
IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 1

Efficient Evaluation of Probabilistic Advanced
Spatial Queries on Existentially Uncertain Data

Man Lung Yiu, Nikos Mamoulis, Xiangyuan Dai, Yufei Tao, Michail Vaitis

Abstract —We study the problem of answering spatial queries in databases where objects exist with some uncertainty and they are
associated with an existential probability. The goal of a thresholding probabilistic spatial query is to retrieve the objects that qualify the
spatial predicates with probability that exceeds a threshold. Accordingly, a ranking probabilistic spatial query selects the objects with
the highest probabilities to qualify the spatial predicates. We propose adaptations of spatial access methods and search algorithms for
probabilistic versions of range queries, nearest neighbors, spatial skylines, and reverse nearest neighbors and conduct an extensive
experimental study, which evaluates the effectiveness of proposed solutions.

Index Terms —H.2.4.h Query processing, H.2.4.k Spatial databases

✦

1 INTRODUCTION

Conventional spatial databases manage objects located on a
thematic map with 100% certainty. In real-life cases, however,
there may be uncertainty about the existence of spatial objects
or events. As an example, consider a satellite image, where
interesting objects (e.g., vessels) have been extracted (e.g., by
a human expert or an image segmentation tool). Due to low
image resolution and/or color definitions, the data extractor
may not be 100% certain about whether a pixel formation
corresponds to an actual objecto; a probability Eo could
be assigned too, reflecting the confidence ofo’s existence.
We call such objectsexistentially uncertain, since their exact
locations are known and the uncertainty refers only to their
existence. As another example of existentially uncertain data,
consider emergency calls to a police calling center, which are
dialed from various map locations. Depending on the caller’s
voice, for each call we can generate a spatial event associated
with a potential emergency and a probability that the emer-
gency is actual. Events generated from sensors (e.g., smoke
detection) can also be regarded as existentially uncertain data
because each sensor is associated with a certain location and
the existence of each detected event depends on the sensor
sensitivity and the background noise. Existential probabilities
are also a natural way to modelfuzzy classification[1]. In
this case, the class label of a particular object is uncertain;
each label has an existential probability and the sum of all
probabilities is 1.

• M. L. Yiu is with the Department of Computer Science, Aalborg University,
DK-9220 Aalborg, Denmark.
E-mail: mly@cs.aau.dk

• N. Mamoulis and X. Dai are with the Department of Computer Science,
University of Hong Kong, Pokfulam Road, Hong Kong.
E-mail: {nikos,xydai}@cs.hku.hk

• Y. Tao is with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong.
E-mail: taoyf@cse.cuhk.edu.hk

• M. Vaitis is with the Department of Geography, University of the Aegean,
Mytilene, Greece.
E-mail: vaitis@aegean.gr

Manuscript received XXXX XX, 200X; revised XXXX XX, 200X.

We can naturally define probabilistic versions of spatial
queries that apply on collections of existentially uncertain
objects. We identify two types of such probabilistic spatial
queries. Given aconfidencethresholdt, a thresholdingquery
returns the objects (or object pairs, in case of a join), which
qualify some spatial predicates with probability at leastt.
E.g., given a segmented satellite image with uncertain objects,
consider a port officer who wishes to find a set of vessels
S such that everyo ∈ S is the nearest ship to the port
with confidence at least30%. Another example is a police
station asking for the emergencies in its vicinity, which have
high confidence. Aranking spatial query returns the objects,
which qualify the spatial predicates of the query, in order of
their confidence. Ranking queries can also be thresholded (in
analogy to nearest neighbor queries) by a parameterm. For
instance, the port officer may want to retrieve them = 10
ships with the highest probability to be the nearest neighbor
of the port.

Previous work on managing spatial data with uncertainty
[2], [3], [4], [5], [6], [7] focus on locationally uncertain
objects; i.e., objects which are known to exist, but their
(uncertain) location is described by a probability density
function. The rationale is that the managed objects are actual
moving objects with unknown exact locations due to GPS
errors or transmission delays. In Section 2, we elaborate
the fundamental differences (e.g., location, existence, storage,
and probability computation) between existentially uncertain
objects and locationally uncertain objects, and explain why
existing solutions for managing and searching locationally
uncertain data are inappropriate for existentially uncertain
data. To our knowledge, there is no prior work on existentially
uncertain spatial data. Our contributions are summarized as
follows:

• We identify the class of existentially uncertain spatial data
and define two intuitive probabilistic query types on them;
thresholdingand ranking queries.

• Assuming that the spatial attributes of the objects are
indexed by 2-dimensional R–trees, we propose search



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 2

algorithms for probabilistic variants of spatial range
queries, nearest neighbor (NN) search, spatial skyline
(SS) queries, and reverse nearest neighbor (RNN) queries.

• Regarding different variants of R–trees, we derive ap-
propriate lower/upper probabilistic bounds for effectively
reducing the search I/O cost. Our search algorithms for
NN, SS, RNN are carefully designed to handle disquali-
fied entries in such a way that their removal is guaranteed
not to influence the probabilistic bounds of any potential
result object.

The rest of the paper is organized as follows. Section 2 pro-
vides background on querying spatial objects with uncertain
locations and extents. Section 3 defines existentially uncertain
data and query types on them. In Section 4 we study the
evaluation of probabilistic spatial queries, when they are pri-
marily indexed on their spatial attributes, or when considering
existential probability as an additional dimension. Section 5
addresses probabilistic variants for interesting advanced spatial
queries. Section 6 is a comprehensive experimental study for
the performance of the proposed methods. Section 7 discusses
the case where the existential probabilities of objects are
correlated. Finally, Section 8 concludes the paper with a
discussion about future work.

2 BACKGROUND AND RELATED WORK

In this section, we review popular spatial query types and
show how they can be processed when the spatial objects are
indexed by R–trees. In addition, we provide related work on
modeling and querying spatial objects of uncertain location
and/or extent.

2.1 Spatial Query Processing

The most popular spatial access method is the R–tree [8],
which indexes minimum bounding rectangles (MBRs) of ob-
jects. R–trees can efficiently process main spatial query types,
including spatial range queries, nearest neighbor queries, and
spatial joins. Figure 1 shows a collectionR = {p1, . . . , p8}
of spatial objects (e.g., points) and an R–tree structure that
indexes them. Given a spatial regionW , a spatial range query
retrieves fromR the objects that intersectW . For instance,
consider a range query that asks for all objects within distance
3 from q, corresponding to the shaded area in Figure 1. Starting
from the root of the tree, the query is processed by recursively
following entries, having MBRs that intersect the query region.

p
1

p
2 p

3

p
4

p
5

p
6

p
7

p
8

x

y

(0.1)

(0.3)

(0.5)
(0.2)

(0.2)

(0.5)

(0.1)

(0.9)

q
p

2
p

3
p

1
p

8
p

7
p

4
p

5
p

6

e
1
e

2
e

3

 

 

p
1

p
2 p

3

p
4

p
5

p
6

p
7

p
8

x

y

q
p

2
p

3
p

1
p

8
p

7
p

4
p

5
p

6

e
1

e
2

e
3

5 10 15

5

10

15

e .MBR
2

e .MBR
1

e .MBR
3

 

Fig. 1. Spatial queries on R–trees

A nearest neighbor (NN) query takes as input a query object
q and returns the closest object inR to q. For instance, the
NN of q in Figure 1 isp7. If R is indexed by an R–tree,
then thebest-first(BF) algorithm of [9] is the most efficient
solution for processing NN queries. Abest-firstpriority queue
PQ, which organizes R–tree entries based on the (minimum)
distance of their MBRs toq, is initialized with the root entries.
The top entry of the queuee is then retrieved; ife is a leaf
node entry, the corresponding object is returned as the NN
(assuming point objects). Otherwise, the node pointed bye is
accessed and all entries are inserted toPQ. In order to find
the NN of q in Figure 1, BF first inserts toPQ entriese1,
e2, e3, and their distances toq. Then the nearest entrye2 is
retrieved fromPQ and objectsp1, p7, p8 are inserted toPQ.
The next nearest entry inPQ is p7, which is the NN ofq.
In Section 4, we will extend BF for processing probabilistic
versions of NN search on existentially uncertain data.

2.2 Locationally Uncertain Spatial Data

Recently, there is an increasing interest on the modeling,
indexing, and querying of objects with uncertain location
and/or extent. For instance, consider a collection of moving
objects, whose positions are tracked by GPS devices. Exact
locations are unknown due to GPS errors and transmission
delays; e.g., if the object is in motion its location might be
outdated when reaching the listening server. As a result, the set
of possible locations of an object is captured by a probability
density function (PDF), which combines GPS measurement
error, the last reported object location, and object velocity
[2]. Figure 2a exemplifies a locationally uncertain objecto1,
modeled by a 2D Gaussian PDF, with the regions of higher
probability marked in darker color. According to [10], [7],
an arbitrary PDF can be approximated by a spatial histogram
(e.g., 3 × 3 bins in Figure 2a), where each bin stores the
probability to include the object, and their sum equals to 1.

0

o
1

x

y

0.05 0.05

0.050.05

0.10 0.10

0.10

0.10

0.40

0

o
1

x

y

W

l x

_
l x

+

l y

_

l y
+

(a) loc. uncertain PDF (b) PCR ofo1, at g = 0.2

0

x

y

q

o
1

o
2

o
3

o
4

r

λλλλ

 0

x

y

q

o
1

o
2

o
3

o
4

(0.1)

W

(0.2)

(0.3)

(0.9)

 

(c) NN search (d) existentially uncertain object

Fig. 2. Locationally and Existentially Uncertainty Objects



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 3

TABLE 1
Fundamental Differences between Two Notions of

Uncertainty

Property Locationally Existentially
Uncertain Object Uncertain Object

Location uncertain certain
Existence certain uncertain
Storage a spatial histogram a pointo with

existence probabilityEo
Probability expensive constant time
computation numerical integration constant time

Given a locationally uncertain objecto and a query rangeW
(see Figure 2b), the probability thato intersects a query range
W is formally defined by:Prng(o,W ) =

∫
o∩W o.pdf(v) dv

whereo.pdf(v) denotes the probability thato coincides with
point v. Probabilistic threshold range queries [10], [7] retrieve
result pairs〈o, Prng(o,W )〉 such thatPrng(o,W ) ≥ t, where
t is a user-specified threshold. The filter-refinement framework
is adopted to accelerate their evaluation. An inexpensivefilter
stepis applied to determine fast whether an objecto can belong
to the result. Only wheno may potentially become a result, the
refinementstep is executed to compute thePrng(o,W ) value.
In the state of the art method of [7]probabilistic constrained
rectangle(PCR) is used for the filter step of the queries. Given
a system parameterg, modeling a minimum value fort, the
PCR of a 2D objecto is pre-computed by sliding each axis-
parallel line inwards until the swept area over the PDF of
o equals tog. Figure 2b illustrates the PCR of an object
o1, for g = 0.2; o1 appears in the region on the left of
line l−x with probability 0.2. Similarly,o1 appears in regions
on the right/bottom/top of linesl+x /l−y /l+y respectively, with
probability 0.2. To answer the threshold range queryW (with
t = 0.5), we first compareW with the linesl−x /l+x /l−y /l+y . Since
W does not intersect the PCR ofo1 (i.e., it is above linel+y ),
we can immediately infer thatPrng(o1,W ) ≤ 0.2 < t. Thus,
o1 is discarded during the filter step of queryW , saving the
expensive computation of the exact probabilityPrng(o1,W ).

