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ABSTRACT
Peer Data Management Systems (PDMS) are an attractive solu-
tion for managing distributed heterogeneous information. When
a peer (client) requests data from another peer (server) with a dif-
ferent schema, translations of the query and its answer are done by
a sequence of intermediate peers (translators). There are two pri-
vacy issues in this P2P data integration process: (i) answer privacy:
no unauthorized parties (including the translators) should learn the
query result; (ii) mapping privacy: the schema and the value map-
pings used by the translators to perform the translation should not
be revealed to other peers. Elmeleegy and Ouzzani proposed the
PPP protocol that is the first to support privacy-preserving querying
in PDMS. However, PPP suffers from several shortcomings. First,
PPP does not satisfy the requirement of answer privacy, because it
is based on commutative encryption; we show that this issue can be
fixed by adopting another cryptographic technique called oblivious
transfer. Second, PPP adopts a weaker notion for mapping privacy,
which allows the client peer to observe certain mappings done by
translators. In this paper, we develop a lightweight protocol, which
satisfies mapping privacy and extend it to a more complex one that
facilitates parallel translation by peers. Furthermore, we consider
a stronger adversary model where there may be collusions among
peers and propose an efficient protocol that guards against collu-
sions. We conduct an experimental study on the performance of the
proposed protocols using both real and synthetic data. The results
show that the proposed protocols not only achieve a better privacy
guarantee than PPP, but they are also more efficient.

1. INTRODUCTION
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Peer Data Management Systems (PDMS) have become popular
in the recent years [18, 22, 26], because they enable the manage-
ment of heterogeneous data in a decentralized fashion. Real-life
systems include Hyperion [22], PeerDB [18] and BestPeer1. In a
PDMS, each peer owns or hosts a heterogeneous database. Due to
the dynamic nature of the system, it is infeasible for the peers to
agree on a global schema. Translations, in the form of mappings,
are required for the communication between two peers. An exam-
ple is shown in Figure 1; two peers hold two medical databases that
have different schemas. Differences may exist in attribute names
(e.g., ‘Name’ in Peer 1, ‘Patient’ in Peer 2) or in object values (e.g.,
‘LC’ in Peer 1, ‘Lung Cancer’ in Peer 2). If Peer 1 knows the map-
pings of attributes and values of its database to the database of Peer
2, then Peer 1 can send queries to Peer 2 and translate the answers.

Schema: T1

Peer 2Peer 1

Schema: T2
Attribute Domain
Name String

Attribute Domain
Patient String

Disease {LC, HD}

Mappings (from Peer 1 to Peer 2)
T1 Name T2 Patient

Disease {Lung Cancer, Heart Disease}

Mappings (from Peer 2 to Peer 1)
T2 Name T1 PatientT1.Name → T2.Patient

T1.Disease → T2.Disease
LC → Lung cancer
HD H Di

T2.Name → T1.Patient
T2.Disease → T1.Disease

Lung cancer → LC
H Di HDHD → Heart Disease

Query:
SELECT Disease

Query:
SELECT Disease

Heart Disease → HD

SELECT Disease
FROM T1
WHERE Name = `Alice’

SELECT Disease
FROM T2
WHERE Patient = `Alice’

Translate

Answer
L C

Answer Translate
Lung CancerLC

Figure 1: An example of query and answer translation between
two peers with different schemas.

Two peers are said to be acquainted if there are direct mappings
between them, i.e., one peer can translate the schema of the other.2

By adding an edge between two acquainted peers (nodes), we can
form an acquaintance graph [25, 4], which captures the feasible
data flow in a P2P network. If a peer (client) wants to issue a query
to another peer (server), it first finds a path to the server in the ac-
quaintance graph. The intermediate peers on this path (translators)
provide the translation service for the query and its answer. Thus,
the query processing framework in a PDMS allows communication
between peers even if they do not have direct mappings.

1http://www.bestpeer.com
2Two peers with identical schemas are trivially acquainted.



In this paper, we consider applications, where the privacy of the
peers during this process must be protected. Consider the case
where some peers are hospitals, which share information about
their patients in the PDMS so that an authorized party (e.g., a regis-
tered doctor) can issue queries on the shared data. For example, the
doctor asks from the client peer for the medications received by a
patient at a server peer. During the process, a translator can observe
the query answers; thus, the privacy of the patient is breached. The
need for privacy in PDMS when used by healthcare applications is
highlighted by a recent NIH report [17]. Besides query answers,
which must be protected from the translators, the schema and value
mappings owned by the translators should also be protected from
other peers. Generating mappings between two peers requires spe-
cialized knowledge on the schemas of the two peers; this is an ex-
pensive process that involves significant human effort. Thus, it is
fair to allow translators to charge clients for the translation service.
This encourages more pairs of peers to establish accurate mappings
between them and eventually improves the connectivity of the P2P
network. At the same time, we need to protect the mappings of
peers so that they are hidden from others while the translations of
queries and answers can still be performed3. In other words, the
query issuer and the server should only observe the query and an-
swer in their own context and not obtain any mappings between
peers.

These privacy issues in a PDMS have been recently considered
in the pioneering work of [7]. A new privacy notion called k-
protection is proposed.4 The idea is similar to k-anonymity [24]:
a translator should not determine whether a value belongs to the
query result with certainty greater than 1

k
. Besides, the client is

allowed to view only the mappings related to the query answer to
protect mapping privacy. This requirement is referred to as fair-
ness. A novel query processing protocol, called PPP, is proposed in
[7] to address k-protection.

PPP makes use of two techniques, fake answer injection and
commutative encryption, to solve the problem. The server injects
noise to the query answer to confuse the translators while the client
uses commutative encryption to retrieve the necessary mappings
for the query answer from the translator. Figure 2 shows an exam-
ple of PPP. For the ease of discussion, we assume there is only one
translator between the client and the server. The server first sends
the answer (in the server’s schema) to the client (Step 1 of Figure
2) and then issues a mapping request that contains the answer (as-
sume there is one value only in answer) and k − 1 additional fake
values to the translator (Step 2). Based on this mapping request, the
translator retrieves the mappings, encrypts them, then sends the list
to the client (Step 3). Note that the client cannot see the mapped
values, but he is able to pick the corresponding encrypted value
from the list. In order to securely decrypt the value with the help
of the translator, commutative encryption is used. The client se-
lects only the encrypted answer of the query and encrypts it using
his own key and sends this double encrypted value to the transla-
tor (Step 4). The translator has no way to find out what value the
client has selected. Commutative encryption enables the client to
obtain the original value by applying decryption in any order inde-
pendent to the encryption order. Thus, the translator can still apply

3Note that composition of mappings should also be protected, oth-
erwise a client can avoid the charges of some intermediate transla-
tors.
4k-protection is not the strongest possible privacy requirement [12]
but it offers a reasonable privacy protection while allowing effi-
cient computation of queries;it is used in many applications like
location-based services [30]. To strike a balance between privacy
and efficiency, we adopt k-protection in our study.

the decryption procedure on the double encrypted value although
he cannot understand the decrypted value. Finally, the client ap-
plies his own decryption again to obtain the original value (Step 5).

Client C Translator T Server S

M i (Di )

Client C Translator T Server S

1

Mappings (Disease)
LC → Lung cancer
HD → Heart Disease 

Answer
AD

Answer
AD

Noise
LC

AD → AIDS

Mapping request
LC
AD

2LC, ET(“Lung cancer”)
AD, ET(“AIDS”)

3EC(ET(“AIDS”))

4
EC (“AIDS”)

Answer
AIDS

4

5
AIDS

Figure 2: Execution of PPP with k = 2. The messages between
peers are: (1) S→ C: query result in the context of S. (2) S→
T: mapping request. (3) T→ C: encrypted mappings. (4) C→
T: double-encrypted mapping. (5) encrypted mapping that can
be decrypted by C.

1.1 Contributions and Outline
The security of PPP relies on the security of the commutative en-

cryption. The most popular commutative encryption scheme (also
used in the implementation of [7]) is Pohlig-Hellman [20]. As
shown in [14] and independently in Section 3 and our technical
report [31], Pohlig-Hellman can easily be attacked, thus PPP is not
secure in practice. To our knowledge, there is no secure commuta-
tive encryption scheme in practice. Our first contribution (POT and
POT-opt protocols, Section 3) is to fix this security issue of PPP
by replacing commutative encryption by oblivious transfer (OT),
a well-developed construct with strong security guarantee, that al-
lows the client to obtain the necessary mappings without letting
the translators know the selected items by the client. We remark
that the OT protocol that we describe in this paper is customized to
PDMS and is more efficient than the OT protocol in general case.
However, even with this fix, we note that the PPP framework itself
has several drawbacks:

1. Poor protection of mapping privacy. PPP does not com-
pletely protect mapping privacy: during query evaluation,
several mappings of the translators are revealed to the client.
A protection scheme that does not reveal any mappings is
desired.

