheng et al. [12], [10] study a problem
locationally uncertain objects and existentially uncertain olelated to probabilistic spatial range queries. The uncertain
jects. As depicted in Figure 2d, an existentially uncertaiffata are not spatial, but ordinal 1D values (e.g., temperature
objectos has a certain location (i.e., a point) but its existencgalues recorded from sensors). [10] indexes such uncertain
is associated with a probabiliti/,,=0.3. The probability of data for efficient evaluation of probabilistic range queries. [12]
o3 satisfying a range queryV is P.,,(03,W) = E,, if classifies queries on such dataentity-basedqueries asking
o1 intersectsW; or 0 otherwise. ThusP,,, (o3, W) can be for the set of objects satisfying a query predicate aablie-
computed in constant time. basedqueries asking for a PDF describing the distribution of

One may argue that an existentially uncertain pointith a query result when it is a single aggregate value (e.g., the
existence probabilityE, could be modeled as a location-¢,m of values, the maximum value, etc.). Finally, [13] studies

ally uncertain object with the PDF consisting of exactly . X ; :
locations: one poinb with probability £,, and a point at e evaluation of queries over uncertain or summarized data,

infinity with probability (1 — E,). This model encumbers thewhere the user specifies thresholds (precision, recall, laxity)
application of existing locationally uncertain techniques [10fegarding the quality (i.e., accuracy) of the desired result.
[7], because they assume multiple locations with probabili-

ties and the continuity of PDF in the space. Consider, for

instance, the probabilistic NN search algorithm for locationallp EXISTENTIALLY UNCERTAIN SPATIAL DATA
uncertain data, proposed in [6]. Given a query painand . . : . C : .

a set R of locationally uncertain objects, we can derivéﬁ\n_objecta: is emstgnﬂallyuncertam if its existence is de-

A\ = min,e g mazd(g, o), i.e., the minimum furthest distancescribed by a probability;, 0 < E, < 1. We refer toF£, as

of any o from ¢. For instance, in Figure 2c, the objegtleads existential probabilityor confidenceof . Note that since we
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Y Thus,(ps, (1—E,,)- E,) is another result. By continuing this
I W way, we can explore the whole set of pointsinand assign
" .P2(0 5) . a probability to each of them to be the NN @f This nearest
. 303 neighbor query example not only shows the search complexity
101 ?,1(0_2) Py o in uncertain data, but also unveils that the result of probabilistic
I * P03 queries may be arbitrarily large. For instance, the result of
sl o502 any NN query is as large d®|, if £, < 1 for all x € R.
: o’ o009 We can define practical versions of probabilistic queries with
L controlled output by eithethresholdingthe results of low
5 10 15 probability to occur oranking them and selecting the most
Fig. 3. NN search example probable ones:

Definition 3: Let(z, P,) be an output item of a probabilis-

tic spatial query@. The thresholdingversion of@ takes as
can haveE, = 1, we (trivially) regard a 100% known objectadditional input a thresholdt, 0 < ¢ < 1 and returns the
x as existentially uncertain. This allows us to model objeeésults for whichP, > ¢. Theranking version of@ takes as
collections which are mixtures of uncertain and certain datadditional input a positive integer. and returns then results
On the other handF, = 0 corresponds to an objeat that with the highestP,.
definitely does not exist, so there is no need to store it in a data+or example, a thresholding range (window) quBrywith
base. We take thexistential independence assumptibat the ¢ — (.6 on the objects of Figure 3 returgs whereas a ranking
confidence values of two different objects are independent r@fnge quen¥ with m = 1 returns(pz, 0.5).
each other. This assumption is reasonable for the applications
mentioned in the Introduction (e.g., satellite image extraction,
emergency call). We will relax this assumption in Section E
and handle existentially uncertain objects whose confidence VALUATION OF BASIC PROBABILISTIC
values are correlated. QUERIES

Figure 3 shows a collectiolR = of . . . I . .
d {prpo, ... Ps} Like spatial queries on exact data, probabilistic spatial queries

existentially uncertain points. Next to each point lapglis be efficientl d with th ¢ .
its existential probabilityE,, enclosed in parentheses (e.g.‘,:an e efficiently processed with the use of appropriate access

E, = 0.2). We are interested in answering spatial queriéQethOdS' In this section, we explore aIter_ngti_ve indgxing
that take uncertainty into account. L& be a collection of schemes and propose algorithms for probabilistic queries on

existentially uncertain objects. We then define probabilistﬂ?em' We focus on the most importapt spatial query types;
namely, range queries and nearest neighbor queries.

versions of basic spatial query types:

Definition 1: A probabilistic spatial range quemnakes as
input a spatial regionW and returns all(x, P,) pairs, such
that z € R and z intersectsWW with probability P, = E,, 4.1 Algorithms for 2D R-trees
where P, > 0.

Definition 2: A probabilistic nearest neighbor quetgkes
as input an objecy; and returns all(x, P,) pairs, such that
x € R and x is the nearest neighbor af, with probability

The most straightforward way to index a gebf existentially
uncertain spatial data is to create a 2-dimensional R—tree on
their spatial attribute. The confidences of the spatial objects
are stored together with their geometric representation or
Py = Ey - Hw’eRw'#w,d(q@_’)<d(q,w)(1 — Ear), where P, > 0 approximationg(for complex objegts) at the Iea?/es of the tree.
and d{g, z) denotes the d'?.‘a.”ce betwe@rand L We now study the evaluation of probabilistic queries on top
The output of a probabilistic query is a conventional queny; 1his indexing scheme.
result coupled with a positive probability that the item satisfies
the query. The case of probabilistic range queries is simple;
P, = E, for each object that qualifies the spatial predicatd.1.1 Range Queries
Consider, for instance, the shaded windd#, shown in
Figure 3. Two objectg; andp, intersectiV, with confidences
E, =0.2andE,, = 0.5, respectively. Similar to locationally
uncertain data, the probability of an objecto qualify a spa-

tial range query is irrelevant of the locations and confidenc&siS a thresholding query, the threshalds used to filter out

of other objects. biects with?. < t11f O i Ki orit

On the other hand, the probability of an object to be thelects With/g, < ¢. Q. IS a ranking guery, a priority queue
nearest neighbor depends on the locations and probabilitiesmo intains thar, results with the highes, dgrmg search, and
other objects. Consider again Figure 3 and assume that Quiputs them at the end of query processing.

want to find the potential nearest neighborqfThe nearest

point to ¢ (i.e. p7) is the actual NN iff p; exists. Thus 1. Especially for thresholding range queries of very large threshiglds
E : ’ It | der for th d ’ .viible alternative could be to use aBtree that indexes objects based on
(p7, Ep.) is @ query result. In order for the second nearest POfLi; probability to efficiently access the objectswith £, > ¢ and then

pg to be the NN ofy (i) pr mustnotexist and (ii)pg must exist. filter them using the spatial query predicate.