Table 1 summarizes the fundamental differences between
locationally uncertain objects and existentially uncertain ob-
jects. As depicted in Figure 2d, an existentially uncertain
objecto3 has a certain location (i.e., a point) but its existence
is associated with a probabilityEo3=0.3. The probability of
o3 satisfying a range queryW is Prng(o3,W ) = Eo3 if
o1 intersectsW ; or 0 otherwise. Thus,Prng(o3,W ) can be
computed in constant time.

One may argue that an existentially uncertain pointo with
existence probabilityEo could be modeled as a location-
ally uncertain object with the PDF consisting of exactly 2
locations: one pointo with probability Eo, and a point at
infinity with probability (1−Eo). This model encumbers the
application of existing locationally uncertain techniques [10],
[7], because they assume multiple locations with probabili-
ties and the continuity of PDF in the space. Consider, for
instance, the probabilistic NN search algorithm for locationally
uncertain data, proposed in [6]. Given a query pointq and
a set R of locationally uncertain objects, we can derive
λ = mino∈Rmaxd(q, o), i.e., the minimum furthest distance
of anyo from q. For instance, in Figure 2c, the objecto1 leads

to the minimumλ. Since the PDF ofo1 sums to 1 within the
circle (centered atq with radiusλ), it is clear that, any object
o′′ (e.g., o4) with mind(q, o′′) > λ has no chance of being
the NN of q. For any remaining objecto (e.g.,o1, o2, o3), its
probability of being the NN ofq is denoted byPnn(o, q).
Assuming independent PDFs between different objects, [6]
definePnn(o, q) as follows:

Pnn(o, q) =

Z λ

mind(q,o)

o.pdf(�q(r)) ·
Y

o′∈R,o′ 6=o,mind(q,o′)≤λ

(1− o′.pdf(⊗q(r))) dr

where�q(r) and⊗q(r) represent the hollow ring and the
concrete circle respectively, centered atq with radiusr. The
evaluation of the above probability is expensive for arbitrary
PDFs so [6] focuses on basic PDFs and develops efficient com-
putation techniques forPnn(o, q). Note that the above prob-
abilistic NN search technique is inapplicable to existentially
uncertain data. Figure 2d depicts a set of existentially uncertain
objects, with a similar spatial configuration as in Figure 2c. In
this case,o1 is still the object causing the minimumλ value.
However, since its existence probability is not 1, it cannot be
used to bound the search space. For instance, the objecto4 now
has non-zero probability of being the NN ofq; this happens
with the probability(1 − 0.1)(1 − 0.2)(1 − 0.3)0.9 = 0.454,
wheno4 exists buto1, o2, o3 do not exist.

Other work on locationally uncertain data includes indexing
the trajectory of an object as a cylindrical volume around the
tracked polyline (e.g., by a GPS), capturing uncertainty up to
a certain distance from the polyline [11]. A similar approach
is followed in [3], where recorded trajectories are converted
to sequences of locations connected by elliptical volumes. [5]
also models the uncertain locations of spatial objects by (circu-
lar) uncertainty regions and discuss how to process simple and
aggregate spatial range queries using the fuzzy representations.
[4] studies the evaluation of spatial joins between two sets of
objects, for the case where the object extents are ‘floating’
according to uncertainty distance bounds. An extension of the
R–tree that captures uncertainty in directory node entries is
proposed, and R–tree join techniques are adapted to process
the join efficiently. Cheng et al. [12], [10] study a problem
related to probabilistic spatial range queries. The uncertain
data are not spatial, but ordinal 1D values (e.g., temperature
values recorded from sensors). [10] indexes such uncertain
data for efficient evaluation of probabilistic range queries. [12]
classifies queries on such data toentity-basedqueries asking
for the set of objects satisfying a query predicate andvalue-
basedqueries asking for a PDF describing the distribution of
a query result when it is a single aggregate value (e.g., the
sum of values, the maximum value, etc.). Finally, [13] studies
the evaluation of queries over uncertain or summarized data,
where the user specifies thresholds (precision, recall, laxity)
regarding the quality (i.e., accuracy) of the desired result.

3 EXISTENTIALLY UNCERTAIN SPATIAL DATA

An object x is existentiallyuncertain if its existence is de-
scribed by a probabilityEx, 0 < Ex ≤ 1. We refer toEx as
existential probabilityor confidenceof x. Note that since we



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 4

p
1

p
2 p

3

p
4

p
5

p
6

p
7

p
8

x

y

(0.1)

(0.3)

(0.5)
(0.2)

(0.2)

(0.5)

(0.1)

(0.5)

q

W

5 10 15

5

10

15

y

Fig. 3. NN search example

can haveEx = 1, we (trivially) regard a 100% known object
x as existentially uncertain. This allows us to model object
collections which are mixtures of uncertain and certain data.
On the other hand,Ex = 0 corresponds to an objectx that
definitely does not exist, so there is no need to store it in a data-
base. We take theexistential independence assumptionthat the
confidence values of two different objects are independent of
each other. This assumption is reasonable for the applications
mentioned in the Introduction (e.g., satellite image extraction,
emergency call). We will relax this assumption in Section 7
and handle existentially uncertain objects whose confidence
values are correlated.

Figure 3 shows a collectionR = {p1, p2, . . . , p8} of
existentially uncertain points. Next to each point labelpi, is
its existential probabilityEpi enclosed in parentheses (e.g.,
Ep1 = 0.2). We are interested in answering spatial queries
that take uncertainty into account. LetR be a collection of
existentially uncertain objects. We then define probabilistic
versions of basic spatial query types:

Definition 1: A probabilistic spatial range querytakes as
input a spatial regionW and returns all(x, Px) pairs, such
that x ∈ R and x intersectsW with probability Px = Ex,
wherePx > 0.

Definition 2: A probabilistic nearest neighbor querytakes
as input an objectq and returns all(x, Px) pairs, such that
x ∈ R and x is the nearest neighbor ofq, with probability
Px = Ex ·

∏
x′∈R,x′ 6=x,d(q,x′)<d(q,x)(1− Ex′), wherePx > 0

and d(q, x) denotes the distance betweenq and x.
The output of a probabilistic query is a conventional query

result coupled with a positive probability that the item satisfies
the query. The case of probabilistic range queries is simple;
Px = Ex for each object that qualifies the spatial predicate.
Consider, for instance, the shaded windowW , shown in
Figure 3. Two objectsp1 andp2 intersectW , with confidences
Ep1 = 0.2 andEp2 = 0.5, respectively. Similar to locationally
uncertain data, the probability of an objectx to qualify a spa-
tial range query is irrelevant of the locations and confidences
of other objects.

On the other hand, the probability of an object to be the
nearest neighbor depends on the locations and probabilities of
other objects. Consider again Figure 3 and assume that we
want to find the potential nearest neighbor ofq. The nearest
point to q (i.e., p7) is the actual NN iff p7 exists. Thus,
(p7, Ep7) is a query result. In order for the second nearest point
p6 to be the NN ofq (i) p7 mustnotexist and (ii)p6 must exist.

Thus,(p6, (1−Ep7)·Ep6) is another result. By continuing this
way, we can explore the whole set of points inR and assign
a probability to each of them to be the NN ofq. This nearest
neighbor query example not only shows the search complexity
in uncertain data, but also unveils that the result of probabilistic
queries may be arbitrarily large. For instance, the result of
any NN query is as large as|R|, if Ex < 1 for all x ∈ R.
We can define practical versions of probabilistic queries with
controlled output by eitherthresholding the results of low
probability to occur orranking them and selecting the most
probable ones:

Definition 3: Let(x, Px) be an output item of a probabilis-
tic spatial queryQ. The thresholdingversion ofQ takes as
additional input a thresholdt, 0 < t ≤ 1 and returns the
results for whichPx ≥ t. The ranking version ofQ takes as
additional input a positive integerm and returns them results
with the highestPx.

For example, a thresholding range (window) queryW with
t = 0.6 on the objects of Figure 3 returns∅, whereas a ranking
range queryW with m = 1 returns(p2, 0.5).

4 EVALUATION OF BASIC PROBABILISTIC
QUERIES

Like spatial queries on exact data, probabilistic spatial queries
can be efficiently processed with the use of appropriate access
methods. In this section, we explore alternative indexing
schemes and propose algorithms for probabilistic queries on
them. We focus on the most important spatial query types;
namely, range queries and nearest neighbor queries.

4.1 Algorithms for 2D R–trees

The most straightforward way to index a setR of existentially
uncertain spatial data is to create a 2-dimensional R–tree on
their spatial attribute. The confidences of the spatial objects
are stored together with their geometric representation or
approximation (for complex objects) at the leaves of the tree.
We now study the evaluation of probabilistic queries on top
of this indexing scheme.

4.1.1 Range Queries

Probabilistic range queries can be easily processed in two
steps; a standard depth-first search algorithm is applied on the
R–tree to retrieve the objects that qualify the spatial predicate
of the query. For each retrieved objectx, Px = Ex. If the query
Q is a thresholding query, the thresholdt is used to filter out
objects withPx < t.1 If Q is a ranking query, a priority queue
maintains them results with the highestPx, during search, and
outputs them at the end of query processing.