2. Low efficiency. PPP requires a large number of heavy crypto-
graphic operations and thus the entire protocol has a high ex-
ecution cost. For example, translating a query result with 20
values requires almost 20 seconds, as reported in [7], when
the client and server are located 9 peers apart and k = 5.

3. High communication cost. The client communicates with
each translator to obtain the required mappings using 3 rounds
of communication. In addition, the use of encryption typ-
ically increases the message sizes. For example, Pohlig-
Hellman with n-bit key generates ciphertexts of size O(n)
regardless of the original message size.5

Our second contribution is to address the above issues, by de-
veloping a simpler and more secure protocol PD, which does not
rely on cryptographic operations, making it significantly more ef-
ficient than PPP (Section 4). We also develop a parallel version of
our protocol (IMP protocol, Section 5), which is suitable for the
case where large amounts of data need to be translated. Our third
5The original message, however, should be less than n bits; other-
wise, we have to break the message into two or more blocks.



contribution is to extend the study to consider collusion, a stronger
adversary assumption, and develop a novel lightweight protocol PC
that achieves privacy under this assumption (Section 6). Finally, we
conduct extensive experiments on both synthetic and real data to
evaluate our solution (Section 7). The results show that our meth-
ods are more efficient than the state-of-the-art protocol [7] and at
the same time they provide a stronger privacy guarantee.

2. BACKGROUND AND PROBLEM DEFI-
NITION

In this section, we provide a formal definition for the problem of
preserving privacy in a PDMS, give some background on security
techniques, and describe the PPP [7] protocol.
2.1 Querying in PDMS

When a query is issued in a PDMS, peers may take one of fol-
lowing three roles: ‘client’ (C), ‘server’ (S) and ‘translator’ (Ti
where i is a positive integer). C issues a query to be answered by
S and Ti which is an intermediate peer who performs translations.
Without loss of generality, we assume that there are t ≥ 0 transla-
tors and the path from C to S is {C, T1, T2, ..., Tt, S}. Each two
consecutive peers Ti and Ti+1 on the path from C to S own the
mappings for translating to each other’s schema; i.e., Ti can trans-
late the query/answer from his own schema to Ti+1’s schema and
vice versa. There are two different types of mappings: (i) attribute-
to-attribute mappings (e.g., fname and firstname are attribute
names used by two different peers to store first names of patients);
(ii) value-to-value mappings (e.g., ‘heart disease’ is encoded as d01
at peer 1 and as d05 at peer 2). Note that attribute-to-attribute map-
pings do not involve translation of sensitive data in the query result;
therefore, in this paper, we consider value-to-value mappings only.
2.2 Privacy-preserving Querying in PDMS

We assume that the query answer contains sensitive information
about individuals; therefore it should only be accessed by autho-
rized parties (in our case, the client C). All translators Ti are as-
sumed to be semi-honest, i.e., they provide the correct messages for
the protocol and follow the protocol properly but they are curious
to obtain more information based on the messages they obtained in
the protocol. Let QX be the query and RX be the query answer in
the context of the peer X . The goals of the translations are (i) the
query QC issued by C is translated to QS ; (ii) the query answer
RS of the query QS is translated to RC . Like [7], we assume that
a query does not contain sensitive information; thus, query transla-
tion (the first goal) can be achieved as in a non-privacy preserving
protocol (i.e., the query trivially travels in the path from C to S and
gets translated on the way)6. On the other hand, we require that the
privacy of the answer is protected (answer privacy); i.e., no trans-
lator can learn the query result. A formal privacy requirement for
this purpose, called k-protection, was proposed in [7]:

DEFINITION 1 (k-PROTECTION [7]). LetRX ,DX , URX be
the query answer, domain of the query answer, and the set of unique
values in the query answer respectively in the context of X . Let
<(π,X) be the information observed by the peer X during the
execution of the protocol π. A protocol π is said to provide k-
protection if for each Ti, i ∈ [1, t], Pr[v ∈ RTi | <(π, Ti)] ≤ 1

k

for all v ∈ DTi .7

6If the query needs to be protected, it can be translated in a similar
fashion as the query answer.
7In [7], k is at most |D

S |
|URS | as it is assumed that |URS | and |DS |

are not sensitive and can be leaked to the translators. Therefore,
|URS |
|DS | acts as a default upper bound.

Apart from the client’s privacy concerns on the query answer, for
fairness, the mappings of translators should also be protected from
the client (mapping privacy) [7]. The mappings are important as-
sets of translators: they allow them to charge clients for translation
and they should not be revealed to clients.
2.3 Basic Security Techniques and Concepts

Roughly speaking, a symmetric key encryption scheme uses the
same key for encryption and decryption. LetKT be the key for user
T . User T can encrypt a message m to ciphertext c = E(KT ,m)
(simply denoted by c = ET (m)) and decrypt a valid ciphertext c
to m = D(KT , c) (or simply m = DT (c)). A good encryption
scheme will prevent adversaries from learning any information on
m (other than the length |m|) from its ciphertext. A symmetric key
encryption scheme is called commutative if for any two users S, T
and message m, we have ET (ES(m)) = ES(ET (m)) = c and
DS(DT (c)) = DT (DS(c)) = m. In other words, if the message
m is encrypted twice withKS andKT , the resulting ciphertext will
be the same independent of the order of encryption. Similarly, the
ciphertext can be successfully decrypted by applying the decryption
using KS and KT twice independing of the order of decryption.

We now provide some background on modular arithmetic con-
cepts, used in this paper. For two integers a, b ∈ N, we say that
a mod n = b if and only if b ∈ [0, n − 1] and a − b = kn
for some integer k. Two integers a, b are co-prime if and only if
their greatest common divisor gcd(a, b) equals 1. A known fact
is that there exists a c ∈ [1, n − 1] such that ac mod n = 1 if
and only if gcd(a, n) = 1; c is called the multiplicative inverse of
a (mod n) and c is unique. The Extended Euclidean Algorithm is
an efficient algorithm for computing c from two integers a, n such
that gcd(a, n) = 1 (this algorithm will be used in our proposed
protocol of Section 6.1).
2.4 The PPP Protocol

Figure 2 illustrates PPP. If there are x values in the answer set,
the server will insert (k − 1)x random values as noise to provide
k-protection. Then the answer set is randomly shuffled to pre-
vent immediate identification of the noise. In addition, the noise
for the same query issued at different times should be the same;
otherwise, it may be possible for an attacker to identify the com-
mon values of multiple answer sets of the same query, as the query
answer. To simplify the discussion, let x = 2 and k = 2. Let
the true answer set be (m1,m2) and the answer set with noise be
(mα,m2,m1,mβ). The true answer set is sent to the client di-
rectly. The answer set with noise (mapping request) is sent to a
translator T for translation. Let (m′α,m

′
2,m

′
1,m

′
β) be the trans-

lated values by T . To prevent the client C from learning unneces-
sary mappings, T encrypts them using its private encryption key.
Let ET (x), EC(x) be the encryption functions on value x used
by T and C respectively. The encrypted result ((mα, ET (m′α)),
(m2, ET (m′2)), (m1, ET (m′1)), (mβ , ET (m′β))) is sent to C. C
selects the two encrypted mappings ((m1, ET (m′1)), (m2, ET (m′2)))
(i.e., the true answer set) and generates the ciphertexts (EC(ET (m′1)),
EC(ET (m′2))) which are sent to the translator T . T decrypts the
ciphertexts to (EC(m′1), EC(m′2)), based on the fact that
EC(ET (M)) = ET (EC(M)) for commutative encryption func-
tions EC , ET . Finally C decrypts m′1 and m′2 and obtains the
answer set.
3. FIXING THE PPP PROTOCOL

PPP is proved to be secure in [7], assuming that commutative
encryption is secure. However, existing commutative encryption
schemes, like Pohlig-Hellman [20] and SRA[23], do not provide
formal proofs of security [28] and may lead to security breaches in
practice, as shown in [14]. Specifically, Pohlig-Hellman leaks the



information whether x is quadratic residue (mod n) or not (a prop-
erty similar to whether a number is odd or even). For example, if
the query answer is x which is quadratic residue but the k−1 noise
results added are not, then the adversary can directly identify which
one is in the answer set. In [31], we provide more details about this
attack. Therefore, we can claim that when instantiating PPP with
the existing commutative encryption schemes, k-protection cannot
be enforced.8 In the following, we provide a fix to PPP, which re-
places commutative encryption by an oblivious transfer protocol.

