
P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins

NIKOS MAMOULIS
University of Hong Kong
and
DIMITRIS PAPADIAS
Hong Kong University of Science and Technology

Due to the evolution of Geographical Information Systems, large collections of spatial data having
various thematic contents are currently available. As a result, the interest of users is not limited
to simple spatial selections and joins, but complex query types that implicate numerous spatial
inputs become more common. Although several algorithms have been proposed for computing the
result of pairwise spatial joins, limited work exists on processing and optimization of multiway
spatial joins. In this article, we review pairwise spatial join algorithms and show how they can be
combined for multiple inputs. In addition, we explore the application of synchronous traversal (ST),
a methodology that processes synchronously all inputs without producing intermediate results.
Then, we integrate the two approaches in an engine that includes ST and pairwise algorithms, using
dynamic programming to determine the optimal execution plan. The results show that, in most
cases, multiway spatial joins are best processed by combining ST with pairwise methods. Finally,
we study the optimization of very large queries by employing randomized search algorithms.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Application—spa-
tial databases and GIS

General Terms: Algorithms

Additional Key Words and Phrases: Multiway joins, query processing, spatial joins

1. INTRODUCTION

Spatial database systems [Güting 1994] manage large collections of multidi-
mensional data that, apart from conventional features, include special char-
acteristics such as position and spatial extent. The fact that there is no total

This research was conducted while N. Mamoulis was with the Hong Kong University of Science
and Technology.
N. Mamoulis and D. Papadias were supported by grants HKUST 6070/00E and HKUST 6090/99E
from Hong Kong RGC.
Authors’ addresses: N. Mamoulis, Department of Computer Science and Information Systems,
University of Hong Kong, Pokfulam Road, Hong Kong, email: nikos@csis.hku.hk; D. Papadias,
Department of Computer Science, Hong Kong University of Science and Technology, Clear Water
Bay, Hong Kong, email: dimitris@cs.ust.hk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this worked owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permission may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2001 ACM 0362-5915/01/1200–0424 $5.00

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001, Pages 424–475.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 425

ordering of objects in space that preserves spatial proximity [Günther 1993] ren-
ders conventional indexes, such as B+-trees, inapplicable to spatial databases.
As a result, a number of spatial access methods have been proposed [Gaede
and Günther 1998]. A very popular spatial access method, used in several com-
mercial systems (e.g., Informix, Illustra), is the R-tree [Guttman 1984]. It can
be thought of as an extension of B+-tree in multidimensional space. R-trees
index object approximations, usually minimum bounding rectangles (MBRs),
providing a fast filter step during which all objects that cannot satisfy a query
are excluded. A subsequent refinement step, uses the geometry of the candi-
date objects (i.e., the output of the filter step) to dismiss false hits and retrieve
the actual solutions [Orenstein 1986]. R+-trees [Sellis et al. 1987] and R∗-trees
[Beckerman et al. 1990] are improved versions of the original method, pro-
posed to address the problem of performance degradation caused by overlap-
ping regions and excessive dead-space. The R-tree and its variations have been
used to efficiently answer several types of queries including spatial selections,
relation-based queries [Papadias et al. 1995] nearest neighbors [Roussopoulos
et al. 1995] and spatial joins.

As in relational databases, joins play an important role in effective spatial
query processing. A pairwise spatial join combines two datasets with respect to
some spatial predicate (usually overlap). A typical example is “find all cities that
are crossed by a river”. The most influential algorithm for joining two datasets
indexed by R-trees is the R-tree join (RJ) [Brinkhoff et al. 1996].

RJ traverses synchronously both trees, following entry pairs that overlap;
non-intersecting pairs cannot lead to solutions at the lower levels. Several spa-
tial join algorithms have been proposed for the cases that only one of the inputs
is indexed by an R-tree [Lo and Ravishankar 1994; Mamoulis and Papadias
2001b; Papadopoulos et al. 1999] or when both inputs are not indexed [Lo and
Ravishankar 1996; Patel and Dewitt 1996; Koudas and Sevcik 1997]. Most of
these methods deal with the filter step; that is, they output a set of MBR pairs
(candidates) that may enclose intersecting objects.

Multiway spatial joins involve an arbitrary number of spatial inputs. Such
queries are important in several applications including Geographical Infor-
mation Systems (e.g., find all cities adjacent to forests that are intersected
by a river) and VLSI (e.g., find all subcircuits that formulate a specific topo-
logical configuration). Formally, a multiway spatial join can be expressed as
follows: Given n datasets D1, D2, . . . , Dn and a query Q, where Qij is the
spatial predicate that should hold between Di and D j , retrieve all n-tuples
{(r1,w, . . . , ri,x , . . . , r j , y , . . . , rn,z) | ∀i, j : ri,x ∈ Di, r j , y ∈ D j and ri,x Qij r j , y }. Such
a query can be represented by a graph where nodes correspond to datasets and
edges to join predicates. Equivalently, the graph can be viewed as a constraint
network [Papadias et al. 1999a], where the nodes correspond to problem vari-
ables, and edges to binary spatial constraints. In the sequel, we use the terms
variable/dataset and constraint/join condition interchangeably.

Following the standard approach in the spatial join literature, we consider
that all datasets are indexed by R-trees on MBRs; we deal with the filter step,
assuming that overlap is the default join condition, that is, if Qij = TRUE,
then the rectangles from the corresponding inputs i, j should overlap. The

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

426 • N. Mamoulis and D. Papadias

Fig. 1. Three queries of four objects.(a) Chain (tree) query. (b) Query with cycle. (c) Clique query.

loosest query has an acyclic (tree) graph (Figure 1a), and the most constrained
one has a complete (clique) graph (Figure 1c). For each type of query, Figure 1
illustrates a solution, that is, a configuration of rectangles ri,1 ∈ Di that sat-
isfy the join conditions. We do not consider nonconnected query graphs, as
these can be processed by solving connected subgraphs and computing their
Cartesian product.

In spite of the importance of multiway spatial joins, limited work has been
carried out on their efficient processing. Patel et al. [1997] apply a pairwise
spatial-join algorithm [Patel and Dewitt 1996] in a distributed, multi-processor
environment to process cascading joins. Spatial data sets are regularly parti-
tioned in space (spatial declustering), and the physical resources (disks, pro-
cessors) are distributed according to the partitions. Papadopoulos et al. [1999]
perform a two-join case study to evaluate the performance of four spatial join
algorithms. In Mamoulis and Papadias [1999], we have proposed a pairwise
joins method (PJM) that combines pairwise join algorithms in a processing
tree where the leaves are input relations indexed by R-trees and the inter-
mediate nodes are join operators. Processing multiway joins by integration
of pairwise join algorithms is the standard approach in relational databases
where the join conditions usually relate different attributes. In spatial joins,
however, the conditions refer to a single spatial attribute for all inputs, that
is, all datasets are joined with respect to spatial properties. Motivated by this
fact, in this article, we explore the application of synchronous traversal (ST),
a methodology that traverses synchronously all the R-trees involved in the
query, excluding combinations of intermediate nodes that do not satisfy the
join conditions. RJ can be thought of as a special case of ST involving two
inputs. The first general application of ST to an arbitrary number of inputs
appeared in [Papadias et al. 1998] for retrieval of database images matching
some input configuration. The employment of the method in multiway spa-
tial join processing is discussed in Papadias et al. [1999a], together with for-
mulas for selectivity (in uniform datasets) and cost estimation (in terms of
node accesses).

This work presents a complete solution for processing the filter step of mul-
tiway spatial joins: we (i) propose an efficient implementation of ST which
takes advantage of the spatial structure of the problem to enhance perfor-
mance, (ii) present methods for estimating its computational cost which dom-
inates the I/O cost, (iii) combine ST with PJM in an integrated method that
outperforms both alternatives, (iv) evaluate our approach through extensive
experimentation with real and synthetic datasets, and (v) solve optimization
problems for large join queries. The paper is organized as follows: in Section 2
we review algorithms for pairwise joins and discuss their integration using

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 427

PJM. Section 3 proposes an improved version of ST, studies its behavior and
estimates its cost. Section 4 contains a comprehensive experimental evalua-
tion, which confirms the superior performance of the proposed implementa-
tion of ST, and a comparison of ST with PJM, which suggests that the two
methodologies are complementary in the sense that they perform best un-
der different conditions. Therefore, in Section 5 we study the processing of
multiway spatial joins by combining ST with pairwise algorithms and pro-
pose selectivity estimation methods for nonuniform datasets. Section 6 deals
with optimization of very large queries (where systematic search through the
space of alternative plans is not possible) using randomized search algorithms.
Finally, Section 7 concludes the paper with a discussion and directions for
future work.

2. PAIRWISE SPATIAL JOIN ALGORITHMS

Most early spatial join algorithms apply transformation of objects in order to
overcome the difficulties raised by their spatial extent and dimensionality. The
first known algorithm [Orenstein 1986] uses a grid to regularly divide the mul-
tidimensional space into small blocks, called pixels, and employs a space-filling
curve (z-ordering) [Bially 1969] to order them. Each object is then approxi-
mated by the set of pixels intersected by its MBR, that is, a set of z-values.
Since z-values are 1-dimensional, the objects can be dynamically indexed using
relational index structures, like the B+-tree, and the spatial join is performed
in a sort-merge join fashion. The performance of the algorithm depends on the
granularity of the grid; larger grids can lead to finer object approximations,
but also increase the space requirements. Rotem [1991] proposes an algorithm
based on a spatial join index, similar to the relational join index [Valduriez
1987], which partially precomputes the join result and employs grid files to
index the objects in space. A method, similar to RJ (R-tree join), that joins
two PMR quadtrees is presented in Hoel [1995]. Currently, the most influen-
tial algorithm is RJ due to its efficiency and the popularity of R-trees. Most
research after RJ, focused on spatial join processing when one or both inputs
are nonindexed.

Nonindexed inputs are usually intermediate results of a preceding operator.
Consider, for instance, the query “find all cities with population over 5,000 which
are crossed by a river.” If there are only a few large cities and an index on
population, it may be preferable to process the selection part of the query before
the spatial-join. In such an execution plan, even if there exists a spatial index
on cities, it is not employed by the spatial-join algorithm. The simplest method
to process a pairwise join in the presence of one index, is by applying a window
query to the existing R-tree for each object in the non-indexed dataset (index
nested loops). Due to its computational burden, this method is used only when
the joined datasets are relatively small. Another approach is to build an R-tree
for the nonindexed input using bulk loading [Patel and DeWitt 1996] and then
employ RJ to match the trees (build and match). Lo and Ravishankhar [1994]
use the existing R-tree as a skeleton to build a seeded tree for the nonindexed
input. The sort and match (SaM) algorithm [Papadopoulos et al. 1999] spatially

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

428 • N. Mamoulis and D. Papadias

Table I. Classification of Spatial Join Methods

Both inputs are indexed One input is indexed Neither input is indexed
–transformation to z-values –index nested loops –spatial hash join [Lo and
[Orenstien 1986] –seeded tree join [Lo and Ravishankara 1996]

Ravishankar 1994]
–spatial join index –build and match –partition based spatial merge
[Rotem 1991] [Patel and Dewitt 1996] join [Patel and Dewitt 1996]

–tree matching [Günther –sort and match –size separation spatial join
1993; Brinkhoff et al. 1993; [Papadopoules et al. 1999] [Koudas and Seveik 1997]
and Samet 1995] –slot index spatial join [Manoulis –scalable sweeping-based

and Papadias 2001b] spatial join [Arge et al. 1998]

sorts the nonindexed objects but, instead of building the packed tree, it matches
each in-memory created leaf node with the leaf nodes of the existing tree that
intersect it. Finally, the slot index spatial join (SISJ) [Mamoulis et al. 2001b]
applies hash-join, using the structure of the existing R-tree to determine the
extents of the spatial partitions.

If no indexes exist, both inputs have to be preprocessed in order to facili-
tate join processing. Arge et al. [1998] propose an algorithm, called scalable
sweeping-based spatial join (SSSJ), that employs a combination of plane sweep
[Preparata and Shamos 1985] and space partitioning to join the datasets, and
works under the assumption that in most cases the “horizon” of the sweep line
will fit in main memory. However, the algorithm cannot avoid external sorting
of both datasets, which may lead to large I/O overhead. Patel and DeWitt [1996]
describe a hash-join algorithm, partition based spatial merge join (PBSM), that
regularly partitions the space, using a rectangular grid, and hashes both in-
puts into the partitions. It then joins groups of partitions that cover the same
area using plane-sweep to produce the join results. Some objects from both sets
may be assigned in more than one partitions, so the algorithm needs to sort the
results in order to remove the duplicate pairs. Another algorithm based on reg-
ular space decomposition is the size separation spatial join (S3J) [Koudas and
Sevcik 1997]. S3J avoids replication of objects during the partitioning phase by
introducing more than one partition layers. Each object is assigned in a single
partition, but one partition may be joined with many upper layers. The num-
ber of layers is usually small enough for one partition from each layer to fit
in memory, thus multiple scans during the join phase are not needed. Spatial
hash-join (HJ) [Lo and Ravishankar 1996] avoids duplicate results by perform-
ing an irregular decomposition of space, based on the data distribution of the
build input.