1. Especially for thresholding range queries of very large thresholdst, a
viable alternative could be to use a B+–tree that indexes objects based on
their probability to efficiently access the objectsx with Ex ≥ t and then
filter them using the spatial query predicate.



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 5

4.1.2 Nearest neighbor search
NN search is more complex compared to range queries,
because the probability of an object to qualify the query
depends on the locations and confidences of other objects.
Algorithm 1 elegantly and efficiently computes the probability
Px of x to be nearest neighbor ofq, for all x havingPx > 0.

Algorithm 1 Probabilistic NN on a 2D R–tree
Algorithm PNN2D(Query pointq, 2D R–tree onR)

1: P first := 1; . Prob. of no object beforex
2: while P first > 0 and more objects inR do
3: x := next NN of q in R;
4: Px := P first · Ex;
5: output (x,Px);
6: P first := P first · (1− Ex);

Algorithm PNN2D applies best-first NN-search [9] on the
R–tree to incrementally retrieve the nearest neighbors ofq,
without considering confidences. It also incrementally main-
tains a variableP first which captures the probability that
no object retrieved before the current objectx is the actual
NN. P first is equal to

∏
y(1 − Ey), for all objectsy seen

beforex. Thus the probability ofx to be the nearest neighbor
of q is P first · Ex. In the example of Figure 3, PNN2D
gradually computesPp7 = 0.1, Pp6 = (1− 0.1) · 0.1 = 0.09,
Pp8 = (1− 0.1)(1− 0.1) · 0.2 = 0.162, Pp4 = (1− 0.1)(1−
0.1)(1 − 0.2) · 0.5 = 0.324, etc. Note thatall objects ofR
in this example are retrieved and inserted to the response set.
In other words, PNN2D does not terminate, until an objectx
with Ex = 1 is found; if no such object exists, all objects
have a positive probability to be the nearest neighbor.

4.1.2.1 Thresholding and ranking: As discussed in Sec-
tion 3, the user may want to restrict the response set by thresh-
olding or ranking. Algorithm 2 is the thresholding version
of PNN2D, which returns only the objectsx with Px ≥ t.
The only differences with the non-thresholding version are
the termination condition at Line 2 and the filtering of results
havingPx < t (Line 5). As soon asP first < t, we know that
the next objects, even with 100% confidence cannot be the
NN of q, so we can safely terminate. For example, assume
that we wish to retrieve the points in Figure 3 which are
the NN of q with probability at leastt = 0.23. First p7

with Pp7 = Ep7 = 0.1 is retrieved, which is filtered out at
Line 5 andP first is set to0.9 ≥ t. Then we retrievep6

with Pp6 = P first · Ep6 = 0.09 (also disqualified) and set
P first = 0.81 ≥ t. Next, p8 is retrieved withPp8 = 0.162
(also disqualified) andP first = 0.648 ≥ t. The next object
p4 satisfiesPp4 = 0.324 ≥ t, thus(p4, 0.324) is output. Then
P first = 0.324 ≥ t and we retrievep3 with Pp3 = 0.0972
(disqualified). Finally,P first = 0.2268 < t and the algorithm
terminates having produced only(p4, 0.324).

PRNN2D (Algorithm 3), the ranking version of PNN2D,
maintains a heapH of m objects with the largestPx found
so far. Let Pm be them-th largestPx in H; as soon as
P first < Pm, we know that the next objects, even with
100% confidence cannot be the in the set ofm most probable
NN of q, so we can safely terminate. For example, assume
that we wish to retrieve the point with the highest probability
of being the NN ofq in Figure 3. PRNN2D progressively

Algorithm 2 Probabilistic NN on a 2D R–tree with thresh-
olding

Algorithm PTNN2D(Query pointq, 2D R–tree onR, Thresholdt)
1: P first := 1; . Prob. of no object beforex
2: while P first ≥ t and more objects inR do
3: x := next NN of q in R;
4: Px := P first · Ex;
5: if Px ≥ t then
6: output (x,Px);
7: P first := P first · (1− Ex);

maintains the object with the highestPx. After each of the first
4 object accesses,Pm becomes0.1, 0.1, 0.162, and0.324. The
algorithm terminates after the 4-th loop, whenP first = 0.324
andPm = Pp4 = 0.324; this indicates that the next object can
havePx at mostPp4 , thusp4 has the highest chances among
all objects to be the NN ofq.

Algorithm 3 Probabilistic NN on a 2D R–tree with ranking
Algorithm PRNN2D(Query pointq, 2D R–tree onR, Integerm)

1: P first := 1; . Prob. of no object beforex
2: H := ∅; . heap ofm objects with highestPx
3: Pm := 0; . Px of m-th object inH
4: while P first ≥ Pm and more objects inR do
5: x := next NN of q in R;
6: Px := P first · Ex;
7: if Px ≥ Pm then
8: updateH to includex;
9: Pm := m-th probability inH;

10: P first := P first · (1− Ex);

4.2 Query Evaluation using Augmented R–trees

We can enhance the efficiency of the probabilistic search
algorithms, by augmenting some statistical information to the
R–tree directory node MBRs. A simple and intuitive method
is to store with each directory node entrye a valueemaxE ;
the maximumEx for all objectsx indexed undere. This value
can be used to prune R–tree nodes, while processing thresh-
olding or ranking queries. Similar augmentation techniques are
proposed in [4], [10] for locationally uncertain data.

TABLE 2
Checking disqualified entries in augmented 2D R–trees

query type range search NN search

thresholding emaxE < t P first · emaxE < t
ranking emaxE ≤ Pm P first · emaxE ≤ Pm

Table 2 summarizes the conditions for pruning R–tree
entries (and the corresponding sub-trees) which do not point
to any results, during range or NN thresholding and ranking
queries. For range queries, we can directly prune an entrye
when: (i) e.MBR does not intersect the query range, or (ii) its
emaxE satisfies the condition in the table. On the other hand,
for NN search, a disqualified entry cannot be directly pruned,
because the confidences of objects in the pointed subtree may
be needed for computing the probabilities of objects with
greater distances toq, but high enough probabilities to be
included in the result.



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 6

Let us assume for the moment that for each non-leaf
entry e we know the exact number of objectsenum in its
subtree. Algorithm 4 is the thresholding NN procedure for the
augmented 2D R–tree. BF is extended as follows: If a non-leaf
entry e is de-heaped for whichP first · emaxE < t, the node
where e points is not immediately loaded (as in PTNN2D)
but e is inserted into a setL of deletedentries. For objects
x retrieved later from the Best-First heap, we use entries in
L to computePminx andPmaxx ; lower and upper bounds for
Px. If Pminx ≥ t, we know thatx is definitely a result. If
Pmaxx < t, we know thatx is definitely not a result. On the
other hand, ifPminx < t ≤ Pmaxx (Lines 6–12), we must
refine the probability range forx. For this purpose, we pick
the entrye with the minimummind(q, e) in L.2 Observe that
any entries withmind(q, e) > d(q, x) cannot contribute to the
probability of x. As Pminx < Pmaxx (at Line 6), the entrye
selected at Line 7 must satisfymind(q, e) ≤ d(q, x). If e is an
object, thenq must be nearer toe thanx and we updateP first

with the confidence ofe. Otherwise, its confidence does not
affectP first, we access its child nodene and insert all entries
of ne into L. In either case, the probability range ofx shrinks.
The process is repeated while the range coverst.

Algorithm 4 Probabilistic NN on an augmented 2D R–tree
with thresholding

Algorithm PTNN2Daug(Query pointq, Augmented 2D R–tree onR,
Thresholdt)

1: P first := 1; . Prob. of no object beforex
2: L := ∅; . list of disqualified entries
3: while P first ≥ t and more objects inR do
4: x := next NN of q in R;

. during BF-search, each non-leaf entry withP first · emaxE < t is
removed from Best-First heap and inserted intoL

5: computePminx andPmaxx by usingP first, L andEx;
6: while Pminx < t ≤ Pmaxx do
7: pick the entrye with the smallestmind(q, e) in L; removee

from L;
8: if e is an objectthen . e is an object closer toq thanx is
9: P first := P first · (1− Ee);

10: else
11: read nodene pointed bye and insert all entries ofne into L;
12: computePminx andPmaxx by usingP first, L andEx;
13: if Pminx ≥ t then
14: output (x,Pminx ,Pmaxx );
15: P first := P first · (1− Ex);

It remains to clarify howPminx andPmaxx for an objectx are
computed. Note thatL only contains entries whose minimum
distance toq are smaller thand(q, x). For an entrye in the list
L, the confidence of each object in its subtree is in the range
(0, emaxE ]. In addition, there exists at least one object ine
whose confidence is exactlyemaxE . Thus,Pminx corresponds
to the case where for all objects under all entries inL are
closer toq thanx is and they all have the maximum possible
confidences.Pmaxx corresponds to the case, where for alle ∈
L, with maximum distance fromq greater thand(q, x), there
is only one object withemaxE confidence (for all other objects

2. Throughout the paper, we used(q, x) to denote the distance between two
points q and x; and usemind(q, e) (maxd(q, e)) to denote the minimum
(maximum) possible distance betweenq and any data point indexed by the
sub-tree pointed bye.

undere the confidence converges to0):

Pmin
x = P first · Ex ·

Y
e∈L ∧ mind(q,e)≤d(q,x)

(1− emaxE)e
num

(1)

Pmax
x = P first · Ex ·

Y
e∈L ∧ maxd(q,e)≤d(q,x)

(1− emaxE) (2)

So far, we have assumed that for each non-leaf entrye the
number of objectsenum in its subtree is known (e.g., this
information is augmented, or the tree is packed). We can still
apply the algorithm for the case where this information is not
known, by using an upper bound forenum: f level(e), where
level(e) is the level of the entrye (leaves are at level0)
andf is the maximum R–tree node fanout. This upper bound
replacesenum in Equation 1.