3.1 Oblivious Transfer
Oblivious transfer (OT) [21] is a well-developed probabilistic ap-

proach, allowing a party to retrieve information from another party,
in which the sender does not know what is retrieved by the receiver.
In a nutshell, the server owns a number of data items, each with a
unique index and the receiver wants to retrieve the data with index
i from the sender. An OT protocol allows the receiver to obtain
the corresponding data without seeing other data; at the same time
the sender cannot learn i. There are different implementations of
OT with varying levels of security guarantee and efficiency. In this
paper, we employ the framework proposed in [5] and instantiate it
with Chaum’s signature scheme [3]. The combined algorithm is
secure under the semi-honest model and is relatively simple and
computationally efficient (optimized with two rounds of communi-
cation). A high-level description is shown next; the mathematical
details can be found in Appendix A.

The goal of OT in our protocol (POT protocol) is to allow the
client C to retrieve the necessary mappings from a translator T .
For each mapping entry x→ y, T preserves the left part x in plain
form. This allows C to choose the required mappings. The right
part y is encrypted by a special encryption function. The goal of the
encryption is to prevent C from observing unnecessary mappings
while C can decrypt some entries that he has chosen. In the en-
cryption of y, we include x in the parameters so that the encrypted
value of y depends on both x and y. We denote the encrypted value
of y by ET (x, y). A customized key in decrypting ET (x, y) is
needed and is composed of (i) the secret key of the encryption al-
gorithmET and (ii) the choice of x. We denote the customized key
for decrypting ET (x, y), K(x). T sends to C the list of encrypted
mappings, in the form of x → ET (x, y). To decrypt ET (x, y),
C has to ask T for decryption keys for selected entries. However,
directly informing Ti the selection of mapping entries violates the
privacy of the query answer. Suppose C desires the mapping of x
(x → ET (x, y)). C encrypts his selection by EC(x) and sends
to T EC(x). In our implementation, ET and EC are specially de-
signed algorithms so that T can transform EC(x), by using his pri-
vate key of ET , to the encrypted decryption key for y EC(K(x)).
In the transformation process, T cannot observe the selection of C
since he works on the encrypted domain only. The encrypted key
is sent back to C. C can get the decryption key K(x) and thus
recovers y. The decryption key cannot be used on other encrypted
mapping entries since the key is specific to entry x→ y only. The
details of POT protocol is given in Appendix A.

THEOREM 1. The POT protocol satisfies k-protection.

PROOF. The proof is shown in Appendix B.

3.2 Optimizations
8Of course, in the above example, one could enforce all added
noise to be/form quadratic residue to avoid such an attack. How-
ever, there still does not exist a formal proof to show that Pohlig-
Hellman (and SRA etc.) scheme is secure and thus cannot guaran-
tee that no information will be leaked.

In our implementation, we apply some optimizations to reduce
the computational cost of OT, which are shown in our empirical
study to significantly improve efficiency.

3.2.1 Pre-computation of Encrypted Mappings
Each encrypted mapping entry deterministically depends on the

value of the mapping and the mapping owner’s key. In our im-
plementation, the translators pre-compute and cache the encrypted
mappings, in order and avoid their online computation whenever
they are requested.

3.2.2 Algorithmic Speeding up Techniques
A major component in our oblivious transfer protocol is the ex-

ponential cipher. This involves computing modular exponentials of
large values (a typical message length is 1024 bits). These opera-
tions are very expensive. One way to reduce the cost is to use Gar-
ner’s algorithm [16]. The basic idea is the Chinese Remainder The-
orem: computing b = xe mod pq is equivalent to computing b =
[(xe mod q − xe mod p)× (p−1 mod q) mod q]× p+ (xe

mod p). The theorem reduces the computation of a modular ex-
ponentiation to two 512-bit modular exponentiations with some
cheaper additions and multiplications.

Note that the cost of computing modular exponential re highly
depends on the value of e, where e is part of the public key in our
case. To reduce this cost, we set e = 3 at each translator. Setting
e = 3 does not improve an adversary’s knowledge, since the key
is public9. Without knowing the factorization of n, an adversary
cannot determine the private key by simply knowing that e = 3.

4. AN EFFICIENT ALTERNATIVE TO PPP
Oblivious transfer helped us to fix a security hole of PPP. Still,

the PPP framework suffers from the following problems: (i) in-
complete protection of mapping privacy; (ii) high response time;
(iii) high communication cost. To tackle the above issues, we de-
velop a simple lightweight protocol, which does not rely on cryp-
tographic operations and not only preserves k-protection but also
protects mapping privacy. In this section we describe the new pro-
tocol and compare its security and efficiency with PPP.
4.1 Order-preserving Translation

Our proposed protocol (denoted by PD, Privacy preserving and
Direct simple method) operates as follows. After the server S com-
putes the query answer, S carefully adds noise to it to form a map-
ping request. For a query answer with x distinct values to be trans-
lated, a noise of (k − 1)x values in the domain is added. Thus,
the mapping request composes of kx values to be translated. In
addition, the positions of values to be translated in the mapping
request are randomly shuffled at S. The query answer is repre-
sented using the corresponding positions of values in the mapping
request and the query answer is sent to C. For example (refer to
Figure 3), suppose that the query answer is (m1,m2,m1) and the
mapping request after random permutation is (mα,m2, m1,mβ).
The server S first sends directly to C an answer key (3, 2, 3); i.e.,
the positions of the true answer values in (mα,m2,m1,mβ). The
noise generation process is the same as [7] to prevent query replay
attack. That is, for two identical queries to S, exactly the same
noise and permutation will be generated.

If the path from C to S is {C, T1, T2, . . . , Tt, S}, the mapping
request is transferred from S to Tt for translation. Each transla-
tor Ti translates all the values in the mapping request and forwards
the translated mapping request to the next translator Ti−1 until it
reaches the client. Differently from PPP, each translator does not
9In practice, RSA usually sets the public exponent e to be a small
constant to support efficient computations.
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Figure 3: Order-preserving translation with k = 2. The mes-
sages between peers are: (1) S → C: query result represented
using the positions of values in the mapping request. (2) S →
T: mapping request. (3) T → C: translated values with order
preserved.

permute the positions of values in the mapping request. Eventu-
ally, the client C will receive the mapping request, which is a set
of translated values under C’s context. In our example, assum-
ing that the path is {C, T1, S} and that T1 translates each mi to
m′i, C will obtain (m′α,m

′
2,m

′
1,m

′
β). With the query answer key

(3, 2, 3) that C has received from S, C recovers the query result
(m′1,m

′
2,m

′
1).

4.2 Security Proof and Cost Analysis
THEOREM 2 (ANSWER PRIVACY). The PD protocol satisfies

k-protection.

PROOF. Each translator Ti receives a mapping request from Ti+1

with kx values, where x is the number of distinct values in the
query answer to be translated and k is the privacy parameter. With-
out the answer key from the server S, each value has the same
probability (Pr = x

kx
= 1

k
) to be in the query answer, i.e., k-

protection is enforced. In addition, every possible mapping request
corresponds to a specific answer set and a specific permutation (by
S), thus for the same query, Ti receives the same mapping request.
Therefore, Ti cannot learn anything about the query answers even
if the same query is repeatedly sent from C to S.

THEOREM 3 (MAPPING PRIVACY). The PD protocol enforces
mapping privacy.

PROOF. Each translator Ti observes only one message: a map-
ping request with kx values from translator Ti+1 and no messages
from any other peer. The mapping request received by Ti contains
only a set of values in Ti+1’s context, therefore Ti learns nothing
about Ti+1’s mappings.

Compared to PPP, our simple protocol offers better privacy pro-
tection because mapping privacy is fully protected. The only ex-
ception is that PPP has a better worst case protection on privacy
mappings in case of collusion. In PPP, translators also permute the
mapping request randomly at the price of letting the client learn cer-
tain mappings. This means that even when several parties collude
together and exchange their knowledge to beach mapping privacy,
PPP can protect one’s mappings from being seen (except the en-
tries that are already revealed to the client). In Section 6, we study
the issue of collusion in detail and provide a lightweight solution
that protects both answer privacy and mapping privacy in case of
collusions.

Cost analysis. Our simple protocol is very efficient and has a
low message communication cost. Let n be the number of distinct
values to be translated, t be the number of translators, and k be
the privacy parameter of k-protection. At the server, the prepara-
tion cost of the mapping request and the answer key takes O(kn)
time. The server sends two messages: (i) the mapping request to the
neighbor translator Tt, which contains kn values; (ii) the answer
key, which has the same size as the query answer. Each translator
Ti takes O(kn) times to translate the mapping request and forward

the request to the next translator Ti−1 (or the client). Compared
to PPP, our protocol has fewer rounds of communication and much
lower computational cost, especially because it does not require
cryptographic operations.

