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Abstract

In many applications that track and analyze spatiotemporal data, movements obey periodic
patterns; the objects follow the same routes (approximately) over regular time intervals. For
example, people wake up at the same time and follow more or less the same route to their work
everyday. The discovery of hidden periodic patterns in spatiotemporal data could provide un-
veiling important information to the data analyst. Existing approaches on discovering periodic
patterns focus on symbol sequences. However, these methods cannot directly be applied to a
spatiotemporal sequence because of the fuzziness of spatial locations in the sequence. In this
paper, we define the problem of mining periodic patterns in spatiotemporal data and propose an
effective and efficient algorithm for retrieving maximal periodic patterns. In addition, we study
two interesting variants of the problem. The first is the retrieval of periodic patterns that are not
frequent in the whole history, but during a continuous subinterval of it. The second problem
is the discovery of periodic patterns, some instances of which may be shifted or distorted. We
demonstrate how our mining technique can be adapted for these variants. Finally, we present a
comprehensive experimental evaluation, where we show the effectiveness and efficiency of the
proposed techniques.
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1 Introduction

The efficient management of spatiotemporal data has gained much interest during the past few years

[14, 16, 6, 15], mainly due to the rapid advancements in telecommunications (e.g., GPS, Cellular

networks, etc.), which facilitate the collection of large datasets of such information. Management

and analysis of moving object trajectories is challenging due to the vast amount of collected data

and novel types of spatiotemporal queries.

In many applications, the movements obey periodic patterns; i.e., the objects follow the same

routes (approximately) over regular time intervals. Objects that follow approximate periodic pat-

terns include transportation vehicles (buses, boats, airplanes, trains, etc.), animal movements, mo-

bile phone users, etc. For example, Bob wakes up at the same time and then follows, more or less,

the same route to his work everyday.

The problem of discovering periodic patterns from historical object movements is very chal-

lenging. Usually, the patterns are not explicitly specified, but have to be discovered from the data.

The patterns can be thought of as (possibly non-contiguous) sequences of object locations that reap-

pear in the movement history periodically. In addition, since we do not expect an object to visit

exactly the same location at every time instant of each period, the patterns are not rigid but differ

slightly from one occurrence to the next. The approximate nature of patterns in the spatiotemporal

domain increases the complexity of mining tasks. We need to discover, along with the patterns, a

flexible description of how they variate in space and time. Previous approaches have studied the

extraction of patterns from long event sequences [7, 10]. We identify the difference between the

two problems and propose novel techniques for mining periodic patterns from a large historical

collection of object movements.

In practice, periodic patterns may not be frequent in the whole sequence. For instance, assume

that Bob changes his route to work after being transferred from department A to department B.

In this case, his route to department A is frequent only during the time interval he works there.

This motivates us to study the problem of mining frequent patterns and their validity eras; i.e., the

(maximal) time ranges (eras) during which these patterns are frequent.

In real applications, pattern occurrences in certain periodic ranges may be shifted or distorted
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in time. For instance, if Bob wakes up late on a certain day, the movement to his work is shifted on

that day (e.g., for 10 minutes). Or, Bob gets up the usual time, but arrives at the company a little

late due to traffic congestion. Although Bob follows the same route (pattern) to the company in the

above two cases, the corresponding pattern instances are shifted and/or distorted. In this paper, we

extend the baseline pattern mining technique to include in the counting of a pattern’s frequency its

shifted or distorted instances.

In summary, the contributions of this paper are: (i) a new model of partial periodic pattern

discovery in spatiotemporal data, (ii) an effective and efficient method for discovering the periodic

patterns from a long movement history, and (iii) techniques that extend the mining approach to

identify variants of the periodic patterns; era patterns and shifted/distorted patterns. The rest of the

paper is organized as follows. In Section 2, we review work related to the problem under study. The

baseline periodic pattern mining problem is formally defined in Section 3. We describe the several

approaches presented in [11] and an additional time-efficient technique in Section 4. Section 5

formally defines the problem variants and solutions for them. We evaluate the effectiveness and

efficiency of the proposed methods experimentally, in Section 6. Finally, Section 7 concludes this

paper.

2 Related work

The problem of mining sequential patterns from transactional databases has attracted a lot of in-

terest, since Agrawal et al. introduced it in [2]. Each transaction contains a set of items that

are bought by some customer, and the database is an ordered list of transactions. For example,

〈(a, b), (a, c), (b)〉 is a sequence containing three transactions (a, b), (a, c) and (b). Given such a

database, the sequential pattern mining problem is to find ordered lists of itemsets that appear in

sequences with high frequency. For instance, 〈(b), (a), (b)〉 is a pattern, which is supported by the

above sequence. The original sequential pattern mining problem does not consider the periodicity

character of a transaction sequence.

Periodicity has only been studied in the context of time-series databases. [9] addressed the

following problem. Given a long sequence S and a period T , the aim is to discover the most

representative trend that repeats itself in S every T timestamps. Exact search might be slow;
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thus, [9] proposed an approximate technique based on sketches. However, the discovered trend

for a given T is only one and spans the whole periodic interval. In [12], the problem of finding

association rules that repeat themselves in every period of a data sequence was addressed. Elfeky

et al. in [4] tackled the problem of periodicity detection on a series of nominal data, focusing on

the automatic detection of the period.

The discovery of multiple partial periodic patterns that do not appear in every periodic segment

was first studied in [8]. Such a pattern is in the form of p0, p1, . . . , pT−1, where T is the given

period, each pj (0 ≤ j < T ) can be an element (e.g., event type) or a wildcard ‘*’, which matches

any element in the sequence. The pattern may not repeat itself in every period, but it must appear

at least min sup times (a user-defined parameter). A version of the well-known Apriori algorithm

[1] was adapted for the problem of finding such patterns. In [7], a faster mining method for this

problem was proposed, which uses a tree structure, the max-subpattern tree, to count the support of

multiple patterns at two database scans. Specifically, during the first pass, the set F1 of all frequent

patterns with one non-* element are identified (e.g., F1 = {a****, *b***, **c**}). The max-

subpattern tree is rooted at a candidate max-pattern Cmax, which is the maximal combination of

all patterns in F1 (e.g., Cmax =‘abc**’). A node at level l of the tree (e.g., node ‘*bc**’ at

level 2) has l non-* elements and l children at the level below (e.g., ‘*b***’ and ‘**c**’), which

have one more ‘*’ in their patterns. Each node contains a counter for the exact occurrences of its

associated pattern. During the second data pass, each period segment is “inserted” into the tree,

and the counters of the maximal patterns that appear in the segment are increased. Therefore, the

support of a pattern associated with a node is the sum of the counters along the path from the root

to that node. Finally, the tree is used by Apriori, as a compressed data representation, to extract the

frequent patterns.

Given an event sequence, Yang et al. in [20] studied the problem of finding asynchronous

patterns, which appear in at least a minimum number, min rep, of consecutive periodic intervals

and groups of such intervals are allowed to be separated by at most a time interval threshold,

max dis. This model is quite similar to mining patterns and their validity eras, which we study

in this paper; however, we note two significant differences. First, we apply mining on sequences

of locations in a continuous space, whereas [20] deals with sequences of categorical (event) data.
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Second, we do not use parameters min rep and min dis to restrict the definition of eras, but use

only one parameter, considering the ratio of the periodic intervals that contribute to a pattern and

the total periodic intervals in a sequence segment. The detailed description of our approach is

shown in Section 5.

Ma and Hellerstein et al. in [10] studied the problem of finding sets of events that appear

together periodically. In each qualifying period, the set of events may not appear in exactly the

same positions, but their occurrence may be shifted or disrupted, due to the presence of noise.

However, this work did not consider the order of events in such patterns. On the other hand, it

addressed the problem of mining patterns and their periods automatically. Yang et al. also studied

the mining of surprising periodic patterns from event sequences in [21]. They proposed a new

metric, “information gain”, to validate the usefulness of a pattern. Further, in [22], this work was

extended for partial periodic patterns with gap penalties.

All works above assume that the elements in the sequence are categorical; thus, the occurrences

of elements and patterns can be counted by incrementing a counter every time they are observed in

the sequence. However, this basic counting technique may not directly be applied to a spatiotem-

poral sequence since each spatial location in such sequences is in the form of spatial coordinates

and does not typically repeat itself exactly. [3] discretized real-valued time series prior to mining

and then identified the most common subsequences in them. The mined patterns are not essentially

periodic and they are contiguous (i.e., there are no wildcards). The effects of discretization are

discussed in the next section.