5 10 15  

p
1

p
2 p

3

p
4

p
5

p
6

p
7

p
8

x

y

(0.1)

(0.3)

(0.5)
(0.2)

(0.2)

(0.5)

(0.1)

(0.5)

q
p

2
p

3
p

1
p

8
p

7
p

4
p

5
p

6

e
1

e
2

e
3

(0.1)(0.2)(0.5)(0.3) (0.2) (0.1)(0.5)(0.5)

e .MBR
2

e .MBR
1

e .MBR
3

(0.5)(0.2)(0.5)

5 10 15

5

10

15

 

Fig. 4. Example of augmented 2D R–tree

Let us now show the functionality of the PTNN2Daug
algorithm by an example. Consider the augmented R–tree of
Figure 4 that indexes the pointset of Figure 3 and assume that
we want to find the points that are the NN ofq with probability
at leastt = 0.23. First, the entries in the root are enheaped
in the Best-First heap. Next, the entrye2 is dequeued. Since
it disqualifies the query (P first · emaxE2 = 0.2 < t), it
is inserted into the listL. Then, the entrye3 is dequeued.
Its objectsp4, p5, p6 are enheaped in the Best-First Queue.
The nearest objectp6 is dequeued. From Equations 1 and
2, we derive a probability range forPp6 by using P first

and L. p6 is disqualified asPmaxp6 = Ep6 = 0.1 < t.
Then,P first = 0.9 ≥ t and we retrievep4. SincePminp4 =
0.9 · 0.5 · (1 − 0.2)3 = 0.2304 ≥ t, p4 is a result. Next,
P first = 0.45 ≥ t and the next entry retrieved from the
priority queue of the BF algorithm ise1. We do not access
the node pointed bye1, since we know that for each objectx
indexed undere1, Px ≤ emaxE1 · P first = 0.225 < t. Thus,
e1 is inserted intoL. Next, p5 is dequeued and discarded as
Pmaxp5 = 0.45 · 0.5 · (1− 0.2) · (1− 0.5) < t. Now, the Best-
First heap becomes empty and the algorithm terminates. Note
that PTNN2D accesses all nodes of the tree in this example,
whereas PTNN2Daug saves two leaf node accesses.

RankingNN retrieval on the augmented R–tree is performed
by Algorithm 5. PRNN2Daug has several differences from the
thresholding NN algorithm. A heapH is employed to organize
objectso by theirPmino . Pm denotes them-th highestPmino in
the heap. Observe that more complicated techniques are used
for updatingH, as the accesses toL may affect the order of
objects inH. Each objecto in H maintainsP firsto , which is
the value ofP first wheno is enheaped (Line 18). At Lines 12–



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 7

Algorithm 5 Probabilistic NN on an augmented 2D R–tree
with ranking

Algorithm PRNN2Daug(Query pointq, Augmented 2D R–tree onR,
Integerm)

1: P first := 1; . Prob. of no object beforex
2: L := ∅; . list of disqualified entries
3: H := ∅; . heap of objects, organized byPmino
4: Pm := 0; . Pmin of m-th object inH
5: while P first > Pm and more objects inR do
6: x := next NN of q in R;

. during BF-search, each non-leaf entry withP first · emaxE < t is
removed from Best-First heap and inserted intoL

7: computePminx andPmaxx by usingP first, L andEx;
8: while Pminx < Pm ≤ Pmaxx do
9: pick the entrye with the smallestmind(q, e) in L; removee

from L;
10: if e is an objectthen . e is an object closer toq thanx is
11: P first := P first · (1− Ee);
12: for all entry o ∈ H such thatd(q, e) ≤ d(q, o) do
13: P firsto := P firsto · (1− Ee);
14: else
15: read nodene pointed bye and insert all entries ofne into L;
16: computePminx andPmaxx by usingP first, L andEx;
17: if Pminx > Pm then
18: enheap(H,(x,P firstx :=P first,Pminx ,Pmaxx ));
19: if H is changed orL is changedthen
20: recompute, for eacho ∈ H, Pmino andPmaxo by usingP firsto ,

L andEo;
21: Pm := m-th Pmin in H;
22: remove entrieso from H with Pmaxo < Pm;
23: P first := P first · (1− Ex);
24: while |H| > m and |L| > 0 do
25: apply Lines 9–16;
26: apply Lines 20–22;
27: removee from L with mind(q, e) > max{d(q, o) : o ∈ H};

13, P firsto (for some entries inH) is updated for each object
e found no further thano from q. The newP firsto value is
used to updatePmino and potentially the order of objects inH
at Lines 20–21. Note thatH may store more thanm entries,
since there may be objectso in it satisfyingPmaxo ≥ Pm ≥
Pmino . However, entrieso are removed fromH oncePmaxo <
Pm. The algorithm does not need to access any more objects
from the Best-First heap as soon asP first < Pm. In caseH
has more thanm objects at that point, we need to refine the
probability ranges of the objects inH (by processing entries in
L) until we have the bestm objects. In this case, entriese are
removed fromL oncemind(q, e) > max{d(q, o) : o ∈ H}
because such entries cannot be used to refine the probability
ranges of the objects inH.

4.3 Query Evaluation using 3D R–trees

An alternative method for indexing existentially uncertain data
is to model the confidencesEx of objectsx as an additional
dimension and use a 3D R–tree to index the objects. Now,
each non-leaf entrye in the tree, apart from the spatial
dimensions, has a range[eminE , emaxE ] within which the
existential probabilities of all objects in its subtree fall.

Figure 5 illustrates the differences between the augmented
2D R–tree and the 3D R–tree. Figure 5a depicts the structure
of the augmented 2D R–tree for the pointsp1, p2, · · · , p6.
The R*–tree insertion algorithm [14] aims at grouping the
points into leaf nodes such that the their MBR areas are

minimized. As such, the (non-leaf) entrye1 points to a leaf
node containing the pointsp1, p2, p3; whereas the entrye2
points to a leaf node containing the pointsp4, p5, p6. The
spatialX, Y ranges, and the augmented probability, for these
two entries in the augmented 2D R–tree are listed in Figure
5c. Note that each entry consists of 6 values (including its
child node pointer). Figure 5b shows the structure of the
3D R–tree, for the same set of points. The R*–tree insertion
optimizes the bounding rectangles of nodes defined by three
dimensions: spatial dimensionsX and Y , as well as the
probability dimensionE. Hence, the entrye1 points to a leaf
node containing the pointsp1, p2, p5; whereas the entrye2
points to a leaf node containing the pointsp3, p4, p6. The
values stored in these entries in the 3D R–tree are also listed in
Figure 5c. Now, each entry consists of 7 values (including its
child node pointer), implying that the fanout of the 3D R–tree
is slightly smaller than the augmented 2D R–tree.

The methods for processing the probabilistic range and NN
queries over the augmented 2D R–tree (in Section 4.2) are
applicable for the 3D R–tree, since each tree entry still stores
an emaxE value. In particular, for the NN query, we utilize
eminE to derive tighter probability ranges:

Pmin
x = P first · Ex · (3)Y

e∈L ∧ mind(q,e)≤d(q,x)

(1− eminE)(1− emaxE)(e
num−1)

Pmax
x = P first · Ex · (4)Y

e∈L ∧ maxd(q,e)≤d(q,x)

(1− eminE)(e
num−1)(1− emaxE)

If the exact numberenum of objects in the subtree pointed by
e is not known, we can use the fanoutf and the minimum node
utilization (0.4 for R*–trees) and replaceenum by f level(e) in
Equation 3 and by(0.4 · f)level(e) in Equation 4.

0

p
2

p
1 p

6

p
4

p
3

p
5

y

(0.5)

(0.9)

(0.8)

(0.7)

(0.6)

(0.3)

x

e
1 e

2

1

1

 0

p
2

p
1 p

6

p
4

p
3

p
5

y

(0.5)

(0.9)

(0.8)

(0.7)

(0.6)

(0.3)

x

e
1

e
2

1

1  

(a) Augmented 2D R–tree (b) 3D R–tree

Name Entry e1 Entry e2 Grouping Fields
Aug. X=[0.15,0.40] X=[0.55,0.85] Spatial 6
2D R–tree Y =[0.20,0.60] Y =[0.30,0.80] only (1+4+1)

maxE=0.80 maxE=0.90
3D R–tree X=[0.15,0.70] X=[0.40,0.85] Both 7

Y =[0.20,0.60] Y =[0.40,0.80] spatial and (1+4+2)
E=[0.30,0.60] E=[0.70,0.90] probabilities

(c) Comparison between the two trees

Fig. 5. Structures of different R–tree variants

Interestingly, the query performance of the 3D R–tree is not
necessarily better than the augmented 2D R–tree. A careful
examination of Equations 3,4 reveals that these probability
bounds are determined by both the spatial and probabilistic
intervals of the entries. Even theeminE values in the 3D
R–tree are helpful for tightening the bounds, this effect is



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 8

counteracted by the large spatial bounding rectangles in the
tree. Thus, more (disqualified) entriese ∈ L satisfy the
mind(q, e) ≤ d(q, x) condition in Equation 3 and fewer
entriese ∈ L satisfy themaxd(q, e) ≤ d(q, x) condition in
Equation 4. Hence, the final probability bounds for the 3D R–
tree may indeed become looser. Besides, the 3D R–tree has a
slightly smaller fanout, which may lead to more page accesses.

5 ADVANCED SPATIAL QUERIES

In this section, we discuss probabilistic variants of spatial sky-
line queries [15] and reverse nearest neighbor queries [16], due
to their applications in spatial decision support systems. For
each query type, we first present its background, then define its
probabilistic variant, and finally develop corresponding query
algorithms for the thresholding and ranking versions.

5.1 Spatial Skyline Queries

Given a setQ of query points (e.g., user locations) and two
pointsp andp′ (e.g., two facilities),p spatially dominates[15]
p′ when all query points inQ are closer top than top′:

∀ q ∈ Q, d(q, p) ≤ d(q, p′) (5)

Given a point datasetR, its spatial skyline[15] (with respect
to Q) contains the objectsp ∈ R that are not spatially
dominated by any other object inR. As an example, consider
the distances of the stationspi ∈ R from a group of 2 users
Q = {q1, q2} in Figure 6a. The spatial skyline containsp1,
p2, andp3. The main application of spatial skyline queries is
to discover facilities that are not farther than other facilities,
for all users.

distance to0

p
2

p
3

p
1 p

6

p
7

p
4

p
5

q
1

distance to
q

2

(0.5)

(0.4)

(0.9)

(0.8)

(0.7)

(0.6)

(0.3)

 

distance to0

(e  )
1

q
1

distance to
q

2

ψ

(e  )
1

ψ
+

(e  )
1

ψ
–

(e  )
2

ψ
(e  )

3
ψ

 

(a) a point set (b) dominance relationship

Fig. 6. Feature space defined by the distances from query
points

To ease our discussion, we first introduce some notation.
The spatial skyline query is formulated in afeature spacein
which each dimension captures the distance to a query point.
Given a setQ = {q1, q2, · · · , qz} of query points, a spatial
location (i.e., data point)p (or a MBR e) can be mapped to a
pointψ(p) (or a MBRψ(e)) in a z-dimensionalfeaturespace,
where thei-th dimension captures the distances of the points
to qi (for i ∈ [1, z]). Table 3 illustrates the mapping of a data
point or an MBR (corresponding to a non-leaf R–tree entry,
assuming that the data points are indexed by an R–tree) to this
feature space.