Table I summarizes the above algorithms. In general, indexing facilitates
efficiency in spatial join processing; an algorithm that uses existing indexes is
expected to be more efficient than one that does not consider them. The relative
performance of algorithms in the same class depends on the problem charac-
teristics. Günther [1993] suggests that spatial join indices perform best for
low-join selectivity, while in other cases RJ is the best choice. Among the algo-
rithms in the second class (one indexed input), SISJ and SaM outperform the
other methods because they avoid the expensive R-tree construction [Mamoulis
and Papadias 2001b]. There is no conclusive experimental evaluation for the

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 429

Fig. 2. R-tree-based spatial join (RJ).

algorithms in the third class (nonindexed inputs). S3J is preferable when the
datasets contain relatively large rectangles and extensive replication occurs
in HJ and PBSM. HJ and PBSM have similar performance, when the refine-
ment step is performed exactly after the filter step. In this case both algorithms
sort their output in order to minimize random I/Os and PBSM combines the
removal of duplicate pairs with sorting. However, in complex queries (e.g., mul-
tiway spatial joins) and when the refinement step is postponed after the filter
steps of all operators, PBSM may be more expensive because it can produce
larger intermediate results (due to the existence of duplicates). SSSJ requires
sorting of both datasets to be joined, and therefore it does not favor pipelining
and parallelism of spatial joins. On the other hand, the fact that PBSM uses
partitions with fixed extents makes it suitable for processing multiple joins in
parallel [Patel et al. 1997].

In Mamoulis and Papadias [1999], we have proposed a method (PJM) that
processes multiway spatial joins by combining RJ, HJ and SISJ. In this section
we outline these algorithms and discuss their application in PJM. Since all
algorithms are I/O bound, we also present formulas for their expected cost in
terms of page accesses.

2.1 R-Tree Join

RJ is based on the enclosure property of R-tree nodes: if two intermediate nodes
do not intersect, there can be no MBRs below them that intersect. Following
this observation, RJ starts from the roots of the trees to be joined and finds pairs
of overlapping entries. For each such pair, the algorithm is recursively called
until the leaf levels where overlapping pairs constitute solutions. Figure 2
illustrates the pseudo-code for RJ assuming that the trees are of equal height;
the extension to different heights is straightforward.

Two optimization techniques can be used to improve the CPU speed of RJ
[Brinkhoff et al. 1993]. The first, search space restriction, reduces the quadratic
number of pairs to be evaluated when two nodes Ni, N j are joined. If an entry
Ei,x ∈ Ni does not intersect the MBR of N j (that is the MBR of all entries
contained in N j), then there can be no entry E j , y ∈ N j , such that Ei,x and
E j , y overlap. Using this fact, space restriction performs two linear scans in the
entries of both nodes before RJ, and prunes out from each node the entries that
do not intersect the MBR of the other node. The second technique, based on

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

430 • N. Mamoulis and D. Papadias

the plane sweep paradigm, applies sorting in one dimension in order to reduce
the cost of computing overlapping pairs between the nodes to be joined. Plane
sweep also saves I/Os compared to nested loops because consecutive computed
pairs overlap with high probability. Huang et al. [1997] propose a breadth-first
optimized version of RJ that sorts the output at each level in order to reduce
the number of page accesses.

Theodoridis et al. [1998] provide an analytical formula that estimates the cost
of RJ in terms of node accesses, based on the properties (density, cardinality)
of the joined datasets. In their analysis, no buffer, or a trivial buffer scheme
is assumed. In practice, however, the existence of a buffer affects the number
of page accesses significantly. Here, we adopt the formula provided in Huang
et al. [1997], which predicts actual page accesses in the presence of an LRU
buffer. Let TA, TB be the number of pages in R-trees RA, RB, respectively. The
cost of RJ in terms of I/O accesses is then estimated by the following formula:

CRJ = TA + TB + (NA(RA, RB)− TA − TB) · Prob(node, M), (1)

where NA(RA, RB) is the total number of R-tree nodes accessed by RJ and
Prob(node, M) is the probability that a requested R-tree node will not be in the
buffer (of size M) and will result in a page fault. Details about the computation
of NA(RA, RB) and Prob(node, M) can be found in Huang et al. [1997].

2.2 Spatial Hash Join

Spatial hash-join (HJ) [Lo and Ravishankar 1996], based on the relational hash-
join paradigm, computes the spatial join of two inputs, none of which is indexed.
Set A is partitioned into S buckets, where S is decided by the system parame-
ters. The initial extents of the buckets are points determined by sampling. Each
object is inserted into the bucket that is enlarged the least. Set B is hashed into
buckets with the same extent as A’s buckets, but with a different insertion pol-
icy; an object is inserted into all buckets that intersect it. Thus, some objects
may go into more than one bucket (replication), and some may not be inserted
at all (filtering). The algorithm does not ensure equal-sized1 partitions for A, as
sampling cannot guarantee the best possible bucket extents. Equal sized parti-
tions for B cannot be guaranteed in any case, as the distribution of the objects
in the two datasets may be totally different. Figure 3 shows an example of two
datasets, partitioned using the HJ algorithm.

After hashing set B, the two bucket sets are joined; each bucket from A is
matched with only one bucket from B, thus requiring a single scan of both files,
unless for some pair of buckets none of them fits in memory. If one bucket fits in
memory, it is loaded and the objects of the other bucket are prompted against
it. If none of the buckets fits in memory, an R-tree is built for one of them, and
the bucket-to-bucket join is executed in an index-nested loop fashion.

The I/O cost of HJ depends on the size of the joined datasets and the filtering
and replication that occur in set B. Initially, a small number of pages Csampling is
read to determine the initial hash buckets. Then both sets are read and hashed

1The term, size of partition/slot, denotes the number of objects inside the partition, and not its
spatial extent.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 431

Fig. 3. The partition phase of HJ algorithm: (a) Objects from set A (build input) in three partition
buckets. (b) Filtering and replication of objects from set B (probe input).

into buckets. Let PA, PB be the number of pages of the two datasets (stored
in sequential files) and rB, fB be the replication and filtering ratios of B. The
partitioning cost of HJ is given by the following formula:

CHJ-part = Csampling + 2PA + (2+ rB − fB) · PB. (2)

Next, the algorithm will join the contents of the buckets from both sets. In
typical cases, where the buffer is large enough for at least one partition to fit
in memory, the join cost of HJ is:

CHJ-join = PA + (1+ rB − fB) · PB (3)

considering that the join output is not written to disk. Summarizing, the total
cost of HJ is:

CHJ = CHJ-part + CHJ-join = Csampling + 3PA + (3+ 2rB − 2 fB) · PB. (4)

2.3 Slot Index Spatial Join

SISJ [Mamoulis and Papadias 2001b] is similar to HJ, but uses the existing
R-tree in order to determine the bucket extents. If S is the desired number of
partitions, SISJ will find the topmost level of the tree such that the number of
entries is larger or equal to S. These entries are then grouped into S (possibly
overlapping) partitions called slots. Each slot contains the MBR of the indexed
R-tree entries, along with a list of pointers to these entries. Figure 4 illustrates
a 3-level R-tree (the leaf level is not shown) and a slot index built over it. If
S = 9, the root level contains too few entries to be used as partition buckets.
As the number of entries in the next level is over S, we partition them in 9
(for this example) slots. The grouping policy used by SISJ (see Mamoulis and
Papadias [2001b] for details) starts with a single empty slot and inserts entries
into the slot that is enlarged the least. When the maximum capacity of a slot is
reached (determined by Sand the total number of entries), either some entries
are deleted and reinserted or the slot is split according to the R*-tree splitting
policy [Beckermann et al. 1990].

After building the slot index, the second set B is hashed into buckets with the
same extents as the slots. As in HJ, if an object from B does not intersect any
bucket it is filtered; if it intersects more than one buckets it is replicated. The

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

432 • N. Mamoulis and D. Papadias

Fig. 4. An R-tree and a slot index built over it: (a) Level 2 (root) entries. (b) Level 1 entries. (c)
Slot index over level.

join phase of SISJ is also similar to the corresponding phase of HJ. All data
from R-tree RA indexed by a slot are loaded and joined with the corresponding
hash-bucket from set B using plane sweep. If the data to be joined do not fit in
memory, they can be joined using external sorting + plane sweep [Arge et al.
1998] or index nested loop join (using as root of the R-tree the corresponding
slot). Since these methods can be expensive when the partitions are much larger
than the buffer, in such cases SISJ is applied recursively, in a similar way to
recursive hash-join [Silberschatz et al. 1997]. During the join phase of SISJ,
when no data from B is inserted into a bucket, the subtree data under the
corresponding slot is not loaded (slot filtering).

Let TA be the number of pages (blocks) of RA, and PB the number of pages
of the sequential file B. Initially, the slots have to be determined from A. This
requires loading the top k levels of RA in order to find the appropriate slot level.
Let sA be the fraction of RA nodes from the root until k. The slot index is built in
memory, without additional I/Os. Set B is then hashed into the slots requiring
PB accesses for reading, and PB + rB PB − fB PB accesses for writing, where rB,
fB are the replication and filtering ratios of B. Thus, the cost of SISJ partition
phase is:

CSISJ-part = sA · TA + (2+ rB − fB) · PB. (5)

For the join phase of SISJ we make the same assumptions as for HJ, that is,
for each joined pair at least one bucket fits in memory. The pages from set A
that have to be fetched for the join phase are the remaining (1 − sA)·TA, since
the pointers to the slot entries are kept in the slot index and need not be loaded
again from the top levels of the R-tree. The number of I/O accesses required for
the join phase is:

CSISJ-join = (1− sA) · TA + (1+ rB − fB) · PB. (6)

Summarizing, the total cost of SISJ is:

CSISJ = CSISJ-part + CSISJ-join = TA + (3+ 2rB − 2 fB) · PB (7)

2.4 Integration of Pairwise Join Algorithms for Processing Multiple Inputs

As in the case of relational joins, multiway spatial joins can be processed by com-
bining pairwise join algorithms. PJM considers a join order that is expected to
result in the minimum cost (in terms of page accesses). Each join order corre-
sponds to exactly one execution plan where: (i) RJ is applied when the inputs
are leaves i.e., datasets indexed by R-trees, (ii) SISJ is employed when only one
input is indexed by an R-tree and (iii) HJ when both inputs are intermediate

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 433

Fig. 5. Alternative plans using pairwise join algorithms: (a) Right-deep plan. (b) Bushy plan.

results. As an example of PJM, consider the query in Figure 1(a) and the plans
of Figure 5. Figure 5(a) involves the execution of RJ for determining R3 1 R4.
The intermediate result, which is not indexed, is joined with R2 and finally with
R1 using SISJ. On the other hand, the plan of Figure 5b applies RJ for R1 1 R2
and R3 1 R4, and HJ to join the intermediate results.

Queries with cycles can be executed by transforming them to tree expres-
sions using the most selective edges of the graph and filtering the results with
respect to the other relations in memory. For instance, consider the cycle (R1
overlap R2), (R2 overlap R3), (R3 overlap R1) and the query execution plan
R1 1 (R2 1 R3). When joining the tuples of (R2 1 R3) with R1 we can use either
the predicate (R2 overlap R1), or (R3 overlap R1) as the join condition. If (R2
overlap R1) is the most selective one (i.e., results in the minimum cost), it is
applied for the join and the qualifying tuples are filtered with respect to (R3
overlap R1).

PJM uses Eqs. (1), (4), and (7) to estimate the join cost of the three algorithms.
The expected output size (i.e., number of solutions) of a pairwise join determines
the execution cost of an upper operator and therefore is crucial of optimization.
The size of a join output is determined by:

—The cardinality of the sets to be joined. If |R1|, |R2| are the cardinalities of
two inputs, the join may produce up to |R1| · |R2| tuples (Cartesian product).

—The density of the sets. The density of a dataset is formally defined as the sum
of areas of all rectangles in the dataset divided by the area of the workspace.
Datasets with high density have rectangles with large average area, thus
producing numerous intersections.

—The distribution of the rectangles inside the sets. This is the most difficult
factor to estimate, as in many cases the distribution is not known, and even
if known, its characteristics are very difficult to capture.

According to the analysis in Theodoris et al. [1998] and Huang et al. [1997],
the number of output tuples when joining two-dimensional datasets R1 and R2
with uniform distribution is:

|R1 1 R2| = |R1| · |R2| · (sR1 + sR2)2, (8)

where sR1 is the average side length of a rectangle in R1, and the rectangle
co-ordinates are normalized to take values from [0,1). The last factor of the

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

434 • N. Mamoulis and D. Papadias

product corresponds to pairwise join selectivity, that is, the probability that a
random pair of rectangles from the two datasets intersect.