Previous work on spatiotemporal data mining focuses on two types of patterns: (i) frequent

movements of objects over time and (ii) evolution of natural phenomena, such as forest cover-

age. [17] studied the discovery of frequent patterns related to changes of natural phenomena (e.g.,

temperature changes) in spatial regions. In general, there is limited work on spatiotemporal data

mining, which has been treated as a generalization of pattern mining in time-series data (e.g., see

[17, 13]). The locations of objects or the changes of natural phenomena over time are converted to

categorical values. For instance, we can divide the map into spatial regions and replace the location

of the object at each timestamp, by the region-id where it is located. Similarly, we can model the

change of temperature in a spatial region as a sequence of temperature values. Continuous domains
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of the resulting time-series data are discretized, prior to mining. In the case of multiple moving

objects (or time series), trajectories are typically concatenated to a single long sequence. Then, an

algorithm that discovers frequent subsequences in a long sequence (e.g., [23]) is applied. To our

knowledge, there is no prior work on discovering periodic patterns in spatiotemporal data.

3 Periodic Patterns in Object Trajectories

This section defines the problem of mining periodic patterns in spatiotemporal data. First, we

motivate our research by discussing why previous work on event sequences is not expected to

perform well when applied on object trajectories. We then proceed to a formal definition of the

problem.

In our model, we assume that the locations of objects are sampled over a long history. In other

words, the movement of an object is tracked as an n-length sequence S of spatial locations, one

for each timestamp in the history, of the form {(l0, t0), (l1, t1), . . . , (ln−1, tn−1)}, where li is the

object’s location at time ti. If the difference between consecutive timestamps is fixed (locations

are sampled every regular time interval), we can represent the movement by a simple sequence

of locations li (i.e., by dropping the timestamps ti, since they can be implied). Each location li

is expressed in terms of spatial coordinates. Figure 1a, for example, illustrates the movement of

an object in three consecutive days (assuming that it is tracked only during specific hours, e.g.,

working hours). We can model it with sequence S = {〈4, 9〉, 〈3.5, 8〉, . . . , 〈6.5, 3.9〉, 〈4.1, 9〉,
. . . }. Given such a sequence, a minimum support min sup (0 < min sup ≤ 1), and an integer

T , called period, our problem is to discover movement patterns that repeat themselves every T

timestamps. A discovered pattern P is a T -length sequence of the form r0r1 . . . rT−1, where ri is a

spatial region or the special character *, indicating the whole spatial universe. For instance, pattern

AB*C** implies that at the beginning of the cycle the object is in region A, at the next timestamp

it is found in region B, then it moves irregularly (it can be anywhere), then it goes to region C, and

after that it can go anywhere, until the beginning of the next cycle, when it can be found again in

region A. The patterns are required to be followed by the object in at least α (α = min sup · � n
T
�)

periodic intervals in S.

Existing algorithms for mining periodic patterns (e.g., [7]) operate on event sequences and
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Figure 1: Periodic patterns in with respect to pre-defined spatial regions

discover patterns of the above form. However, in this case, the elements ri of a pattern are events

(or sets of events). As a result, we cannot directly apply these techniques for our problem, unless

we treat the exact locations li as discrete categorical values. Nevertheless it is highly unlikely that

an object will repeat an identical sequence of 〈x, y〉 locations precisely. Even if the spatial route

is precise, the location transmissions at each timestamp are unlikely to be perfectly synchronized.

Thus, the object will not reach the same location at the same time every day, and as a result the

sampled locations at specific timestamps (e.g., at 9:00 a.m. sharp, every day), will be different. In

Figure 1a, for example, the first daily locations of the object are very close to each other, however,

they will be treated differently by a straightforward mining algorithm.

One way to handle the noise in object movement is to replace the exact locations of the objects

by the regions (e.g., districts, mobile communication cells, or cells of a synthetic grid) which

contain them. Figure 1b shows an example of an area’s division into such regions. Sequence {A, A,

C, C, C, G, A,...} can now summarize the object’s movement and periodic sequence pattern mining

algorithms, like [7], can directly be applied. Figure 1c shows three (closed) discovered patterns for

T = 6, and min sup = 2
3
. A disadvantage of this approach is that the discovered patterns may

not be very descriptive, if the space division is not very detailed. For example, regions A and C are

too large to capture in detail the first three positions of the object in each periodic instance. On the

other hand, with detailed space divisions, the same (approximate) object location may span more

than one different regions. For example, in Figure 1b, observe that the third object positions for the

three days are close to each other, however, they fall into different regions (A and C) at different

days. Therefore, we are interested in the automated discovering of patterns and their descriptive

regions. Before we present solutions for this problem, we will first define it formally.
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Problem definition

Let S be a sequence of n spatial locations {l0, l1, . . . , ln−1}, representing the movement of an object

over a long history. Let T � n be a user specified integer called period (e.g., day, week, month).

A periodic segment s is defined by a subsequence lili+1 . . . li+T−1 of S, such that i modulo T = 0.

Thus, segments start at positions 0, T, . . . , (� n
T
� − 1) · T , and there are exactly m = � n

T
� periodic

segments in S 1. Let sj denote the segment starting at position lj·T of S, for 0 ≤ j < m, and let

sj
i = lj·T+i, for 0 ≤ i < T .

Definition 1 A periodic pattern P is defined by a sequence r0r1 . . . rT−1 of length T , such that ri

is either a spatial region or *. The length of a periodic pattern P is the number of non-* regions

in P .

A segment sj is said to comply with P , if for each ri ∈ P , ri = * or sj
i is inside region ri.

Definition 2 The support |P | of a pattern P in S is defined by the number of periodic segments in

S that comply with P .

We sometimes use the same symbol P to refer to a pattern and the set of segments that comply

with it. Let min sup be a fraction in the range (0, 1] (minimum support). A pattern P is frequent,

if its support is larger than min sup · m.

A problem with the definition above is that it imposes no control over the density of the pattern

regions ri. In other words, if the pattern regions are too relaxed (e.g., each ri is the whole map),

the pattern may always be frequent. Therefore, we impose an additional constraint as follows. Let

SP be the set of segments that comply with a pattern P . Then each region ri of P is valid if the

set of locations RP
i := {sj

i | sj ∈ SP} form a dense cluster. To define a dense cluster, we borrow

the definitions from [5] and use two parameters ε and MinPts. A point p in the spatial dataset RP
i

is a core point if the circular range centered at p with radius ε contains at least MinPts points. If

a point q is within distance ε from a core point p, it is assigned in the same cluster as p. If q is a

core point itself, then all points within distance ε from q are assigned in the same cluster as p and

q. If RP
i forms a single, dense cluster with respect to some values of parameters ε and MinPts,

1If n is not a multiple of T , then the last n modulo T locations are truncated, and the length n of sequence S is

reduced accordingly.
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we say that region ri is valid. If all non-* regions of P are valid, then P is a valid pattern. We are

interested in the discovery of valid patterns only. In the following, we use the terms valid region

and dense cluster interchangeably; i.e., we will often use the term dense region to refer to a spatial

dense cluster and the points in it.

Figure 2a shows an example of a valid pattern, if ε = 1.5 and MinPts = 4. Each region at

positions 1, 2, and 3 forms a single, dense cluster and is therefore a dense region. Notice, however,

that it is possible that two valid patterns P and P ′ of the same length (i) have the same * positions,

(ii) every segment that complies with P ′, complies with P , and (iii) |P ′| < |P |. In other words,

P implies P ′. For example, the pattern of Figure 2a implies the one of Figure 2b (denoted by the

three circles). A frequent pattern P ′ is redundant if it is implied by some other frequent pattern P .

Definition 3 The mining periodic patterns problem searches for all valid periodic patterns P in

S, which are frequent and non-redundant with respect to a minimum support min sup.

For simplicity, we will use “frequent pattern” to refer to a valid, non-redundant frequent pattern.
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4 Mining Periodic Patterns

In this section, we present techniques for mining frequent periodic patterns and their associated

regions in a long history of object trajectories. We first address the problem of finding frequent

1-patterns (i.e., of length 1). Then, we propose two methods to find longer patterns; a bottom-up,

level-wise technique, denoted by STPMine1 (SpatioTemporal periodic Pattern Min(e)ing 1), and a

faster top-down approach, referred to as STPMine2. Finally, we present a simplified version of the

top-down approach, which solves the problem approximately, but it is very efficient.
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4.1 Obtaining frequent 1-patterns

Including automatic discovery of regions in the mining task does not allow for the direct application

of techniques that find patterns in sequences (e.g., [7]), as discussed. In order to tackle this problem,

we propose the following methodology. We divide the sequence S of locations into T spatial

datasets, one for each offset of the period T . In other words, locations {li, li+T , . . . , li+(m−1)·T}
go to set Ri, for each 0 ≤ i < T . Each location is tagged by the id j ∈ [0, . . . , m − 1] of

the segment that contains it. Figure 3a shows the spatial datasets obtained after decomposing the

object trajectory of Figure 1a. We use a different symbol to denote locations that correspond to

different periodic offsets and different colors for different segment-ids.