As a shorthand notation, we useψ(p) � ψ(p′) to mean that
p spatially dominatesp′. Let ψ−(e) andψ+(e) be the lower

TABLE 3
Mapping from the original space to the feature space

Original space Feature spaceψ(·), i-th dimension
Point p d(qi, p)
MBR e [mind(qi, e),maxd(qi, e)]

and upper bound corners of the MBRψ(e) respectively (see
Figure 6b). Sinceψ+(e2) � ψ−(e1), each point ine2 must
spatially dominate all points ine1. On the other hand, only
some point ine3 may spatially dominate some points ine1 as
ψ−(e3) � ψ+(e1) andψ+(e3) � ψ−(e1).

With the above mapping technique, [17] propose an R–
tree based algorithm for computing the dynamic skyline in
the feature space. The idea is to apply the best-first search
algorithm [9] on the R–tree to visit the entriese, from the
origin 0z in the feature space, in ascending order of the value:

ωQ(e) =
∑
q∈Q

mind(q, e) (6)

[17] proved that a point must be discovered earlier than the
points it dominates (if any). Hence, a pointp is reported as a
result if it cannot be dominated by any examined points. We
then adapt the above algorithm for the probabilistic spatial
skyline query.

5.1.0.2 Probabilistic spatial skyline query and its prop-
erties: For existentially uncertain data, a pointx is a query
result with probability:

Px = Ex ·
∏

x′∈R ∧ ψ(x′)�ψ(x)

(1− Ex′) (7)

which corresponds to the case thatx exists and the points
dominatingx do not exist. Aprobabilistic spatial skyline query
takes as input a setQ of query points and returns all(x, Px)
pairs, such thatx ∈ R and x belongs to the spatial skyline
of Q with probabilityPx > 0. For instance, in Figure 6a, we
havePp4 = 0.8 · (1 − 0.6) = 0.32 becausep2 dominatesp4.
Since no points dominatep2, we derivePp2 = 0.6 · 1 = 0.6.
The probability of other points can be computed in a similar
way.

In Section 4.1.2, we used a single variableP first to
incrementally compute the upper bound probability for the
remaining objects to be examined. This technique is inap-
plicable to the spatial skyline query, since the points visited in
decreasing order from the origin do not necessarily influence
the points that will be visited next. For instance, the existence
of point p2 in Figure 6a does not influence the probability that
p1 (which is further thanp2 from the origin and will be visited
next) is in the skyline. However, it influencesp4, sincep4 is
dominated byp2. In general, given a setS ⊆ R of already
examined points, in order of their distance to the origin, an
upper boundP firstx (S) of the probability that pointx is in
the skyline with respect toS can be computed by:

P firstx (S) =
∏

x′∈S ∧ ψ(x′)�ψ(x)

(1− Ex′) (8)

For a MBR e, the upper bound probabilityP firste (S) of any



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 9

point in e to be in the skyline can be computed as follows:

P firste (S) =
∏

x′∈S ∧ ψ(x′)�ψ−(e)

(1− Ex′) (9)

, sinceψ−(e) dominates any point ine. Next, we discuss how
thresholding and ranking versions of the query are evaluated
on a 2D R–tree.

5.1.0.3 Thresholding and ranking: Assume that we
want to find the points with probability at leastt to be in
the skyline. Algorithm 6 describes the procedure to retrieve
these points from a 2D R–tree. At Line 3, objects are incre-
mentally retrieved from the tree in increasing order of their
ωQ(x) value, which is defined in Equation 6. SetS is used
for storing objects examined so far, in order to derive the
probabilityP firstx (S) of remaining objects (using Equation 8).
The probability derivation ofPx asP firstx (S) · Ex is correct
because [17] proved that all the points dominatingx must have
been examined beforex (and stored intoS). WhenPx ≥ t, x
is reported as a result. In caseP firstx (S) < t, any (remaining)
point x′ dominated byx must be at least dominated by the
same subset of points inS such thatP firstx′ (S) < t. Thus,x is
inserted intoS only whenP firstx (S) ≥ t. Following the above
logic, we can optimize the algorithm at Line 3 by removing
non-leaf entries withP firste (S) < t from the Best-First heap.

Algorithm 6 Probabilistic spatial skyline on a 2D R–tree with
thresholding

Algorithm PTSKY2D(Query setQ, 2D R–tree onR, Thresholdt)
1: S := ∅; . set of examined objects
2: while more objects inR do
3: x := next point inR with minimumωQ(x);
. during BF-search, non-leaf entriese with P firste (S) < t are removed
from Best-First heap

4: Px := P firstx (S) · Ex;
5: if Px ≥ t then
6: output (x,Px);
7: if P firstx (S) ≥ t then
8: insertx into S;

Threshold-based retrieval (of Algorithm 6) can be extended
to retrieve them points with the highest probability to be in
the skyline (i.e., the ranking probabilistic variant of the query).
The general idea is to maintain a heapH of m objects with
the highestPx found so far. In addition, we replace the fixed
thresholdt by a floating boundPm, which indicates them-
th highestPx in H. If Px is found to be greater thanPm,
then the result heapH and the boundPm are updated. As
Pm increases, (unnecessary) objects withP firsto (S) < Pm

are removed fromS in order to save space.
5.1.0.4 Extensions for augmented R–trees: As dis-

cussed in Section 4.2, augmented R–trees can be used to
improve the query efficiency. Algorithm 7 generalizes Al-
gorithm 4 to utilize information from an augmented 2D R–
tree. During the BF-search at Line 4, each non-leaf entrye
with P firste (S) · emaxE < t is removed from Best-First heap
because they cannot contain any results. If the removed entry
hasP firste (S) at leastt, then it may influence the remaining
points ande is inserted into the listL for further processing.
At Line 5, the lower boundPminx and upper boundPmaxx
probabilities of a pointx are computed fromS, L andEx

using Equations 10 and 11 respectively.

Pmin
x = P first

x (S) · Ex ·
Y

e∈L ∧ ψ−(e)�ψ(x)

(1− emaxE)e
num

(10)

Pmax
x = P first

x (S) · Ex ·
Y

e∈L ∧ ψ+(e)�ψ(x)

(1− emaxE) (11)

WhenPminx < t ≤ Pmaxx , we need to refine the probability
range forx (Lines 6-13). After that,x is reported as a result if
Pminx ≥ t. In caseP firstx (S) ≥ t, x is inserted intoS because
it influences the probability of other points that may end up
in the result.

Algorithm 7 Probabilistic spatial skyline on an augmented 2D
R–tree with thresholding

Algorithm PTSKY2Daug(Query pointq, Augmented 2D R–tree onR,
Thresholdt)

1: S := ∅; . set of examined objects
2: L := ∅; . list of disqualified entries
3: while more objects inR do
4: x := next point inR with minimumωQ(x);
. during BF-search, each non-leaf entrye with P firste (S) · emaxE < t

is removed from Best-First heap, and inserted intoL if P firste (S) ≥ t

5: computePminx andPmaxx by usingP firstx (S), L andEx;
6: while Pminx < t ≤ Pmaxx do
7: pick the entrye with the smallestωQ(e) in L; removee from L;
8: if P firste (S) ≥ t then . e may influence the probability of

potential results
9: if e is an objectthen

10: inserte into S;
11: else
12: read nodene pointed bye and insert all entries ofne into

L;
13: computePminx andPmaxx by usingP firstx (S), L andEx;
14: if Pminx ≥ t then
15: output (x,Pminx ,Pmaxx );
16: if P firstx (S) ≥ t then
17: insertx into S;

Similarly, we can generalize the algorithm for evaluating
ranking spatial skyline queries on an augmented 2D R–tree.
Regarding 3D R–trees, Equations 12 and 13 are applied to
compute thePminx andPmaxx values of a pointx respectively.
In case the exact numberenum of objects in the subtree
pointed bye is not known, we can use the fanoutf and the
minimum node utilization (0.4) and replaceenum by f level(e)

in Equations 10,12, and by(0.4 · f)level(e) in Equation 13.

Pmin
x = P first

x (S) · Ex · (12)Y
e∈L ∧ ψ−(e)�ψ(x)

(1− eminE)(1− emaxE)(e
num−1)

Pmax
x = P first

x (S) · Ex · (13)Y
e∈L ∧ ψ+(e)�ψ(x)

(1− eminE)(e
num−1)(1− emaxE)

5.2 Reverse Nearest Neighbor Queries

Given a point datasetR and a query pointq, a reverse nearest
neighbor (RNN) query [16] retrieves the objectsp ∈ R having
q as their nearest neighbor. This query has applications in
decision support and resource allocation. [16], [18] develop
R–tree based algorithms for reverse nearest neighbor queries.
In this section, we extend the geometric partitioning method of
[16] to solve probabilistic versions of this problem. According



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 10

to [16], an RNN query can be answered in two steps. In the
filter step, the 2D data space (shown in Figure 7a) is divided
into six equal sectorsA1, A2, · · · , A6 around the query point
q. The NN of q in each sector (if any) is included into the
candidate set. In the example, the candidates are the points
p1 (in A2), p2 (in A5), and p4 (in A3). [16] proved that
the candidate set is a superset of the result set. During the
refinement step, each candidate is verified by retrieving its
NN. A candidate (e.g.,p2) is reported as a result if its NN is
q. Otherwise, the candidate (e.g.,p3) is a false hit and it is
discarded.

p
2

p
1

p
4

p
3

q

(0.6)

(0.7)

(0.8)

(0.5)

A
1

A
2

A
3

A
4

A
5

A
6

 

p
2

p
1

p
4

p
3

q

(0.6)

(0.7)

(0.8)

(0.5)
A

1

A
2

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
4

A
3

 

(a) 6-sector partitioning (b) 12-sector partitioning

Fig. 7. Reverse nearest neighbor query example

5.2.0.5 Probabilistic reverse nearest neighbor query and
its properties: For existentially uncertain data, a pointx
belongs to the RNN set ofq with probability:

Px = Ex ·
∏

x′∈R ∧ x′ 6=x ∧ d(x,x′)<d(q,x)

(1− Ex′) (14)

which corresponds to the case thatx exists and the pointsx′

that are closer tox than to q do not exist. For instance, in
Figure 7a, we havePp3 = 0.7 · (1 − 0.6) · (1 − 0.5) = 0.14
becausep3 is closer top1 andp4 than toq. Sincep2 is closer
to q than to other points, we derivePp2 = 0.8 · 1 = 0.8. The
probability of other points can be computed in a similar way.