Optimization of multiway spatial joins requires selectivity estimation for
each possible decomposition of the query graph (i.e., for each allowable subplan).
The generalized formula for the output size of a query (sub) graph Q with n
inputs is:

#solutions(Q) = #(possible tuples) · Prob(a tuple is a solution). (9)

The first part of the product equals the cardinality of the Cartesian product
of the n domains, while the second part corresponds to multiway join selectiv-
ity. In case of acyclic graphs, the pairwise probabilities of the join edges are
independent and selectivity is the product of pairwise join selectivities:

Prob(a tuple is a solution) =
∏

∀i, j :Q(i, j)=TRUE

(
sRi + sR j

)2
. (10)

From Eqs. (9) and (10), total number of query solutions is:

#solutions(Q) =
n∏

i=1

|Ri| ·
∏

∀i, j :Q(i, j)=TRUE

(
sRi + sR j

)2 (11)

When the query graph contains cycles, the pairwise selectivities are not in-
dependent anymore and Eq. (10) is not accurate. For cliques, it is possible to
provide a formula for multiway join selectivity based on the fact that if a set
of rectangles mutually overlap, then they must share a common area. Given
a random n-tuple of rectangles, the probability that all rectangles mutually
overlap is Papadias et al. [1999a]:

Prob(a tuple is a solution) =


n∑

i=1

n∏
j=1
j 6=i

sR j


2

. (12)

Thus, in case of clique queries, the number of solutions is:

#solutions(Q) =
n∏

i=1

|Ri| ·


n∑

i=1

n∏
j=1
j 6=i

sR j


2

. (13)

The above formulas are applicable for queries that can be decomposed to acyclic
and clique graphs (e.g., the one in Figure 1(b)). The optimal execution plan can
be computed from the estimated output size and the costs of the algorithms in-
volved. Selectivity estimation for real datasets is discussed in Section 5. Next,
we describe, synchronous traversal, an alternative to PJM for processing mul-
tiway spatial joins.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 435

Fig. 6. Example of R-trees.

3. SYNCHRONOUS TRAVERSAL

ST synchronously processes the indexes of all joined datasets, following combi-
nations of nodes that satisfy the query constraints. Consider the four R-trees
of Figure 6 and the clique query of Figure 1(c). The query asks for the set of
4-tuples (aw, bx, cy, dz), such that the four objects mutually overlap (e.g., (a2, b1,
c2, d2)). ST starts from the roots of the R-trees searching for entries that satisfy
the join conditions. In this example, out of the 16 combinations of root entries
(i.e., (A1, B1, C1, D1), (A1, B1, C1, D2), . . . , (A2, B2, C2, D2)), only (A1, B1, C1,
D1) may lead to actual solutions. For instance, the combination (A2, B1, C1, D1)
does not satisfy the query constraints because A2 does not intersect C1 (or D1);
therefore, there cannot be any pair of overlapping objects (aw, cy), aw pointed
by A2 and cy pointed by C1. As in the case of RJ, intermediate level solutions
are recursively followed until the leaves.

A problem of ST is that exhaustive enumeration of all combinations at each
level is prohibitive because of their large number. Moreover, the CPU-time opti-
mization techniques for RJ are not readily applicable for multiple inputs. In this
section, we propose an efficient implementation for ST and provide an accurate
formula for its expected cost.

3.1 Description of ST

In the worst case, the total number of combinations of data MBRs that have to
be checked for the satisfaction of the join conditions is |R|n, where n is the
number of inputs and |R| the cardinality of the datasets. ST takes ad-
vantage of the hierarchical decomposition of space preserved by R-trees to
break the problem in smaller local ones at each tree level. A local problem
has to check Cn combinations in the worst case (C is the R-tree node capacity),
and can be defined by:

—A set of n variables, v1, v2, . . . , vn, each corresponding to a dataset.
—For each variable vi, a domain Di which consists of the entries {Ei,1, . . . , Ei,Ci}

of a node Ni (in tree Ri).
—Each pair of variables (vi, vj) is constrained by overlap, if Qij is TRUE.

A binary assignment {vi← Ei,x , vj← E j , y } is consistent iff Qij =TRUE⇒
Ei,x overlaps E j , y . A solution of a local problem is a n-tuple τ = (E1,w, . . . ,

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

436 • N. Mamoulis and D. Papadias

Fig. 7. Synchronous R-tree traversal.

Ei,x , . . . , E j , y , . . . , En,z) such that ∀i, j , {vi ← Ei,x , vj ← E j , y } is consistent.
The goal is to find all solutions, that is, assignments of entries to variables such
that all constraints are satisfied.

In the previous example (clique query of Figure 1(c)), there exist four vari-
ables v1, . . . , v4 and for each (vi, vj), i 6= j , the constraint is overlap. At level 1,
the domains of the variables are D1 = {A1, A2}, D2 = {B1, B2}, D3 = {C1, C2}
and D4 = {D1, D2}. Once the root level solution (A1, B1, C1, D1) is found, ST will
recursively search for qualifying tuples at the lower level where the domains of
v1, . . . , v4 consist of the entries under A1, . . . , D1, respectively, that is, D1 = {a1,
a2}, D2 = {b1, b2}, D3 = {c1, c2}, and D4 = {d1, d2}. Notice that an intermediate
level solution does not necessarily lead to an actual one. As we show later, the
percentage of combinations that constitute solutions increases as we go up the
levels of the trees because of the large node extents. Since a part of node area
corresponds to “dead space” (space not covered by object MBRs), many high
level solutions are false hits.

The pseudocode for ST, assuming R-trees of equal height, is presented in
Figure 7. For each Di, space-restriction prunes all entries that do not inter-
sect the MBR of some N j , where Qij = TRUE. Consider the chain query of
Figure 1(a) and the top-level solution (A2, B1, C1, D1). At the next level, ST is
called with D1={a3, a4}, D2={b1, b2}, D3={c1, c2}, and D4={d1, d2}. Although
A2 intersects B1, none of entries (a3, a4) does and these entries can be safely
eliminated from D1. Since D1 becomes empty, (A2, B1, C1, D1) cannot lead to an

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 437

actual solution and search is abandoned without loading2 the nodes pointed by
B1, C1, and D1.

Find-combinations is the “heart” of ST; that is, the search algorithm that
finds tuples τ ∈ D1 × D2 × · · · × Dn, that satisfy Q . In order to avoid exhaus-
tive search of all combinations, several backtracking algorithms applied for
constraint satisfaction problems, can be used. One such algorithm is forward
checking (FC) [Haralick and Elliot 1980]. Forward checking accelerates search
by progressively assigning values to variables and pruning the domains of fu-
ture (uninstantiated) variables. Given a specific order of the problem’s variables
v1, v2, . . . , vn, when vi is instantiated, the domains of all future variables vj ,
j > i, such that Qij =TRUE, are revised to contain only rectangles that inter-
sect the current instantiation of vj (check forward). If, during this procedure,
some domain is eliminated a new value is tried for vi until the end of Di is
reached. Then, FC backtracks to vi−1 trying a new value for this variable. The
algorithm terminates after backtracking from v1. Several experimental studies
(e.g., Bacchus and Grove [1995]) in different domains have shown the superi-
ority of FC compared to other algorithms. In previous works [Papadias et al.
1998; 1994a], we have applied FC as an implementation of find-combinations
and called this version of ST, multilevel forward checking (MFC).

As we show next, the performance of search can be further improved by
exploiting the spatial structure of the problem. In particular, we propose a
heuristic that combines plane sweep and forward checking in order to reduce
the number of comparisons required. Furthermore, we describe an optimization
method that orders the problem variables according to their degree (i.e., the
number of adjacent edges in the query graph).

3.2 Optimization of ST: SVO and PSFC

The order of variables in the first implementation of Papadias et al. [1998]
was not considered because the structural queries examined there had com-
plete graphs; therefore, all variables/nodes had identical degrees. In the multi-
way spatial-join problem examined here, a pair of variables is not necessarily
connected by a graph edge; thus, the static order in which the variables are
considered is important for noncomplete queries (e.g., the first two queries in
Figure 1).

We propose a preordering of the problem variables based on a static variable
ordering (SVO) heuristic, which “places the most constrained variable first”
[Dechter and Meiri 1994]. Before running ST, the variables are sorted in de-
creasing order of their degree. Thus, for the chain query in Figure 1(a) the order
of the variables will be {2, 3, 1, 4} (or any other equivalent order for example,
{3, 2, 4, 1}) and for the query in Figure 1b {2, 1, 4, 3}. Variable preordering is
applied only once and the produced static order is used in find-combinations
and space-restriction at every execution of ST.

Next, we present an alternative search algorithm, PSFC (plane sweep
combined with forward checking), as an improved implementation of

2In order to avoid redundant page faults, space-restriction does not load a node from disk, until its
entries have to be compared with the MBRs of the other nodes.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

438 • N. Mamoulis and D. Papadias

Fig. 8. PSFC algorithm.

find-combinations. PSFC does not solve a single local problem (as FC does),
but breaks it into a series of small problems, one for each event of the sweep
line. In other words, plane sweep is applied for problem decomposition and
domain restriction, and then a special version of FC, called sortFC, takes
advantage of the small domains and order in space to efficiently solve each
small sub-problem.

The pseudocode for PSFC is shown in Figure 8. First, the entries of all nodes
are sorted according to their xl coordinates (x coordinate of the lower left point
of the MBR). A set of pointers (heads), one for each node, is maintained initially
pointing to the first element of the sorted entries array. Let Ei,x ∈ Ni be the
entry with the smallest xl pointed by a head. PSFC will start by finding all solu-
tions containing the assignment vi ← Ei,x . The domains of the other variables
are formulated as follows: if Qij = TRUE, all entries E j , y after (≥) head j such
that E j , y .xl ≤ Ei,x .xu are tested for y-intersection with Ei,x and added in the
domain of vj . If Qij =FALSE, the domain consists of all rectangles in N j after
(≥) head j . Now vi is ignored and sortFC is invoked to solve the subproblem
involving the remaining n− 1 variables. In this way, search is restricted only
close to the fixed rectangle Ei,x , and redundant checks are avoided. After all
solutions that contain vi ← Ei,x are found, headi is increased and the process

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 439

Fig. 9. Four steps of PSFC.

is repeated. Notice that no duplicate solutions are retrieved, since the rectan-
gles checked are always at or after the sorted array heads. The heads can be
organized in either a priority queue or a sorted array to facilitate fast retrieval
of the smallest xl-coordinate head.

To comprehend the functionality of PSFC consider the query in Figure 9 ap-
plied to four R-tree nodes A, B, C, D. The node with the smallest xl-coordinate
head is D. PSFC sets v4 ← d1 and filters the initial domains of A and B because
Q14 = Q24 = TRUE, setting D1 = {a1} and D2 = {b1}, whereas D3 remains
{c1, c2, c3, c4}. SortFC is then called to solve the (A, B, C) subproblem, identi-
fying the solution (a1, b1, c2). By concatenating the current value of the fixed
variable (v4 ← d1), the first solution (a1, b1, c2, d1) is generated. head4 is moved
to d2 and the algorithm will not consider d1 again. Each step in Figure 9 cor-
responds to a small problem; the first (thick) vertical line illustrates the sweep
line, while the second one shows the upper limit of the fixed rectangle on the
x-axis, that is, the two lines show the x-axis ranges for the objects to be tested
for intersection. The dark rectangles indicate the position of the head point-
ers and the grided rectangles are the ones that constitute the domains at the
current step.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

440 • N. Mamoulis and D. Papadias

At the second step v1 is fixed to a1. The only values from D2 that are checked
for intersection with a1 are b1 and b2; both are included since they overlap
a1. D3 contains all rectangles because Q13=FALSE. D4 is eliminated since
Q14=TRUE and none of the entries between the vertical lines (d2 and d3)
intersects a1. Therefore, v1 ← a1 cannot lead to a solution and the algorithm
proceeds to the next step (without calling sortFC) fixing v3 to c1. The assignment
v3 ← c1 also eliminates domain D2 and PSFC moves to the fourth step (v1 ← a2).
The same process is repeated until all rectangles are considered and the lists
are exhausted. Assuming that each node is full, PSFC solves n ·C subproblems
for each local problem.

SortFC uses the sorted domain entries to avoid redundant comparisons dur-
ing search. After an assignment vk ← Ek,v (k 6= i, where vi is the variable fixed
by PSFC), check forward is called to delete from the domains of future vari-
ables vj (j > k) connected to vk (Qkj =TRUE) those values that do not inter-
sect Ek,v. Exhaustive search for valid values is prevented, by stopping when an
entry E j , y with E j , y .xl > Ek,v.xu is reached (all subsequent entries in D j
cannot overlap Ek,v).

Figure 10 illustrates the pseudocode for sortFC. The domains are kept in
a 3-dimensional array D, in order to facilitate fast restoration of future vari-
able values after the current variable has been unsuccessfully instantiated.
D[k][j] contains all potential values (entries) of vj that are consistent with all
instantiations of variables prior to vk . When vk gets assigned (vk ← Ek,v), check-
forward copies to D[k+ 1][j] all consistent entries of D[k][j]. If Qkj =FALSE,
D[k+1][j] = D[k][j]; otherwise, D[k+1][j] = {E j , y | E j , y ∈ D[k][j] and E j , y
overlaps Ek,v}. The domain of vj is eliminated when there exists a join condition
Qkj , but no value in D[k][j] that intersects Ek,v. In this case, vk ← Ek,v cannot
lead to a solution, a new value for vk is chosen, and D[k + 1][j] is reinitialized
to D[k][j]. If no future domain gets eliminated, the algorithm goes forward to
variable vk+1 (according to the order determined by SVO).

Assuming that all R-trees have the same height, if sortFC is applied for leaf
nodes the tuples are output after being concatenated with the current value
of the fixed (by PSFC) variable (vi); otherwise, ST is invoked for each qual-
ifying combination of entries, by following the corresponding pointers. When
trees have different heights, some Di may consist of a single leaf MBR ri,x (if
tree Ri is shallower than some others). In this case, space-restriction is called
only for the other inputs. Assume, for the sake of this example, that the root
of R1 in Figure 6 is a leaf node (i.e., A1, A2 are object MBRs) and the first
tree is shallower than the other ones. When the clique query of Figure 1(c) is
processed, solution (A1, B1, C1, D1) will be found at the top level. At the next
level, space-restriction will be executed to prune D2 (i.e., entries under B1), D3
and D4, whereas D1 = {A1}. Finally PSFC will be called and retrieve solution
(A1, b1, c2, d2).