5. A PARALLELIZED PROTOCOL FOR
LARGE SCALE TRANSLATION

When transferring a large amount of data, a large proportion of
the mappings are involved in the translation process. For example,
if a query is to retrieve all diseases diagnosed in a hospital within a
month, most diseases in the domain are returned. Answer privacy
is still required as it may breach the privacy of minorities if a rare
disease (associated to certain patients) is included in the result. At
the same time, we still need to enforce mapping privacy to protect
the translators’ rights. Another issue is that, with a large number of
mappings, each translator takes more time. Since translators work
in a serial fashion, it takes long for the client to receive the re-
sults and most translators stay idle during the process, waiting for
the entire mapping request to be received by the previous peer. In
this section, we develop a parallelized privacy-preserving transla-
tion protocol (denoted by IMP, Item Mapping with Parallelization)
that addresses these issues.

We first explain the feasibility of parallelization. Without the
presence of mapping request, a translator normally remains idle,
as it is not able to determine what data should be translated. To
overcome this difficulty, we propose a scheme, where the translator
prepares all mapping entries for all values in the domain uncondi-
tionally. This ensures that the necessary mappings in the translation
have been precomputed and they are ready to use, as soon as the
mapping request is received. On the other hand, additional cost is
required in preparing mapping entries for values that do not appear
in the mapping request. Fortunately, the size of the mapping re-
quest can be determined by the server before any translation; thus,
the server can decide whether the system should switch to the par-
allelized protocol or use the simple protocol. We now focus on the
case of full-domain translation and discuss its parallelization.

5.1 Mapping Representation: Index Mapping
The current representation of mapping (x→ y) is content-dependent.

In order to achieve composition of mappings, we have to match the
right part of the first mapping to the left part of the second mapping;
e.g., given x → y and y → z, we have x → z. From a privacy
perspective, the above matching mechanism is not allowed because
one can then tell which value is involved in the translation; thus, a
more sophisticated protocol is required. In this section, we present
a novel representation of mappings, called index mapping, which
enables such a protocol.

The mappings of a translator Ti is a function that maps a value
from a domain Di to another domain Di−1. The mappings of the
next translator in the path Ti−1 convert Di−1 to Di−2. Note that
the neighboring peers along the path share the same domain in the
mappings as an interface to communicate. Each peer agrees on the
same order (say alphabetical order) in each domain and represents
each value in the domain as its index. The mapping function then
operates at the index level. For example, suppose the domain Di is
ordered as {AIDS, heart disease, lung cancer}, the domain Di−1

is ordered as {d01, d02, d03}, and the original mapping function
is {AIDS→ d02, heart disease→ d03, lung cancer→ d01}. The
index mapping is then {1 → 2, 2 → 3, 3 → 1}. Index mapping
only captures the mapping structure, without considering the se-
mantics of values. Thus, one can compute the composition of index
mappings without knowing the semantics of the values. However,
in our case, translators also know the (ordered) domains of other



translators. So, the index mappings cannot be revealed directly in
our protocol. We adopt a token-based translation to hide them.

With index mapping, if one would like to translate the first value
in Di (AIDS), he could construct a size-3 vector with a token t
in the first element while leaving the other two elements random
(t, r1, r2) where t 6= r1, r2. The index mapping then swaps the
position of the values accordingly and returns (r2, t, r1). By find-
ing the position of t, we know that it is mapped to the 2nd value
of Di−1 (d02). In this way, the translator has performed the trans-
lation task without learning the value to be translated. Note that,
the output and the input of the index mapping are in the same for-
mat, meaning that we can repeatedly apply different mappings to
compute a composition of mappings. In fact, each mapping can be
regarded as a permutation of the values in the set.

With index mappings, the server generates a random unique to-
ken for each value in the domain as initial encryptions to the values.
This forms a token set Vt+1 that represents the values in the context
of the server. Vt+1 is sent to translators for translation. Consider a
serial translation. Each translator shuffles the tokens according to
his index mapping and sends the shuffled tokens to the next trans-
lator. As the tokens are random, the shuffled tokens after applying
an index mapping will appear random to translators; this protects
the privacy of translators. At the same time the server sends Vt+1;
i.e, the values in the query result are replaced by the corresponding
tokens. The tokenized query result is sent to the client. So, by look-
ing up the position of a token in the query result, the client is able to
recover the translated value in his own context. In this process, the
client is not able to observe the mappings of any translators, even
when there is one translator only. Figure 4 shows an example il-
lustrating the entire translation procedure. The server computes the
query and the result contains 1 tuple only - ‘Bob’. Instead of send-
ing to the client the result in the server’s context (‘Bob’), the server
sends the tokens representing the result (‘0’). Note that ‘Bob’ is the
2nd value in the server’s domain, and it should be mapped to the
1st value in the client’s domain. The translator permutes the set of
tokens and the token representing ‘Bob’ (‘0’) is put to the first slot
in the tokens. The client, by identifying the positions of tokens in
the query result, recovers the query result in its context.
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Figure 4: An example illustrating the procedure of the protocol.

Note that in order to ensure the correctness of the protocol, the
tokens for different values in the domain must be different. On the
other hand, the domain of tokens does not affect the correctness
and the security of the protocol. For a domain D, we need to use
|D| tokens. A simple token domain is [1, |D|]; thus, randomly gen-
erating a set |D| of unique tokens in the domain of [1, |D|] is the
same as generating a random permutation of [1, |D|], which can be
done in O(|D|) time.

5.2 Parallelized Permutation Composition
Recall that an index mapping can be viewed as a permutation. A

permutation can be represented by a matrix10; e.g., index mapping
{1→ 2, 2→ 3, 3→ 1} can be represented by:

M =

 0 1 0
0 0 1
1 0 0


Similarly, we can represent the set of tokens as a row matrix so

that (t1, t2, t3) ·M = (t2, t3, t1). If the path from the client C to
the server S is C, T1, T2, ...Tt, S, each translator Ti has an index
mapping, which is represented by Mi. The initial tokens generated
are also a permutation, so they can also be represented by a matrix
Mt+1. The goal is to compute Πt+1

i=1Mi, i.e., Mt+1Mt...M1. By
using divide and conquer, we can divide the computation into two

halves: Π
t+1
2

i=1 Mi and Πt+1

i= t+1
2

+1
Mi. Similarly, we recursively di-

vide the computation until there are only two parties involved. This
reduces the number of rounds from O(t) to O(log(t)).

In the first round, every two consecutive peers Ti−1 and Ti form
a group to compute MiMi−1. One of the two peers must con-
tribute his mappings to the other peer for the computation. For
example, Ti should send his mappings Mi to Ti−1. However,
this violates the privacy of Ti. To protect Mi, Ti generates a ran-
dom permutation Ri (represented as a matrix too). Ti’s mapping
is applied on the random mapping, i.e., M ′i = MiRi (if Ti−1 is
sending his mappings, Ri−1Mi−1 is used). M ′i is sent to Ti−1

to compute Mi+1M
′
i . In order to maintain the correctness of the

computation, Ri must be eliminated in the final result. Ti sends
the inverse of the random noise R−1

i to Ti−1 and Ti−1 computes
M ′i−1 = R−1

i Mi−1 as his input to the computation procedure (if
Ti−1 is sending his mappings, the inverse is sent to Ti−2 and Ti−2

computes Mi−1R
−1
i−1). In the boundary case (e.g., T1), the inverse

is sent to the client. This is to ensure the correctness of the pro-
tocol when we combine different parts together, i.e., M ′iM

′
i−1 =

MiRiR
−1
i Mi−1 = MiMi−1. Note that, for each group of peers

Ti−1, Ti, it must be the peer on the same side (either left - smaller
index or right - larger index) to send the mappings to the other peer.
So, alternate peers will be generating a random permutation.

Now, we do not need to consider the peers who have contributed
their mappings to other peers. So, half of the peers remain. An-
other round is carried out similarly. Every two consecutive of the
remaining peers form a group but now one of the peers just con-
tributes his composite mappings to another peer without generat-
ing the random permutation again. This is because the composite
mappings already contain a random permutation generated by the
partner in the first round. For example, T2 receives M1R1 from
T1 and R−1

3 from T3. T2 combines everything together and sends
R−1

3 M2M1R1 to T4. Note that T4 does not know R3 and R1 and
the resulting permutation looks random to T4. The same procedure
is applied at later rounds. Figure 5 shows an example illustrating
the computation of the composite mappings with 7 translators.
5.3 Security Proof

THEOREM 4. The IMP protocol presented in this section satis-
fies k-protection for any k ≤ n.

PROOF. Since no query request is sent to translators, the IMP
protocol enforces n-protection for the full domain size n; i.e., the
probability that each value is in the answer set is 1

n
. Trivially, IMP

achieves k-protection for any k ≤ n as well.

THEOREM 5. The IMP protocol enforces mapping privacy.