Similarly to the skyline query and unlike the NN query
of Section 4.1.2, we cannot define an order of visiting the
points aroundq, such that the upper bound probability of
remaining points to be in the RNN result, can be maintained
by incrementally updating a singleP first value. To elaborate
this, suppose that we first examined the pointp1 in Figure
7a. Note thatp1 only influences the probabilities ofp3, p4

but not that ofp2. The example also demonstrates that the
upper bound probability of a point can be computed by using
examined points. Given a setS ⊆ R of (examined) points, the
upper bound probabilityP firstx of a pointx with respect toq
andS is defined as:

P firstx =
∏

x′∈S ∧ x′ 6=x ∧ d(x,x′)<d(q,x)

(1− Ex′) (15)

Geometric properties of reverse nearest neighbors can be
exploited to derive the upper bound probability of remaining
points in a specific sector (see Figure 7a). [16] proved that,
if two points p and p′ are in the same sector andq is closer
to p than top′, thenp′ must be closer top than toq. Based
on this property, a natural solution for the query is to retrieve
the points in ascending order of their distances fromq. For

each sectorAj , its P firstAj
value is used as the upper bound

probability of any remaining point inAj . P
first
Aj

is set to 1
initially and it is multiplied by the factor(1 − Ex) when a
new pointx is discovered inAj .

We observe that introducing additional sectors may help
deriving tighter probability bounds for unexamined points.
Consider the 12-sector partitioning shown in Figure 7b. When
a point (say,p1) is discovered in the sectorA4, it is used
to updateP firstAj

for the sectors (i.e.,A3, A4, A5) that are
within (maximum) 60◦ angular range fromA4. Conversely,
the probability bound of a sector is contributed by the points
within (30 · 3)◦ = 90◦ angular range. Recall that, for the
original 6-sector partitioning in [16], a sector is only affected
by the points within60◦ angular range. In general, given a
positive integerV , in the (6V )-sector partitioning scheme,
(2V − 1) sectors need to be examined per visited point.
The more sectors we have, the tighter probability bounds are
derived for (unexamined points in) the sectors, and the earlier
unqualified sectors can be pruned. On the other hand, the
computational overhead of updating probability bounds for the
sectors is proportional toV . In Section 6, we will determine an
appropriate number of sectors that achieves significant I/O cost
reduction and adds little computational overhead for updating
probability bounds for the sectors. Next, we discuss how
this partitioning scheme can be used to evaluate probabilistic
reverse nearest neighbor queries.

5.2.0.6 Thresholding and ranking: Algorithm 8 shows
how thresholding RNN queries are evaluated on a 2D–tree.
The system parameterκ specifies the number of sectors to
be used. First, the space is divided intoκ sectorsAi and
their probability boundsP firstAi

are set to 1. The algorithm
maintains candidate objects (i.e., potential results) in a setC
and delays computing the actual probability of a candidate
until all objects influencing it have been examined. Examined
objects are stored in the setS and they are used to compute
upper bound probabilities for candidate objects. BothC and
S are initialized to empty sets.

At Line 6, we apply Best-First search [9] to incrementally
retrieve the next NN (i.e., the objectx) of q from the treeR.
Suppose thatA(x) denotes the sector containingx. If the upper
bound probabilityEx · P firstA(x) is greater than the thresholdt,
then a tighter upper bound probabilityEx ·P firstx is computed,
by examining the objects inS (see Equation 15). When the
above probability is at leastt, the objectx is inserted into
C. After that, x is inserted intoS and P firstAi

is updated
for each sectorAi within 60◦ angular range fromA(x). In
turn, x is used to update theP firsto value for objects inC,
and those satisfyingEo · P firsto < t are removed fromC. If
the last deheaped distancedlast (from the Best-First heap) is
greater than2 · d(q, o) for a candidate objecto ∈ C, then all
entries in Best-First heap cannot affect the probability ofo. At
Line 17, we compute the actual probabilityPo asP firsto ·Eo
and reporto as a result whenPo ≥ t. The loop (Lines 5-20)
continues while some sector may contain potential results to
be discovered orC is not empty.

The above algorithm can be extended to retrieve the top-
m ranked reverse nearest neighbors from the 2D R–tree. It



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 11

Algorithm 8 Probabilistic reverse nearest neighbor on a 2D
R–tree with thresholding

Algorithm PTRNN2D(Query pointq, 2D R–tree onR, Thresholdt)
κ: number of sectors (system parameter)

1: divide the space intoκ equal sectors aroundq: Ai, i ∈ [1, κ];
2: for all i ∈ [1, κ] do
3: P firstAi

:=1; . Upper prob. bound of remaining objects in sectorAi

4: C:=∅; S:=∅;
5: while ∃i ∈ [1, κ], P firstAi

≥ t or |C| > 0 do
6: x := next NN of q in R; dlast := d(q, x);
7: letA(x) be the sector ofx;
8: if Ex · P firstA(x)

≥ t andEx · P firstx ≥ t then . apply cheap filter
first, and then expensive filter

9: C := C ∪ {x};
10: S := S ∪ {x};
11: for all i ∈ [1, κ] such thatAi is within (maximum) 60◦ angular

range fromA(x) do
12: P firstAi

:= P firstAi
· (1− Ex);

13: for all o ∈ C such thatd(x, o) < d(q, o) do . updateP firsto

14: P firsto :=P firsto · (1− Ex);
15: remove objectso from C with Eo · P firsto < t; . filter false hits
16: for all o ∈ C such thatdlast ≥ 2 · d(q, o) do . entries in

Best-First heap cannot affect the probability ofo
17: Po := P firsto · Eo;
18: if Po ≥ t then
19: output (o,Po);
20: removeo from C;

Algorithm 9 Probabilistic reverse nearest neighbor on an
augmented 2D R–tree with thresholding

Algorithm PTRNN2Daug(Query pointq, Augmented 2D R–tree onR,
Thresholdt)
κ: number of sectors (system parameter)

1: divide the space intoκ equal sectors aroundq: Ai, i ∈ [1, κ];
2: for all i ∈ [1, κ] do
3: P firstAi

:=1; . Upper prob. bound of remaining objects in sectorAi

4: C:=∅; S:=∅; L:=∅;
5: while more objects inR do
6: x := next NN of q in R; dlast := d(q, x);

. during BF-search, each non-leaf entrye intersecting only sector(s)
with P firstAi

· emaxE < t is removed from Best-First heap and inserted
into L

7: apply Lines 7–15 of Algorithm 8;
8: for all o ∈ C such thatdlast ≥ 2 · d(q, o) do . entries in Best-First

heap cannot affect the probability ofo
9: while P firsto · Eo ≥ t and∃e ∈ L,mind(e, o) < d(q, o) do .

refinement step
10: remove the entrye with the smallestmind(e, o) in L;
11: if e is an objectthen
12: apply Lines 11–15 of Algo. 8, but by replacingx with e;
13: else
14: read the nodene pointed bye and insert all entries ofne

into L;
15: Po := P firsto · Eo;
16: if Po ≥ t then
17: output (o,Po);
18: removeo from C;
19: for all o ∈ C do . verify remaining candidates inC
20: apply Lines 9–18 of this Algorithm;

maintains a heapH of m objects with the highestPx found
so far. In addition, we replace the fixed thresholdt by a floating
boundPm, which indicates them-th highestPx in H. At Lines
18-19, if Po is greater thanPm, then the result heapH and
the boundPm are updated.

Besides, the above thresholding3 algorithm can be adapted
to Algorithm 9, for augmented 2D R–trees and 3D R–trees.
At Line 6, each non-leaf entrye intersecting only sector(s)
with P firstAi

· emaxE < t is removed from Best-First heap
because they cannot contain any results. However, such entries
may affect the probability of other points so they are inserted
into L. Lines 9-14 compute the actual probability for such an
object, by refining itsP firsto value with the entries inL. For
this, we check whether the upper bound probabilityP firsto ·Eo
is abovet andq is closer to some entries inL than toq. If so,
the entry closest too is removed fromL and its child nodene
is accessed. In casene points to a tree node, all its entries are
inserted intoL. Otherwise, entries inne are used to update the
setS, P firsto values of candidate objects, andP firstAi

values
of sectors. At Lines 19-20, the remaining candidates inC
are verified by accessing entries inL that may influence their
probabilities.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the efficiency of the proposed
techniques. We compare the performances of five indexes and
their corresponding algorithms for thresholding and ranking
versions of range queries, nearest neighbor search, skyline
queries and reverse nearest neighbor retrieval. The five indexes
are (i) a simple 2D R–tree (denoted by2D), (ii) a 2D R–
tree, where each non-leaf entrye is augmented withemaxE

(denoted byAUG), (iii) a 2D R–tree, where each non-leaf entry
e is augmented withemaxE and enum (i.e., the number of
objects in the subtree indexed by it), denoted byAUG COUNT,
(iv) a 3D R–tree (denoted by3D), and (v) a 3D R–tree, where
each non-leaf entrye is augmented withenum (denoted by
3D COUNT). For indexes (iv) and (v), all (spatial/probability)
dimensions are normalized to the same domain interval. Note
that index (i) captures minimum information in non-leaf en-
tries and occupies the least space, whereas index (v) is at the
other end (entries capture maximum information and the index
occupies the most space).