Summarizing, ST breaks multiway spatial join processing in local problems
throughout the levels of the tree. PSFC in turn, further decomposes each local
problem in smaller sub-problems in order to avoid the overhead of searching
and backtracking in large domains. Next, we study the behavior of ST and
provide a formula for estimating its cost.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 441

Fig. 10. sortFC.

3.3 Cost Estimation of ST

ST starts from the top level h−1 (where h is the height of the trees), and solves
one local problem in order to find solutions at the roots. Each solution generates
one problem at the next level, until the leaves where solutions are output. Thus,
the total number of local problems is:

NPROBLEMS = 1+
h−1∑
l=1

solutions(Q , l), (14)

where # solutions(Q, l) is the number of qualifying entry combinations at level l .
In order to comprehend the behavior of ST, it is important to scrutinize the num-
ber of solutions at each level. We generated four collections of synthetic datasets,
with densities3 0.1, 0.2, 0.4, 0.8. Each dataset contains 30,000 uniformly dis-
tributed rectangles organized in an R*-tree of page size 8K and height 2. For
each object, we index/store its MBR, which is described by four 4-byte floats,
and an object ID (a 4-byte integer). Therefore, R-tree entries require 20 bytes of
storage. A 512K system buffer with LRU page replacement policy is employed4;

3The densities of the real geographic datasets used in this article range between 0.04 and 0.39.
Denser spatial datasets were used in Koudas and Sevcik [1997] and Mamoulis and Papadias [1999].
VLSI data tend to have higher desnities, such as 1.2, in the experiments of Papadias et al. [1999b].
4All datasets used have sizes 350 Kb–3 Mb, so they fit in the machine’s memory. We used a relatively
small buffer in order to simulate situations where the datasets are larger than the available buffer
(up to an order of magnitude). Analogous buffer sizes are used by other studies in the literature (e.g.,
Lo and Ravishankar [1996], Koudas and Sevcik [1997], and Huang et al. [1997a]). The underlying
assumption (which we evaluated through experiments with large synthetic datasets) is that the

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

442 • N. Mamoulis and D. Papadias

R-tree nodes, disk pages and buffer pages have the same size. All experiments
were run on an Ultrasparc2 workstation (200 MHz) with 256 Mbytes of mem-
ory. Because of the caching effects of the machine, it was hard to count the I/O
and computational cost accurately. Therefore, we charged 10 ms (a typical value
[Silberschatz et al. 1997; Huang et al. 1997a]) for each I/O access, the majority
of which are random in R-tree-based algorithms. In the following, we denote as
“overall cost” the sum of the actual CPU time and the estimated I/O cost (see
also Huang et al. [1997a]).

For each collection of datasets, we run ST for chain and clique queries. The
first column of Figure 11 illustrates the number of root level solutions for chains
(first row) and cliques (second row) as a function of the number of inputs n and
the data density. Since the trees have only two levels, the number of root level
solutions is equal to the number of problems that have to be solved at the
leaf level. As observed in Theodoridis and Sellis [1996], the size of interme-
diate node extents is determined mainly by the capacity of the nodes, while
density has trivial effect. Thus, the number of solutions at high levels of the
trees is almost independent of the density of the datasets for small to medium
density values (0.1, 0.2, and 0.4). For the high density case (0.8), the data rect-
angles are large enough to affect the size of intermediate nodes, resulting in
more solutions.

The second column of Figure 11 presents the number of output tuples (ac-
tual solutions at the leaf level). Observe that there is a range of density values
(around 0.2–0.4 for chains and 0.4–0.8 for cliques) where the number of solu-
tions does not vary considerably with n. Density values above that range result
in exponential growth in the number of solutions, while values below the range
eventually yield zero solutions. This is in contrast with the root level solutions
which always increase with the number of inputs due to the large node extents.
The root (and in general intermediate) level solutions are more important than
the actual ones for the complexity of ST since they determine the number of
local problems to be solved. The last column shows the percentage of root solu-
tions that do not lead to any output tuple (false hits). This percentage is large
for sparse datasets and query graphs and converges to 100% with n.

As a result of the large number of intermediate level solutions (most of which
are false hits), the cost of ST is expected to grow exponentially with the num-
ber of inputs. The large number of local problems affects mainly the CPU-time,
because the LRU buffer absorbs the I/O side effects due to the high overlap
between consecutive solutions. Figure 12 presents the CPU-time of ST (using
SVO and PSFC) as a percentage of the overall cost for running chain and clique
queries using the synthetic datasets with density 0.4. Other densities produce
very similar results, independently of the algorithm used for ST. The diagram
suggests that ST is indeed CPU bound and, in the sequel, we restrict our at-
tention to its computational cost.

The local problems have the same characteristics (i.e., number of variables,
constraints and domain size); therefore, it is reasonable to assume that they

various algorithms scale in a similar way, that is, the relative performance does not change with
the size of the data.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 443

F
ig

.1
1.

E
ff

ec
ts

of
da

ta
de

n
si

ty
an

d
n

on
th

e
so

lu
ti

on
s

of
S

T
:(

a)
N

u
m

be
r

of
ro

ot
(l

ev
el

1)
so

lu
ti

on
s.

(b
)N

u
m

be
r

of
ac

tu
al

(l
ev

el
0)

so
lu

ti
on

s.
(c

)P
er

ce
n

ta
ge

(%
)

of
fa

ls
e

h
it

s.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

444 • N. Mamoulis and D. Papadias

Fig. 12. CPU-time percentage (%) of the total cost as a function of the number of inputs.

all have approximately the same computational cost (CPROBLEM). Consequently,
the total CPU cost (CCPU) of ST equals the number of local problems times the
cost of each problem.

CCPU = NPROBLEMS · CPROBLEM. (15)

NPROBLEMS can be estimated by Eq. (14) using the formulae of Section 2 for
the number of solutions at each level of the tree. The only difference is that
instead of object MBRs, intermediate nodes are used in Eqs. (11) and (13).
The remaining factor to compute Eq. (15) is the cost CPROBLEM. Although in
the worst case (e.g., extremely large intermediate nodes), each local problem is
exponential (O(Cn)), the average CPROBLEM for typical situations is much lower
(actually, increases linearly with n and page size). Unfortunately, the nature of
backtracking based search algorithms (including forward checking), does not
permit theoretical average case analysis.5 Therefore, in order to provide a cost
formula for CPROBLEM, we perform an empirical study.

The parameters that may have an effect on CPROBLEM are the cardinality and
density of the domains, and the query graph (number of variables, graph den-
sity). The cardinality depends on the system page size p. The next experiment
identifies the effect of domain density and query graph using the previous syn-
thetic datasets. Figure 13 shows the mean cost of a local problem for various
data densities when p is fixed to 8K (1st row) and the number of variables n
is fixed to 5 (2nd row) for chain and clique queries. The important observation
is that the problem cost is almost constant6 with the data density, and increases
linearly with n and p. It is also independent of the query graph, since chains
and cliques, the two extreme cases of possible graphs, give approximately the
same value from CPROBLEM.

CPROBLEM was also measured for the three queries of Figure 1 executed
over real datasets (Tiger and Germany), described and used in subsequent

5The only existing theoretical analysis [Kondrak and van Beek 1997] compares the relative per-
formance of different search heuristics in terms of consistency checks and cannot be applied for
absolute cost estimation.
6For densities of 0.8, the problem cost increases slightly due to the high number of actual solutions
(see Figure 11 (a)), since search algorithms are, in general, output sensitive. Nevertheless, the
difference is marginal.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 445

F
ig

.1
3.

A
ve

ra
ge

C
P

U
-t

im
e

of
a

lo
ca

lp
ro

bl
em

in
S

T
:(

a)
C

h
ai

n
qu

er
ie

s.
(b

)
C

li
qu

e
qu

er
ie

s.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

446 • N. Mamoulis and D. Papadias

Table II. CPROBLEM for Real Datasets

CCPU NPROBLEMS CPROBLEM
Tiger-chain 177.09 23540 0.007523
Tiger-cycle 100.9 12720 0.007933
Tiger-clique 64.05 8085 0.007922
Germany-chain 35.83 4864 0.007367
Germany-cycle 18.96 2544 0.007454
Germany-clique 12.06 1549 0.007786

experimental evaluations. The same execution conditions were used for all six
queries (8K page size, 4 datasets). Table II presents the results, suggesting that
the values of CPROBLEM are very similar for all query and dataset combinations.

From the above empirical analysis it can be concluded that the CPU-time for
each local problem is linear to the number of variables n and the page size p,
independently of the domain density or the structure of the graph. Thus, we can
define:

CPROBLEM = F ·n·p, (16)

where F is a factor that depends on the algorithm for ST and the CPU speed.
For SVO-PSFC and our experimental settings (see next section), its value is
around 2.7·10−7. F can be estimated by Eqs. (14), (15), and (16) and the actual
cost of a multiway join. The substitution of the above formula for CPROBLEM
in Eq. (15) provides a cost prediction with a relative error less than 15% (for
uniform data), which is as good as the corresponding models for pairwise joins
[Huang et al. 1997b; Theodoridis et al. 1998].

4. EXPERIMENTAL EVALUATION OF ST AND COMPARISON WITH PJM

The experiments of this section are grouped in two parts: first, we evaluate
the effectiveness of SVO and PSFC with respect to MFC and then we com-
pare them against PJM in order to identify the best alternative given the
problem characteristics. We used the Tiger files from the US Bureau of the
Census [1989] and datasets describing several layers of Germany (available at
http://www.maproom.psu.edu/dcw/). Details regarding the sizes and densities
of the Germany layers can be found in Figure 18. The experimental settings
were the same as in Section 3.3.

4.1 Performance Improvement of SVO and PSFC

In the first experiment, we measure the performance of ST using (i) FC (i.e.,
MFC [Papadias et al. 1998]), (ii) FC combined with SVO heuristic (SVO-MFC),
and (iii) PSFC combined with SVO heuristic (SVO-PSFC). Tiger files T1 and T2,
which are common benchmarks of spatial join algorithms [Brinkhoff et al. 1993;
Lo and Ravishankar 1996; Huang et al. 1997a], were used. T1 contains 131,461
street segments (density D= 0.05), and T2 128,971 railway and river segments
(D= 0.39) from California. Two more datasets T3 and T4 were produced from T1
and T2, respectively, by taking as the lower left corner of an MBR the center of

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 447

the original object and considering the same width and height (a similar method
was used in Koudas and Sevcik [1997]). The three versions were executed for the
queries of Figure 1 and various page sizes. Sizes of 2K–8K resulted in R-trees
of three levels, and 1K in R-trees of four levels.7

The results of Figure 14 suggest that the improvement after the application
of SVO prior to MFC is significant for the first two queries, where the first
variable is not the most constrained; there is no difference for the clique query,
as all variables have the same degree. Surprisingly, in one case (2nd query,
4K page size) SVO-MFC performed worse than MFC in terms of I/O, although
SVO-MFC accessed fewer R-tree nodes. This shows that, in general, there is
not high locality between two consecutive solutions produced by MFC. On the
other hand, PSFC generates solutions with high locality, and has an advantage
in terms of I/O compared to MFC. The performance gain of PSFC in terms
of CPU-time is higher for large pages, as sorting and sweeping pay off. As
discussed in the previous section, the CPU improvement is more significant
than I/O, because ST is CPU bound.

PSFC (and ST in general) performs best for large page sizes. As the page
size increases, so does the capacity of the R-tree nodes, meaning that ST has
to solve fewer local problems with larger domains. As a result, the number of
I/O accesses drops significantly; on the other hand, the CPU-time difference is
not that large. This is because the increase of domain size is compensated by
the decreasing number of intermediate level problems. Therefore, there exist
fewer false hits due to dead space in the upper tree nodes. The performance
improvement is substantial between the 1K and 2K page sizes because of the
different tree heights. Notice also that the CPU-difference between PSFC and
MFC (when both use SVO) increases with the page size. This can be explained
by the fact that PSFC achieves very good pruning in large pages (e.g., 8K)
with many rectangles that cover a wider area, compared to the pruning in
small pages (e.g., 1K) with few rectangles in a smaller area. In subsequent
experiments the page size is fixed to 8K.

In order to measure the efficiency of SVO-PSFC against MFC under a wide
range of conditions, we also used the uniform datasets described in Section 3.
Figure 15 presents the number of times that SVO-PSFC outperforms MFC (i.e.,
cost MFC/cost SVO-PSFC) in terms of overall normalized cost as a function of
n for chain and clique queries. The improvement factor increases with the data
density, while the difference is greater for chains (and sparse query graphs, in
general), an important fact because such queries are common and have large
computational overhead. Even for joins of low-density datasets the improve-
ment is significant (i.e., 50%–300%) when the number of datasets is small (<6).
As we see in Section 5.3, ST is especially useful for joining small groups of

7The only multiple datasets covering the same area, Germany layers, are not suitable for this exper-
iment because (due to their very different cardinalities) they result in R-trees of variable heights for
page sizes less than 8K. Joining trees of variable heights does not allow for a consistent comparison
between MFC and PSFC, because the domains of some variables at a large number of problems
reduce to 1. Nevertheless, we have run the same experiment with the Germany datasets and found
SVO-PSFC also superior to other methods, but the results were less interpretable regarding the
effects of the page size.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

448 • N. Mamoulis and D. Papadias

F
ig

.1
4.