10We remark that although we present our approach using a matrix
representation, the actual content form of messages in the commu-
nication is permutation.
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Figure 5: Parallelized Permutation Composition.

PROOF. The intermediate mappings are hidden from the client.
The client only knows the final mapping results from the server to
the client. However, without knowledge of the value-token table on
the server, the client cannot utilize these final results; therefore, the
protocol enforces mapping privacy.

6. A COLLUSION-RESISTANT SCHEME
Our previous schemes cannot guard against collusions where the

parties in the colluding group share the messages they obtained in
the protocol. For example, in Figure 5, translators T2 and T4 can
share their knowledge (M3R3 and R−1

3 ) and they can recover the
mappings of T3. In this section, we perform an analysis on the col-
lusion problem and derive an efficient and collusion-resistant solu-
tion (denoted by PC, Privacy preserving with Collusion). First,
we study the potential risks of colluding scenarios in our protocols.

1. Answer privacy: In our proposed protocols, the server sends
the necessary hints (i.e., answer key) to the client directly.
Thus, translators cannot breach the privacy of the query re-
sult without the client or the server getting involved in the
collusion. This is indeed the best that we can achieve; if ei-
ther the server or the client is involved in the collusion, then
the entire query result will be revealed to colluding parties
regardless what translation protocol we use.

2. Mapping privacy: In our proposed protocols, the mappings
of a translator can be recovered with a minimum of two col-
luding parties. We aim at raising the resistance of the pro-
tocol so that even when certain parties collude together, the
mappings of a particular peer (not in the colluding group)
cannot be recovered. Note that it is not possible to protect
one’s mappings if all other parties collude.11 In this paper,
we target the case of at least two parties being not in the col-
luding group.

To protect one’s private mappings, we need to hide them by
adding some secret parameters (like encryption with a key). On
the other hand, the ‘decryption key’ has to be sent to other parties
in order to cancel out the secret key in the final result. Since any
other party may be in the colluding group, we break the decryption
key into shares and each share is sent to a different party. Thus,
each other party obtains a share of the decryption key. No party
can recover the decryption key without acquiring all the shares. In
addition, each share should be of O(n) size or otherwise there is a
leak of statistical information (O(2n) possible mappings butO(2k)

11The client obtains the mappings from the server’s context to
the client’s context by matching the query results under the two
schemas when the client and the server collude together. This map-
ping is equivalent to the composition of mappings of translators.
Since all parties except one collude together, we can solve the map-
pings of the remaining party.

key space for a size-k key). Each party needs to generate the shares
of the decryption key and it also receives the shares of other decryp-
tion keys from other parties. The processing cost for each party is
O(mn): a significantly increase compared to the O(n) cost in the
previous protocols. Thus, the protocol having perfect security is
very expensive.

Our goal is to design a more efficient protocol. In particular, we
aim at limiting the processing cost toO(n) while keeping adequate
protection for guarding against collusions. In other words, we want
the secret parameters and shares of decryption key to be of O(1)
size and to be aggregated efficiently (with linear cost). In summary,
the protocol goals are as follows:

1. The colluding group cannot derive the query result unless the
client or the server is involved in the group.

2. The colluding group cannot derive the mappings of a party
not in the group as long as there are at least two parties not
in the group.

3. The protocol incurs a low overhead.

6.1 Guarding against Collusion via Pseudo-
permutation

This section describes a protocol satisfying the above require-
ments. One technical challenge is that we need to cancel out the
secret parameters added by each translator. Encryption is usually
not commutative. This requires a correct ordering in encrypting or
decrypting the mappings using the partial keys and makes the pro-
tocol complicated and expensive. To solve this problem, we use a
pseudo-permutation approach, which resembles commutative en-
cryption but it is simple and cost-friendly.

DEFINITION 2 (PSEUDO-PERMUTATION). Consider a vector
v (tokens) that is a permutation of n numbers (a1, a2, . . . , an). A
pseudo-permutation f takes a parameter r that is randomly sam-
pled in [1, n] and gives f(r, v) = (ra1 mod n+1, ra2 mod n+
1, . . . , ran mod n+ 1) where r and n+ 1 are relatively prime.

Note that we require r and n + 1 are relatively prime. This is
true if we consider n+ 1 is a prime.

For example, consider a set of tokens v (1, 2, 3, 4) (n + 1 = 5)
and r = 3. The resulting set of tokens is (3, 1, 4, 2) (e.g., 2nd
position: (2·3) mod 5 = 1). To recover the original set of tokens,
we can multiply the set of tokens with the modular multiplicative
inverse of r (we can compute the modular multiplicative inverse
using the Extended Euclidean algorithm). In our example, using
r−1 = 2, we get the tokens (1, 2, 3, 4) (e.g., 3rd position: (4 · 2)
mod (5) = 3). The constraint that r and n+ 1 are relatively prime
ensures that the modular multiplicative inverse of r exists and thus
makes the pseudo-permutation ‘decryptable’.

Pseudo-permutation is like a random permutation (whose proof
can be found in the full version) but has a smaller key size; it is
more efficient, but offers a weaker protection. If we use a matrix

representation, a pseudo-permutation is equivalent toR =

 r 0 0
0 r 0
0 0 r


= rI , where r is a numeric value and I is the identity matrix.
Pseudo-permutation is commutative to other permutations. Given
any pseudo-permutations R1, R2 and a permutation P , we have
R1P = PR1 and R1R2 = R2R1. Besides, composition of two
pseudo-permutations can be done by a simple multiplication. Given
any pseudo-permutationR1 = r1I ,R2 = r2I ,R1R2 = (r1r2)I .
With pseudo-permutation, we can construct the protocol for guard-
ing against collusion as follows:

(1) Preparation phase. The server S computes the query result
and generates noise to form the mapping request. S also generates
a token set V , that is a permutation of [1, n], to represent the values



in the mapping request. The query answer is re-written using the
tokens and sent to the client C. At the same time, S informs all
other peers about the size of the mapping request.
(2) Anti-collusion parameter generation phase. Each translator
Ti generates a random pseudo-permutation by generating t pairs
rij and r−1

ij with respect to the modulo n+ 1, where n is the num-
ber of values in the mapping request. Each rij is sent to a dif-
ferent peer while Ti keeps its secret parameter λi = (

∏t+1
i=0 r

−1
ij )

mod n+ 1 (we denote the client as T0 and the server as Tt+1 here
for easier discussion). As a result, each peer (including the server,
the client and translators) denoted by Tj , will receive a set of ran-
dom numbers rij , which is a share of the decryption key of Ti. The
peer aggregates them into one value by multiplying them together.
If the peer is a translator, he also multiplies his secret parameter λi
as generated above. We denote the resulting value by RX where
X denotes the peer having the value.
(3) Translation phase. S sends to the neighboring translator Tt,
RSV and the mapping request. Let Ti be a translator, which re-
ceives a set of tokens and the mapping request. Let V ′ be the set
of tokens received. After Ti applies his mapping on the mapping
request, he randomly permutes the values in the mapping request.
Let the permutation be Pi, Ti also applies the same permutation
Pi on the set of tokens, followed by RTi , i.e., Ti sends to the next
translatorRTiPiV

′.
(4) Answer recovery phase. The client C obtains a set of trans-
lated values: the mapping request and a set of tokens V ′. C re-
places the query answer, that is written using tokens, according to
the position of the tokens.

Correctness. The correctness of the protocol relies on whether
the permutation of the tokens is the same as the permutation of the
values in the mapping request. Given the initial set of tokens V
generated by S, our goal is to allow C to observe (

∏t
i=1 Pi)V .

Note that the set of tokens that the client received in the proto-
col is (

∏t
i=1RTiPi)V = (

∏t
i=1RTi)(

∏t
i=1 Pi)V (due to the

commutative property of pseudo-permutation). Since we generate
each component of pseudo-permutation in pairs of multiplicative
inverse, we have

∏t
i=1RTi = I . The client obtains the set of to-

kens that go through the same permutation as the mapping request
and thus he can recover the query answer correctly.
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Figure 6: Execution of collusion-resistant scheme with k = 2.
The messages between peers are: (1) S→C: query result repre-
sented by tokens. (2) T→ S, C: anti-collusion parameters. (3) S
→ T: mapping request with corresponding permutated tokens.
(4) T→ C: translated values with random order and permuted
tokens.