Observe that a dense cluster r in dataset Ri corresponds to a frequent pattern, having * at all

positions and r at position i. Figure 3b shows examples of five clusters discovered in datasets R1,

R2, R3, R4, and R6. These correspond to five 1-patterns (i.e., r11*****, *r21****, etc.). In order

to identify the dense clusters for each Ri, we can apply a density-based clustering algorithm like

DBSCAN [5]. Clusters with less than α (α = min sup ·m) points are discarded, since they are not

frequent 1-patterns according to our definition. Clustering is quite expensive and it is a frequently

used module of the mining algorithms, as we will see later. DBSCAN [5] has quadratic cost to

the number of clustered points, unless an index (e.g., R–tree) is available. Since R–trees are not

available for every arbitrary set of points to be clustered, we use an efficient hash-based method.

For the sake of readability, we include the details of this method in the Appendix.

4.2 A level-wise, bottom-up approach

Starting from the discovered 1-patterns (i.e., clusters for each Ri), we can apply a variant of the

level-wise Apriori-TID algorithm [1] to discover longer ones, as shown in Figure 4. The input

of our algorithm is a collection L1 of frequent 1-patterns, discovered as described in the previous

paragraph; for each Ri, 0 ≤ i < T , and each dense region r ∈ Ri, there is a 1-pattern in L1.

Pairs 〈P1, P2〉 of (k − 1)-patterns in Lk−1, with their first k − 2 non-* regions in the same position

and different (k − 1)-th non-* position create candidate k-patterns (lines 4–6). For each candidate

pattern Pcand, we then perform a segment-id join between P1 and P2, and if the number of segments

that comply with both patterns is at least min sup ·m, we run a pattern validation function to check
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whether the regions of Pcand are still clusters. After the patterns of length k have been discovered,

we find the patterns at the next level, until there are no more patterns at the current level, or there

are no more levels.

Algorithm STPMine1(L1, T , min sup);

1). k:=2;

2). while (Lk−1 �= ∅ ∧ k < T )

3). Lk:=∅;

4). for each pair of patterns (P1, P2) ∈ Lk−1

5). such that P1 and P2 agree on the first k − 2

6). and have different (k − 1)-th non-* position

7). Pcand:=candidate gen(P1, P2);

8). if (Pcand �= null) then

9). Pcand:=P1 �P1.sid=P2.sid P2; //segment-id join

10). if (|Pcand| ≥ min sup · m) then

11). validate pattern(Pcand , Lk , min sup);

12). k:=k + 1;

13). return P :=
�

Lk, ∀1 ≤ k < T ;

Figure 4: Level-wise pattern mining

function validate pattern(Pcand , Lk, min sup);

1). split:=false; prev size:= |Pcand|
2). for each non-* position i of Pcand

3). cluster points of Ri with sid ∈ Pcand;

4). if (more than one clusters with size ≥ min sup · m) then

5). split:=true;

6). for each cluster r with size ≥ min sup · m
7). P ′

new :={sid | sid ∈ r};

8). validate pattern(P ′
cand , Lk, min sup);

9). else Pcand:=segment-ids in updated cluster r;

10). if (¬split)then

11). if (|Pcand| ≥ min sup · m) then

12). validate pattern(Pcand , Lk, min sup);

13). else Lk:=Lk ∪ Pcand;

Figure 5: Validating a new pattern

In order to facilitate fast and effective candidate generation, we use the MBRs (i.e., minimum

bounding rectangles) of the pattern regions. For each common non-* position i the intersection

of the MBRs of the regions for P1 and P2 must be non-empty, otherwise a valid superpattern

cannot exist. The intersection is adopted as an approximation for the new pattern Pcand at each

such position i. During candidate pruning, we check for every (k − 1)-subpattern of Pcand if there

is at least one pattern in Lk−1, which agrees in the non-* positions with the subpattern and the

MBR-intersection with it is non-empty at all those positions. In such a case, we accept Pcand as

a candidate pattern. Otherwise, we know that Pcand cannot be a valid pattern, since some of its

subpatterns (with common space covered by the non-* regions) are not included in Lk−1.

Function validate pattern takes as input a k-candidate pattern Pcand and computes a number

of actual k-patterns from it. The rationale is that the points at all non-* positions of Pcand may

not form a cluster anymore after the join of P1 and P2. Thus, for each non-* position of Pcand we

re-cluster the points. If for some position the points can be grouped to more than one clusters, we

create a new candidate pattern for each cluster and validate it. Note that, from a candidate pattern

Pcand, it is possible to generate more than one actual patterns eventually. If no position of Pcand is

split to multiple clusters, we may need to re-cluster the non-* positions of Pcand, since some points
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(and segment-ids) may be eliminated during clustering at some position.
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Figure 6: Example of STPMine1

To illustrate the algorithm, consider the 2-patterns P1 = r1xr2y* and P2 = r1w*r3z of Figure

6a. Assume that MinPts = 4 and ε = 1.5. The two patterns have common first non-* position

and MBR(r1x) overlaps MBR(r1w). Therefore, a candidate 3-pattern Pcand is generated. During

candidate pruning, we verify that there is a 2-pattern with non-* positions 2 and 3 which is in L2.

Indeed, such a pattern can be spotted at the figure (see the dashed lines). After joining the segment-

ids in P1 and P2 at line 9 of STPMine1, Pcand contains the trajectories shown in Figure 6b. Notice

that the locations of the segment-ids in the intersection may not form clusters any more at some

positions of Pcand. This is why we have to call validate pattern, in order to identify the valid

patterns included in Pcand. Observe that, the segment-id corresponding to the lowermost location

of the first position is eliminated from the cluster as an outlier. Then, while clustering at position

2, we identify two dense clusters, which define the final patterns r1ar2br3c and r1dr2er3f .

4.3 A two-phase, top-down approach

Although the algorithm of Figure 4 can find all partial periodic patterns correctly, it can be very

slow due to the huge number of region combinations to be joined. If the actual patterns are long,

all their subpatterns have to be computed and validated. In addition, a potentially huge number of

candidates need to be checked and evaluated. In this section, we propose a top-down method that

can discover long patterns more efficiently,

After applying clustering on each Ri (as described in Section 4.1), we have discovered the

frequent 1-patterns with their segment-ids. The first phase of STPMine2 algorithm (Figure 8)

replaces each location in S with the cluster-id it belongs to or with an “empty” value (e.g., *) if
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the location belongs to no cluster. For example, assume that we have discovered clusters {r11, r12}
at position 1, {r21} at position 2, and {r31, r32} at position 3. A segment {l1, l2, l3}, such that

l1 ∈ r12, l2 /∈ r21, and l3 ∈ r31 is transformed to subsequence {r12*r31}. Therefore, the original

spatiotemporal sequence S is transformed to a symbol sequence S ′.

Now, we could use the mining algorithm of [7] to discover fast all frequent patterns of the form

r0r1 . . . rT−1, where each ri is a cluster in Ri or *. However, we do not know whether the results of

the sequence-based algorithm are actual patterns, since the contents of each non-* position may not

form a cluster. For example, {r12*r31} may be frequent, however if we consider only the segment-

ids that qualify this pattern, r12 may no longer be a cluster or may form different actual clusters (as

illustrated in Figure 6). We call the patterns P ′ which can be discovered by the algorithm of [7]

pseudo-patterns, since they may not be valid.

To discover the actual patterns, we apply some changes in the original algorithm of [7]. While

creating the max-subpattern tree, we store with each tree node the segment-ids that correspond to

the pseudo-pattern of the node after the transformation. In this way, one segment-id goes to exactly

one node of the tree. However, S could be too large to manage in memory. In order to alleviate

this problem, while scanning S, for every segment s we encounter, we perform the following

operations.