C
P

U
ti

m
e

(i
n

se
co

n
ds

)
an

d
I/

O
ac

ce
ss

es
fo

r
th

e
th

re
e

S
T

ve
rs

io
n

s
fo

r
se

ve
ra

lp
ag

e
si

ze
s:

(a
)

C
h

ai
n

qu
er

y.
(b

)
Q

u
er

y
w

it
h

cy
cl

e.
(c

)
C

li
qu

e
qu

er
y.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 449

F
ig

.1
5.

Im
pr

ov
em

en
t

fa
ct

or
fo

r
sy

n
th

et
ic

da
ta

se
ts

,a
s

a
fu

n
ct

io
n

of
th

e
n

u
m

be
r

of
in

pu
ts

:(
a)

C
h

ai
n

qu
er

ie
s.

(b
)

C
li

qu
e

qu
er

ie
s.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

450 • N. Mamoulis and D. Papadias

relations, a fact that increases the value of PSFC. As a general conclusion,
SVO and PSFC contribute equally to the performance improvement of ST for
reasonably large page sizes (i.e., 4K–8K) and we adopt both in the standard
implementation of ST for the rest of the paper.

An alternative approach to PSFC would break each subproblem (instead of
calling sortFC), into smaller ones by recursively calling the main body of PSFC,
until only two variables remain, where plane sweep can be applied. We have
experimented with such a technique, but found it inferior to PSFC in most cases.
We believe that this is due to the overhead of tracing the domains multiple times
in order to hopefully reduce them, without this to pay-off the high initialization
constants at each recursive call of PSFC.

4.2 ST vs. Pairwise Spatial Join Algorithms

As discussed in Section 3.3, the data density affects little the CPU-time of
ST (which is the main factor for the total cost). On the other hand, since
density determines the size of intermediate results of pairwise algorithms,
it is of major importance to the performance of PJM. The first experiment
uses the synthetic datasets to unveil the effects of data density and num-
ber of inputs on relative performance of ST and PJM. Figure 16 shows the
CPU-time, page accesses and total cost of the optimal PJM plan divided by
the corresponding numbers for ST in case of chain and clique queries. In other
words, the diagram shows how many times ST outperforms (or, is outperformed
by) PJM.

Dense datasets generate a large number of intermediate results and are best
processed by ST. This is especially true for dense query topologies (e.g., cliques),
where a significant percentage of solutions at the high tree levels lead to actual
solutions. On the other hand, sparse datasets and queries do not produce many
intermediate solutions and favor PJM. ST in this case suffers from the large
number of false hits. It is worth noticing that in most cases ST is better in terms
of I/O. For large numbers of variables, however, the CPU cost outweighs the I/O
cost substantially and I/O savings do not pay off. We have also compared the
relative efficiency of PJM and ST in processing multiway joins of real datasets
using datasets T1–T4 and geographic layers of Germany. Due to the sparseness
of the data, PJM was superior to ST in all query configurations (see Figure 24).
The difference is very small for the clique of T1–T4, because these datasets are
relatively dense.

In the next experiment, we test the performance of the two alternatives
when not all solutions are required. We ran the three queries of Figure 1 for
the T1–T4 datasets and terminated the algorithms after a percentage of the
output size was found. The first row of Figure 17 shows the CPU time and
the second row the number of I/O accesses as a function of the percentage of
solutions retrieved. ST has a significant advantage for small percentages since
PJM requires a certain amount of time to compute the intermediate results
before the final join. The difference grows with the number of variables. This
feature of ST is important since during expensive queries users may browse
through the results almost immediately.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 451

F
ig

.1
6.

O
ve

ra
ll

co
st

of
P

JM
/o

ve
ra

ll
co

st
of

S
T

as
fu

n
ct

io
n

of
n:

(a
)

C
P

U
ti

m
e.

(b
)

I/
O

ac
ce

ss
es

.(
c)

O
ve

ra
ll

co
st

.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

452 • N. Mamoulis and D. Papadias

F
ig

.
17

.
C

P
U

an
d

I/
O

of
S

T
an

d
P

JM
as

a
fu

n
ct

io
n

of
pe

rc
en

ta
ge

of
so

lu
ti

on
s

re
tr

ie
ve

d
(f

or
T

1–
T

4
da

ta
se

ts
):

(a
)

C
h

ai
n

qu
er

y.
(b

)
Q

u
er

y
w

it
h

cy
cl

e.
(c

)
C

li
qu

e
qu

er
y.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 453

Table III. Iterator Functions

Iterator Open Next Close
ST (RJ for two inputs) open tree files return next tuple close tree files
SISJ (assuming that
left input is the R-tree
input)

open left tree file; construct
slot index; open right
(probe) input; call next on
right input and hash
results into slots; close
right input

perform hash-join
and return next
tuple

close tree file;
de-allocate slot
index and hash
buckets

HJ (assuming that left
input is the build
input and right input
the probe input)

open left input; call next on
left and write the results
into intermediate file while
determining the extents of
the hash buckets; close left
input; hash results from
intermediate file into
buckets; open right input;
call next on right and hash
all results into right
buckets; close right input

perform hash-join
and return next
tuple

de-allocate hash
buckets

The above experiments suggest that ST and PJM are complementary in the
sense that they perform best under different conditions. The winner depends
on the data and query densities, restrictions on system resources (CPU vs. I/O)
and the percentage of required solutions. Therefore, an approach that combines
the two methods could outperform both for real-life situations (e.g., when the
densities of the joined inputs vary significantly). In the next section, we study
the integration of ST with pairwise join algorithms.

5. COMBINING ST WITH PAIRWISE JOIN ALGORITHMS

Since ST is essentially a generalization of RJ, it can be easily integrated with
other pairwise join algorithms to effectively process complex spatial queries. We
have implemented all algorithms (Table III) as iterator functions [Graefe 1993]
in an execution engine running on a centralized, uni-processor environment
that applies pipelining. ST (RJ for two inputs) just executes the join and passes
the results to the upper operator. SISJ first constructs the slot index, then
hashes the results of the probe (right) input into the corresponding buckets
and finally executes the join passing the results to the upper operator. HJ does
not have knowledge about the initial buckets where the results of the left join
will be hashed; thus, it cannot avoid writing the results of its left input to
disk. At the same time, it performs sampling to determine the initial extents
of the hash buckets. Then the results from the intermediate file are read and
hashed to the buckets. The results of the probe input are immediately hashed
to buckets.

Notice that in this implementation, the system buffer is shared between
at most two operators. Next functions never run concurrently; when join is
executed at one operator, only hashing is performed at the upper one. Thus,
given a memory buffer of M pages, the operator which is currently performing
a join uses M -S pages and the upper operator, which performs hashing, uses

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

454 • N. Mamoulis and D. Papadias

S pages, where S is the number of slots/buckets. In this way, the utilization of
the memory buffer is maximized.

In the rest of the section, we provide methods that estimate the selectiv-
ity of multiway spatial joins involving skewed inputs, describe an optimization
method based on dynamic programming, and evaluate our proposal, by compar-
ing the integration of ST and pairwise algorithms with each individual method.

5.1 Selectivity Estimation for Real Datasets

Accurate join selectivity estimation is essential for query optimization. In par-
ticular, optimization of multiway spatial joins requires two estimations: (i) the
number of solutions at intermediate R-tree levels, in order to compute the cost of
ST (ii) the output size of each possible query subgraph. The formulas of Section
2.4, however, are meant for uniform data, and are not expected to be precise for
real datasets. Real datasets do not necessarily cover a rectangular area, while
in most cases their density varies significantly throughout the covered space.

Equations (11) and (13) assume a square [0,1)× [0,1) workspace, and use the
average area of the rectangles in the datasets (actually the square root of this
quantity, which is the average rectangle side) to estimate join selectivity. Even
if the minimum and maximum coordinates of the rectangles are normalized to
take values within this range, typically large parts of the square workspace are
empty. Given a series of layers of the same region (e.g. rivers, streets, forests),
we define as real workspace the total area covered by all layers. In order to es-
timate this area, we use a rectangular grid (bitmap), and each time a rectangle
is inserted into a dataset, the intersected cells are marked. The real workspace
is estimated by computing the area covered by the marked cells. This informa-
tion is stored and maintained as meta-data. Figure 18 illustrates four layers
of Germany (G1–G4) and the corresponding real workspace using a 50× 50
bitmap. The normalized average area for the rectangles of a dataset (to be used
in the above equations) is their average area divided by the real workspace.
When there is dead space, the real workspace is less than 1 and the normalized
average area is larger than the actual average area. The same method, called
workspace normalization (WN), can be applied for the MBRs of intermediate
R-tree levels to estimate the number of local problems solved by ST.

WN is expected to work well for (relatively) uniform data in some irreg-
ular workspace. Since intermediate nodes are not usually as skewed as the
leaf rectangles, we may assume that they are uniformly distributed in the real
workspace. Therefore, WN can be used to predict the number of intermediate
level solutions (which is needed for the estimation of local problems). In the
next experiment, we test the method by applying the queries of Figure 1 using
G1–G4 datasets. The first column in Table IV illustrates the number solutions
at the root of a two-level R-tree, while the second and third columns show the
estimations before and after WN. The last row shows the average relative esti-
mation error which is defined as |estimated output—actual output|/min{actual
output, estimated output}. In other words, this metric shows how many times
the estimated result is larger or smaller than the actual. WN improves ac-
curacy significantly; without normalization of the workspace, the join result is

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 455

F
ig

.1
8.

G
er

m
an

y
da

ta
se

ts
an

d
w

or
ks

pa
ce

.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

456 • N. Mamoulis and D. Papadias

Table IV. Estimation of Intermediate Level Solutions

Actual solutions Without WN WN
chain 9460 1438 11510
cycle 3842 414 3352
clique 832 294 2355

avg. Error 0 5.23 0.73

Fig. 19. Skew in dataset T1: (a) T1 dataset. (b) Number of rectangles per cell in a 50× 50 grid.

underestimated because the average area of the objects does not reflect their ef-
fects in the actual space they cover. By shrinking the workspace, the normalized
area of the rectangles increases providing a better estimate for the join result.

Unlike intermediate nodes, real object rectangles can be highly skewed. To
deal with this problem, previous work on relational databases [Mannino et al.
1988; Ioannidis and Poosala 1995] has considered the use of histograms. A
histogram-based method that estimates the selectivity of range queries in two-
dimensional space is presented in Achaya et al. [1999]. This method irregularly
decomposes the space using histogram buckets that cover points of similar
density. Obviously, datasets with different distributions have different bucket
extents and therefore they cannot be matched (at least in a trivial way) to
estimate the result of a spatial join.

In order to overcome this problem, we use a regular grid similar to
Theodoridis et al. [1998]. Each cell in the grid can be thought of as a histogram
bucket that keeps information about the number of rectangles and the normal-
ized average rectangle size. The criterion for assigning a rectangle to a cell is
the enclosure of the rectangle’s center; thus, no rectangle is assigned to more
than one cells.8

The estimation of the join output size is then done for each cell and summing
up the results, that is, the contents of each cell are assumed to be uniformly
distributed. Figure 19(a) depicts the T1 dataset, and Figure 19(b) shows the
number of rectangles per cell when a 50× 50 grid is used. Observe that the
southeast part of the dataset contains very dense data.

8We have also experimented with a different strategy, where each rectangle is assigned to all grid
cells that intersect it. However, this turned out to be less accurate, resulting in a large overestima-
tion of the results almost in all cases.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 457

Table V. Output Size Estimation of Pairwise Spatial Joins Using Grids

Actual output Without WN WN 20× 20 50× 50 100× 100
T1 1 T2 86094 53228 94084 69475 78312 83706
G1 1 G2 12888 7779 9625 10814 12098 13481
G1 1 G3 12965 7797 10342 11140 12419 13802
G1 1 G4 14012 11668 15098 16813 16962 17372
G2 1 G3 20518 8151 10050 11483 13514 15534
G2 1 G4 13435 10914 12712 16312 16392 16609
G3 1 G4 12672 9545 12573 14792 14993 15621

avg. error 0 0.60 0.26 0.28 0.19 0.17

Table VI. Output Size Estimation of Multiway Spatial Joins Using Grids

Actual output Without WN WN 20× 20 50× 50 100× 100
chain 7007 426 1089 1878 2390 3961
cycle 1470 144 354 697 846 1243
clique 832 117 303 541 681 1003

avg. error 0 10.25 3.44 1.46 0.96 0.38

Table V presents the actual (column 1) and estimated output size of several
join pairs using various grids. The average accuracy improves with the size of
the grid used. Nevertheless, as the area of each cell decreases, the probability
that a random rectangle intersects more than one cells increases introducing
boundary effects; this is why, in some cases, accuracy drops with the grid size.
Moreover, maintaining large grids is space demanding especially for large join
queries where the number of plans is huge, and statistical information needs
to be maintained for a high percentage of the subplans. For our experimental
settings, 50× 50 grids provide reasonable accuracy and they can be efficiently
manipulated in main memory.