Example. Fig. 6 shows an example execution of the collusion-
resistant protocol. There is one translator T only. Suppose the
query answer is (m1,m2,m1) and the mapping request after ran-
dom permutation at S is (mα,m2,m1,mβ). S also generates a set
of tokens, a permutation of 1 to 4 to represent the values. Assuming
the set of tokens is (2, 1, 3, 4), S re-writes the query answer using

the tokens and sends to C the query answer (3, 1, 3) (Message 1).
Then, we go to the second phase to generate the random parame-
ters. Suppose T generates two pairs of multiplicative inverse (2, 3)
and (4, 4) (note that (2 · 3) mod 5 = 1 and (4 · 4) mod 5 = 1).
T sends to S a number in the first pair, say 2, and sends toC a num-
ber in the second pair, 4. T keeps 3 ·4 mod 5 = 2 for eliminating
the pseudo-permutations (Message 2). Then, we go to the transla-
tion phase. S first applies his pseudo-permutationRS = 2I on the
set of tokens. The resulting set of tokens (4, 2, 1, 3) is then sent
to T (Message 3). Assume the mapping of T is mx → m′x. After
translation on the mapping request, T applies the same random per-
mutation on the mapping request and the tokens. Assume that the
mapping request and the tokens become (m′2,m

′
β ,m

′
α,m

′
1) and

(2, 3, 4, 1), respectively. T then applies his pseudo-permutation
RT = 2I and the tokens become (4, 1, 3, 2) (Message 4). The
translated mapping request and the tokens are sent to C and C ap-
plies his pseudo-permutation RC = 4I on the tokens. The tokens
become (1, 4, 2, 3). Finally, C recovers the query answer. Recall
that the query answer is expressed using tokens (3, 1, 3). C re-
places each token by the value in the mapping request that has the
same position of the token, i.e., (m′1,m

′
2,m

′
1).

6.2 Security Proof and Cost Analysis
THEOREM 6 (ANSWER PRIVACY). The PC protocol satisfies

k-protection.
PROOF. The necessary hint to recover the query answer (the an-

swer key expressed using tokens) is shared between the server and
the client only. Thus, translators are not able to observe the query
answer with the presence of tokens. Translators can observe hints
of the query answer from the mapping request, but the fake values
in the mapping request enforce k-protection.

THEOREM 7 (MAPPING PRIVACY). Assuming that n + 1 is
prime, the PC protocol enforces mapping privacy on any translator
T , unless all parties except T collude together.

PROOF. The worst case is when neighboring peers of a transla-
tor T collude together. In such a case, the colluding group observes
the mapping request and the tokens before and after T ’s translation.
However, since T applies a random permutation P on the mapping
request, the colluding group cannot recover the exact mapping of
T unless the group recovers P . Let V be the set of tokens that
T receives and RT be the pseudo-permutation applied by T . The
colluding group observes V and V ′ = RTPV . With V and V ′

known there are |V | equations with |V | + 1 unknowns; we can
solve the above system but there are multiple solutions to RT and
P . Since the components ofRT are pairs of modular multiplicative
inverses and each pair is owned by two peers, the colluding group
can also invite others to join the group in order to obtain the neces-
sary information to recover RT . However, RT contains shares of
every other peer. Therefore, unless all parties except T are in the
colluding group,RT cannot be recovered.

Cost analysis. Compared to the protocols we discussed in pre-
vious sections, our protocol here incurs additional cost for the anti-
collusion measures. Each component of pseudo-permutation is a
pair of modular multiplicative inverses. Thus, the parameters are
all of O(1) size. Each translator generates O(t) pairs and receives
O(t) pairs from other parties. The communication cost and the
computational cost to aggregate them into a single pseudo-permutation
are bothO(t). In the translation phase, each translator translates the
mapping request (at O(kn) time) and applies permutations on the
mapping request and the tokens (at O(kn) time). Thus, the overall
cost at a translator is O(kn + t), where k is the privacy parameter
and n is the number of distinct values in the query answer. Note
that since t is usually smaller than kn, the complexity of the proto-
col here is basically the same as the simple protocol we described
in Section 4.



7. EXPERIMENTAL STUDY
In this section, we evaluate the performance of the proposed so-

lutions. Our implementation of the PPP protocol using oblivious
transfer is denoted by POT (see Section 3). POT-opt denotes the
same protocol, after applying all the optimizations proposed in Sec-
tion 3.2. The lightweight protocol proposed in Section 4 that does
not use cryptographic operations is denoted by PD. The parallelized
protocol using index mapping (Section 5.2) is denoted by IMP. Fi-
nally, PC denotes the collusion-resistant protocol of Section 6.

We compared our methods with two approaches. (1) The PPP
protocol which is implemented using Pohlig-Hellman commuta-
tive encryption [20]. (2) NP is a basic query processing algorithm
which does not consider privacy; in NP, the server sends the query
result directly to client and also sends the distinct values to the
client through the path of the translator peers, which translate them
on the way to the client. The cost of NP is a lower bound for any
privacy preserving protocol. Table 1 summarizes the security level
of the evaluated privacy-preserving protocols.

All algorithms are implemented in C++. Each peer is executed
on an individual Intel Core2 Duo 2.83GHz machine with 3.2GB
RAM, running Windows. The peers are connected through a 1Gbps
LAN. In the experiments of Sections 7.1–7.3 we use synthetic data.
Real data are used in Section 7.4. The synthetic dataset contains
one attribute, which is the attribute queried by the client. Each tu-
ple is assigned a random unique value on this attribute. So, the
number of tuples equals the domain size of the attribute, denoted
by |D|. We do not include duplicate values in the dataset, because
the performance of the protocols mainly depends on the number of
distinct values in the result. The mappings of each peer are ran-
domly generated. In the experiments, we measure the time (time
spent since client issues the query until he receives the plain re-
sults) and the communication cost of a random range query. Table
2 summarizes the privacy, network, data, and query parameters for
the synthetic data experiments, and shows the range and default
value of each parameter. Note that although we evaluate the costs
of all protocols together, their security level strengths vary. Table 1
shows the different security levels achieved by each protocol. The
detailed security proofs are derived from Theorems 1 to 7.

Note that PPP and POT (POT-opt) protocols do not provide map-
ping privacy at all. Translators will not see each other’s mappings
but the client can. In the extreme case, the client can request and
store all the mappings eventually in PPP and POT protocols and
remove the translators from the chain at future queries.

without collusion with collusion
Protocol k-protection mapping k-protection mapping

privacy privacy
PPP X reveal to X reveal to

client only client only
POT X reveal to X reveal to

POT-opt client only client only
PD X X X X
IMP X (for all k ≤ n) X X X
PC X X X X

Table 1: Privacy protection strength of algorithms.

Parameter Values
Privacy parameter k 2, 4, 6, 8, 10 (for k-protection only)

Domain size |D| 2000, 6000, 10000,
20000, 40000, 60000, 80000

Number of peers np 3, 5, 9, 17, 33
Query selectivity s (in %) 1, 5, 10, 15, 20, 25, 30

Table 2: Parameters used in experiments on synthetic data. De-
fault values in bold font.
7.1 k-protection

In the first experiment (Figure 7), we examine the performance
of algorithms w.r.t. k-protection. Note k does not exceed 10 be-
cause the query selectivity in this experiment is 10%. IMP oper-
ates on the entire domain. Noise in mapping requests is not re-
quired and thus the performance of the protocol is not affected by
k. The query times and communication costs of other privacy-
preserving protocols (PPP, POT, PC, PD) increase with k. Our
lightweight protocols (PC, PD, IMP) have lower query times and
communication costs than PPP and POT because they do not use
expensive cryptographic operations. The communication costs of
cryptography-based protocols are also higher. This is because each
plain data item has a small size (4 bytes in our experiment) while
the encrypted data are much larger (up to 1024 bits (128 bytes) for
PPP, POT, POT-opt). Observe also that k has little effect on the
message cost of POT approaches. This is because our implemen-
tation of OT has an optimized size for encrypted mapping, where
the encrypted mapping has the same size as the plain text (line 4,
Algorithm 1). Thus, the cost of sending encrypted mapping entries
of fake items is relatively low compared to other messages like OT
requests. Note that a bigger k only affects the number of mapping
entries to be transferred in POT-opt because we have pre-computed
the encrypted mapping.

k PPP POT POT-opt PC IMP PD NP
2 95.312 64.766 16.938 2.938 4.407 1.578 0.657
4 139.422 93.985 16.954 5.563 4.344 2.75 0.657
6 185.609 122.813 16.938 8.172 4.266 4.265 0.657
8 231.312 151.829 16.828 10.734 4.297 5.968 0.687

10 277.812 182.391 16.86 13.359 4.312 6.828 0.656
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Figure 7: Query time and communication cost vs k on synthetic
data.
7.2 Scalability

Figures 8 and 9 compare query times and communication costs,
showing that all algorithms are scalable to both domain size and
number of peers, respectively. PPP has the highest cost; the method
becomes impractical for values of |D| and np that are not trivially
small. PC, PD, IMP have the lowest costs among all privacy-
preserving protocols. Compared to NP, all methods are signifi-
cantly expensive; the major overhead is due to the additional work
on translation. Since we set k = 6, the number of values to be
translated is 6 times more than in NP. For example, the overhead
introduced by PD over NP at np = 33 has a factor close to k
( 15.7

2.6
= 6.04). This indicates that PD incurs the minimal overhead

to ensure k-protection. In general, the overhead of our methods
over NP is bearable given the privacy protection that they provide.
Compared to PPP, all our algorithms have a significant cost im-
provement (besides the better privacy protection they offer). The
cost of IMP increases slower with np compared to the other meth-
ods. At np = 33, IMP takes 5.9s while NP takes 2.6s. This shows
that parallelization can effectively control the cost when the query
result has to travel along a long path, which is likely to happen in a
large peer-to-peer network.