Probabilistic range queries can be easily processed in two
steps; a standard depth-first search algorithm is applied on the
R—-tree to retrieve the objects that qualify the spatial predicate
of the query. For each retrieved objectP, = E.,. If the query
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4.1.2 Nearest neighbor search Algorithm 2 Probabilistic NN on a 2D R-tree with thresh-

NN search is more complex compared to range queri@éding

because the probability of an object to qualify the query. ’;932&“2 IPTNNzD(Q“ery poing, 2D Rjﬁig’“ﬁﬂ?;ﬁg&'d&fom

depends on the locations and confidences of other objecis.while Pfivst > ¢ and more objects iR do
Algorithm 1 elegantly and efficiently computes the probability3: ~ z := next NN ofq in R;
P, of x to be nearest neighbor qf for all z having P, > 0 P Pe= PR
w Of x g q z 95% >0 5 it p, >tthen
6 output (z,Py);

Algorithm 1 Probabilistic NN on a 2D R-tree 7 plirst .= pfirst (1 _ E.);
Algorithm PNN2D(Query poinfg, 2D R—tree onR)
1. pfirst =1 > Prob. of no object before
2: while P/ist > 0 and more objects iR do L . ) . .
3  z:=nextNNofgin R; maintains the object with the higheBt. After each of the first
gf Plt f:tPf’;“ - Bz 4 object accesse®™ become$).1, 0.1, 0.162, and0.324. The
o piivat (ﬁ P’”}%m (1= Ea): algorithm terminates after the 4-th loop, whBAs! = 0.324

andP™ = P,, = 0.324, this indicates that the next object can

have P, at mostP,,, thusp, has the highest chances amon
Algorithm PNN2D applies best-first NN-search [9] on the objects to be the NN gg g g

R-tree to incrementally retrieve the nearest neighborg, of
without considering confidences. It also incrementally mai'A'Igorithm 3 Probabilistic NN on a 2D R—tree with ranking
tains a variableP/*"st which captures the probability that Algorithm PRNN2D(Query poing. 2D Rtree oni, Integerm)
no object retrieved before the current objecis the actual 1. pFirst .= 1. ’ > Prob. of no object before
NN. P/t is equal to[], (1 — E,), for all objectsy seen 2: H =&, > heap ofm objects with highest,
beforez. Thus the probability of: to be the nearest neighbor > ©'" =% b Py of m-th objectinH
of ¢ is P/rst . E,. In the example of Figure 3, PNN2D 5. = next NN ofq in R;

o

8:

9:

while Pfist > p™ and more objects iR do
gradually computes®,, = 0.1, P,, = (1 —0.1) - 0.1 = 0.09, _If% = plirst hEz
Py = (1-0.1)(1 = 0.1)- 0.2 = 0.162, P, = (1 - 0.1)(1 - ' PﬁpﬁafeH ‘toeif;dudel,;
0.1)(1 — 0.2) - 0.5 = 0.324, etc. Note thawll objects of R P™ := m-th probability in H;
in this example are retrieved and inserted to the response gset. pfirst .= pfirst. (1 — g,);
In other words, PNN2D does not terminate, until an object
with E, = 1 is found; if no such object exists, all objects
have a positive probability to be the nearest neighbor.
4.1.2.1 Thresholding and ranking: As discussed in S
tion 3, the user may want to restrict the response set by thre¥¥e can enhance the efficiency of the probabilistic search
olding or ranking. Algorithm 2 is the thresholding versioralgorithms, by augmenting some statistical information to the
of PNN2D, which returns only the objects with P, > ¢t. R-tree directory node MBRs. A simple and intuitive method
The only differences with the non-thresholding version aie to store with each directory node entrya valuee™¥;
the termination condition at Line 2 and the filtering of resultthe maximumg,, for all objectsz indexed undee. This value
having P, < t (Line 5). As soon ag”>/""** < t, we know that can be used to prune R-tree nodes, while processing thresh-
the next objects, even with 100% confidence cannot be tblgling or ranking queries. Similar augmentation techniques are
NN of ¢, so we can safely terminate. For example, assurpeoposed in [4], [10] for locationally uncertain data.
that we wish to retrieve the points in Figure 3 which are
the NN of ¢ with probability at leastt = 0.23. First p; ) ) » TAE"-E_Z
with P,. = E,. = 0.1 is retrieved, which is filtered out at Checking disqualified entries in augmented 2D R—trees
Line 5 and P/#st is set t00.9 > ¢. Then we retrievepg
with PPG — Pfirst . EPG — 0.09 (alSO dlsqualmed) and set ’ query type ‘ range SearCh‘ NN search
Plirst = 0.81 > t. Next, pg is retrieved withP,, = 0.162 thresholding| ™" < ¢ prist. gmarl
(also disqualified) and®/i"s* = 0.648 > ¢. The next object | ranking emartl < pm | plirst. gmazk < pm
pa satisfiesP,, = 0.324 > ¢, thus(p4,0.324) is output. Then
Pfirst = (.324 > t and we retrieveps with P,, = 0.0972 Table 2 summarizes the conditions for pruning R-tree
(disqualified). Finally,P"s* = 0.2268 < t and the algorithm entries (and the corresponding sub-trees) which do not point
terminates having produced onfy,, 0.324). to any results, during range or NN thresholding and ranking
PRNN2D (Algorithm 3), the ranking version of PNN2D,queries. For range queries, we can directly prune an entry
maintains a heapZ of m objects with the largesP, found when: (i)e.MBR does not intersect the query range, or (ii) its
so far. Let P™ be them-th largestP, in H; as soon as e™**F satisfies the condition in the table. On the other hand,
plirst < pm we know that the next objects, even withfor NN search, a disqualified entry cannot be directly pruned,
100% confidence cannot be the in the setroMmost probable because the confidences of objects in the pointed subtree may
NN of ¢, so we can safely terminate. For example, assurbe needed for computing the probabilities of objects with
that we wish to retrieve the point with the highest probabilitgreater distances tg, but high enough probabilities to be
of being the NN ofg in Figure 3. PRNN2D progressively included in the result.

2.2 Query Evaluation using Augmented R—trees
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Let us assume for the moment that for each non-leahdere the confidence converges ®:

entry e we know the exact number of objects™™ in its min First B P
subtree. Algorithm 4 is the thresholding NN procedure for thd* = P B I1 (1—e G
augmented 2D R-tree. BF is extended as follows: If a non-leaf First -
entry e is de-heaped for whictP/irst . ¢mazE < ¢ the node = = P77 Ea- 11 (1= @
where e points is not immediately loaded (as in PTNN2D) o€l A mazd(q.e)<d(q.2)

but e is inserted into a sef. of deletedentries. For objects
x retrieved later from the Best-First heap, we use entries
L to computeP" and P™*; lower and upper bounds for
P,. If P™n > ¢ we know thatz is definitely a result. If
Prer < t, we know thatr is definitely not a result. On the
other hand, ifP™" < ¢t < Pma® (Lines 6-12), we must
refine the probability range far. For this purpose, we pick
the entrye with the minimummind(q, e) in L.2 Observe that
any entries withmind(q, e) > d(gq, ) cannot contribute to the
probability of z. As P™" < Pma (at Line 6), the entrye

ecL N mind(q,e)<d(q,z)

. So far, we have assumed that for each non-leaf enthe
Alimber of objecte™"™ in its subtree is known (e.g., this
information is augmented, or the tree is packed). We can still
apply the algorithm for the case where this information is not
known, by using an upper bound fef“”: flevel(e) where
level(e) is the level of the entrye (leaves are at leved)
and f is the maximum R-tree node fanout. This upper bound
replacese™"™ in Equation 1.