Table VI shows the error propagation effects of the estimations for multiway
joins. The output of the three example queries is estimated using datasets
G1–G4 and various grids. As expected, the error in estimates increases with
the query size. The results produced without WN are clearly unacceptable,
whereas the granularity of the grid increases the accuracy, as expected. Notice
that histograms are applicable when the rectangles are much smaller than the
cells, and boundary effects are negligible. Since the extents of intermediate
tree nodes are large, the method cannot be applied to estimate the number of
intermediate level solutions at ST.

Although after the employment of WN and histograms the error is still
nontrivial, the methods provide significant improvement compared to estima-
tions based on uniformity assumptions, which are inapplicable in most real-life
cases. Similar problems exist in optimization of relational queries [Ioannidis
and Christodonlakis 1991]; however, the actual goal of optimization is not to
find the best plan, but rather, to avoid expensive ones. In the future, we plan
to investigate the application of methods that apply irregular space decom-
position (e.g., Achaya et al. [1999]) for more accurate selectivity estimation of
spatial joins.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

458 • N. Mamoulis and D. Papadias

Fig. 20. Dynamic programming for optimization of multiway spatial joins.

5.2 Optimization with Dynamic Programming

Dynamic programming (DP) is the standard technique for relational query op-
timization. The optimal plan for a query is computed in a bottom-up fashion
from its subgraphs. At step i, for each connected subgraph Qi with i nodes, DP
(Figure 20) finds the best decomposition of Qi to two connected components,
based on the optimal cost of executing these components and their sizes. When
a component consists of a single node, SISJ is considered as the join execution
algorithm, whereas if both parts have at least two nodes, HJ is used. The output
size is estimated using the size of the plans that formulate the decomposition.
DP compares the cost of the optimal decomposition with the cost of processing
the whole subgraph using ST, and sets as optimal plan of the subgraph the best
alternative. Since pairwise algorithms are I/O bound and ST is CPU-bound,
when estimating the cost for a query subplan, DP takes under consideration
the dominant factor in each case. The I/O cost of pairwise algorithms is given
in Section 2. The CPU-time of ST is estimated using Eq. (15). The two costs are
transformed to the same scale and compared to determine the best alternative.

At the end of the algorithm, Q.plan will be the optimal plan, and Q.cost and
Q.size will hold its expected cost and size. Due to the bottom-up computation of
the optimal plans, the cost and size for a specific query subgraph is computed
only once. The price to pay concerns the storage requirements of the algorithm,
which are manageable for moderate query graphs. The execution cost of dy-
namic programming depends on (i) the number of relations n, (ii) the number
of valid node combinations combk (that formulate a connected subgraph) for
each value of n, and (iii) the number of decompositions decompk of a specific
combination. Table VII illustrates the above parameters for three special cases
of join graphs. Notice that combinations of 2 nodes do not have valid decompo-
sitions because the they can be processed only by RJ.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 459

Table VII. Number of Plans and Optimization Cost Parameters for Different
Query Graphs

Clique Chain Star

combk Ck
n n− k+1

{
n, k = 1
Ck−1

n−1 , otherwise

decompk

{
0, 1 ≤ k ≤ 2
k + ∑

2≤i<k−1
Ci

k , otherwise

{
0, 1 ≤ k ≤ 2
2, otherwise

{
0, 1 ≤ k ≤ 2
k − 1, otherwise

Fig. 21. Cost of dynamic programming (in terms of computed plans) as a function of n.

The running cost of the optimization algorithm is the number of input com-
binations for each value of n, times the number of valid decompositions plus 1
for the cost of ST:

CDP =
∑

1≤k≤n

combk · (1+ decompk). (17)

Figure 21 demonstrates the cost of dynamic programming (in terms of com-
puted plans) as a function of n, for the three types of queries. The cost of DP
for most other topologies is expected to be between those for the clique and star
graphs with the same number of inputs.

5.3 Experimental Evaluation

In order to identify the form and quality of the plans suggested by DP, we
first experimented using the synthetic datasets. Figure 22 presents the im-
provement factor of the optimal plan over the best PJM plan and the pure ST
plan, as a function of the density, the number of inputs and the query topology
(cliques and chains). The proposed plan was right-deep (1 application of RJ,
and n-2 of SISJ) for chain queries over 0.1 density files, and pure ST for cliques
over 0.8 density files. In all other cases, a combination of ST and PJM was
suggested. Observe that in some cases the proposed plan was not the optimal,
and this was due to errors in join size estimations. However, these plans were
only slightly more expensive than the actual optimal. For instance, in the worst

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

460 • N. Mamoulis and D. Papadias

F
ig

.2
2.

Im
pr

ov
em

en
t

fa
ct

or
of

op
ti

m
al

pl
an

s
as

a
fu

n
ct

io
n

of
n:

(a
)

P
er

fo
rm

an
ce

ga
in

ov
er

S
T.

(b
)

P
er

fo
rm

an
ce

ga
in

ov
er

P
JM

.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 461

case (chain query over four 0.2 density datasets), the suggested plan is ST for
the first three inputs and SISJ for the final join, which is only 12% worse than
the actual optimal (right-deep) PJM plan. The cost of DP was very small for the
tested queries compared to the evaluation cost of the optimal plan. Consider,
for instance, cliques of 7 inputs (the most expensive queries to optimize in this
experiment). The optimization cost is around 5% of the execution time for the
0.1 density datasets (cheapest to process) and a mere 0.8% for the 0.8 density
datasets (most expensive to process).

Figure 23 presents some representative plans proposed by the algorithm.
In general, “bushy” combinations of ST subplans (Figures 23(a) and 23(b)) are
better than deep plans for chain queries over dense datasets, where the inter-
mediate results are large. They are also better than pure ST because of the
degradation of ST performance for large chain queries. Deep plans (Figures
23(c) and 23(d)) are best for chain and clique queries of sparse datasets and for
some cliques of dense datasets, because the size of intermediate results is not
large and SISJ can be used efficiently. For clique queries over dense datasets,
a ST subplan with a large number of inputs (Figure 23(e)) is better than com-
binations of small ST plans.

The effectiveness of optimization was also tested with queries over real
datasets. We applied various queries to the Tiger (T1–T4) and Germany
(G1–G4) datasets, and compared the suggested optimal plans with alternative
ones. Figure 24 illustrates some execution examples. The numbers under each
plan show its overall cost (in seconds). In most cases, the best plan was a hybrid
one. This shows that ST is a valuable component of a query execution engine.

Notice that the cost differences among alternatives are not very large due
to the small number of inputs and because whenever the best plan is a hybrid
one, the second column gives the optimal PJM plan. Therefore, the table shows
also the relative performance of ST compared to PJM for the real datasets used
in this paper. As we show in the next section, for many inputs and arbitrary
plans, the difference between different plans can be orders of magnitude. For
more than 10 inputs, however, dynamic programming is inapplicable due to its
very high space and time requirements. Such queries may be imposed in GIS
(e.g., overlays of multiple geographical layers) or VLSI/CAD applications (e.g.,
configurations of numerous components). In the sequel, we study the applica-
tion of randomized search algorithms for the optimization of multiway spatial
joins involving numerous datasets.

6. OPTIMIZATION OF LARGE SPATIAL QUERIES

Randomized search heuristics have been applied to optimize large relational
joins [Swami and Gupta 1988; Ioannidis and Kang 1990; Galindo-Legaria
et al. 1994]. Such algorithms search in the space of alternative plans trying
to find good, but possibly suboptimal, plans within limited time. The search
space of query optimization can be thought of as an undirected graph, where
nodes (also called states) correspond to valid execution plans. Two plans are
connected through an edge, if each can be derived from the other by a sim-
ple transformation. In case of relational joins, transformation rules apply join

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

462 • N. Mamoulis and D. Papadias

Fig. 23. Representative optimal plans.

Fig. 24. Overall cost (in seconds) of plans that include real datasets.

commutativity and associativity [Swami and Gupta 1988; Ioannidis and Kang
1990]; in multiway spatial join queries, the implication of ST calls for the def-
inition of special rules. In the rest of this section, we study the search space
for different query topologies, propose heuristic algorithms that quickly iden-
tify good plans by searching only a small part of the space, and evaluate their
effectiveness for several experimental settings.

6.1 Space of Execution Plans

In case of pairwise algorithms, the maximum number of join orders is (2(n −
1))!/(n− 1)! [Silberschatz et al. 1997], that is, the possible permutations of all
complete binary trees. If ST is included as a processing method, this number is

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 463

higher, since join orders are not necessarily binary trees, but multiple inputs
to be processed by ST are represented as leaves with a common father node. A
join order may correspond to multiple plans that differ in the join processing
method, when more than one methods exist for each type of join. For the current
problem, each valid join order generates exactly one plan because the processing
method is determined by whether the inputs are indexed or not. Furthermore,
some plans are computationally equivalent, since order is not important for ST
and SISJ.

Let Pn denote the number of distinct plans (valid plans that are not equiv-
alent) involving n inputs. In case of clique queries, Pn is given by the follow-
ing formula:

Pn = 1+ n · Pn−1 +
∑

2≤k<n−1

Ck
n · Pk Pn−k , (18)

where Ck
n denotes the combinations of k out of n objects. In other words, a

query involving n variables can be processed in three ways: (i) by ST (1 plan),
(ii) by choosing an input which will be joined with the result of the remaining
ones using SISJ (n · Pn−1 plans), or (iii) by breaking the graph in all combina-
tions of two smaller ones (with at least 2 inputs each) and then joining them
with HJ.

The number of valid plans is smaller for arbitrary queries since some plans
correspond to Cartesian products and can be avoided. Chain queries have the
minimum Pn, which is defined as follows:

Pn = 1+ 2 · Pn−1 +
∑

2≤k<n−1

Pk Pn−k . (19)

In this case, only the first or the last input can be chosen to generate an
SISJ join at the top level (2·Pn−1). If any other input is used, the remaining
subgraph will consist of two disconnected components (joining them requires
a Cartesian product). Similarly, when decomposing in plans to be joined by
HJ, for each value of k there is only one valid plan, that is, the one where
the first part contains the first k inputs and the second part the remaining
n− k ones.

The same methodology can be employed to compute the possible plans for
several graph topologies; for example, for star queries all (n−1) but the central
node can be chosen for the generation of an SISJ plan. On the other hand, no HJ
subplan can be applied since any decomposition in two disjoint subgraphs with
more than one node implies that one of the two subgraphs does not contain the
central node (therefore, each of its nodes is a disconnected component). Thus,
for star queries the number of distinct plans is:

Pn = 1+ (n− 1) · Pn−1. (20)

Figure 25 illustrates the number of distinct plans as a function of the number
of inputs for chain, star and clique queries (computed by Eqs. (18), (19), and

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

464 • N. Mamoulis and D. Papadias

Fig. 25. Number of potential plans as a function of n.

Fig. 26. Transformation rules for multiway spatial join plans.

(20), respectively). In general, the number of plans increases with the query
graph density since every added edge in a graph validates some plans.

Several sets of transformations can be applied to link plans in the search
space. The transformation rules should generate a connected graph, that is,
there should be at least one path between any two states. Different sets of rules
have different properties; adding redundant rules, for example, produces direct
paths between several plans, bypassing intermediate nodes. For our problem,
we use the set of rules shown in Figure 26. R denotes spatial relations (leaf nodes
of the plan), J denotes intermediate results (nonleaf nodes), and X denotes any
of the previous cases.

Rules 1, 2, and 3 have also been used in relational query optimization [Swami
and Gupta 1988; Ioannidis and Kang 1990]. Commutativity is applied only in
the case of HJ, because swapping the subplans of a node results in an equivalent
plan for all other methods. Rules 4 and 5 are special for the case of ST. Rule 4
breaks or composes an ST plan, while Rule 5 changes the inputs of ST without
going through composition/decomposition. Rules 3 and 5 are redundant; they
are applied to escape faster from areas with similar cost.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 465

Fig. 27. Iterative improvement.

6.2 Randomized Search Algorithms

Randomized search algorithms traverse the space of alternative plans by per-
forming moves (or transitions) from one state to another by applying one of the
allowed transformations at random.9

A move is called downhill if the destination state has a lower cost than the
starting one. In the opposite case, it is called uphill. A state from which no moves
are downhill is called local minimum. The local minimum with the minimum
cost is called global minimum.

A simple, yet efficient heuristic is iterative improvement (II) [Nahar et al.
1986]. Starting from a random initial state (called seed), it performs a random
series of moves and accepts all downhill ones, until a local minimum is detected.
This process is repeated until a time limit is reached, each time with a different
seed. The pseudocode of the algorithm is given in Figure 27. Since the num-
ber of neighbors of a state may be large and the algorithm needs to retain its
randomness, a state is conventionally considered as local minimum if a long
sequence of consecutive uphill moves are attempted from it.

Simulated annealing [Kirkpatrick et al. 1983] follows a procedure similar to
II, but it also accepts uphill moves with some probability. This probability is
gradually decreased with time and finally the algorithm accepts only downhill
moves leading to a good local minimum. The intuition behind accepting uphill
moves is led by the fact that some local minima may be close to each other,
separated by a small number of uphill moves. If only downhill moves were
accepted (as in II), the algorithm would stop at the first local minimum visited,
missing a subsequent (and possibly better) one. The pseudocode of SA is given
in Figure 28.