7.3 Varying selectivity
Figure 10 shows the query times and communication costs of

the algorithms with varying query selectivity. When s reaches 20,
the query times of PC and PD become stable, because all values in
the domain are included in the mapping requests when s > 100

k
.

Further increase in s does not increase the size of mapping request
and thus the query time is stabilized. In contrast, PPP and POT
approaches show a stable increase with varying s; the major over-
head in these protocols are at clients obtaining required mappings
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Figure 8: Query time and communication cost vs |D| on syn-
thetic data.
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Figure 9: Query time and communication cost vs np on syn-
thetic data.

from translators using cryptographic operations. The number of the
required mapping entries increases with s. Thus our lightweight
protocols are especially beneficial when the query answer is large.

7.4 Experiments on real data
We also evaluated the performance of algorithms (PPP, POT-opt,

PC, IMP, PD, NP) on two real datasets: (i) CENSUS (downloadable
from ‘http://www.ipums.org’), containing personal information of
50K individuals with 8 dimensions (average domain size 28.1) (ii)
ADULT [2], containing personal information of 32,561 individuals
with 15 dimensions (average domain size 1476.4). We generate for
each peer a random mapping that maps each value to a different
integer. Using the default values for the parameters, as shown in
Table 2, we issue 20 random queries in the form of ‘SELECT A1
FROM DATASET WHERE A2 IN (QS)’, where A1 and A2 are two
randomly chosen attributes in the dataset (A1, A2 can be the same)
and QS is a set of values in the domain of A2 and QS contains
around 10% elements in the domain. In addition to query time
(query processing + answer translation), we also measure the query
processing time alone at the server, denoted by QP. Table 3 shows
the results.

Dataset PPP POT PC IMP PD NP QP
-opt

CENSUS 4.23 2.00 0.80 1.17 0.77 0.59 0.57
ADULT 23.30 3.43 1.90 1.97 1.33 0.68 0.58

Table 3: Query time (in s) on real dataset.
The results show that our proposed algorithms are much more

efficient than PPP. Besides, our proposed algorithms have a lower
query time overhead over NP than what we observe in the experi-
ments on synthetic data. This is because our synthetic data do not
have duplicate values; with more duplicate values in the dataset, the
query processing time (QP) increases (as the distinct values need to
be extracted and translated); in this experiment, query processing
becomes a major component of the entire cost and the overhead in
query translation for protecting privacy becomes relatively cheaper.
Thus, in realistic cases where the attribute domain is much smaller
than the number of tuples in the database and duplicates are ex-
pected to appear in the query result, our protocols become even
more practical, as they only incur a small overhead on top of query
processing.

7.5 Simulation of large P2P network

s PPP POT POT-opt PC IMP PD NP
1 19.562 12.531 1.86 0.953 4.203 0.594 0.063
5 92.938 61.531 8.547 4.235 4.266 2.157 0.343

10 185.609 122.813 16.938 8.172 4.266 4.265 0.657
15 280.078 184.235 25.25 12.188 4.344 6.297 0.985
20 327.297 216.562 33.484 13.359 4.469 6.891 1.313
25 351.14 234.844 41.953 13.719 4.453 7 1.656
30 374.359 252 50.297 13.594 4.532 6.985 1.985
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Figure 10: Query time and communication cost vs s on syn-
thetic data.

In this experiment, we simulate large P2P network on an Intel
Core2 Duo 2.83GHz machine with 2GB RAM, running Windows.
We vary the number of translators from 1 to 10, 000 (i.e. np varies
from 3 to 10,002). We use the default values for other parameters
as shown in Table 2 and test all algorithms except IMP in this set-
ting, as the parallelism in IMP cannot be realized in the simulation.
Figure 11 shows the query times of different algorithms varying
np.

np PPP POT POT-opt IMP PC PD NP
3 27.828 16.213 2.025 0.63 0.34 0.1
7 128.805 80.987 10.406 0.649 0.39 0.1

12 247.145 158.488 19.54 0.892 0.337 0.1
52 1177.05 817.805 100.97 0.762 0.447 0.1

102 2471.45 1643.35 196.068 0.754 0.447 0.1
1002 1960.68 1.898 0.525 0.1

10002 14.194 0.525 0.113
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Figure 11: Simulated query time vs np on synthetic data.
The result shows that cryptographic approaches (PPP, POT and

POT-opt) are more expensive than non-cryptographic approaches
(PC and PD). The cryptographic operations are very expensive. By
avoiding them, PC and PD reduce the cost for privacy by orders
of magnitude. On the other hand, PC, PD and NP show a steady
cost for small np; this is because the communication cost is not
realized in our simulation. Translation has a very low processing
cost compared to query processing (and noise generation for PC,
PD). Thus, the measured query time is almost constant unless np
reaches a large value, which renders the translation cost significant.
Compared to the query time measured in a real network setting in
Figure 9, the processing cost we measured here is very low. So, we
expect that the communication cost will be the dominating factor
for non-cryptographic algorithms on large-scale networks.

7.6 Mapping Privacy Leakage
In this experiment, we test on how many mappings are revealed

to client as time goes. Note that only PPP, POT, POT-opt may leak
the mappings to the client (see Table 1) and they will leak the same
amount of mappings to client as all algorithms use the same frame-
work to generate the fake answers. We vary the values of k and
s and measure how many mappings are revealed to client after x
queries for x = 1 to 100. The experiment is done on the default
synthetic dataset (with 10k domain size). Figure 12 shows the re-
sult.

Run s=1%,k=2 s=1%,k=6 s=1%,k=10 s=5%,k=2 s=5%,k=6 s=5%,k=10 s=0.1,k=2 s=0.1,k=6

1 2.02 6.06 10.1 10.02 30.06 50.1 20.02 60.06

2 4.01 11.72 19.09 19.26 50.53 75.39 32.51 84.45

3 5.99 17.12 27.11 27.63 65.84 87.96 45.43 93.67

4 7.92 22.15 34.26 35.57 76.29 93.72 57.42 97.48

5 9.86 26.83 40.87 42.93 83.88 96.84 62.14 99.12

6 11.76 31.48 46.86 49.32 88.56 98.34 71.32 99.56

7 13.57 35.59 51.93 53.75 92.05 99.15 78.83 99.82

8 14.82 39.35 56.89 57.12 94.48 99.59 85 99.91

9 16.54 43.08 61.15 62.54 96.1 99.86 86.66 99.96

10 18.34 46.53 64.97 66.35 97.05 99.94 91.38 99.99

20 32.78 71.41 87.96 89.41 99.88 100 98.8 100

30 45.55 84.61 95.63 96.67 100 100 99.71 100

40 55.4 91.71 98.33 98.93 100 100 99.95 100

50 63.79 95.13 99.46 99.44 100 100 99.99 100

75 76.08 98.91 99.94 99.98 100 100 100 100

100 84.3 99.66 99.99 100 100 100 100 100
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Figure 12: Portion of mappings revealed to client as queries are
issued.

The result shows that the non-mapping-privacy-preserving algo-
rithms can easily leak most of the mappings with a relatively small
number of queries. Our mapping-privacy-preserving algorithms are
essential.



7.7 Mapping Privacy Leakage in Collusion
In this experiment, we test on the security impact on mapping

privacy when two peers collude. We assume a worst case sce-
nario in 2-party collusion. The two neighbor peers of a victim
peer (which is a translator) are colluding, i.e., the two malicious
peers are exchanging the messages they observed in the algorithms
and they will try to derive the mappings of the victim peer. Note
that PPP, POT, POT-opt and PD have the same protection strength
against collusion and we will use ‘G1’ to represent this group of
algorithms. We use the default settings as shown in Table 2. Figure
13 shows the portion of mappings leaked to the colluding parties
against number of queries issued.

Run G1 IMP PC

1 30.06 100 0

2 50.53 100 0

3 65.84 100 0

4 76.29 100 0

5 83.88 100 0

6 88.56 100 0

7 92.05 100 0

8 94.48 100 0

9 96.1 100 0

10 97.05 100 0

20 99.88 100 0

30 100 100 0

40 100 100 0

50 100 100 0

75 100 100 0

100 100 100 0
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Figure 13: Portion of mappings revealed to client when two
peers are colluding.