selected at Line 7 must satisfyind(q, e) < d(q,x). If eis an ” o MBR
object, then; must be nearer te thanx and we updaté®/i"! R T
with the confidence ot. Otherwise, its confidence does not . P303)
affect P/ist, we access its child node. and insert all entries L hen lpen Lot g i
of n. into L. In either case, the probability range oBhrinks. . » (0_2)'04 P (052)(0.33‘) (%z‘%% balhabs)
The process is repeated while the range covers sp Lt el
¢.MBR 5(0:5)
I L s
5 10 15
Algorithm 4 Probabilistic NN on an augmented 2D R-tree
with thresholding Fig. 4. Example of augmented 2D R-tree
Algorithm PTNN2Daug(Query point, Augmented 2D R-tree o,
Thresholdt) . .
. pfirst .= 1 > Prob. of no object before Let us now show the functionality of the PTNN2Daug
L =g > list of disqualified entries algorithm by an example. Consider the augmented R-tree of

. i ; irst i i . . . .
: while P7ist > ¢ and more objects irf do Figure 4 that indexes the pointset of Figure 3 and assume that
x := next NN ofq in R;

> during BF-search, each non-leaf entry wighirst . cmazE ¢ js  We want to find the points that are the NNgWith probability
removed from Best-First heap and inserted ifito at leastt = 0.23. First, the entries in the root are enheaped

RoONR

> @‘;’,‘ﬂ;";ﬁ%‘; fldf;%::j gg using P/, L and Ex; in the Best-First heap. Next, the entry is dequeued. Since

7: pick the entrye with the smallestmind(q, e) in L; removee It (_Jllsquallfle_s the qu_erYRfWSt c eyttt = Q-Q < 1), it
fromL; _ _ ‘ ~is inserted into the listL. Then, the entryes is dequeued.

gf if e Igsfggtogeg;fgsgt a g ')S, an object closer tq thanz is |15 ohjectspy, ps, ps are enheaped in the Best-First Queue.

10: else ’ o The nearest objecps is dequeued. From Equations 1 and

11: read nodme pointed bye and insert_ all entries of into L; 2, we derive a probability range faP,, by using plirst

12: computeP;*" and P;*** by using P/¥"<*, L and Ex; and L. ps is disqualified asP; " = E,, = 0.1 < t.

13: if P > ¢ then first _ > ; ; min _

w SutpUL (2, Pin pmaz) Then, P 0.9 > t and we retrievep,. Since P’}

0.9-0.5-(1 —0.2)3 = 0.2304 > t, py is a result. Next,
Plirst — 045 > ¢ and the next entry retrieved from the
priority queue of the BF algorithm is;. We do not access
It remains to clarify howP™i" and P™ for an objectz are the node pointed by,, since we know that for each object
computed. Note thak only contains entries whose minimumindexed undee;, P, < eferE . pfirst — 0225 < t. Thus,

distance tay are smaller thar(g, z). For an entrye in the list ¢, is inserted intoL. Next, ps is dequeued and discarded as
L, the confidence of each object in its subtree is in the rangenaz _  45.0.5 . (1-0.2)- (1 -0.5) < t. Now, the Best-

(0,e™e*E]. In addition, there exists at least one objectein ! ; ;
whose confidence is exactiy™**. Thus, P corresponds First heap becomes empty and the algorithm terminates. Note

to the case where for all objects under all entriesLirare that PTNN2D accesses all nodes of the tree in this example,
closer tog thanz is and they all have the maximum possiblévhereas PTNN2Daug saves two leaf node accesses.
confidencesP,"** corresponds to the case, where fora# RankingNN retrieval on the augmented R—tree is performed
L, with maximum distance from greater thani(q, ), there py Algorithm 5. PRNN2Daug has several differences from the
is only one object witle™*** confidence (for all other ObJeCtSthreshoIding NN algorithm. A heaf is employed to organize

objectso by their P, P™ denotes then-th highestP" in

the heap. Observe that more complicated techniques are used

2. Throughout the paper, we uggy, z) to denote the distance between twofqgy updatingH, as the accesses fo may affect the order of

points ¢ and z; and usemind(q, e) (maxzd(q,e)) to denote the minimum obiects inH. Each obiech in H intainsP*t which i
(maximum) possible distance betwegrand any data point indexed by the P Ini. Each o Jec_ In main a'ns o ' W_'C IS
sub-tree pointed by. the value ofP7*"s* wheno is enheaped (Line 18). At Lines 12—

15:  pfirst .= pfirst . (1 — B,);
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Algorithm 5 Probabilistic NN on an augmented 2D R-tregninimized. As such, the (non-leaf) entey points to a leaf

with ranking

©oN

Algorithm PRNN2Daug(Query poing, Augmented 2D R-tree oiR,
Integerm)

1. pfirst .= 1; > Prob. of no object before
2. L =g, > list of disqualified entries
3: H =g > heap of objects, organized "
4: P = 0; > P™i" of m-th object inH
5: while Pf*"st > p™ and more objects iR do

6: z = next NN ofgq in R;

> during BF-search, each non-leaf entry witf 775t . emazE < ¢ jg
removed from Best-First heap and inserted ifito
computeP**" and P*** by using P/*"st, [, and E;
while PV < P™ < PeT do
pick the entrye with the smallestmind(q,e) in L; removee
from L;

node containing the pointg,, p2, p3; Whereas the entry,
points to a leaf node containing the points, ps, ps- The
spatial X, Y ranges, and the augmented probability, for these
two entries in the augmented 2D R-tree are listed in Figure
5c. Note that each entry consists of 6 values (including its
child node pointer). Figure 5b shows the structure of the
3D R-tree, for the same set of points. The R*-tree insertion
optimizes the bounding rectangles of nodes defined by three
dimensions: spatial dimension¥ and Y, as well as the
probability dimensionE. Hence, the entry; points to a leaf
node containing the pointg,, p2, p5; Whereas the entry,
points to a leaf node containing the points, ps, ps- The

10: if e is an objectthen > e is an object closer tq thanz is g o . .
11 Ppfirst .= pfirst . (1 — E.); values stored in these entries in the 3D R-tree are also listed in
12 for a"fgf;}fyo Efgjuch thatd(g, e) < d(q, 0) do Figure 5c. Now, each entry consists of 7 values (including its
ﬁ | Po "™ = Po - (1= Ee); child node pointer), implying that the fanout of the 3D R—tree

. eise . .
15: read node:. pointed bye and insert all entries ot into L; IS Sllghtly smaller than the ‘T"uQmemed 2D. .R_.tree'
16: computeP™ and Pa% by using PYrt, I, and Ey.: The methods for processing the probabilistic range and NN

S : I I ' o ueries over the augmented 2D R-tree (in Section 4.2) are
17:  if 7" > P™ then : : :
18 enheaply (a, P17t = pfirst pmin pmazy). applicable for the 3D R-tree, since each tree entry still stores
19 if His chanégd ::L is';hanged’hgn te an e™*F value. In particular, for the NN query, we utilize
20: recompute, for each € H, P and PTe® by using P, e to derive tighter probability ranges:

L and Ey; min first .

