
Discovering Partial Periodic Patterns in Discrete
Data Sequences

Huiping Cao, David W. Cheung, and Nikos Mamoulis

Department of Computer Science and Information Systems
University of Hong Kong

{hpcao, dcheung, nikos}@csis.hku.hk

Abstract. The problem of partial periodic pattern mining in a discrete
data sequence is to find subsequences that appear periodically and fre-
quently in the data sequence. Two essential subproblems are the efficient
mining of frequent patterns and the automatic discovery of periods that
correspond to these patterns. Previous methods for this problem in event
sequence databases assume that the periods are given in advance or re-
quire additional database scans to compute periods that define candidate
patterns. In this work, we propose a new structure, the abbreviated list
table (ALT), and several efficient algorithms to compute the periods and
the patterns, that require only a small number of passes. A performance
study is presented to demonstrate the effectiveness and efficiency of our
method.

1 Introduction

A discrete data sequence refers to a sequence of discrete values, e.g., events,
symbols and so on. The problem of partial periodic pattern mining on a discrete
data sequence is to find subsequences that appear periodically and frequently
in the data sequence. E.g., in the symbol sequence “abababab”, the subsequence
“ab” is a periodic pattern. Since periodic patterns show trends in time series
or event sequences, the problem of mining partial periodic patterns has been
studied in the context of time series and event sequence databases ([1]-[3]).

Two essential sub-problems are the automatic discovery of periods and the
efficient mining of frequent patterns. Given a period value, an Apriori-like algo-
rithm is introduced in [3] to mine the frequent patterns. Han et al. in [2] propose
a novel structure, max-subpattern tree, to facilitate counting of candidate pat-
terns. This method outperforms the Apriori-like algorithm, but it assumes that
the periods are given in advance, which limits its applicability. Berberidis et al.
[1] has proposed a method that finds periods for which a data sequence may
contain patterns. However, this method may miss some frequent periods and
it requires a separate pass to scan the data sequence to compute the periods.
What’s more, for each symbol, it needs to compute, at a high cost, the circu-
lar autocorrelation value for different periods in order to determine whether the
period is frequent or not.

We observe that a frequent pattern can be approximately expressed by an
arithmetic series together with a support indicator about its frequency. In this
paper, we propose a novel structure, the abbreviated list table (ALT), that main-
tains the occurrence counts of all distinct elements (symbols) in the sequence
and facilitates the mining of periods and frequent patterns. Simultaneously, we
present a fast O(n) algorithm to identify periods from ALT.

The paper is organized as follows. Section 2 defines the mining problem
formally. Section 3 presents the newly proposed approach. Section 4 includes
performance evaluation of our methods. Finally, section 5 concludes the paper
and proposes the future work.

2 Problem definition

Let Domain D be the set of elements that can be symbols, events, discretized
locations, or any categorical object type. A discrete data sequence S is composed
of elements from D and can be expressed as S = e0, e1, ..., en−1, where i denotes
the relative order of an element and n is the length of S. Given a period T , a
periodic fragment si = eiT , eiT+1, ..., e(i+1)T−1, (0 ≤ i ≤ b nT c), is a subse-
quence of S, and b nT c is the number of fragments in S with respect to period
T . Element eiT+j , (0 ≤ j < T), in fragment si is at the j-th period position.
There are T period positions, 0, 1, ..., T − 1, for a given period T .

Given a period T , a T -period pattern P is a sequence of elements p0,p1,...,pT−1,
(0 ≤ j < T), where pj can be the wild card ‘∗’ or an element from D. If pj = ∗,
then any element from D can be matched at the j-th position of P . A periodic
fragment si = eiT , eiT+1, ..., e(i+1)T−1, (0 ≤ i ≤ b nT c), of a sequence S matches
pattern P = p0, p1, ..., pT−1 if ∀j, 0 ≤ j < T , (1) pj = ∗, or (2) pj = eiT+j .

A pattern is a partial pattern if it contains the element ‘∗’. The length
L of a pattern is the number of non-‘∗’ elements in the pattern. We will call a
length-L T -period pattern P an L-pattern if the period T is clear in the context.
P ′ is a subpattern of a pattern P if it is generated from P by replacing some
non-‘∗’ elements in P by ‘∗’. E.g.,‘a ∗ c’ is a subpattern of the 3-pattern ‘abc’.
Similar to the period position of an element in a fragment, the period position
of an element in pattern P is also the relative position of this element in the
pattern. In the 3-period pattern ‘a ∗ ∗’, the period position of ‘a’ is 0.