The result shows that all algorithms except PC have a very poor
protection against collusion. When two peers collude, they can
easily observe the mappings of the victim in a few queries. For
IMP, the entire mapping is revealed in only 1 query because the
translation is done on the entire domain. PC, on the other hand,
can protect mapping privacy even in a collusion scenario, as it is
designed to be.
8. RELATED WORK

Peer Database Management Systems (PDMS) that leverage peer-
to-peer techniques to manage dynamic and heterogeneous data have
received much attention in the recent years. Examples include [18,
26, 22, 8]. However, none of these works considered the privacy is-
sues in a PDMS as discussed in this paper. The problem of protect-
ing query answers in PDMS was first investigated in [7], which de-
fined the privacy notion k-protection for this problem and devised
a solution for the semi-honest model [10] based on commutative
encryption. However, to our knowledge, no secure commutative
encryption scheme in practice can be instantiated in this scheme to
satisfy k-protection.

There are several works (e.g., [1, 27, 11]) on privacy issues in
data mining. Most of them employ tools from Secure Multi party
Computation (SMC) [10]. Generally speaking, each party i in SMC
has its own input xi and the parties want to cooperate to calculate
a function f(x1, . . . , xn) without any party i learning anything
beyond f(x1, . . . , xn) and its own input xi. Oblivious transfer
[21] is a specific SMC protocol (with only two parties): there is
a sender with message M1, . . . ,MN and a receiver with an index
σ ∈ {1, . . . , N}; the protocol enables the receiver to learn Mσ

only while the sender learns nothing about the receiver’s choice σ.
SMC protocols can be built based on OT, but they are still very ex-
pensive. The reason is that most SMC protocols use the general
technique of encoding the function f in a circuit. While it works
for any arbitrary function, but this reduction method is highly in-
efficiently involving a large number of OT protocol executions in
order to communicate the information of the circuit between the
two parties. Therefore, even if each OT operation is very efficient,
the resulting SMC may still be very expensive. We should also
note that although the functionality of OT is similar to that of Pri-
vate Information Retrieval (PIR) [6, 9, 19], PIR does not protect
the mappings of the translators. For example, PIR allows the client
to see the whole mapping table in plaintext (undesired in our prob-
lem), while in OT, the client learns Mσ only.

In privacy-preserving data publishing, a data owner owns a database
and would like to make it public. The data may contain sensi-
tive information, so data sanitization is required before publication.
Several privacy notions are developed, e.g., k-anonymity [24], l-
diversity [15], and t-closeness [13]. For example, k-anonymity
requires that an attacker cannot identify a sanitized tuple in the
published data with a probability larger than 1

k
. Some of these

privacy principles are also used in some other applications, e.g., k-
anonymity is used in outsourced location-based services [30]. Un-
fortunately, most of these definitions are not practical [12, 29], as
they consider attackers of limited knowledge, while it is hard to
estimate the attacker’s capability and knowledge in practice.

9. CONCLUSION
In this paper, we studied the problem of privacy-preserving query-

ing between peers with different schemas in a PDMS. We first un-
veiled that the state-of-the-art solution (PPP [7]) is inappropriate if
commutative encryption is used. As a fix, we adopted an oblivious
transfer technique and provided optimizations to make it practically
faster. Still, the framework of PPP cannot adequately address the
issue of mapping privacy and it is computational expensive due to
the heavy use of cryptographic operations. To address these issues,
we developed two lightweight protocols: one of them adopts serial
translation and it is suitable for translating small query answers;
the other adopts parallel translation and it is suitable for large-
scale translations. Finally, we also considered a stronger adversary
model where peers may collude. Again, a lightweight protocol is
devised to guard against such scenarios. We analyzed the privacy
and cost of our proposed solutions and experimentally studied their
performance on synthetic and real datasets. The results show that
they are much more efficient than PPP despite of the fact that they
offer better privacy protection.
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APPENDIX
A. THE OT PROTOCOL

To use OT, each translator T needs a (public key, private key)
pair (pk, sk). The key can be generated by first generating two
prime numbers p and q. Then, T computes n = pq and also ran-
domly chooses e < n such that gcd(e, (p − 1)(q − 1)) = 1 (so
that there is a multiplicative inverse e−1 mod (p − 1)(q − 1)).
T computes d such that ed mod (p − 1)(q − 1) = 1, publishes
pk = (e, n), and keeps sk = (d, n) as secret. (This procedure
is the same as RSA.) For each mapping x → y, y is a possible
data item to be retrieved by the client C while x is the index of the
data. T encrypts his mappings using: E(x → y) = x → c =
H2(x,H1(x)d mod n) ⊕ y where H1 and H2 are any crypto-
graphic hash functions that are known to public, and ⊕ represents
exclusive OR operation.

Assume that C has received the set of encrypted mappings from
T . In the OT protocol, there are two rounds of communication.
One is a retrieval request from C and one is the response from T
which allows C decrypt the desired mapping without revealing the
other mappings. When C requests for a data with an index x, it
first randomly chooses r < n. He prepares an OT request for the
data with σ = re · H1(x) mod n (note that pk = (e, n)). The
OT request is sent to T . T computes δ = σd mod n (this can

be sped up by the Chinese Remainder Theorem) and sends it to C.
C then computes γ = δ · r−1 mod n and the original mapping
can be recovered by z = c ⊕ H2(x, γ). Algorithm 1 shows the
pseudo-code of the entire procedure.
Algorithm 1: Get required mappings from a translator

Input: Translator T : mappings xi → yi, private key sk = (p, q, n, d)
Input: Client C: indexes of required mappingsMr , pub. key pk=(e, n)
Output: Client C: mappings xi → yi where xi ∈Mr

1 // At T , encrypting the mappings
2 for each xi → yi do
3 si ← H1(xi)

d mod n ;
4 ci ← H2(xi, si)⊕ yi ;
5 end
6 Send all encrypted mappings xi → ci to C.
7 // At C, prepare OT requests
8 for xi ∈Mr do
9 r ← random number in Z∗

n ;
10 σi ← re ·H1(xi) mod n ;
11 end
12 Send all σi to T .
13 // At T , answer the OT requests for each OT-Req() do
14 δi ← σd

i mod n ;
15 end
16 Send back all δi to C
17 // At C, recover the mappings
18 M ← ∅ ;
19 for xi ∈Mr do
20 γi ← δi · r−1 mod n ;
21 zi ← ci ⊕H2(xi, γi) ;
22 M ←M

⋃
{xi → zi} ;

23 end
24 returnM

The correctness of the algorithm is ensured by
zi = ci ⊕H2(xi, δi · r−1 mod n)

= ci ⊕H2(xi, [(r
e ·H1(xi))

d mod n] · (r−1 mod n))

= ci ⊕H2(xi, [(r
edmod n) · (H1(xi)

dmod n) · (r−1mod n)])

= ci ⊕H2(xi, H1(xi)
d mod n) (since red mod n = r)

= yi ⊕H2(xi, H1(xi)
d mod n)⊕H2(xi, H1(xi)

d mod n) = yi

Note that r−1 mod n exists if and only if gcd(r, n) = 1 (in
which r−1 mod n can be computed by Extended Euclidean Algo-
rithm). Recall that n = pq where p, q are big primes. If gcd(r, n) 6=
1 (namely, p or q), the client is able to factorize n which is believed
to be extremely hard. Thus, the probability that a randomly chosen
r does not satisfy gcd(r, n) = 1 is negligible. In our experiments,
we never observed such a case.

B. PROOF OF THEOREM 1
PROOF. The only message from the client to the translator is

σi = reH1(xi) mod n (line 10, Algorithm 1). r is randomly
chosen by the client from Z∗n = {x|x ∈ [0, n−1]∧gcd(x, n) = 1}
while e and H1(xi) are both known to the translator.

To prove the security of protocol, we show that σi appears like
a random number to the translator, i.e., Pr(σi = a) = 1

|Z∗
n|

for any
fixed a ∈ Z∗n.

First, we show that for any fixed b ∈ Z∗n, if r is random, then
rb mod n is also random. This is true as b ∈ Z∗n and therefore
gcd(b, n) = 1. So, the multiplicative inverse b−1 mod n exists.
For any fixed a ∈ Z∗n, we have Pr(rb mod n = a) = Pr(r =
ab−1 mod n) = 1

|Z∗
N
| as r is random.

A similar logic can be applied to the case that rc mod n is ran-
dom given a random r and a fixed c.

Combining the above together, we have σi = reH1(xi) mod n
appears random to the translator. As a result, a translator cannot
gain any hints about query answer from the client’s message. In
the mapping request, there are k−1 fake values for each true value
in the answer. The probability of each value in the request being a
query answer is at most 1

k
. Thus, k-protection is enforced.