21: P™ = m-th P™" in H, P P b inE B\ (enum (13)
22: remove entries from H with Pe® < p™; (1 —e™mF)(1 — gmanBy(e™™ =)
23: PfiTSt = PfiTSt . (1 — Ez); ecL A mind(q,e)<d(q,x)
24: while |H| > m and|L| > 0 do pma plirst . g . 4)
25:  apply Lines 9-16; N im B (7T s
26:  apply Lines 20-22; 1-—e E)( 1)(1 —emerh)
27: removee from L with mind(q,e) > max{d(q,0) : 0 € H}; e€L A mazd(q,e)<d(q,x)

If the exact numbee™"™ of objects in the subtree pointed by
e is not known, we can use the fangiand the minimum node

13, PJirst (for some entries i) is updated for each object ilization (0.4 for R*—trees) and replace™™ by flevel(©) jn
e found no further tharo from ¢. The new P/ value is Equation 3 and by0.4 - f)vele) in Equation 4.
used to updaté™" and potentially the order of objects i

at

Lines 20-21. Note thalf may store more tham entries,

since there may be objectsin it satisfying P/*** > P™ >
P However, entries are removed fronf{ once P)*** <

P™. The algorithm does not need to access any more objects

from the Best-First heap as soon B§"*t < P™. In caseH

has more thann objects at that point, we need to refine the
probability ranges of the objects i (by processing entries in

L) until we have the best objects. In this case, entriesare

re

ral

moved fromL oncemind(q,e) > max{d(q,0) : 0 € H}

because such entries cannot be used to refine the probabil?t\{\l
ame

nges of the objects Al .

1Y 1|y
Py (0.7)
P, (03) °
e Pgl(0.9)
(0.8) o
e Pse e 1%
L] P (0.5)
P,(06) >
X
0 1 0 1

(a) Augmented 2D R-tree (b) 3D R-tree

4.3 Query Evaluation using 3D R-trees

An alternative method for indexing existentially uncertain datg
is to model the confidences, of objectsxz as an additional

[ Entryex [ Entry eo [ Grouping | Fields |
Aug. X=[0.15,0.40] | X=[0.55,0.85] Spatial 6
2D R—tree | Y'=[0.20,0.60] | Y'=[0.30,0.80] only (1+4+1)
maxFE=0.80 maxE=0.90
3D R-tree | X=[0.15,0.70] | X=[0.40,0.85] Both 7
Y'=[0.20,0.60] | Y'=[0.40,0.80] | spatial and | (1+4+2)
FE=[0.30,0.60] | E=[0.70,0.90] | probabilities

dimension and use a 3D R-tree to index the objects. Now,

(c) Comparison between the two trees

each non-leaf entrye in the tree, apart from the spatialFig. 5. Structures of different R—tree variants

dimensions, has a range™"F, emacE] within which the

existential probabilities of all objects in its subtree fall.
Figure 5 illustrates the differences between the augmenteecessarily better than the augmented 2D R-tree. A careful
2D R-tree and the 3D R—tree. Figure 5a depicts the structeseamination of Equations 3,4 reveals that these probability

of

the augmented 2D R-tree for the poinis, po, - - - , ps-

Interestingly, the query performance of the 3D R—tree is not

bounds are determined by both the spatial and probabilistic

The R*—tree insertion algorithm [14] aims at grouping thétervals of the entries. Even the™"F values in the 3D
points into leaf nodes such that the their MBR areas aRe-tree are helpful for tightening the bounds, this effect is
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counteracted by the large spatial bounding rectangles in the . . TABLE 3

tree. Thus, more (disqualified) entries € [ satisfy the Mapping from the original space to the feature space
mind(q,e) < d(q,z) condition in Equation 3 and fewer ["Original space | Feature spaces(J, i-th dimension |
entriese € L satisfy themaxd(q,e) < d(g,z) condition in Pointp @0, p)
Equation 4. Hence, the final probability bounds for the 3D R- MBR e [mind(gs, e), mazd(gs, €)]
tree may indeed become looser. Besides, the 3D R—tree has a

slightly smaller fanout, which may lead to more page accesses.

and upper bound corners of the MBRe) respectively (see
S5 ADVANCED SPATIAL QUERIES Figure 6b). Since/*(e2) = ¥~ (e;), each point ine; must
In this section, we discuss probabilistic variants of spatial skgpatially dominate all points im;. On the other hand, only
line queries [15] and reverse nearest neighbor queries [16], @igne point ine; may spatially dominate some pointsdn as
to their applications in spatial decision support systems. F8r (e3) = ¥ " (e1) andv™(es) # ¥~ (e1).
each query type, we first present its background, then define it&Vith the above mapping technique, [17] propose an R—
probabilistic variant, and finally develop corresponding quetyee based algorithm for computing the dynamic skyline in

algorithms for the thresholding and ranking versions. the feature space. The idea is to apply the best-first search
algorithm [9] on the R-tree to visit the entries from the

5.1 Spatial Skyline Queries origin 0% in the feature space, in ascending order of the value:

Given a setQ) of query points (e.g., user locations) and two wg(e) = Z mind(q, e) (6)

pointsp andp’ (e.g., two facilities)p spatially dominate$l5] 7€Q

/ H H /.
#’ when all query points i are closer 1o than top': [17] proved that a point must be discovered earlier than the

, points it dominates (if any). Hence, a poijnis reported as a
¥4 €Q, dlg,p) < dlg,p) ©) result if it cannot be dominated by any examined points. We

Given a point dataseR, its spatial skyline[15] (with respect then adapt the above algorithm for the probabilistic spatial

to Q) contains the objecty € R that are not spatially skyline query.

dominated by any other object iR. As an example, consider 5.1.0.2 Probabilistic spatial skyline query and its prop-

the distances of the statiops € R from a group of 2 users erties: For existentially uncertain data, a painis a query

Q = {q1,q2} in Figure 6a. The spatial skyline contaips, result with probability:

p2, andps. The main application of spatial skyline queries is B
to discover facilities that are not farther than other facilities, Po=Eq - H (1-Ew) @)
for all users. 2’ €R A P(a’)=y(x)

which corresponds to the case thatexists and the points
dominatingz do not exist. Aprobabilistic spatial skyline query
- takes as input a s&p of query points and returns alk, P,)
yie) . . f
Ve X pairs, such thatr € R andx belongs to the spatial skyline
' of @ with probability P, > 0. For instance, in Figure 6a, we

have P,, = 0.8 - (1 — 0.6) = 0.32 becausey, dominatesp.