• First, we insert the segment to the max-subpattern tree, as in [7], increasing the counter of

the candidate pseudo-pattern P ′ that s corresponds to after the transformation. An example

of such a tree is shown in Figure 7. This node can be found by finding the (first) maximal

pseudo-pattern that is a superpattern of P ′ and following its children, recursively. If the node

corresponding to P ′ does not exist, it is created (together with any non-existent ancestors).

Notice that the dotted lines are not implemented and not followed during insertion (thus, we

materialize the tree instead of a lattice). For instance, for segment with P ′ = {*r21r31}, we

increase the counter of the corresponding node at the second level of the tree.

• Second, we insert an entry 〈P ′.id, s.sid〉 to a file F , where P ′.id is the id of the node of the

lattice that corresponds to pseudo-pattern P ′ and s.sid is the id of segment s. At the end,

file F is sorted on P ′.id to bring together segment-ids that comply with the same (maximal)
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pseudo-pattern. For each pseudo-pattern with at least one segment, we insert a pointer to the

file position, where the first segment-id is located. Nodes of the tree are labeled in breadth-

first search order for reasons we will explain shortly.
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Figure 7: Example of max-subpattern tree

Instead of finding frequent patterns in a bottom-up fashion, we traverse the tree in a top-down,

breadth-first order. For every pseudo-pattern with at least min sup · m segment-ids, we apply

the validate pattern function in Figure 5 to recover potential valid patterns. All segment-ids that

belong to a discovered pattern are removed from the current pseudo-pattern. The rationale is that

we are interested in patterns that are not spatially contained in some superpattern, so we use only

those segment-ids that are not included in a pattern to verify its subpatterns.

Thus, after scanning the first level of the lattice, we may have discovered some patterns, and

we may have shrunk segment-id lists of the pseudo-patterns. Then, we move to the next level of

the lattice. The support of a pseudo-pattern P ′ at each level is the recorded support of P ′ plus

the supports of all its superpatterns (recall that a segment-id is assigned to the maximal pattern it

complies with). The supports of the superpatterns can be immediately accessed from the lattice. If

the total support of the candidate is at least min sup · m, then the segment-ids have to be loaded

for application of validate pattern. The segment-ids of a superpattern may already be in memory

from previous level executions. If not, they are loaded from the file F . After validation, only the

disqualified segment-ids are kept to be used at lower level patterns. Traversal continues until there

are no more patterns or it is not possible to find more patterns at lower levels of the lattice.

The fact that segment-ids are clustered in F according to the breadth-first traversal of the lattice

minimizes random accesses and restricts the number of loaded blocks to memory. The segment-

ids for a superpattern remain in memory to be used at lower level validations. If we run out of
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memory, the segment-ids of the uppermost lattice levels are rewritten to disk, but this time possibly

to a smaller file if there were some deletions.

Algorithm STPMine2(L1, T , min sup);

1). build max-subpattern tree T and pattern-file F ;

2). sort F on P ′.id and connect it to the nodes of T ;

3). for k:=T down to 2

4). for each pattern P ′ at level k of T
5). |P ′|:=P ′.counter +

�
P ′′⊃P ′,length(P ′′)=k+1 |P ′′|;

6). if (|P ′| ≥ min sup · m) then

7). Pcand:=
�

P ′′⊇P ′ P ′′.sids;

8). validate pattern(Pcand,L, min sup);

9). if (P has changed) then

10). remove from P ′ those sids in new patterns of P ;

11). if (unassigned sids less than min sup · m) then

12). return P ;

13). return P ;

Figure 8: Top-down pattern mining

A pseudocode for STPMine2 is shown in Figure 8. Initially, the tree and the segment-ids file

are created and linked. Then for each level, we find the support of a pseudo-pattern |P ′| at level k

by accessing only the supports of its superpatterns P ′′ ⊃ P at level k + 1, since we are accessing

the tree in breadth-first order. If |P ′| ≥ min sup · m, we validate the pattern as in STPMine1,

and if some pattern is discovered, we remove from P ′ all those segment-ids that comply with the

discovered pattern. Thus, the number of segment-ids decreases as we go down the levels of the tree,

until it is not possible to discover any more patterns, or there are no more levels. Notice that the

patterns discovered here are only maximal, as opposed to STPMine1, which discovers all frequent

patterns. However, we argue that maximal patterns are more useful, compared to the huge set of

all patterns. In addition, as we show in the experimental section, STPMine2 is much faster than

STPMine1 for data, which contain long patterns.

4.4 A simplified algorithm: STPMine2-V2

In our definition, a pattern P is valid if (i) its frequency exceeds min sup ·m; and (ii) the locations

in RP
i form a single dense cluster for all non-* positions in P . Property (ii) incurs a high com-

putational burden to the mining algorithms, since it must be validated for every candidate pattern.

Repetitive applications of the clustering algorithm and maintenance of the segment-ids that comply
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with each node of the max-subpattern tree are required.

In this section, we discuss a simplified version of our mining algorithm which considers the

second property only in the discovery of frequent 1-patterns. In other words, after computing

the dense regions at each Ri, we do not re-validate any clusters any more. As a result, we need

not to use the segment-id lists at each node, but simply consider their counters to measure the

pattern frequency. This mining technique is identical to STPMine2, excluding the validation and

re-assignment of segment-ids, thus we call it STPMine2-V2.

Note that STPMine2-V2 will be more inaccurate compared to STPMine2, since it may discover

patterns that are not valid according to the definition by merging shorter actual patterns. In addition,

the regions that define the patterns discovered by STPMine2-V2 will be identical to the regions of

the clusters forming frequent 1-patterns (e.g., the region refinement of the example in Figure 6 will

not be performed). On the other hand, STPMine2-V2 is expected to be significantly faster than

STPMine2. In Section 6, we validate the benefits and disadvantages of this simplification.

4.5 Performance Analysis

Time: Let the length of the maximal pattern be �max. STPMine1 needs to scan the data sequence

�max times, verifying at the l-th level all l-patterns. STPMine2 and STPMine2-V2 only need to

scan the sequence two times; first to compute the frequent 1-patterns and then to construct the

max-subpattern tree(s). For verifying an l-pattern P , both STPMine1 and STPMine2 must perform

clustering l times, once for each non-* position of P . Clustering has typically linear cost, as

discussed in the Appendix. STPMine2-V2 saves time compared with STPMine2 since it just needs

to calculate the support of a pattern, but does not re-cluster the points at each non-* position,

however, both methods have the same (linear) asymptotic performance.

Space: As far as the space is concerned, STPMine1 generates and validates candidates level-

by-level, so its space complexity depends on the maximum number of candidates at a level. This

typically corresponds to the number of candidates in the middle of the lattice of the examined

space. In the worst case, if �max is the longest pattern length, the number of �max

2
-candidates is the

number of cluster combinations at �max

2
non-* positions. This number can be estimated after the

frequent 1-patterns have been extracted and it is in the same order as the space required to store
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the max-subpattern tree(s) of STPMine2 and STPMine2-V2. The space required to store these

trees has been analyzed in [7]. In summary, all three methods have the same worst-case space

complexity, but as discussed above STPMine2 and STPMine2-V2 are much more time-efficient

than STPMine1.

5 Variants of Periodic Patterns

As discussed in Section 1, the patterns followed by objects can be frequent only in some intervals

of the whole movement history. In this section, we study the identification of periodic patterns

and their associated validity eras; i.e., the time range(s) in which these patterns are frequent. In

addition, we study the problem where pattern occurrences in certain time ranges may be shifted or

distorted in time; in this case, mining is also adapted to consider such instances when computing

the frequency of a pattern.

5.1 Patterns with validity eras

Let S be the trajectory of a moving object and T be a period. Based on them, we can define a set

of m segments of S which are candidate pattern instances, as discussed in Section 3. For instance,

segment sj spans T consecutive locations in S, starting from lj·T .

Definition 4 An era [b, e] is the subsequence of S, from the beginning of segment sb until the end

of se. The time span of the era [b, e] is e − b + 1.

Era [b, e] is a superset of era [b′, e′] iff b ≤ b′ and e ≥ e′; accordingly, [b′, e′] is a subset of [b, e].

Definition 5 A periodic pattern with a validity era, abbreviated as era pattern, refers to a periodic

pattern associated with some era, P = r0r1 . . . rT−1[b, e].

Example In Figure 1c, the era of subsequence AACBDG AAACHG is [1,2] (T = 6), whereas the

era of the whole sequence is [0,2]. Examples of era patterns are AA***G[0,2] and AAC**G[0,1].