In order to comply with the original version of SA, we use the same termi-
nology. The initial temperature T0 corresponds to a (usually high) probability

9First, a valid transformation rule from Figure 26 is chosen at random. Then, a valid application
of the transformation is chosen at random. For instance, assume that the current state is a right-
deep plan R11SISJ ST(R2, R3, R4). One of the valid rules (4 or 5) is chosen at random, for example,
Rule 5. Then, one of the applications of Rule 5 is chosen at random, for example, exchange of R1
with R3 and the resulting plan is R31SISJ ST(R2, R1, R4).

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

466 • N. Mamoulis and D. Papadias

Fig. 28. Simulated annealing.

of accepting an uphill move. The algorithm tries a number of moves (inner iter-
ations) for each temperature value T , which gradually decreases, allowing SA
to accept uphill moves less frequently. When the temperature is small enough,
the probability of accepting an uphill move converges to zero and SA behaves
like II. The “system” is then said to be frozen and the algorithm terminates.
Notice that since an uphill move increases the cost, the probability to accept it
should be associated to the cost difference. The number of inner iterations for
each value of T is typically proportional to the size of the problem.

Another alternative is random sampling (RA). Given a time limit, sampling
selects plans at random and returns the one with the minimum cost. In general,
sampling is efficient when the local minima are not much worse than a random
state. The experiments for relational query optimization in Galindo-Legaria
et al. [1994] suggest that sampling often converges to an acceptable solution
faster than II and SA. This shows that RA can be a useful approach when
very limited time is given for searching, for example, when verifying the cost
of one state is very expensive. In most problems, the other two techniques find
better solutions when they are given enough time to search. II works well if
there are many “deep” local minima, the quality of which does not differ much,
whereas SA is better when there are large cost differences between local minima
connected by a few uphill moves. In the latter case, a hybrid method, two-phase
optimization (2PO) Ioannidis and Kang [1990], that combines II and SA can be
more efficient than both algorithms. This method uses II to quickly locate an
area where many local minima exist, and then applies SA with a small initial
temperature to search for the global minimum in this area. Thus, 2PO avoids
unnecessary large uphill moves at the early stages of SA and the nonacceptance
of uphill moves in II.

6.3 Experimental Evaluation

We have implemented RA, II, SA, and 2PO using the set of transformation rules
in Figure 26. The parameters for II, SA and 2PO, summarized in Table VIII,

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 467

Table VIII. Parameters of II and SA

II time limit: equal time to SA
local minimum condition: 10·n consecutive uphill moves

SA T0 = 2·(random plan cost)
frozen: T < 1 and mins unchanged for the last four values of T
inner iterations: 20 · n
reduce (T): T := 0.95 · T

2PO initial state: best solution after 5 local optimizations of II
T0 = 2· (initial state cost)

were fine-tuned through several experiments (the presentation of these exper-
iments is out of the scope of this paper) so that algorithms had small running
cost (up to 10% compared to the execution time of the produced plans) while
providing plans of good quality. The performance of the algorithms was tested
only for clique query graphs, since they are the most expensive to optimize.
We experimented with joins involving from 10 to 50 relations. The datasets
in each query have between 10000 and 100000 uniformly distributed rectan-
gles, in order to produce problems with a large variety of costs in the space of
possible plans.

In the first set of experiments, the densities of all datasets randomly range
between 0.1 and 0.5. Figure 29(a) illustrates the cost of the best plan found
by RA, II, and SA over time (in seconds) for a query with 30 inputs divided by
the cost of the minimum cost found. The corresponding cost of 2PO coincides
with that of II, that is, 2PO did not converge to a solution better than its seed
(generated by II), and therefore we did not include it in the diagrams. The
behavior of the algorithms for this query is typical for all tested cases. RA has
very low performance implying that random states are much more expensive
than local minima (notice that the best plan found is 10 times worse than the
one produced by the other algorithms). II manages to find fast a good local
minimum, whereas SA wanders around high cost states until it converges to
a local minimum. In contrast to the results in Ioannidis and Kang [1990], for
this experimental setting SA does not typically converge to a better solution
than the one found by II. Both algorithms find plans with very similar costs,
indicating that there are no great differences between most of the local minima
which are scattered in the search space.

The above observation is also verified in the following experiment. We gen-
erated 10 queries for each of several values of n ranging from 10 to 50, and exe-
cuted II and SA. II was left to run until the convergence point of SA. Figure 29(b)
shows the average scaled cost of the algorithms10 as a function of the number
of inputs. II found a plan better than SA in most cases, but the costs between
the plans did not differ much. On the other hand, in the few exceptions that
SA found the best plan, it was much cheaper than the one found by II. This
explains the anomaly for queries of 40 relations; in one out of the ten queries,
SA generated a plan which was about 60% better than II. In general, II is the

10The scaled cost of a plan is defined as the cost of the plan divided by the cost of the best plan
found for the specific query [Swami and Gupta 1988].

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

468 • N. Mamoulis and D. Papadias

F
ig

.2
9.

P
er

fo
rm

an
ce

of
ra

n
do

m
iz

ed
se

ar
ch

al
go

ri
th

m
s

fo
r

la
rg

e
jo

in
s

of
lo

w
-d

en
si

ty
da

ta
se

ts
:(

a)
S

ca
le

d
co

st
of

pl
an

s
ov

er
ti

m
e

fo
r

a
30

-r
el

at
io

n
qu

er
y.

(b
)

A
ve

ra
ge

sc
al

ed
co

st
of

th
e

pr
od

u
ce

d
pl

an
.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 469

Fig. 30. Average time point (in seconds) where the algorithms find the best plan.

best choice for sparse datasets, since, in addition to achieving better quality
plans, it requires less time to search.

Figure 30 shows the average time required by the algorithms to find the
best solution as a function of the number of inputs. In addition to the search
space, this depends on the implementation parameters: (i) for SA (and 2PO)
T0, number of inner iterations, freezing condition and temperature reduction
(ii) for II, local minimum condition. II is the only alternative when limited
time is available for optimization since its cost does not grow significantly with
query size.

As the query size grows, the output shrinks and large cliques do not have any
solutions for low density datasets (recall Figure 11). Such queries produce small
intermediate results for the tested dataset densities, which are best handled
by SISJ; for this reason, the optimal plan is almost always deep involving only
a chain of SISJs and an ST of 2 to 4 relations (e.g., see plans for clique queries
in Figures 23(d) and 23(e)). In order to test the efficiency of optimization in
different cases, in the next experiment we tuned the density of the datasets to
be between 0.5 and 1. This caused the intermediate results to be large and the
optimal plans to be shallower (bushy plans involving HJ).

Figure 31(a) illustrates the performance of the algorithms over time for a
typical 40-relation query. Interestingly, in this case, the quality of the plans
produced by SA was better than the ones found by II. The same is true for 2PO,
which converges to a good solution much faster than SA. We also performed an
experiment by varying the number of inputs (similar to the one in Figure 29(b)).
As shown in Figure 31(b), the difference in the quality of plans produced by SA
(and 2PO) with respect to II grows with the number of inputs. SA and 2PO find
plans of similar cost, but 2PO should be preferred because of its speed. The
effectiveness of RA is worse than for low-density queries; therefore, we omitted
it from the comparison.

We have also compared the cost of the plans computed by the randomized
search algorithms to the cost of the optimal plan (produced by DP), for joins
of up to 15 datasets where DP finishes within reasonable time (i.e., around
10 minutes). We observed that the plans produced by II, SA, and 2PO were

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

470 • N. Mamoulis and D. Papadias

F
ig

.
31

.
B

eh
av

io
r

of
th

e
al

go
ri

th
m

s
fo

r
h

ig
h

de
n

si
ty

da
ta

se
ts

.
(a

)
S

ca
le

d
co

st
of

pl
an

s
ov

er
ti

m
e

fo
r

a
40

-r
el

at
io

n
qu

er
y.

(b
)

A
ve

ra
ge

sc
al

ed
co

st
of

th
e

pr
od

u
ce

d
pl

an
.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 471

only slightly more expensive than the optimal one (at most 10% and typically
around 3% for 10–15 inputs). This indicates that there exist numerous plans in
the optimization space with cost similar to the optimal and it is worth applying
randomized search for large problems.

Concluding, when the number of solutions is large, that is, the intermediate
results are large, the optimal plan is harder to find, since it is expected to be
shallow and the bushy plans are many more than the right deep ones. In this
case, 2PO is the best optimization method because it converges faster than SA
to a plan typically 50% cheaper than the one found by II. On the other hand,
when the query output is very small the optimal plan is expected to be right deep
and II manages to find a good plan much faster than SA. These observations
are consistent with experiments in relational query optimization. Swami and
Gupta [1988], which consider only left-deep plans, conclude that II is the best
method for optimization of large join queries. The consideration of bushy plans
in Ioannidis and Kang [1990] causes the search space to explode and SA (and
2PO) to become more effective than II.

7. CONCLUSIONS

This article contains several significant contributions to spatial query process-
ing. It surveys existing pairwise spatial-join algorithms, analyzes the cost of
three representative methods, and discusses their application in processing
queries with multiple inputs. Although PJM is a natural way to process multi-
way spatial joins, it has the disadvantage of generating temporary intermediate
results between blocking operators. Therefore, we also explore the application
of an R-tree traversal algorithm (ST) that processes all spatial inputs syn-
chronously and computes the join without producing intermediate results. We
propose two methods that enhance the performance of ST; a static variable
ordering heuristic which optimizes the order in which the join inputs are con-
sidered, and a combination of plane sweep and forward checking that efficiently
finds qualifying node combinations. An empirical analysis suggests that the cost
of solving a local problem in ST is analogous to the number of variables and page
size and independent of the data density and query graph. Based on this obser-
vation, we provide a formula that accurately estimates its computational cost.

A comparison of ST with pairwise join algorithms indicates that they per-
form best under different problem characteristics. High data and query densi-
ties favor ST, whereas PJM is the best choice for sparse datasets and query
graphs. Numerous inputs usually favor pairwise algorithms, especially for
chain queries, due to the explosion of the solutions at high-level nodes during
ST. Consequently, the combination of ST with pairwise join algorithms, using
dynamic programming to compute the best execution plan, outperforms both
individual approaches in most case. In order to optimize very large queries, we
adapt two randomized search methods, namely iterative improvement (II) and
simulated annealing (SA), as well as a hybrid two phase optimization method
(2PO) for the current problem.

Several future directions could enhance the current work. One very impor-
tant issue refers to complex spatial query processing involving several spatial

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

472 • N. Mamoulis and D. Papadias

and possibly nonspatial operations. Consider for instance the query “find all
cities within 200 km of Hong Kong crossed by a river which intersects an in-
dustrial area.” This corresponds to a combination of spatial selection and joins,
which gives rise to a variety of alternative processing methods. The choice
depends on selectivities, data properties, and underlying spatial indexes. The
situation becomes even more complicated when there also exist nonspatial con-
ditions (e.g., the population of a city must be over a million) since nonspatial
indexes must be taken into account. Despite the importance of efficient spa-
tial information processing in many applications, currently there does not exist
any system that performs query optimization involving several operations. In
Mamoulis and Papadias [2001a] we have proposed selectivity estimation for-
mulas that can be used by query optimizers to estimate the cost of such complex
queries. We are currently working towards defining composite operators that
process spatial joins and spatial selections simultaneously.

Although current systems only consider the standard “first filter, then re-
finement step” strategy, a spatial query processor should allow the interleaving
of filter and refinement steps [Park et al. 1999b]. Going back to the example
query, assume that we know that there are only few rivers that intersect cities
although there are numerous such MBR pairs. Then, it would be preferable to
execute the refinement step after the first join before we proceed to the next
one. A similar situation applies for nonspatial selections where if the selec-
tivity is high it may be better to fetch actual object records and check if they
satisfy the selection conditions before executing subsequent joins. On the other
hand, low selectivities can result in significant overhead in both cases since
fetching records and checking for intersections between actual objects may be
expensive. The execution plan should be determined using information about
selectivities at the actual object level. This, however, requires appropriate an-
alytical formulae for output size estimation using arbitrary shapes, which is a
difficult problem.

The processing of multiway spatial joins can be enhanced by faster algo-
rithms and optimization techniques. An indirect predicate heuristic [Park et al.
1999a], which detects false hits at the intermediate tree levels, can be used by
ST to further improve performance. More pairwise algorithms can be included
in the execution engine in order to be applied in cases where they are expected
to be more efficient than the current ones. Index nested loops, for example,
may be more efficient than SISJ when the intermediate result is very small.
Topics not covered, but well worth studying, include alternative forms of joins
(e.g., distance joins [Hjaltason and Samet 1998]), inclusion of multiple spatial
data structures (e.g., quadtrees for raster and R-trees for vector data [Corral
et al. 1999]), parallel processing issues (e.g., similar to the study of Brinkhoff
et al. [1993] for RJ), and optimal memory sharing between cascading operators
[Bouganim et al. 1998].

REFERENCES

ACHAYA, S., POOSALA, V., AND RAMASWAMY, S. 1999. Selectivity estimation in spatial databases. In
Proceedings of the ACM SIGMOD Conference (SIGMOD ’99) (Philiadephia, Pa. June). ACM, New
York, pp. 13–24.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 473

ARGE, L., PROCOPIUC, O., RAMASWAMY, S., SUEL, T., AND VITTER, J. S. 1998. Scalable sweeping-based
spatial join. In Proceedings of the VLDB Conference, (VLDB ’98) (New York, N.Y., Aug.), pp.
570–581.