Since no points dominatg,, we deriveP,, = 0.6 -1 = 0.6.

distance to distance to

V)

0 distance to 0 dm;mce fo The probability of other points can be computed in a similar
q, 1
way.
(a) a point set (b) dominance relationship

In Section 4.1.2, we used a single variabl®/""s* to
Fig. 6. Feature space defined by the distances from query incrementally compute the upper bound probability for the
points remaining objects to be examined. This technique is inap-
plicable to the spatial skyline query, since the points visited in
To ease our discussion, we first introduce some notatigiecreasing order from the origin do not necessarily influence
The spatial skyline query is formulated infeature spacén the points that will be visited next. For instance, the existence
which each dimension captures the distance to a query poRftPointp; in Figure 6a does not influence the probability that
Given a setQ = {qi,q,--- ,q.} of query points, a spatial P1 (which is further tharp, from the origin and will be visited
location (i.e., data pointp (or a MBR ¢) can be mapped to anNext) is in the skyline. However, it influences, sincep, is
point<(p) (or a MBR(¢)) in a z-dimensionafeaturespace, dominated byp,. In general, given a sef C R of already
where thei-th dimension captures the distances of the poin@xamined points, in order of their distance to the origin, an
to ¢; (for i € [1, 2]). Table 3 illustrates the mapping of a dataiPper boundP/"**(S) of the probability that point: is in
point or an MBR (corresponding to a non-leaf R-tree entrifle skyline with respect t¢' can be computed by:
assuming that the data points are indexed by an R—tree) to this Plirst(S) = H (1-E,) ®)
feature space. , ,
As a shorthand notation, we ugép) = ¢ (p’) to mean that Ve A ile)
p spatially dominateg’. Let 1)~ (e) andv*(e) be the lower For a MBRe, the upper bound probability?/*"s*(S) of any
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point in e to be in the skyline can be computed as follows: using Equations 10 and 11 respectively.

PITS) = [ a-29 © P = e e I (- o)
z’€S N w(m/)>w7(8) ecL A~ (&)= (x)
e = first . . _ mazkE
, sinceyy~ (¢) dominates any point in. Next, we discuss how = = F="7(5) Fe II (1—e™Py (11)

. . . e + 2 plx
thresholding and ranking versions of the query are evaluated €L A 9T () ()

on a 2D R-tree. When Pmin < ¢ < pmar e need to refine the probability
5.1.0.3 Thresholding and ranking: Assume that weange forz (Lines 6-13). After thaty is reported as a result if
want to find the points with probability at leastto be in P > t. In caseP{™*!(5) > t, z is inserted intoS because

the skyline. Algorithm 6 describes the procedure to retrieve
these points from a 2D R—tree. At Line 3, objects are incré?
mentally retrieved from the tree in increasing order of their

influences the probability of other points that may end up
the result.

wo(x) value, which is defined in Equation 6. Sétis used Algorithm 7 Probabilis_,tic spatial skyline on an augmented 2D
for storing objects examined so far, in order to derive tHg=tree with thresholding

probability P/*"*(.S) of remaining objects (using Equation 8).
The probability derivation of?, as PJ""**(S) - E, is correct
because [17] proved that all the points dominatingust have
been examined before (and stored inta&5). WhenP, > ¢,

is reported as a result. In cagg"s!(S) < ¢, any (remaining)
point 2’ dominated byx must be at least dominated by the
same subset of points ifi such thatP/"**(S) < t. Thus,z is  s:
inserted intaS only whenP/#s¢(S) > t. Following the above &
logic, we can optimize the algorithm at Line 3 by removing;j
non-leaf entries withP/"s¢(S) < ¢ from the Best-First heap.

RoNR

9:

10:
Algorithm 6 Probabilistic spatial skyline on a 2D R-tree with}%f

potential results

Algorithm PTSKY2Daug(Query poing, Augmented 2D R-tree oR,

Thresholdt)
S =g > set of examined objects
L =g, > list of disqualified entries

: while more objects inR do

x 1= next point in R with minimum wq ();
> during BF-search, each non-leaf entryvith P/ (S) . ema=E < ¢
is removed from Best-First heap, and inserted ihtdf Pef”‘“(S) >t
computePr*" and PIe® by using P{""$*(S), L and Ey;
while P <t < P*** do

pick the entrye with the smallestvg (e) in L; removee from L;
it P{75(S) > ¢ then > e may influence the probability of

if e is an objectthen
inserte into S;
else
read nodew. pointed bye and insert all entries of into

thresholding

Algorithm PTSKY2D(Query set, 2D R—tree onR, Thresholdt) 13: computeP" and Pma® by using Y (S), L and Ey;
1: S =0 > set of examined objects 14: if P™min > ¢ then
2: while more ObjeCtS inR do 15 gUtpUt_(x pmin Pmam)-
3:  z :=next point inR with minimum wg (z); L firstioy g
> during BF-search, non-leaf entrieswith Pfi”f’(S) < t are removed 16: i Px (S-) 2 ¢ then
' e 17: insertz into S,

from Best-First heap
Py = PIN(S) - By
if P, >t then
output (z,Px);
it P{""St(S) > ¢ then
insertz into S;

Similarly, we can generalize the algorithm for evaluating
ranking spatial skyline queries on an augmented 2D R-tree.
Regarding 3D R-trees, Equations 12 and 13 are applied to
compute theP;™" and P;"** values of a point: respectively.

In case the exact number*“™ of objects in the subtree
pointed bye is not known, we can use the fanofitand the

Threshold-based retrieval (of Algorithm 6) can be extendgflinimum node utilization(.4) and replace™“™ by flevel(e)
to retrieve them points with the highest probability to be inin Equations 10,12, and bi.4 - f)*v!() in Equation 13.
the skyline (i.e., the ranking probabilistic variant of the query).

NN R

The en i - : : PI"*N(S) B, - (12)
general idea is to maintain a he#apof m objects with _ .

the highestP, found so far. In addition, we replace the fixed II (1= e™mE)(1 = emerF) =y
threshold¢ by a floating boundP,,,, which indicates then- e€L A Y~ (e)=9(2)

th highestP, in H. If P, is found to be greater tha®™, PI*" = PI"(S)-E,- (13)
then the result heap/ and the boundP™ are updated. As H (1 — eminEy( =) () gmaxB)

P™ increases, (unnecessary) objects wWii"**(S) < P™
are removed front' in order to save space.

5.dl._0.4S Ex_tenséilozns for augrr&er;zted R—trees::b As dis-
cussed in Section 4.2, augmented R-trees can be use - ;
improve the query efficiencg:y. Algorithm 7 generalizes A?S? Reverse Nearest Neighbor Queries
gorithm 4 to utilize information from an augmented 2D R-Given a point datase® and a query poing, a reverse nearest
tree. During the BF-search at Line 4, each non-leaf entryneighbor (RNN) query [16] retrieves the objegts R having

e 1 oot S o s B g, Il nesrest neighcor. Tris query has spplcations I
has P/m(S) at leastt, then it may influence the remaining BCision support and resource allocation. [16], [18] develop

points ande is inserted into the list. for further processing. R-tree based algorithms for reverse nearest neighbor queries.
At Line 5, the lower boundP** and upper bound?/*** In this section, we extend the geometric partitioning method of
probabilities of a pointz are computed frontS, L andLEI [16] to solve probabilistic versions of this problem. According

e€L A Pt(e)=v(x)
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to [16], an RNN query can be answered in two steps. In tle&ch sectord;, its P};jﬁ”t value is used as the upper bound

filter step, the 2D data space (shown in Figure 7a) is divideglopapility of any remaining point ;. pﬁ?rst is set to 1

into six equal sectorsly, A,, - -+, Ag around the query point ipitially and it is multiplied by the factofl — E,) when a
q. The NN of ¢ in each sector (if any) is included into thenew pointz is discovered inA; .

candidate setln the example, the candidates are the points

p1 (in Ag), p2 (in As), and py (in Az). [16] proved that eriving tighter probability bounds for unexamined points.