The support of a T -period pattern P , denoted as sup(P), in a sequence S
is the number of periodic fragments that match P . A pattern P is frequent
with respect to a support parameter min sup, (0 < min sup ≤ 1), iff sup(P) ≥
b nT c×min sup, (support threshold). If there exists a frequent T -period pattern,
we say that T is a frequent period. Element e is a frequent element if it
appears in a frequent pattern.

The problem of mining partial periodic pattern can now be defined as fol-
lows. Given a discrete data sequence S, a minimum support min sup and a
period window W , find:

(1) the set of frequent periods T such that 1 ≤ T ≤W ; and
(2) all frequent T -period patterns w.r.t. min sup for each T found in (1).

3 Mining using the Abbreviated List Table

This section describes the method for automatic discovery of frequent periods
using the Abbreviated List Table (ALT), and a method that performs efficient
mining of frequent patterns. In phase one, we scan the input sequence to con-
struct an ALT that records the frequency of every element. In phase two, we use
the max subpattern tree [2] to mine the frequent patterns.

3.1 Abbreviated list table
If an element appears periodically for a period T , its positions in the se-

quence will form an arithmetic series, which can be captured by three parame-
ters: period position, period and count(frequency). For example, in sequence S
= ‘bdcadabacdca’, the occurrences of ‘a’ for period = 2 are {3, 5, 7, 11}. We can
represent them by (1, 2, 4), where 1 is the period position of the occurrence of
‘a’ with period = 2, and 4 is the frequency of the corresponding pattern ‘∗a’.
For a given period T , for every element, we need to keep T representations: (0,
T , count0), ... , (T −1, T , countT−1). We call these representations Abbreviated
Lists (AL). The ALs of all the elements with respect to all periods bounded by
a period window can be constructed at a single scan of the sequence.

The algorithm for maintaining the ALT is shown in Fig. 1a. ALT is a 3-
dimensional table, the first dimension is the element’s index in domain D, the
second and third dimensions are period and period position, respectively.

Algorithm ALT1(ALT , W , S) Algorithm ALT2 (ALT , W , min sup, n)
1. while(S still has elements){ 1. for (idx:=0; idx < |D|; idx++){
2. Read element e from S, 2. get element e whose index equals to idx;

//SeqPos is e’s position in S; 3. for (p:=1; p ≤ W ; p++){
3. Get the index idx of e in D; 4. threshold:= bn/pc × min sup;
4. for(p := 1; p ≤ W ; p++){ 5. for (pos:=0;pos < p; pos++){
5. pos:=SeqPos mod p; 6. if (ALT[idx][p− 1][pos] ≥ threshold)
6. ALT[idx][p− 1][pos]++;}} 7. output p, pos and element e;
7. //truncate sequence for all periods 8. }}}

Figure 1a. ALT Maintenance Figure 1b. Finding Periods and F1

We now show an example for this algorithm. Let the data sequence S be
“abaaaccaae” and period window W be 5. For the first ‘a’ at position 0, the
counters at period position 0 of all the periods are incremented by 1. Upon seeing
the second ‘a’ at position 2, for periods 1 and 2, the counters at period position
0 are incremented. For periods 3, 4, and 5, the counters at period position 2 are
incremented. The process continues, until we process all the elements in S and
have the values shown in Table 1.

While maintaining the Abbreviated List Table, we can compute the frequent
periods and F1 at any time moment against the length of the data sequence
scanned. (F1 is the set of size-1 frequent patterns). Fig. 1b shows the algorithm
to compute the periods and F1. We still take the ALT in Table 1 as example
assuming min sup = 0.8. For period = 2, the threshold is 10/2 × 0.8 = 4, and
‘a’ at period position 0 is frequent because its count is 4. However, ‘a’ is not
frequent at period position 1 because its count is only 2. So ‘a∗’ is a frequent
pattern but ‘∗a’ is not, and 2 is a frequent period. Similarly, we can find other
frequent periods 2, 4, 5 and their related F1s.

Our method is more efficient than the circular autocorrelation method in [1]
because of the following reasons: (1) We compute F1 during the period discovery
process in one pass. (2) Our method works well even when the length of data
sequence n is unknown in advance. (3) We can find frequent periods directly
from ALT.