BACCHUS, F. AND GROVE, A. 1995. On the forward checking algorithm. In Proceedings of the Con-
ference on Principles and Practice of Constraint Programming (CP ’95) (Casis, France, Sept.).
Lecture Note in Computer Science, Vol. 976. Springer-Verlag, New York, pp. 292–308.

BECKMANN, N., KRIEGEL, H. P., SCHNEIDER, R., AND SEEGER, B. 1990. The R*-tree: An efficient and
robust access method for points and rectangles. In Proceedings of the ACM SIGMOD Conference
(SIGMOD ’90) (Atlantic City, N.J., May). pp. 322–331.

BIALLY, T. 1969. Space-filling curves: Their generation and their application to bandwidth reduc-
tion. IEEE Trans. Inf. Theory 15, 6 (Nov.), 658–664.

BOUGANIM, L., KAPITSKAIA, O., AND VALDURIEZ, P. 1998. Memory adaptive scheduling for large query
execution. In Proceedings of the ACM International Conference on Information and Knowledge
Management (CIKM ’98) (Bethesda, Md., May). ACM, pp. 105–115.

BRINKHOFF, T., KRIEGEL, H. P., AND SEEGER, B. 1993. Efficient processing of spatial joins using
R-trees. In Proceedings of the ACM SIGMOD Conference (SIGMOD ’93) (Washington, D.C., May).
ACM, New York, pp. 237–246.

BRINKHOFF, T., KRIEGEL, H. P., AND SEEGER, B. 1996. Parallel processing of spatial joins using
R-trees. In Proceedings of the International Conference on Data Engineering (ICDE ’96) (New
Orleans, L., Mar.). IEEE Computer Society press, Los Alamitos, Calif., pp. 258–265.

BUREAU OF THE CENSUS 1989. Tiger/Line Precensus Files: 1990 Technical Documentation.
Washington, D.C.

CORRAL, A., VASSILAKOPOULOS, M., AND MANOLOPOULOS, Y. 1999. Algorithms for joining R-trees with
linear region quadtrees. In Proceedings of the Symposium on Large Spatial Databases (SSD ’99)
(Hong Kong, China, July). Lecture Notes in Computer Science, Vol. 1651. Springer-Verlag, New
York, pp. 251–269.

DECHTER, R. AND MEIRI, I. 1994. Experimental evaluation of preprocessing algorithms for con-
straint satisfaction problems. Artif. Int., 68, 2 (July), 211–241.

GAEDE, V. AND GÜNTHER, O. 1998. Multidimensional access methods. ACM Comput. Surv., 30, 2
(June), 123–169.

GALINDO-LEGARIA, C., PELLENKOFT, A., AND KERSTEN, M. 1994. Fast, randomized join-order
selection–Why use transformations? In Proceedings of the VLDB Conference (VLDB ’93) (Dublin,
Ireland, Sept.). pp. 85–95.

GRAEFE, G. 1993. Query evaluation techniques for large databases. ACM Comput. Surv., 25, 2
(June), 73–170.

GÜNTHER, O. 1993. Efficient computation of spatial joins. In Proceedings of the International
Conference on Data Engineering (ICDE ’93) (Vienna, Austria, Apr.). IEEE Computer Society
Press, Los Alamitos, Calif., pp. 50–59.

GÜTING, R. H. 1994. An introduction to spatial database systems. VLDB J. 3, 4 (Oct.), 357–399.
GUTTMAN, A. 1984. R-trees: A dynamic index structure for spatial searching. In Proceedings

of the ACM SIGMOD Conference (SIGMOD ’84) (Boston, Mass., June). ACM, New York,
pp. 47–57.

HARALICK, R. AND ELLIOTT, G. 1980. Increasing tree search efficiency for constraint satisfaction
problems. Artifi. Int., 14, 3 (Oct.), 263–313.

HJALTASON, G. AND SAMET, H. 1998. Incremental distance join algorithms for spatial databases. In
Proceedings of the ACM SIGMOD Conference (SIGMOD ’98) (Seattle, Wash., June). ACM, New
York, pp. 237–248.

HOEL, E. G. AND SAMET, H. 1995. Benchmarking spatial join operations with spatial output. In
Proceedings of the VLDB Conference (VLDB ’95) (Zurich, Switzerland, Sept.). pp. 606–618.

HUANG, Y. W., JING, N., AND RUNDENSTEINER, E. 1997a. Spatial joins using R-trees: Breadth a first
traversal with global optimizations. In Proceedings of the VLDB Conference (VLDB ’97) (Athens,
Greece, Aug.), pp. 395–405.

HUANG, Y. W., JING, N., AND RUNDENSTEINER, E. 1997. A cost model for estimating the performance
of spatial joins using R-trees. In Proceedings of the International Conference on Scientific and
Statical Database Management (SSDBM ’97) (Olympia, Wash., Aug.). IEEE Computer Society,
Press, Los Alamitos, Calif., pp. 30–38.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

474 • N. Mamoulis and D. Papadias

IOANNIDIS, Y. AND CHRISTODOULAKIS, S. 1991. On the propagation of errors in the size of join results.
In Proceedings of the ACM SIGMOD Conference (SIGMOD ’91) (Denver, Col., May). ACM, New
York, pp. 268–277.

IOANNIDIS, Y. AND KANG, Y. 1990. Randomized algorithms for optimizing large join queries. In
Proceedings of the ACM SIGMOD Conference (SIGMOD ’90) (Atlantic City, N.J., May). ACM,
New York, pp. 312–321.

IOANNIDIS, Y. AND POOSALA, V. 1995. Balancing histogram optimality and practicality for query
result size estimation. In Proceedings of the ACM SIGMOD Conference (SIGMOD ’95) (San Jose,
Calif., May). ACM, New York, pp. 233–244.

KIRKPATRICK, S., GELAT, C., AND VECCHI, M. 1983. Optimization by simulated annealing. Science
220, 4598, 671–680.

KONDRAK, Q. AND VAN BEEK, P. 1997. A theoretical evaluation of selected backtracking algorithms.
Artifi. Int. 89, 1–2 (Jan.), 365–387.

KOUDAS, N. AND SEVCIK, K. 1997. Size separation spatial join. In Proceedings of the ACM SIGMOD
Conference (SIGMOD ’97) (Tucson, Az., May). ACM, New York, pp. 324–335.

LO, M.-L. AND RAVISHANKAR, C. V. 1994. Spatial joins using seeded trees. In Proceedings of
the ACM SIGMOD Conference (SIGMOD ’94) (Minneapolis, Minn., May). ACM, New York,
pp. 209–220.

LO, M.-L. AND RAVISHANKAR, C. V. 1996 Spatial hash-joins. In Proceedings of the ACM SIGMOD
Conference (SIGMOD ’96) (Montreal, Que., Canada, June). ACM, New York, pp. 247–258.

MAMOULIS, N. AND PAPADIAS, D. 1999. Integration of spatial join algorithms for processing multiple
inputs. In Proceedings of the ACM SIGMOD Conference (SIGMOD ’99) (Philadelphia, Pa., June).
ACM, New York, pp. 1–12.

MAMOULIS, N. AND PAPADIAS, D. 2001a. Selectivity estimation of complex spatial queries. In
Proceedings of the Symposium on Large Spatial and Temporal Databases (SSTD ’01)
(Los Angeles, Calif., July). Lecture Notes in Computer Science, Vol. 2121. Springer-Verlag,
New York, pp. 155–174.

MAMOULIS, N. AND PAPADIAS, D. 2001b. Slot index spatial join. IEEE Trans. Knowl. Data Eng.
(TKDE), to appear.

MANNINO, M., CHU, P., AND SAGER, T. 1988. Statistical profile estimation in database systems. ACM
Comput. Surv., 20, 3 (Sept.), 192–221.

NAHAR, S., SAHNI, S., AND SHRAGOWITZ, E. 1986. Simulated annealing and combinatorial optimiza-
tion. In Proceedings of the 23rd ACM/IEEE Design Automation Conference (las Vegas, Nev.,
June). IEEE Computer Society Press, Los Alamitos, Calif., pp. 293–299.

ORENSTEIN, J. 1986. Spatial query processing in an object-oriented database System. In Proceed-
ings of the ACM SIGMOD Conference (SIGMOD ’86) (Washington, D.C., May). ACM, New York,
pp. 326–336.

PAPADIAS, D., MAMOULIS, N., AND DELIS, V. 1998. Algorithms for querying by spatial structure. In
Proceedings of the VLDB Conference (VLDB ’98) (New York, N.Y., Aug.). pp. 546–557.

PAPADIAS, D., MAMOULIS, N., AND THEODORIDIS, Y. 1999a. Processing and optimization of multiway
spatial joins using R-trees. In Proceedings of the ACM Symposium on Principles of Database
Systems (PODS) (July). ACM, New York, pp. 44–55.

PAPADIAS, D., MANTZOUROGIANNIS, M., KALNIS, P., MAMOULIS, N., AND AHMAD, I. 1999b. Content-based
retrieval using heuristic search. In Proceedings of the International ACM Conference on Research
and Development in Information Retrieval (SIGIR) (Aug.). ACM, New York, pp. 168–175.

PAPADIAS, D., THEODORIDIS, Y., SELLIS, T., AND EGENHOFER, M. 1995. Topological relations in the world
of minimum bounding rectangles: A study with R-trees. In Proceedings of the ACM SIGMOD
Conference (SIGMOD ’95) (San Jose, Calif., May). ACM, New York, pp. 92–103.

PAPADOPOULOS, A. N., RIGAUX, P., AND SCHOLL, M. 1999. A performance evaluation of spatial join
processing strategies. In Proceedings of the Symposium on Large Spatial Databases (SSD ’99)
(Hong Kong, China, July). Lecture Notes in Computer Science, Vol. 1651. Springer-Verlag, New
York, pp. 286–307.

PARK, H., CHA, G., AND CHUNG, C. 1999. Multiway spatial joins using R-trees: Methodology and
performance evaluation. In Proceedings of the Symposium on Large Spatial Databases (SSD ’99)
(Hong Kong, China, July). Lecture Notes in Computer Science, Vol. 1651. Springer-Verlag, New
York, pp. 229–250.

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

P1: GCB
CM035A-02 ACM-TRANSACTION January 18, 2002 10:21

Multiway Spatial Joins • 475

PARK, H., LEE, C.-G., LEE, Y.-J., AND CHUNG, C. 1999b. Early separation of filter and refinement
steps in spatial query optimization. In Proceedings of the International Conference on Database
Systems for Advanced Applications (DASFAA ’99) (Taiwan, ROC, Apr.). IEEE Computer Society,
Press, Los Alamitos, Calif., pp. 161–168.

PATEL, J. M. AND DEWITT, D. J. 1996. Partition based spatial-merge join. In Proceedings of the
ACM SIGMOD Conference (SIGMOD ’96) (Montreal, Ont., Canada, June). ACM, New York, pp.
259–270.

PATEL, J., YU, J., KABRA, YUFTE, K., NAG, B., BURGER, J., HALL, N., RAMASAMY, K., LUEDER, R., ELLMAN,
C., KUPSCH, J., GUO, S., LARSON, J., DE WITT, D., AND NAUGHTON, J. 1997. Building a scalable geo-
spatial DBMS: Technology, implementation, and evaluation. In Proceedings of the ACM SIGMOD
Conference (SIGMOD ’97) (Tucson, Az., June). ACM, New York, pp. 336–347.

PREPARATA, F. AND SHAMOS, M. 1985. Computational Geometry: an introduction. Springer-Verlag,
New York.

ROTEM, D. 1991. Spatial join indices. In Proceedings of the International Conference on Data
Engineering (ICDE ’91) (Kobe, Japan, Apr.). IEEE Computer Society Press, Los Alamitos, Calif.,
pp. 500–509.

ROUSSOPOULOS, N., KELLEY, F., AND VINCENT, F. 1995. Nearest neighbour queries. In Proceedings of
the ACM SIGMOD Conference (SIGMOD ’95) (San Jose, Calif., May). ACM, New York, pp. 71–79.

SELLIS, T., ROUSSOPOULOS, N., AND FALOUTSOS, C. 1987. The R+-tree: A dynamic index for multidi-
mensional objects. In Proceedings of the VLDB Conference (VLDB ’87) (Brighton, England, Sept.).
pp. 507–518.

SILBERSCHATZ, A., KORTH, H. F., AND SUDARSHAN, S. 1997. Database System Concepts. 3rd ed.
McGraw-Hill, New York.

SWAMI, A. AND GUPTA, A. 1988. Optimization of large join queries. In Proceedings of the ACM
SIGMOD Conference (SIGMOD ’88) (Chicago, Ill., June). ACM, New York, pp. 8–17.

THEODORIDIS, Y. AND SELLIS, T. 1996. A model for the prediction of R-tree performance. In Pro-
ceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS ’96) (Montreal, Ont., Canada, June). ACM, New York, pp. 161–171.

THEODORIDIS, Y., STEFANAKIS, E., AND SELLIS, T. 1998. Cost models for join queries in spatial
databases. In Proceedings of the International Conference on Data Engineering (ICDE ’98)
(Orlando, Fla., Feb.). IEEE Computer Society Press, Los Alamitos, Calif., pp. 476–483.

VALDURIEZ, P. 1987. Join Indices. ACM Trans. Datab. Syst. (TODS) 12, 2 (June), 218–246.

Received December 2000; revised July 2001; accepted August 2001

ACM Transactions on Database Systems, Vol. 26, No. 4, December 2001.