th? candlc:atf set Is r? supg_rdsett O.f the _rfgs;ltbset. t[_)ur_lng Cbnsider the 12-sector partitioning shown in Figure 7b. When
refinement siep, each candidate 1s veriied by Tetreving ':Sspoint (say,p;) is discovered in the sectad,, it is used

NN. A candidate (e.gp-) is reported as a result if its NN is to updater;i,”t for the sectors (i.e.As, As, As) that are

g Otherwise, the candidate (e.g3) is afalse hitand it is within (maxirﬁum) 60 angular range fromd,. Conversely,
discarded. the probability bound of a sector is contributed by the points
AT within (30 - 3)° = 90° angular range. Recall that, for the
S on original 6-sector partitioning in [16], a sector is only affected
e | by the points within60° angular range. In general, given a

positive integerV/, in the (6V')-sector partitioning scheme,
(2V — 1) sectors need to be examined per visited point.
AN A, A, The more sectors we have, the tighter probability bounds are
derived for (unexamined points in) the sectors, and the earlier
8 Ay unqualified sectors can be pruned. On the other hand, the
As Ay | Ay computational overhead of updating probability bounds for the
(a) 6-sector partitioning  (b) 12-sector partitioning  sectors is proportional t&. In Section 6, we will determine an
appropriate number of sectors that achieves significant 1/0 cost
reduction and adds little computational overhead for updating
H)bability bounds for the sectors. Next, we discuss how
his partitioning scheme can be used to evaluate probabilistic
reverse nearest neighbor queries.
5.2.0.6 Thresholding and ranking: Algorithm 8 shows
P,=E,- H (1-Ey) (14) how thresholding RNN queries are evaluated on a 2D—tree.
@/ €R A a'#x A d(z,2')<d(q,) The system parametetr specifies the number of sectors to
be used. First, the space is divided intosectorsA; and
their probability boundstf”t are set to 1. The algorithm
maintains candidate objects (i.e., potential results) in aCset
and delays computing the actual probability of a candidate
{0 ¢ than to other points, we derivg,, — 0.8 - 1 — 0.8. The until all objects influencing it have been examined. Examined

- . ; . j in th h
probability of other points can be computed in a similar waObJeCtS are stored in the sétand they are used to compute

Similarly to the skyline query and unlike the NN quer)gpgreer iziraqi(ieﬂcigagﬂutes;gtrscandldate objects. Botfand
of Section 4.1.2, we cannot define an order of visiting thé Pty '

points aroundg, such that the upper bound probability of At Lin€ 6, we apply Best-First search [9] to incrementally
remaining points to be in the RNN result, can be maintaindgtriéve the next NN (i.e., the objeg) of ¢ from the treeR.
by incrementally updating a single/""* value. To elaborate SUPPOSe that(z) demtiﬁ,&?e_ sector containimglf the upper
this, suppose that we first examined the paintin Figure Pound probabilityE, - P, )" is greater than the threshoid
7a. Note thatp, only influences the probabilities gfs,p, then atighter upper bound probabiligy, - P/"*" is computed,
but not that ofp,. The example also demonstrates that tHey €xamining the objects iy’ (see Equation 15). When the
upper bound probability of a point can be computed by usirpove probability is at least, the objectz is inserted into
examined points. Given a s6tC R of (examined) points, the C. After that, = is inserted intoS and P{"*' is updated

i

upper bound probability?/"s* of a pointz with respect to; for each sectord; within 60° angular range fromA(z). In

We observe that introducing additional sectors may help

Fig. 7. Reverse nearest neighbor query example

5.2.0.5 Probabilistic reverse nearest neighbor query a;
its properties: For existentially uncertain data, a paint
belongs to the RNN set af with probability:

which corresponds to the case thaexists and the points’
that are closer ta: than tog do not exist. For instance, in
Figure 7a, we haveé?,, = 0.7- (1 —0.6) - (1 — 0.5) = 0.14
becauses is closer top; andp, than toq. Sincep, is closer

and S is defined as: turn, z is used to update thé’j“”st value for objects inC,
) and those satisfyings, - P/""** < t are removed fronC. If

Pt = 11 (1-Ey) (15)  the last deheaped distandg,s; (from the Best-First heap) is
a' €S A w'#a A d(z,2')<d(g,x) greater thar2 - d(q, 0) for a candidate objeat € C, then all

Geometric properties of reverse nearest neighbors can@sgries in Best-First heap cannot affect the probability.oAt
exploited to derive the upper bound probability of remainingine 17, we compute the actual probabiliy; as P/ - E,
points in a specific sector (see Figure 7a). [16] proved tha&fd reporto as a result wher’, > ¢. The loop (Lines 5-20)
if two points p and p’ are in the same sector andis closer continues while some sector may contain potential results to
to p than top’, thenp’ must be closer tp than toq. Based be discovered o€ is not empty.
on this property, a natural solution for the query is to retrieve The above algorithm can be extended to retrieve the top-
the points in ascending order of their distances frgnfFor m ranked reverse nearest neighbors from the 2D R-tree. It
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Algorithm 8 Probabilistic reverse nearest neighbor on a 2D Besides, the above thresholdingigorithm can be adapted
R—tree with thresholding to Algorithm 9, for augmented 2D R-trees and 3D R-trees.

Allgoritht;ﬂ PfTRNTZD(Quetry poing, 2Dt R-tree onR, Thresholdt) At Line 6, each non-leaf entry intersecting only sector(s)
s umber of sectors (system parameter) with P{7*" . emeeE < ¢ is removed from Best-First heap

1: divide the space inte equal sectors aroungt A;,i € [1, k]; g .
2: for all i € [1,x] do because they cannot contain any results. However, such entries
3 Pﬁj”‘:l; > Upper prob. bound of remaining objects in sector  may affect the probability of other points so they are inserted
4: C:=@; S:=g; firt into L. Lines 9-14 compute the actual probability for such an
g: while 3i € [17'\7’]\; PfAi- EtdOf IC] Z(O d‘; object, by refining itsP/*"* value with the entries ir.. For
© z:=nextNNofg in R; djgs; = d(q, 2); i jrst .

7 let A(x) be the sector of: .thIS, we check vyhether the upper bou.nd probabﬂ?gy E,
8 if B, P > ¢andE, - P{"*' > tthen b apply cheap filter 1S abovet andgq is clqser to some entries ID. than_th. If so,

first, and then expensive filter the entry closest to is removed fromZ and its child node,
9 C:=CuU{z}; is accessed. In case points to a tree node, all its entries are
100 S:=SuU{z); i i i i i
11:  for all i € [1,x] such thatA; is within (maximum) 60 angular inserted f'[‘fgL Otherwise, entries in. are used ‘35pdate the

range fromA(z) do setS, P) vaIL_Jes of candidate objec_:t§, anR;(i . values
12: Pyt = P (1 - By, of sectors. At Lines 19-20, the remaining candidatesCin
13:  for all o € C such thatd(z, 0) < d(g,0) do > updatep/"st  are verified by accessing entries inthat may influence their
14: pfirst=pfirst (1 _ E,); ) probabilities.
15: remove objects from C with E, - Pt < t; b filter false hits
16: for all o € C such thatd;qs¢ > 2 - d(g,0) do > entries in