3.2 Finding frequent patterns
For each frequent period found in step 1, the algorithm constructs the max-

subpattern tree in step 2 using F1 and the inverted lists. The lists of frequent
elements are merged to reconstruct the fragments and they in turn are inserted
into the max-subpattern tree. Finally, we get frequent patterns by traversing all
the trees. We note two reasons for the superiority of the ALT-based algorithm
over [2]. (1) This phase does not need to compute F1. (2) Only the inverted
lists for frequent elements are needed to build the tree. This requires less I/O
compared with the original max-subpattern tree algorithm.

3.3 Analysis
Space complexity: Assume the period window is W , each element may have

frequent periods from 1 to W . For each period, we need to record the occurrences
at each period position. The number of counters in the ALT of an element
is of O(W 2). Given |D| elements, the space required is O(|D|W 2), which is
independent of the sequence length. We expect that W and |D| are in the order
of hundreds in practice, thus the ALT can be accommodated in the main memory.

Time complexity: We need one scan on the sequence to build the ALT. Since
the locations of ALT entries can be accessed in O(1) time, the time complexity to
create the ALT is in the order of O(n). The construction of the max-subpattern
tree and the computation of the frequent patterns is also of O(n).

4 Experiments

We compare our method with the algorithm proposed in [1]. We will use “ALT+tree”
to denote our method, and use “Circular Autocorrelation+tree” to represent the
method combining [1] and [2]. All the experiments were performed on a Pentium
III 700MHz workstation with 4GB of memory, running Unix. A synthetic data
generator is used to generate periodic object movements, with four parameters:
period T , sequence length n, max pattern length l and probability p with which
the object complies with the pattern.

Experimental comparison:
Efficiency: Given data sequence with parameters n = 1M, T = 50, p = 0.8

and l = 25, it’s obvious to see that our method is much faster than [1] for
fixed minimum support 0.6 from Fig. 2a. Moreover, the cost difference rises
with the increase of the window size. Table 2 records the cost breakdown of the
two methods for W = 100. Note that the cost difference is mainly attributed
to the excessive cost of circular autocorrelation in discovering the periods. The
finding of F1 also contributes some cost difference as [1] needs one more scan on
sequence to get F1. The cost for building the max-subpattern tree in our method
is less than that by scanning the whole sequence since we only need to access

the inverted lists for frequent elements. Fig. 2b shows that both methods have
linear cost to the size of the database, due to the limited number of database
scans, however, our method is much faster than the previous technique. For this
experiment, we fix parameters T = 100, p = 0.8 and l = 50.

Table 3 lists the frequent periods found and the number of frequent patterns
mined from the experiment of Fig. 2b. Since the parameter T used to generate
data sequence is set to 100 for all sequences and the mining parameter for W is
100, only one frequent period 100 is found.

5 Conclusion

In this paper, we presented a new method to perform partial periodic pattern
mining on discrete data sequences. Using the proposed ALT structure, we can
find frequent periods and the set of 1-patterns during the first scan on data se-
quence. This step is much more efficient compared to a previous approach, which
is based on circular autocorrelation. Further, frequent patterns are discovered
by inserting fragments to the max-subpattern tree, using the inverted lists in
order to avoid accessing irrelevant information. Our experiments show that the
proposed technique significantly outperforms the previous approaches.

0

50

100

150

200

250

300

20 40 60 80 100 120 140 160 180 200

time(s)

window

ALT+tree

3 3 3

3

3

3
Circular Autocorrelation+tree

+

+

+

+

+
+

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time(s)

data points(*100)

ALT+tree

3 3 3
3

3
Circular Autocorrelation+tree

+

+

+

+

+

Figure 2a. Efficiency vs. W Figure 2b. Scalability

period pos 0 1 2 3 4

period=1 6

period=2 4 2

period=3 2 2 2

period=4 2 0 1 2

period=5 1 0 2 2 1

time(s) [1] +tree ALT+tree

find period 71.34 5.59

find F1 2.12 0

build trees 2.07 1.11

mine pat. 2.02 2.01

n period num of freq. pat.

100K 100 12

500K 100 42

1000K 100 76

2000K 100 133

Table 1. ALT for a Table 2. Cost comparison Table 3.

References

1. C. Berberidis, I. P. Vlahavas, W. G. Aref, M. J. Atallah, and A. K. Elmagarmid.
On the discovery of weak periodicities in large time series. In Proc. 6th European
Conf. on Principles and Practice of Knowledge Discovery in Databases, 2002.

2. J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time
series database. In Proc. of 15th Intl. Conf. on Data Engineering, 1999.

3. J. Han, W. Gong, and Y. Yin. Mining segment-wise periodic patterns in time-related
databases. In Proc. of Intl. Conf. on Knowledge Discovery and Data Mining, 1998.