All algorithms were implemented in C++. Experiments were
run on a PC with a Pentium D CPU of 2.8GHz. The page size
of indexes was set to 1Kb; the relative performance results
of the above methods were observed for other page sizes
(up to 8Kb). No memory buffers are used for caching disk
pages between different queries; the number of node accesses
directly reflects the I/O cost. In each experiment, the measured
I/O cost is the average I/O cost of 100 queries with the same
parameter values (but with different locations randomly chosen
from the dataset). For range queries, nearest neighbor search,
and reverse nearest neighbor retrieval, the I/O time is over 90%
of the total execution cost so the CPU time is not reported.

6.1 Description of Data

For our experiments, we used various real datasets of dif-
ferent sizes and object distributions, described in Table 4.
The datasets TG and SF are obtained from [19] while

3. Adaptations of ranking algorithms for RNN queries are omitted due to
space constraints.



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 12

TABLE 4
I/O cost of thresholding/ranking NN on different datasets,

t = 0.005, m = 10

Dataset Size 2D AUG AUG 3D 3D
COUNT COUNT

San Joaquin 18263 48.68/ 16.49/ 19.75/ 28.60/ 31.11/
roads (TG) 49.33 17.54 20.68 29.56 32.81
Greece 23268 77.69/ 17.23/ 21.79/ 24.58/ 25.12/
roads (GR) 83.30 23.87 29.07 34.06 36.84
Long Beach 53145 93.14/ 19.07/ 21.49/ 24.17/ 25.80/
roads (LB) 103.20 28.78 32.97 38.32 42.65
LA streets 131461 67.38/ 19.19/ 21.89/ 32.83/ 36.17/
(LA) 71.21 22.90 26.43 36.43 41.59
San Francisco174956 70.50/ 20.39/ 22.05/ 32.71/ 36.17/
roads (SF) 73.62 24.80 27.51 37.48 42.72
Tiger streams194971 99.30/ 18.36/ 19.69/ 27.37/ 32.94/
(TS) 110.32 34.48 39.41 47.62 58.74

the other datasets are obtained from the R–tree Portal
(www.rtreeportal.org ).

Due to the lack of a real spatial dataset with objects having
existential probabilities, we generated probabilities for the
objects, using the following methodology. First we generated
K = 20 anchor points randomly on the map, following the
data distribution. These points model locations around which
there is large certainty for the existence of data (e.g., they
could be antennas of receivers close to which information is
accurate). For each pointx of the dataset, we (i) find the closest
anchora and (ii) assign an existential probability proportional
to 1

(c·dist(x,a))θ . Thus, the distribution of probabilities around
the anchors is a Zipfian one. The probabilities are normal-
ized (usingc) with respect to the maximum probability (1)
corresponding to the anchor point. The default skew value is
θ = 1; experiments on different skew values can be found in
our preliminary work [20].

6.2 Experimental Results

Table 4 shows the performances of the five indexes for
thresholding and ranking NN queries on different datasets. We
fix t = 0.005 for thresholding NN queries andm = 10 for
ranking NN queries.4 Observe that the augmented and 3D R–
trees perform better than the 2D R–tree, even though they are
larger in size. Algorithms 4 and 5 manage to prune a large
number of nodes that do not contain query results, which are
otherwise visited in the simple 2D R–tree index. The cost of
2D R–tree variants (i.e., methodsAUG, AUG COUNT) does
not change much with the database size. The I/O costs of 3D
R–tree variants increase slowly as the database size increases.
This is due to the fact that 3D R–trees group entries using both
spatial and probability dimensions, but the query algorithms
mainly search for objects based on spatial dimensions.

In subsequent experiments, we compare the performance of
the indexes on the SF dataset and default parameter values
are t = 0.005 and m = 10 for thresholding and ranking
queries respectively. Figure 8 shows the I/O performance of the
indexes for thresholding and ranking queries. Augmented and

4. A small value fort is necessary in order to observe difference between
the indexes. Larger values fort will be tested in a subsequent experiment.

 0

 20

 40

 60

 80

 100

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

I/
O

t

2D
AUG

AUG COUNT
3D

3D COUNT

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120  140  160  180  200

I/
O

m

2D
AUG

AUG COUNT
3D

3D COUNT

(a) thresholding queries (b) ranking queries

Fig. 8. NN queries on the SF dataset, θ = 1

3D R–trees perform much better than the simple 2D R–tree for
all tested values oft andm. For t ≥ 0.02, less than 5 accesses
are required to find the query result when using the four
advanced indexes and Algorithms 4 and 5. When comparing
these indexes, we observe that augmentingenum is not a good
idea; using the fanoutf gives accurate enough estimations of
Pmin and Pmax. Thus the extra space (translated to extra
accesses) required for augmentingenum does not pay off.
In addition, the augmented R–tree performs better than the
3D R–tree. First, the 3D R–tree occupies more space (the
capacity of each non-leaf node is smaller) and results in more
accesses, since the extra space is not compensated by tighter
Pmin and Pmax (see Equations 3 and 4). Second, since
the 3D R–tree groups entries to nodes using the existential
probabilities as well as spatial dimensions, it does not achieve
as good partitioning as the one using the spatial dimensions
only; however, search is performed primarily using the spatial
dimensions.

Next, we examine the performances of range queries on
the indexes. The parameterlen denotes the extent of the
query window (in each dimension), whose default value is
set to 5% of the domain length. Figure 9a and 9b show
the cost of thresholding and ranking queries as a function
of t and m respectively. Except for the simple 2D R–tree,
all indexes follow similar trends as in probabilistic nearest
neighbor queries. The cost of range queries on the 2D R–tree
is independent oft andm as all points within the spatial range
are retrieved. Observe that for very smallt, the augmented and
3D indexes may perform worse than the 2D R–tree because
(i) they prune no or very few directory entries that have lower
emaxE thant and (ii) they are larger in size than the simple 2D
R–tree. Similarly,Pm decreases withm, affecting the costs of
the advanced methods. The 3D R–tree performs worse than the
augmented 2D R–tree also for range queries. Figure 9c shows
the cost of thresholding queries as a function oflen. The costs
of all methods increase withlen.

We proceed to compare the performances of spatial skyline
queries on the indexes. For each query, a set of|Q| query
points are randomly generated in a query window with side
lengthlen, such that the window follows the data distribution.
The default values of|Q| and len are 6 and 5% of the
domain range respectively. Figure 10 shows the I/O-CPU time
breakdown of thresholding and ranking queries as a function of
t anm respectively. Each page fault is charged 10 milliseconds
of I/O time. Observe that the methodAUG outperforms its
competitors for a wide range of parameters. In terms of I/O,



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 13

 0

 50

 100

 150

 200

 0  0.005  0.01  0.015  0.02

I/
O

t

2D
AUG

AUG COUNT
3D

3D COUNT

 0

 50

 100

 150

 200

 0  20  40  60  80  100  120  140  160  180  200

I/
O

m

2D
AUG

AUG COUNT
3D

3D COUNT

 0

 200

 400

 600

 800

 1000

 0  5  10  15  20

I/
O

length(%)

2D
AUG

AUG COUNT
3D

3D COUNT

(a) thresholding queries vst (b) ranking queries vsm (c) thresholding queries vslen, t = 0.005

Fig. 9. Range queries on the SF dataset

the trends are similar to the ones in Figure 8. However, the
CPU time of augmented and 3D trees becomes high at lowt
value and highm value.

CPU time
I/O time

  0

  2

  4

  6

  8

  10

  12

  14

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

qu
er

y 
pr

oc
es

si
ng

 ti
m

e 
(s

ec
)

t
0.001 0.002 0.005 0.01 0.02 0.05 0.1

CPU time
I/O time

  0

  2

  4

  6

  8

  10

  12

  14

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

qu
er

y 
pr

oc
es

si
ng

 ti
m

e 
(s

ec
)

m
1 2 5 10 20 50 100

(a) thresholding queries vst (b) ranking queries vsm

Fig. 10. Spatial skyline queries on the SF dataset, |Q| =
6, len = 5%

Figure 11 plots the cost of the indexes by varying the num-
ber |Q| of query points. In general, when|Q| increases, a point
is spatially dominated by fewer points, and thus the probability
of the point to be in the skyline increases. Thus, more points
need to be examined by thresholding queries and its I/O cost
increases rapidly. On the other hand,Pm increases with|Q|,
strengthening the pruning power of advanced indexes. Thus,
the cost of ranking queries increases at a slower rate.

CPU time
I/O time

  0

  2

  4

  6

  8

  10

  12

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

qu
er

y 
pr

oc
es

si
ng

 ti
m

e 
(s

ec
)

size of Q
2 4 6 8 10 

CPU time
I/O time

  0

  2

  4

  6

  8

  10

  12

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

3D
−

C
3D

A
U

G
−

C
A

U
G2D

qu
er

y 
pr

oc
es

si
ng

 ti
m

e 
(s

ec
)

size of Q
2 4 6 8 10  

(a) thresholding queries,t = 0.005 (b) ranking queries,m = 10

Fig. 11. Spatial skyline queries on the SF dataset, varying
|Q|

Finally, we study the performance of the indexes for reverse
nearest neighbor queries. Figure 12 shows the effect of the
number of sectors in performance. When more sectors are
used, tighter probability bounds are derived for the sectors
and hence the algorithm terminates faster. In particular, the
96-sector partitioning achieves substantial cost reduction (over
the basic 6-sector partitioning) for thresholding and ranking
queries respectively. Observe that the cost starts converging to
its final value with as few as 24 partitions. Figure 13 plots the

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  10  20  30  40  50  60  70  80  90  100

I/
O

number of sectors

2D
AUG

AUG COUNT
3D

3D COUNT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  10  20  30  40  50  60  70  80  90  100

I/
O

number of sectors

2D
AUG

AUG COUNT
3D

3D COUNT

(a) thresholding queries,t = 0.005 (b) ranking queries,m = 10

Fig. 12. Reverse nearest neighbor queries on the SF
dataset, varying the number of sectors

 0

 200

 400

 600

 800

 1000

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

I/
O

t

2D
AUG

AUG COUNT
3D

3D COUNT

 0

 200

 400

 600

 800

 1000

 0  10  20  30  40  50  60  70  80  90  100

I/
O

m

2D
AUG

AUG COUNT
3D

3D COUNT

(a) thresholding queries vst (b) ranking queries vsm

Fig. 13. Reverse nearest neighbor queries on the SF
dataset, using the 24-sector partitioning

cost of the methods as a function oft andm respectively, when
using the 24-sector partitioning. For thresholding queries, the
performance gap between the 2D R–tree and other indexes
widens ast increases because of the increased pruning power
of the advanced indexes. On the other hand, the cost differ-
ences among the indexes are not sensitive to the value ofm.
As with previous queries,AUG prevails.