Best-First heap cannot affect the probabilitycof 6 EXPERIMENTAL EVALUATION
17: P, = Pt g, _ _ .
18: if P, >t then In this section, we evaluate the efficiency of the proposed
19: output (0,/%); techniques. We compare the performances of five indexes and
20: removeo from C; their corresponding algorithms for thresholding and ranking

versions of range queries, nearest neighbor search, skyline
gueries and reverse nearest neighbor retrieval. The five indexes

Algorithm 9 Probabilistic reverse nearest neighbor on ame (i) a simple 2D R-tree (denoted Bp), (ii) a 2D R—
augmented 2D R—tree with thresholding tree, where each non-leaf enteyis augmented withe™a*¥

oah whkE

: divide the space inte equal sectors aroungt A;,i € [1, s];

Algorithm PTRNN2Daug(Query poing, Augmented 2D R-tree o, (denoted byAUG), (iii) a 2D R-tree, where each non-leaf entry
TWEShg'dt)f e is augmented withe™@*E and e"™ (i.e., the number of
: humber of Sectors (system parameter) objects in the subtree indexed by it), denotediys COUNT,

s for all 4 € [1,x] do (iv) a 3D R-tree (denoted 3D), and (v) a 3D R-tree, where
PJi"":=1; > Upper prob. bound of remaining objects in sector ~each non-leaf entry is augmented wite"*™ (denoted by
C:=@; S:=2; L=, 3D COUNT). For indexes (iv) and (v), all (spatial/probability)

- while more objects ink do dimensions are normalized to the same domain interval. Note

z ;= next NN ofg in R; djqst = d(q, z); . . . . . .
> during BF-search, each non-leaf entryntersecting only sector(s) that index (|) captures minimum information in non-leaf en-

with pﬁirst -emaE < ¢ is removed from Best-First heap and insertedries and occupies the least space, whereas index (v) is at the
into L oL ¢ Algorithm & other end (entries capture maximum information and the index
apply Lines 7-15 of Algorithm 8; f
for all o € C such thatd;,s;: > 2 d(g, 0) do > entries in Best-First occupies the most sp_ace). . .
heap cannot affect the probability of All algorithms were implemented in C++. Experiments were
while P{"*" . B, > t and3e € L, mind(e,0) < d(g,0) do > run on a PC with a Pentium D CPU of 2.8GHz. The page size

refinement step of indexes was set to 1Kb; the relative performance results

remove the entry with the smallestnind(e, o) in L; .
if e is an objecttﬁen (€:0) of the above methods were observed for other page sizes
apply Lines 11-15 of Algo. 8, but by replaciagwith e;  (up to 8Kb). No memory buffers are used for caching disk
else i iag
read the node, pointed bye and insert all entries of,  P29€S between different queries; the numper of node accesses
into L: directly reflects the 1/0 cost. In each experiment, the measured
p, = pPl"st g, I/O cost is the average I/O cost of 100 queries with the same
if Po >t then parameter values (but with different locations randomly chosen
output (o,Py); . .
removeo frorm C- from the dataset). For range queries, nearest neighbor search,
for all o€ C do ' > verify remaining candidates i @nd reverse nearest neighbor retrieval, the I/O time is over 90%
apply Lines 9-18 of this Algorithm; of the total execution cost so the CPU time is not reported.

maintains a heap{ of m objects with the highesP, found
so far. In addition, we replace the fixed thresholy a floating
boundP,,, which indicates then-th highestP, in H. At Lines
18-19, if P, is greater thanP™, then the result heal and

6.1 Description of Data

For our experiments, we used various real datasets of dif-
ferent sizes and object distributions, described in Table 4.
The datasets TG and SF are obtained from [19] while

3. Adaptations of ranking algorithms for RNN queries are omitted due to

the boundP™ are updated. space constraints.
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TABLE 4 00

2D —— 2D ——
AUG —— AUG —+—
I/0 cost of thresholding/ranking NN on different datasets, » ot = 00 a0 cout®
t =0.005, m =10 ® oo |
Q Q 60
Dataset Size | 2D | AUG | AUG 3D 3D * wgp——
COUNT COUNT 2 ZO;M
San Joaquin [18263| 48.68/ | 16.49/ 19.75/ | 28.60/ | 31.11/ o o
roads (TG) 4933 1754 2068 2956 3281 0 0.01 0.02 0.03 0.04 0‘05 0.06 0.07 0.08 0.09 0.1 0 20 40 60 80 |rgO 120 140 160 180 200
Greece 23268 77.697 | 17.23] | 21.797 | 2458/ 25.12] . . . '
roads (GR) 8330 | 2387 20.07 34.06 36.84 (a) thresholding queries (b) ranking queries
Long Beach |53145| 93.14/ | 19.07/ | 21.497 | 2417/ 25807 | F;j NN ri nthe SE -1
roads (LB) 103.20 | 28.78 | 32.97 | 38.32 | 42.65 g.-8. queries on the SF dataset,
LA streets 131461 67.38/ | 19.19/ | 21.897 | 32.83/| 36.17/
(LA) 7121 | 2290 | 26.43 | 36.43 | 41.59
San Francisc74956] 70.50/ | 20.39/ | 22.05/ | 32.71/| 36.17/ .
roads (SF) 7362 | 2480 | 2751 | 3748 | 4272 | 3D R—trees perform much better than the simple 2D R-tree for
Tiger streams194971] 99.30/ | 18.36/ | 19.697 | 27.37/| 32.947 | all tested values of andm. Fort¢ > 0.02, less than 5 accesses
(TS) 11032 | 3448 | 3941 | 4762 | 5874 | are required to find the query result when using the four

advanced indexes and Algorithms 4 and 5. When comparing
these indexes, we observe that augmentititj* is not a good
the other datasets are obtained from the R-tree Pofi@a; using the fanout gives accurate enough estimations of
(www.rtreeportal.org ). Pmin and Pme Thus the extra space (translated to extra
Due to the lack of a real spatial dataset with objects haViréﬁ;cesses) required for augmenting*™ does not pay off.
existential probabilities, we generated probabilities for the addition, the augmented R—tree performs better than the
objects, using the following methodology. First we generateh R-tree. First, the 3D R-tree occupies more space (the
K = 20 anchor points randomly on the map, following thecapacity of each non-leaf node is smaller) and results in more
data distribution. These points model locations around whiglgcesses, since the extra space is not compensated by tighter
there is large certainty for the existence of data (e.g., thgynin gnq pmaz (see Equations 3 and 4). Second, since
could be antennas of receivers close to which information ige 3D R—tree groups entries to nodes using the existential
accurate). For each pointof the dataset, we (i) find the closesiropabilities as well as spatial dimensions, it does not achieve
anchora and (ii) assign an existential probability proportionais good partitioning as the one using the spatial dimensions
t0 iy Thus, the distribution of probabilities aroundonly; however, search is performed primarily using the spatial
the anchors is a Zipfian one. The probabilities are normalimensions.
ized (usingc) with respect to the maximum probabilitd)(  Next we examine the performances of range queries on
corresponding to the anchor point. The default skew value S, ingexes. The parametéen denotes the extent of the
0 = 1; experiments on different skew values can be found ey window (in each dimension), whose default value is

our preliminary work [20]. set to 5% of the domain length. Figure 9a and 9b show
the cost of thresholding and ranking queries as a function
6.2 Experimental Results of ¢ and m respectively. Except for the simple 2D R-tree,

all indexes follow similar trends as in probabilistic nearest

Table 4 shows the performances of the five indexes f Eighbor queries. The cost of range queries on the 2D R-tree

thresholding and ranking NN queries on different datasets. \iye . o .
fix £ — 0.005 for thresholding NN queries andy — 10 for IS"independent of andm as all points within the spatial range

ranking NN queried. Observe that the augmented and 3D Rgre retrieved. Observe that for very smalthe augmented and