Recall that SP is the set of segments that comply with a pattern P . We use bmin and emax to

represent the minimum and maximum segment-ids in SP respectively. Given [b, e], a subset of

[bmin, emax], let SP
[b,e] contain all the segments in SP with segment-ids in [b, e], and |SP

[b,e]| denote

the number of segments in SP
[b,e].
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Definition 6 Given min sup and MinPts, the era pattern P [b, e] is a valid era pattern if |SP
[b,e]| ≥

MinPts and
|SP

[b,e]
|

e−b+1
≥ min sup.2

Definition 7 Consider two era patterns P = r0r1 . . . rT−1[b, e] and P ′ = r′0r
′
1 . . . r′T−1[b

′, e′]. P is

a superpattern of P ′ if (i) ri = r′i or r′i = ∗ for 0 ≤ i < T and (ii) [b, e] is superset of [b′, e′].

In practice, SP
[b,e] may be a subset of SP ′

[b′,e′].

Example Consider three valid patterns P = r0r1r2r3*[0, 100], P ′ = r0r1r2**[0, 100], and P ′′ =

r0r1r2r3*[20, 100]. Let SP
[0,100] contain segments with ids {0,20,21,. . . ,98,100}, and SP ′

[0,100] contain

one more segment with id 99. Although SP
[0,100] is a subset of SP ′

[0,100], P is a superpattern of P ′

according to the definition. Similarly, P is a superpattern of P ′′, as well. However, P ′′ is not a

superpattern of P ′, since the second condition of Definition 7 is not satisfied.

An era pattern P is maximal if it has no proper valid superpattern. Below is a formal definition of

the problem studied in this section.

Definition 8 The mining era patterns problem aims to find all the maximal valid era patterns,

given a sequence S, a period T , a minimum support min sup (0 < min sup ≤ 1), and cluster

parameters ε and MinPts.

Discovering patterns and their validity eras

We adapt the STPMine2-V2 algorithm (see Section 4.4), which we found the most efficient in our

experimental study. As in Section 4, we follow two steps; detecting valid 1-patterns and discovering

the patterns with longer length. We start by discovering the dense cluster(s), ri(s), from Ri for each

period offset i. By setting the i-th position to be ri and all the other period positions to be *, we

get a candidate 1-pattern. All these candidates are put in a set C1 for computing their validity eras.

In addition, S is replaced by S ′, a sequence of spatial regions and noise *.

Recall that SP contains the segments complying with a candidate 1-pattern P . Let SP
sid denote

the set of segments-ids in SP . To compute eras for a candidate pattern P in C1, we run the algorithm

in Figure 9. The goal is to find the eras with the maximum time span that render the pattern frequent.

Parameter Qera is a FIFO queue containing all the candidate eras that need to be validated for a

2We use the first condition since we need to have at least MinPts points in each valid region for a pattern P .
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pattern P . Initially, it contains only one era [b, e], where b and e are the minimum and maximum

values in SP
sid. If the era with the maximum time span does not make the pattern frequent, its two

greatest subsets are inserted into Qera, and the algorithm continues until a valid era for the pattern is

found or no interval of length greater than MinPts exists (line 3). This algorithm is not restricted

for 1-patterns, but could also be used to identify validity eras for patterns with arbitrary lengths.

getValidEra(Qera , SP
sid, min sup); /*Qera: queue with eras need to be checked against P */

1). while (Qera is not empty)

2). [b, e] := remove the first era from Qera (with maximal time span);

3). if ((e − b + 1) < MinPts) then break;

4). SP
sid[b, e] := subset of SP

sid in the range [b, e];

5). if (|SP
sid[b, e]| ≥ min sup · (e − b + 1)) then output [b, e] as a valid era;

6). else add eras [b + 1, e] and [b, e − 1] into Qera;

Figure 9: Get valid era for candidate pattern P

Note that the algorithm may output multiple (maximal) validity eras for a given pattern. In

order to avoid exploding the space of potential solutions, we choose to terminate it when the first

era is output. Since the contents of Qera are in descending order of their time spans, the first interval

to be output is guaranteed to be the longest. Alternatively, we may collect all maximal eras and

pick a subset that consists of maximal non-overlapping intervals. This allows us to detect a pattern

which is frequent in different segments of the history.

For finding the longer era patterns, we adapt STPMine2-V2 to a new algorithm, which we

call EPMine (Era periodic Pattern Min(e)ing). Next, we describe how to compute the candidate

max-subpatterns, build max-subpattern trees and derive valid patterns from them.

A max-subpattern is formed by combining the valid 1-patterns, as discussed in Section 4. To de-

termine the era of a max-subpattern P , we take the union of the eras from the 1-patterns that define

P . The union of a set of eras {[b1, e1], [b2, e2], . . . [bk, ek]} is defined by [mink
i=1 bi, maxk

i=1 ei]. In

addition, we require that the eras of the 1-patterns that form a max-subpattern P have non-empty

intersection; otherwise, there can be no valid instance of P . For example, for three 1-patterns:

a**[0,10], *b*[1,9] and **c[2,11], the max-subpattern is abc[0,11]. The computation of candi-

date max-subpatterns requires one scan of the 1-patterns, if these are ordered by validity time.

After forming the candidate max-patterns, EPMine builds the max-subpattern tree for each of

them. Sequence S ′ is then scanned and each segment is inserted into the trees whose era contains
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the corresponding segment-id. Valid era patterns are derived from a max-subpattern tree, by scan-

ning it in a breadth-first order; for each candidate pattern P the set SP
sid is extracted, the initial

era [b, e] is obtained by the minimum and maximum sid in SP
sid and the algorithm of Figure 9 is

eventually run.

5.2 Shifted and distorted patterns

Recall that sj denotes a segment starting at position j · T . Given a tolerance integer τ (0 ≤ τ ≤
�T/2�), a segment starting at position j · T + d, −τ ≤ d ≤ τ , is denoted by sj[d] (note that

sj[0] = sj).

Definition 9 Given a sequence S and an integer τ , a segment sj[d], −τ ≤ d ≤ τ , is a shifted

pattern instance of a pattern P if it complies with P , i.e., P ’s occurrence in S is shifted at most τ

timestamps forward or backward from its expected position j · T .

Example Let T = 5 and S ′ = r0r1r2r3r4 r0r0r1r4r3 r2r0r1r3r3 be the transformed sequence, after

replacing the locations in S by spatial regions. The pattern r0r1*r3* has one non-shifted instance,

s0, starting at position 0, and two shifted pattern instances, s1[1] and s2[1], starting at positions 6

(1 · T + 1) and 11 (2 · T + 1).

There are cases, where the pattern instances are not simply shifted, but they are distorted.

Definition 10 A segment sj[d], −τ ≤ d ≤ τ , is a distorted instance for a pattern P = r0r1 . . . rT−1

with length Plen, with respect to τ , if there exist Plen ordered locations in sj [d] such that (i) these

locations follow the order of non-* elements in P ; and (ii) for every non-* element in P , its period

offset differs at most τ from the period offset of its related location in s j[d].

Example: Consider a segment s0 = l0l1l2l3l4 and let τ = 1. If l1 ∈ r0, l2 ∈ r2, and l4 ∈ r3, s0 is a

distorted instance of pattern P = r0*r2r3*.

Two pattern instances (segments) overlap if they have some locations in common. For example,

s0[1] = l1l2l3l4l5 overlaps with s1 = l5l6l7l8l9 since they have l5 in common.

Definition 11 If a pattern P has more than min sup ·m (shifted/distorted) pattern instances in S,

such that no two instances overlap, then P is a frequent pattern with shifted/distorted instances.

Given a sequence S, minimum support min sup (0 < min sup ≤ 1), cluster parameters ε and
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MinPts, and maximum shifting/distortion parameter τ (0 ≤ τ ≤ �T/2�), the problem of dis-

covering shifted/distorted patterns aims at finding all frequent patterns with shifted/distorted

instances from S.

Mining patterns with shifted and/or distorted instances

As discussed in Section 4.1, 1-patterns can be mined, after we divide the sequence S of locations

into T datasets and applying clustering to each of them. In order to consider shifted/distorted

pattern instances in this process, for an object location at offset position i, instead of generating

a single point in the corresponding dataset Ri, we generate a point at all τ -neighbor positions

R(i−τ) mod T , R(i−τ+1) mod T , . . . , R(i+τ) mod T . Consider, for instance, the 5th position of day 1,

in Figure 3a and assume that τ = 1. Instead of generating a single ‘�’ point at that location, we

generate one ‘�’ point (to file R5), one ‘+’ point (to file R4), and one ‘×’ point (to file R6). In other

words, there is a data replication with a factor 2 · τ + 1, however, this ensures that shifted/distorted

patterns will be counted in the supports of the actual positions.