7 DISCUSSION: RELAXING THE INDEPEN-
DENCE ASSUMPTION

Our analysis so far assumes that the existential probabilities
of objects are independent. This assumption is valid in a
large number of applications (e.g., those mentioned in Section
1); hence, our solutions have significant value in practice.
However, there are also other applications where the existential
probabilities of different objects are correlated. For example,
consider a collection of sensors distributed in a forest for
detecting wildfire. When a sensor detects smoke, sensors in
its neighborhood are likely to sense it as well. A thorough
solution in this scenario falls out of the scope of this paper.
Nevertheless, in the sequel, we point out the direction towards



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 14

extending the proposed algorithms and indexing schemes to
support correlated existential probabilities.

We now elaborate how to evaluate the thresholding prob-
abilistic NN query using a simple 2D R–tree, in the cor-
related probability model. Instead of Definition 2, we de-
fine the probability of an objectx to be the NN ofq as:
JPx = JPr ( Γ(x) ∧

∧
x′∈R,x′ 6=x,d(q,x′)<d(q,x)(NOTΓ(x′)) )

where JPr denotes thejoint probability that x exists (i.e.,
the eventΓ(x)) and all objectsx′ closer toq do not exist.
This probability can be computed from aBayesian network
modeling dependent probabilities among the objects. The
value JPr (

∧
x′∈R,x′ 6=x,d(q,x′)<d(q,x)(NOTΓ(x′)) ) serves as

an upper bound ofJPx, regardless of how the probabilities
are correlated. Based on this property, we modify Algo. 2
as follows: (i) we maintain the setS of visited objects,
(ii) at Line 7, we insert the objectx into S and compute
P first = JPr (

∧
x′∈S(NOT Γ(x′)) ), (iii) at Line 4, we

computeJPx = JPr ( Γ(x)∧
∧
x′∈S(NOTΓ(x′)) ). The above

idea works also for spatial skyline (Equation 7, Algo. 6) and
reverse nearest neighbor (Equation 14, Algo. 8), after replacing
each multiplication by∧, eachEx by Γ(x), each(1 − Ex′)
by NOTΓ(x′), and the final probability byJPr ().

Extensions of other R–tree solutions (e.g., 2D augmented
trees, 3D trees) generate non-trivial research issues, due to
the fact that: (i) the number of possible joint probabilities is
enormous (i.e., exponential to the data cardinality), and (ii) it
remains unclear how to augment a non-leaf entry to effectively
capture the joint probabilities of the objects in its subtree. In
the future, we will develop efficient solutions for augmented
trees that are applicable for the correlated probability model.

8 CONCLUSIONS

In this paper, we presented the interesting problem of evalu-
ating spatial queries for existentially uncertain data. Variants
of common spatial queries, like range and nearest neighbor
search, have probabilistic versions for this data model. We pro-
posed algorithms for these probabilistic versions and several
extensions of spatial access methods (i.e., R–trees) where these
algorithms are applied. In addition, we discuss how complex
spatial queries such as spatial skyline queries and reverse
nearest neighbor queries can be processed in our framework.
Finally, we conducted extensive experiments to evaluate the
search algorithms and the corresponding spatial indexes. In
most of the tested cases, the data structure that performs
best is a R–tree, where non-leaf entries are augmented with
maximum existential probabilities of the sub-tree they point
at. In the future, we plan to study in detail more advanced
query types and extend our methods to apply on data that are
both existentially and locationally uncertain, as well as results
of fuzzy classifiers [1].

ACKNOWLEDGMENTS

This work was supported by grant HKU 7149/07E from Hong
Kong RGC. The work of Yufei Tao was supported by grants
CUHK 1202/06 and CUHK 4161/07 from Hong Kong RGC.
A preliminary version of this work appeared in Ref. [20].

REFERENCES

[1] P. M. Atkinson and N. J. Tate, Eds.,Advances in Remote Sensing and
GIS Analysis. John Wiley & Sons, 1999.

[2] O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha, “Updating and
Querying Databases that Track Mobile Units,”Distributed and Parallel
Databases, vol. 7, no. 3, pp. 257–387, 1999.

[3] D. Pfoser and C. S. Jensen, “Capturing the Uncertainty of Moving-
Object Representations,” inProc. of SSD, 1999.

[4] J. Ni, C. V. Ravishankar, and B. Bhanu, “Probabilistic Spatial Database
Operations,” inProc. of SSTD, 2003.

[5] X. Yu and S. Mehrotra, “Capturing Uncertainty in Spatial Queries over
Imprecise Data,” inProc. of DEXA, 2003.

[6] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Querying Imprecise
Data in Moving Object Environments,”IEEE TKDE, vol. 16, no. 9, pp.
1112–1127, 2004.

[7] Y. Tao, X. Xiao, and R. Cheng, “Range Search on Multidimensional
Uncertain Data,”ACM TODS, vol. 32, no. 3, p. 15, 2007.

[8] A. Guttman, “R-trees: A Dynamic Index Structure for Spatial Search-
ing,” in Proc. of ACM SIGMOD, 1984.

[9] G. R. Hjaltason and H. Samet, “Distance Browsing in Spatial Data-
bases,”ACM TODS, vol. 24, no. 2, pp. 265–318, 1999.

[10] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter, “Efficient
Indexing Methods for Probabilistic Threshold Queries over Uncertain
Data,” in Proc. of VLDB, 2004.

[11] G. Trajcevski, O. Wolfson, F. Zhang, and S. Chamberlain, “The Geom-
etry of Uncertainty in Moving Objects Databases,” inProc. of EDBT
Conf., 2002.

[12] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Evaluating Probabilistic
Queries over Imprecise Data,” inProc. of ACM SIGMOD, 2003.

[13] I. Lazaridis and S. Mehrotra, “Approximate Selection Queries over
Imprecise Data,” inProc. of ICDE, 2004.

[14] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:
An Efficient and Robust Access Method for Points and Rectangles,” in
SIGMOD, 1990.

[15] M. Sharifzadeh and C. Shahabi, “The Spatial Skyline Queries,” inProc.
of VLDB, 2006.

[16] I. Stanoi, D. Agrawal, and A. Abbadi, “Reverse Nearest Neighbor
Queries for Dynamic Databases,” inSIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, 2000.

[17] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive Skyline
Computation in Database Systems,”ACM TODS, vol. 30, no. 1, pp.
41–82, 2005.

[18] Y. Tao, D. Papadias, and X. Lian, “Reverse kNN Search in Arbitrary
Dimensionality,” inProc. of VLDB, 2004.

[19] T. Brinkhoff, “A Framework for Generating Network-Based Moving
Objects,”GeoInformatica, vol. 6, no. 2, pp. 153–180, 2002.

[20] X. Dai, M. L. Yiu, N. Mamoulis, Y. Tao, and M. Vaitis, “Probabilistic
Spatial Queries on Existentially Uncertain Data,” inProc. of SSTD, 2005.

Man Lung Yiu Man Lung Yiu received the
Bachelor Degree in Computer Engineering and
the PhD Degree in Computer Science from the
University of Hong Kong in 2002 and 2006 re-
spectively. He is currently an assistant professor
at Department of Computer Science, Aalborg
University. His research focuses on the manage-
ment of complex data, in particular the query
processing topics on spatio-temporal data and
multidimensional data.



IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXXXX 200X 15

Nikos Mamoulis Nikos Mamoulis received a
diploma in Computer Engineering and Informat-
ics in 1995 from the University of Patras, Greece,
and a PhD in Computer Science in 2000 from
the Hong Kong University of Science and Tech-
nology. He is currently an associate professor at
the Department of Computer Science, University
of Hong Kong, which he joined in 2001. In the
past, he has worked as a research and devel-
opment engineer at the Computer Technology
Institute, Patras, Greece and as a post-doctoral

researcher at the Centrum voor Wiskunde en Informatica (CWI), the
Netherlands. His research focuses on management and mining of com-
plex data types. He has served on the program committees of over 40 in-
ternational conferences and workshops on data management and data
mining. He was the general chair of SSDBM 2008 and a coorganizer
of SSTDM 2006. He is an editorial board member for Geoinformatica
Journal and a field editor of the Encyclopedia of Geographic Information
Systems.

Xiangyuan Dai Xiangyuan Dai received the
Bachelor of Engineering Degree from the De-
partment of Computer Science and Technology
of the University of Science and Technology of
China in 2004. He obtained the MPhil Degree in
Computer Science from the University of Hong
Kong in 2006. His research interests include
query processing problems on spatial data.

Yufei Tao Dr. Tao is engaged in research of
database systems. He is particularly interested
in index structures and query algorithms on mul-
tidimensional data, and has published primar-
ily on temporal databases, spatial databases,
and privacy preservation. He received the Hong
Kong young scientist award in 2002. He has
served the program committees of most presti-
gious database conferences such as SIGMOD,
VLDB, ICDE, and is currently an associate edi-
tor of ACM Transactions on Database Systems

(TODS). He joined the Chinese University of Hong Kong in September
2006. Before that, he held positions at the Carnegie Mellon University
and the City University of Hong Kong. He is a member of the ACM.

Michail Vaitis Michail Vaitis holds an Engineer-
ing Diploma (1992) and a Ph.D. degree (2001)
in Computer Engineering and Informatics from
the University of Patras, Greece. Since 2003 he
has been a faculty member of the Department
of Geography at the University of the Aegean,
Greece. Now he is an assistant professor. In the
past, he was working for 5 years at the Research
Academic Computer Technology Institute (RA-
CTI), Greece, on hypertext and database sys-
tems. His research interests include geographi-

cal databases, spatial data infrastructures, geographic hypermedia and
geo-spatial semantic web. He is a member of the ACM and the Technical
Chamber of Greece.