3D indexes may perform worse than the 2D R-tree because
trees p_erfo_rm better_than the 2D R-tree, even though they hey prune no or very few directory entries that have lower
larger in size. Algorithms 4 and 5 manage to prune a lar

rwarE H H H H
. . thant and (ii) they are larger in size than the simple 2D
number of nodes that do not contain query results, which (i) they 9 P

e .. . .
. S . . . =tree. Similarly,P™ decreases witlm, affecting the costs of
otherwise V'S't?d n the simple 2D R-tree index. The COStB&e advanced methods. The 3D R-tree performs worse than the
2D R-tree variants (i.e., methodsJG, AUG COUNT) does

. . mented 2D R-tree also for range queries. Figure 9c shows
not change much with the database size. The I/O costs of J ge d g

. : o e cost of thresholding queries as a functioricof. The costs
R—tree variants increase slowly as the database size increas

all methods i ithen.
This is due to the fact that 3D R—trees group entries using bot metho Z nerease wi hn ‘ f ial skyli
spatial and probability dimensions, but the query aIgorithmsWe proceed to compare the performances of spatial skyline

mainly search for objects based on spatial dimensions. queries on the indexes. For each query, a selcdfquery

In subsequent experiments, we compare the performanc 8|nts are randomly gene_rated In a query W'ndO\.N vylth_5|de
the indexes on the SF dataset and default parameter val é‘ggthlen, such that the window follows the data glstnbunon.
aret = 0.005 and m = 10 for thresholding and ranking € ‘?'efa““ values o_ﬂQ| aqd len are 6 and 5% of thg

queries respectively. Figure 8 shows the 1/0 performance of ‘agmam range respectively. Figure 10 shows the I/0-CPU time

indexes for thresholding and ranking queries. Augmented a Haakdown of thresholding and ranking queries as a function of
t anm respectively. Each page fault is charged 10 milliseconds

4. A small value fort is necessary in order to observe difference betweedl 1/O t.ime' Obser\{e that the methotUG outperforms its
the indexes. Larger values forwill be tested in a subsequent experiment. competitors for a wide range of parameters. In terms of 1/O,
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AUG GO & AUG coﬁ‘é‘i = AUG coﬁlécj s
150 aD GOURT - 150 3D COUNT < 800 3D COUNT
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A
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t m length(%)
(a) thresholding queries us (b) ranking queries vsn (c) thresholding queries vien, t = 0.005

Fig. 9. Range queries on the SF dataset

the trends are similar to the ones in Figure 8. However, the
CPU time of augmented and 3D trees becomes high attlow
value and highn value.

B CPU time

| cputi
O Vo time IT 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

number of sectors number of sectors

(a) thresholding queries,= 0.005 (b) ranking queriessn = 10
Fig. 12. Reverse nearest neighbor queries on the SF
P raen e e e — - dataset, varying the number of sectors

query processing time (sec)
query processing time (sec)

N:m N:m N:m %”‘%%% QIR0 QBT AR A0 X LR 8
“‘%@‘%@@*"3’2%’2 gﬂgﬁgﬁgﬁg%g%g{e
0.001 0.002 0005. 0.01 0.02 .005 0. 1 2 ) 5 ;0 -20 50 100 1000 2D o= 1000 2D o
() thresholdlng queries s (b) ranking queries ven o colh & wo o
800 3D COUNT o 800 30 COURT =
Fig. 10. Spatial skyline queries on the SF dataset, |Q| = 0 .
6, len = 5% ] °
400 AUU% % L
Figure 11 plots the cost of the indexes by varying the num- **
ber|Q| of query points. In general, whe®| increases, a point %5 007 002 005 001 0% 006 007 0 008 &1 %0 10 20 %0 40 50 0 70 50 0 100
t

m

is spatially dominated by fewer points, and thus the probability
of the point to be in the skyline increases. Thus, more points
need to be examined by thresholding queries and its 1/0O c®%f. 13. Reverse nearest neighbor queries on the SF
increases rapidly. On the other harfg,, increases witH@|, dataset, using the 24-sector partitioning

strengthening the pruning power of advanced indexes. Thus,

the cost of ranking queries increases at a slower rate.

(a) thresholding queries us  (b) ranking queries ven

cost of the methods as a functiontadndm respectively, when
w N using the 24-sector partitioning. For thresholding queries, the
performance gap between the 2D R—tree and other indexes
widens ag increases because of the increased pruning power
of the advanced indexes. On the other hand, the cost differ-
ences among the indexes are not sensitive to the value. of
As with previous queriesAUG prevails.

B CPU time
O votime

W CPUtime
O votime

query processing time (sec)

o N & o o 5
query processing time (sec)

o N & o ® B

siz eolD

(a) thresholding querles =0.005 (b) ranking queries;p =10 7/ DISCUSSION: RELAXING THE [INDEPEN-

Fig. 11. Spatial skyline queries on the SF dataset, varying DENCE ASSUMPTION
Q| Our analysis so far assumes that the existential probabilities
of objects are independent. This assumption is valid in a
Finally, we study the performance of the indexes for reverégrge number of applications (e.g., those mentioned in Section
nearest neighbor queries. Figure 12 shows the effect of the hence, our solutions have significant value in practice.
number of sectors in performance. When more sectors &ftewever, there are also other applications where the existential
used, tighter probability bounds are derived for the sectgpsobabilities of different objects are correlated. For example,
and hence the algorithm terminates faster. In particular, thensider a collection of sensors distributed in a forest for
96-sector partitioning achieves substantial cost reduction (owktecting wildfire. When a sensor detects smoke, sensors in
the basic 6-sector partitioning) for thresholding and rankirits neighborhood are likely to sense it as well. A thorough
gueries respectively. Observe that the cost starts convergingédution in this scenario falls out of the scope of this paper.
its final value with as few as 24 partitions. Figure 13 plots thdevertheless, in the sequel, we point out the direction towards
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extending the proposed algorithms and indexing schemesREFERENCES

support correlated existential probabilities. 1]
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extensions of spatial access methods (i.e., R—trees) where these

algorithms are applied. In addition, we discuss how complex

spatial queries such as spatial skyline queries and reverse
nearest neighbor queries can be processed in our framework.
Finally, we conducted extensive experiments to evaluate the
search algorithms and the corresponding spatial indexes. In
most of the tested cases, the data structure that performs
best is a R—tree, where non-leaf entries are augmented v
maximum existential probabilities of the sub-tree they poil
at. In the future, we plan to study in detail more advance
query types and extend our methods to apply on data that
both existentially and locationally uncertain, as well as resul
of fuzzy classifiers [1].
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