We adopt STPMine2-V2 to SPMine (Shifted/distorted Pattern Min(e)ing) in Figure 10 to fa-

cilitate counting of longer (shifted/distorted) pattern instances. SPMine also works in a top-down

manner, starting the pattern validation from the max-subpattern Pmax and continuing down to pat-

terns of shorter lengths level-by-level. SPMine does not utilize the max-subpattern tree, but it

still generates max-subpatterns by combining the frequent 1-patterns which have non-* elements

at different period offsets. For example, from 1-patterns *r1***, ***r3*, ****r4, we get the

max-subpattern *r1*r3r4.

The pseudocode of Figure 10 describes how to extract frequent patterns from Pmax. We ex-

amine the subpatterns of Pmax level-by-level. For each candidate subpattern P , which is formed

by a set of clusters, one for each non-* position i, we initialize a pointer pi to the first point in

each cluster ri. Then, we perform a merge-join by synchronously scanning the contents of the

clusters, attempting to find shifted/distorted pattern instances from the sets of points currently in-

dexed by each pi (lines 5–15). Given the current pointer positions, if the set of locations is a valid

shifted/distorted pattern instance, then we increase all pointers, as we do not want to count more

instances that share locations with the current one. Otherwise, if there is a pair of points with iden-
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Algorithm SPMine(Pmax, T , min sup);

1). for l:= �max down to 2 //�max is the length of Pmax

2). for every subpattern of Pmax with length l and with no frequent superpattern;

3). |P |:= 0; //|P | is the support of P (Definition 2)

4). for each non-* position i of P with cluster ri

5). pi:=first point in ri;

6). if ({p1, p2, . . . , pl} is not a valid instance of P ) then

7). if (pi = pj , for some i < j) then

8). pj := next point in rj ;

9). else j:={i : pi has the smallest timestamp};

10). pj := next point in rj ;

11). else //valid pattern instance

12). |P |:=|P | + 1;

13). for each non-* position i of P with cluster ri

14). pi:= next point in ri;

15). if (more points in all ri) then goto line 6;

16). if (|P | ≥ min sup · m) then report P ;

Figure 10: Shifted/distorted pattern mining

tical locations (which have been clustered to different offsets due to replication), we increase the

pointer in the cluster which corresponds to the largest offset (lines 7–8). If there is no such pair

of identical points, we increase the pointer with the smallest timestamp (lines 9–10). Finally (line

16), we report the pattern if it is found to be frequent. Note that we do not discover patterns whose

superpatterns are frequent, in order to improve the scalability of the method.

Example Assume that we run SPMine to retrieve the distorted patterns and initially get clusters

r0:={l0, l5, l10} and r1:={l1, l5, l6, l7, l11}. Consider a candidate pattern P = r0r1***, and let

τ = 1. (l0, l1) is the first point-id pair from the two sets, falling into the same segment, so they

contribute 1 to |P |. The next pair, (l5, l5) contains identical ids so it does not contribute to P .

Keeping p0 = l5 from r0 unchanged, we get the next location, p1 = l6, from r1. The current

locations (l5, l6) form a segment and add 1 to P ’s frequency. Then we proceed to location pair

(l10, l7) (not an instance) and finally continue to the contributing join pair (l10, l11).

Because of the replication effect, SPMine may generate redundant candidates. In order to

alleviate this problem, we can weigh the replicated points with a number anti-proportional to their

distance from their actual temporal positions, in order to penalize distortion and increase accuracy.

In counting the 1-patterns after clustering, a non-* element which is shifted τ positions from its

expected period offset is given the support 1−τ ×w, where w can be any value in (0, 1) depending
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on how much the user wants to take into account the shifted/distorted pattern instances. Consider

the example of Figure 3 and let τ = 1 and w = 0.5. For counting the support of ‘****r5*’,

we give for each exact ‘�’ point a weight 1, but for ‘+’ and ‘×’ points only a weight 0.5; these

are approximate and should be treated with reduced significance in counting. When counting the

occurrences of an l-pattern P (l ≥ 2), we add for each pattern instance the maximal weight of all

the non-* elements in it. We denote this weighted variant of SPMine by SPMine-w, while we use

SPMine-b to refer to the original method with w = 0.

6 Experimental Evaluation

We implemented and evaluated the mining techniques presented in the paper. The language used

was C++ and the experiments were performed on a Pentium III 700MHz workstation with 1GB

of memory, running Unix. Because of the lack of real data, we generated synthetic data that

simulate periodic movements. We introduce our synthetic data generator in Section 6.1, and show

the effectiveness and efficiency test results in Section 6.2 and Section 6.3.

Setting the mining parameters We assume that the period T is known by the user and given as

an input parameter. In many applications (including Bob’s daily activities example mentioned in the

Introduction) this is a realistic assumption. The automatic derivation of T from the data is an issue,

which is out of the scope of this paper. We note that current periodicity detection algorithms (e.g.,

[4]) may not be applicable to our problem, since these methods apply on a priori discretized data.

In addition, if the actual period is no greater than τ compared to T , the shifted/distorted mining

variant could be used to discover the patterns. In the future, we plan to study their adaptation for

our problem. The two clustering parameters MinPts and ε, used to control the density of a region,

can generally be determined by the sampling method proposed in [5]. In our experiments, we work

with synthetically generated data, for which ε and MinPts can be derived from the parameters of

the data generator.

6.1 Synthetic data generator

In order to test the effectiveness and efficiency of the techniques under various conditions, we

designed a generator for long object trajectories, which exhibit periodicity according to a set of
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parameter values. These parameters are the length n of the time history (in timestamps), the period

T , the length � of the maximal frequent patterns followed by the object (� ≤ T ), and a probability

f for a periodic segment in the object’s movement to comply with no hidden patterns (i.e., the

movement during this segment is irregular).

Before generating the movement, the approximate regions for the maximal periodic patterns

are determined. Let P be a generated pattern. A random circular route is generated in space, and

for each non-∗ position i in P , a spatial location lPi
(i.e., point) on that route is determined, such

that the distance between two non-∗ positions on the route is proportional to their temporal distance

in the pattern. Afterwards, the movement of the object is generated. For every periodic segment s,

we determine whether s should be a noise (i.e., irregular) segment or not, given the probability f .

If s is a regular segment, a random maximal pattern P is selected, and the object’s movement is

generated as follows. If the next segment location to be generated corresponds to a non-∗ position

i of P , the location li is generated randomly and within a distance E from the spatial location lPi

of the non-∗ position. E ranges from 0 to 2% of the map size. Otherwise (i.e., l corresponds to a

∗ position), li is generated randomly, but such that the movement is “targeted” to the next periodic

location. In other words, (i) li “moves” with respect to the previous segment location li−1 towards

the next non-∗ position j, and (ii) its distance from the previous location l i−1 is the spatial distance

between li−1 and lPj
divided by j−i+1, i.e., the temporal distance between these two positions. In

order to prevent regular movements, both the distance and direction angle are distorted. In specific,

we add to the angle (in radians) a random number in [−1, 1] and the distance is multiplied by a

number between [1.5, 0.8]. 3

If s is a noise segment, the object can move everywhere in space. The movement is determined

by a random direction angle (with respect to the previous location), and a random distance in

[0, maxwalk], where maxwalk is used to control the maximum “walking” distance of the object

between two timestamps. In order to avoid extreme jumps, after half of the movements in a noise

segment, the rest are generated to “target” to the next periodic position, using the method described

above.
3These values were tuned to match realistic object movements and at the same time to disallow falsely generated

periodic patterns.
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For generating the era patterns, we add to the generator one more parameter En to determine

the number of hidden era patterns. Given T , the generator first produces En patterns. Given the

length n of the desired sequence S, an era pattern will be hidden in a subsequence of S, each of

which contains approximately n
En

consecutive locations. In generating a subsequence that covers

one era pattern, a segment in it contributes to its hidden era pattern with probability 1 − f .

To generate shifted/distorted pattern instances, we divide the generated segments that comply

with some hidden pattern, into τ + 1 partitions, and the segments in partition i (0 ≤ i ≤ τ ) are

shifted/distorted i timestamps forward or backward after a coin-flip.

6.2 Effectiveness

The first experiment demonstrates the effectiveness of the baseline mining techniques proposed

above in Section 4. We generated a small dataset, with n = 1000 (i.e., there are only 1000 locations

in the object’s trajectory). T is set to 20, and the object follows a single periodic pattern P at 39 out

of 50 segments, whereas the movement is irregular in 11 segments. Figure 11a shows the objects

trajectory, where the periodic movement can roughly be observed. For this dataset � = 10, i.e.,

there are 10 non-∗ positions in P . Figure 11b shows the maximal frequent pattern P of length 10,

successfully discovered by STPMine1 and STPMine2, when min sup = 0.6. The non-∗ positions

are 6, 7, 9, 10, 11, 12, 13, 15, 18, and 19. We plot the object’s movement, interpolated using only

the non-∗ positions. The discovered pattern is identical to the generated one. The dense regions are

successfully detected by the clustering module, and the spatial extents of the pattern are minimal.
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Figure 11: Effectiveness comparison

We also developed and tested a technique that applies directly the data mining algorithm for

event sequence data [7]. The space is divided using a regular M × M grid. Then, each location

of S is transformed to the cell-id which encloses the location. For instance, if we assume that
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all locations are in a unit [0, 1] × [0, 1] space, a location l = 〈x, y〉 is transformed to a cell with

id �y · M� · M + �x · M�. Then, we use the algorithm of [7] to find partial patterns that are

described by cell-ids. We call this the grid-based mining method. The time and space complexity

of this method is asymptotically the same to that of STPMine2-V2 (analyzed in Section 4.5); the

grid-based algorithm only saves the (linear) cost of applying clustering for identifying the frequent

1-patterns. However, as shown later, STPMine2-V2 is much more effective. Figure 11c shows a

maximal pattern P ′ discovered by this grid-based technique, when using a 10× 10 grid. P ′ has the

largest length among all discovered patterns, however it is only 4 (whereas the actual pattern P has

10 non-* positions). The non-* positions of P ′ are 6, 10, 13, and 18, captured by cells c64, c43, c34,

and c47, respectively. We repeated the experiment using different grid granularities; for a 20 × 20

grid, no pattern is generated, whereas with a 5×5 grid we get a maximal 9-pattern, which however

is not very descriptive as the cells are very big. Thus, with a grid with fine granularity frequent

regions which span multiple cells cannot be identified (e.g., the cluster r[19][1] is split between

cells c47 and c57 and neither of these cells has higher support than min sup · m), whereas with a

grid of low granularity the patterns are formed by very large regions. From this small example, we

can see the importance of discovering the periodic patterns and their descriptive regions effectively.

STPMine2-V2 also finds the maximal pattern with length 10 shown in Figure 11d. This pattern

has the same non-* positions as that in Figure 11b, and the region for each non-* position is

represented with the MBR (Minimum Bounding Rectangle) of its associated initial cluster. Thus,

STPMine2-V2 retrieves comparative results to STPMine1 and STPMine2 in finding the descriptive

regions and patterns. As discussed before, STPMine 1 and STPMine2 identify the same maximal

patterns which are used to generate data. STPMine2-V2 finds patterns similar to that of STPMine2

except that the non-* regions are a little larger (i.e., a little less descriptive) than the more accurate

ones discovered by STPMine2 (see Figure 6).

Figure 12 shows the effectiveness of EPMine in discovering patterns and their valid eras. For

generating the data file in Figure 12a, we set parameters T = 10, En = 2, min sup = 0.8 and the

total number of segments to 20. Given min sup = 0.8, we could find the two patterns hidden in

the sequence with validity eras [0, 9] and [10, 19], respectively.

We now compare the effectiveness of SPMine-b and SPMine-w in finding shifted/distorted
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Figure 12: Example of mining patterns and their valid eras

patterns on two generated datasets. Table 1 shows the length of patterns found by each of these

two methods. Table 1a displays the result for a small dataset, to generate which, we set T = 10,

n = 25K and maximal pattern length � = 8. In most cases, both SPMine-b and SPMine-w could

find the hidden pattern used to generate the sequence. However, SPMine-w sometimes misses

some non-∗ positions. E.g., when τ = 4, it can only find patterns of length 7, which are shorter

than the hidden patterns (8). This problem is more obvious in Table 1b, which shows the result on

a big dataset, for which the generation parameters are n = 1M , T = 50, and the maximal pattern

length � = 5. When τ = 3, 4, 5, SPMine-w finds patterns shorter than the hidden maximal pattern

while SPMine-b could find the generated hidden patterns.

Pattern length

τ SPMine-b SPMine-w

1 8 8

2 8 8

3 8 8

4 8 7

5 8 8

Pattern length

τ SPMine-b SPMine-w

1 5 5

2 5 5

3 5 4

4 5 4

5 5 4

(a) small dataset (b) big dataset

Table 1: Effectiveness comparison for shifted/distorted pattern mining methods

6.3 Efficiency

In the next set of experiments, we validate the efficiency of the proposed techniques under various

data settings. First, we compare the costs of the (ineffective) grid-based method, STPMine1, STP-

Mine2, and STPMine2-V2 as a function of the length of the maximal hidden pattern. We generated

a sequence S of n = 1M object locations, and set T = 100 and min sup = 0.7. For this and
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subsequent experiments we used ε = 0.005 and MinPts = 200 in the clustering module.
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Figure 13: Efficiency test

Figure 13a plots the results. Naturally, the grid-based approach is the fastest method, since it

performs no clustering and no refinement of the discovered regions. However, as shown in the

previous section, it misses the long patterns in all tested cases. Moreover, its efficiency is due to

the fact that a large fraction of actual 1-patterns are missed and the search space is pruned. STP-

Mine1 is very slow, when the hidden patterns are long. Like most bottom-up mining techniques, it

suffers from the huge number of candidates that need to be generated and validated, and therefore

it is inapplicable for the tested cases where the hidden patterns have more than 10 non-* positions.

STPMine2 is very efficient and scales well because it uses the first phase to identify fast large

patterns that are potentially useful. Even when re-clustering fails for the maximal candidate pat-

terns, the actual patterns are discovered usually only after few hops down the max-subpattern tree.

Observe that, even though STPMine2 performs clustering a large number of times, it is not signifi-

cantly slower than the ineffective grid-based approach. Interestingly, it outperforms the grid-based

method when there is a single hidden pattern with length equal to T . In this case, the grid method

spans many actual clusters between grid cells and splits the actual pattern to multiple maximal

frequent patterns, the support of which is expensive to count in the large lattice. STPMine2-V2 is

faster than the original version STPMine2 because it does not need to perform the re-clustering.

Furthermore, the difference in their execution time rises when the maximal pattern length increases,

since, for getting maximal patterns with longer length, STPMine2 takes more time in the process

of re-clustering. In addition, with the increase of the maximal pattern length, the execution time of

STPMine2-V2 goes down slightly while that of STPMine2 rises a little. This is because more time

is used in the initial cluster process to generate frequent 1-patterns when the length of maximal

pattern is shorter. We use 5 (10) and 100 (80) to test the effect of extremely (very) short and long
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pattern lengths on the performance, while 50 represents the moderate pattern length.

In the next experiment, we test the effects of period length on the same database size, but with

different values of T . The length of the maximal hidden pattern is 0.5 · T in all cases. Again, n =

1M and min sup = 0.7. Figure 13b compares the costs of the grid-based approach, STPMine2

and STPMine2-V2; we do not include the cost of STPMine1, since this method is very slow for

long patterns. The figure shows that the costs of the three methods are almost invariant to T for

a constant database size n. If T is small, then there are few, but large files to be clustered by

STPMine1. On the other hand, for large T , there are many but small Ri to be clustered.

We also test the scalability to the length n of the spatiotemporal sequence S. Figure 13c shows

the costs of STPMine2, STPMine2-V2, and the grid-based approach as a function of n, when

T = 100 and the maximal pattern length is 50.4 Observe that all methods are scalable, since

the database size is only linearly related to the cost of finding and validating the maximal pat-

terns. STPMine2-V2 shows better performance because of the reasons we mentioned already. In

summary, STPMine2 and STPMine2-V2 are effective and efficient techniques for mining periodic

patterns and their accurate descriptive regions in spatiotemporal data.

Figure 14 shows the performance of the era pattern mining method and the shifted/distorted

pattern mining approaches. Figure 14a demonstrates the scalability of EPMine. For this test, we set

T be 100 and vary the number of locations n in the sequence from 100K to 3M. The running time is

plotted with different En (the number of era patterns). All maximal patterns in the generated dataset

could be found. It is clear that EPMine scales linearly to the number of locations for different En,

which is compatible with the results in Figure 13c. In addition, for the same n, the running time

slightly increases with En because more candidates need to be validated.

Figure 14b illustrates the scalability of the shifted/distorted pattern mining methods. In this

experiment, we fix T = 100, τ = 2, and vary n from 50K to 1M. Note that SPMine-w and

SPMine-b have similar performance because the weighted counting reduces the candidate support

only a little. Figure 14c demonstrates how the tolerance parameter τ affects the mining time when

n = 1M , T = 50. The time increases almost linearly with τ , since the clustered locations increase

4Trajectories with millions of positions can be commonly tracked by sampling very frequent intervals (e.g., sec-

onds) over a long history (e.g., months).
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Figure 14: Efficiency test of era pattern and shifted/distorted pattern mining

by a factor of 2 · τ + 1 and the maximal candidate patterns are longer for bigger τ as explained in

Section 5.2.

7 Conclusion

In this paper, we studied the discovery of periodic patterns from a long spatiotemporal sequence.

We identified the differences of the problem, in comparison to mining periodic patterns from event

sequences and described effective and efficient algorithms for solving it. Our methods employ spa-

tial clustering to retrieve frequent 1-patterns and adapt bottom-up and top-down mining techniques

for longer patterns. In addition to the baseline problem, we defined and solved two practicable

variants. The first is the discovery of periodic patterns that are not frequent in the whole time

span of the sequence, but only in a time interval, called validity era, which is to be discovered

automatically. To solve this problem, we adjust the definition of periodic patterns to be associated

with a maximal validity interval and we adapt the mining algorithms to identify the validity eras

for patterns while counting their supports. The second mining variant counts shifted or distorted

instances of patterns. We re-defined frequent 1-patterns to consider such instances and refined the

mining algorithm to discover longer patterns.

Topics for future work include the automatic discovery of the period T related to frequent

periodic patterns and the discovery of patterns with distorted period lengths. For instance, the

movement of an object may exhibit periodicity, however, the temporal length of the period may

not be fixed but could vary between pattern instances. Public transportation vehicles may have this

type of periodicity, since during heavy traffic hours, a cycle can be longer that usual. Building

indexes based on distorted and shifted patterns is also an interesting direction for future work.
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Appendix

Our mining algorithms apply density-based clustering to identify the spatial regions that are com-

ponents of the mined patterns. We devised an efficient hash-based implementation of DBSCAN

[5], which typically achieves linear performance. The pseudo-code of this method is shown in Fig-

ure 15. Given clustering parameters ε and MinPts, we partition the space using a regular grid of

ε√
2
× ε√

2
cells and hash each point to be clustered into the cell that contains it. In its first phase, the

algorithm performs a pass over the cells and uses their hash counters to determine whether a cell

Ci is dense (i.e., it contains at least MinPts points) or not. A dense cell Ci is always a part of a

cluster, since the maximum possible distance between any two points in it is at most ε (the diagonal

of the cell). Therefore, any point there is a core point, based on the definition of [5]. The pass of

lines 2–4 finds all pairs (Ci, Cj) of dense cells with distance no greater than ε to each other and

checks whether there is at least a pair of points (pi, pj), pi ∈ Ci, pj ∈ Cj, such that dist(pi, pj) ≤ ε.

In that case the corresponding clusters are merged, because pi and pj are both core points and one

is in the ε-neighborhood of the other. Consider, for example, cell C26 in the grid of Figure 16 and

assume that MinPts = 4. All cells within the bold line are ε-neighbors of C26 (i.e., they could

contain points within ε distance from a point in C26). Since C26 is dense (it has four points), all

ε-neighbor cells before it (the shaded cells in the figure) are examined for potential merging with

C26, if they are also dense. During this process C24 and C26 are merged to the same cluster.

In the second phase (lines 5–16) the algorithm again scans the cells, treating this time sparse

ones (i.e., cells with MinPts < ε). For each point p in a sparse cell Ci, we first compute the

number p.sup of p’s ε-neighbors in Ci and in sparse ε-neighbor cells of Ci. If p.sup ≥ MinPts,

we already know that p is a core point. Next, we check the dense ε-neighbors of Ci. For each

such cell Cj, if p is already known to be a core point and we could find a point p′ ∈ Cj such that
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dist(p, p′) ≤ ε, we add p and its ε-neighborhood points in the cluster of Cj . If p is not yet known to

be a core point (i.e., p.sup < MinPts), then we scan cell Cj and increase p.sup as p’s neighbors

are found in Cj , until no more points exist in Cj or p becomes a core point. As soon as p is known

to be a core point, merging is performed with the cluster of Cj. If p is a found to be an ε-neighbor

of a dense cell, but it is not a core point yet, then we link p as “density-reachable” from Cj and

include it into Cj’s cluster. If p is later found to be a core point, Cj’s cluster will be merged with

any other clusters close to p and the ε-neighborhood of p. Finally (lines 13–16), if p is found to

be a core point, p’s cluster is expanded from the next points in Ci (and succeeding cells) that are

ε-neighbors of p, like in the original DBSCAN algorithm. A subtle point to note is that once we

start expanding the cluster that includes point p (line 16), we proceed working with points and

dense cells related to that cluster only. When the whole cluster is identified, we return to point p

and process the next unassigned point in Ci or succeeding cells.

Algorithm gridDBSCAN(set of points P);

1). hash P to an ε/
√

2 × ε/
√

2 grid;

2). for each cell Ci of the grid

3). if (|Ci| ≥ MinPts) then //dense cell

4). merge Ci with prev. dense cells, if applicable;

5). for each cell Ci of the grid

6). if (|Ci| < MinPts) then //sparse cell

7). for each point p ∈ Ci unassigned to a cluster

8). update p.sup from Ci’s ε-neighbor sparse cells;

9). for each ε-neighbor dense cell Cj of Ci

10). if (p.sup ≥ MinPts) then

11). check potential merging with Cj’s cluster;

12). else update p.sup by checking points in Cj ;

and potentially link or merge p with Cj ;

13). if (p.sup ≥ MinPts) then

14). if (unassigned(p)) then

15). create new cluster for p;

16). expand p’s cluster from ε-neighbors in Ci and next cells;

Figure 15: Grid-based clustering algorithm

Figure 16 exemplifies the functionality of the algorithm. Assume that MinPts = 4. As

discussed, cells C24 and C26 will be identified as dense and they will be merged in the first phase of

the algorithm (lines 2–4). In the second phase of the algorithm, when sparse cell C25 is examined,

we find p, with initial p.sup = 1. Then (line 8), we update p.sup = 2 by searching the ε-neighbor

cells of C25 that are sparse (i.e., C32). Next, we check dense ε-neighbor cells of C25, starting from
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C24. We find a point there in p’s neighborhood and update p.sup = 3. Since p is not yet a core

point, it is just linked to the cluster of C24 (as density-reachable). After we check C26 we find

another neighbor of p there, thus p.sup = 4 and now p becomes a core point. Now we know that

the cluster containing C24, C26, and p has one more point in C32, then we move to C32 to process

that point and expand the cluster as necessary (line 16).

C24 C25 C26

p

C32

Figure 16: Clustering example

Our method achieves the same result as that of DBSCAN, while being much faster. The original

DBSCAN algorithm has worst-case O(n2) cost, since finding the ε-neighborhood of any point

requires a scan of the database. The cost can be reduced to O(n log n) if a spatial index facilitates

neighborhood retrieval. Such indexes do not exist for the arbitrary sets of points that are clustered

by the mining algorithm. Of course, an index could be built on-the-fly before clustering, but our

grid-based method avoids this. It requires one scan of the data to create the grid-based partitions.

Then, the dense cells are merged at a single pass and many computations are saved, since we know

(without any search) that all points in such cells are core points. Finally, sparse cells are handled

at a single pass of the database, since ε-neighborhoods are efficiently found from the neighboring

cells of the current point. In practice, the cost of our method is linear to the database size.

Grid-based clustering has also been used by STING [18] and STING+ [19], albeit the aim of

these methods is to provide a data summary for fast (approximate) range query evaluation. These

algorithms split the space into cells and use a hierarchical structure to organize them; the points in

a cell are put to a cluster only if the density of the cell is no less than MinPts+1
πε2

. The points in the

sparse cells are not considered at all. The clusters of STING are similar to those of DBSCAN only

when the granularity of the bottom-level cells is close to zero. Our method is essentially different

than STING, since it is merely a grid-based efficient implementation of DBSCAN.
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