
Similarity Search in Sets and Categorical Data Using the Signature Tree

Nikos Mamoulis, David W. Cheung, and Wang Lian
Department of Computer Science and Information Systems

University of Hong Kong
Pokfulam Road, Hong Kong�

nikos,dcheung,wlian � @csis.hku.hk

Abstract

Data mining applications analyze large collections of set
data and high dimensional categorical data. Search on
these data types is not restricted to the classic problems of
mining association rules and classification, but similarity
search is also a frequently applied operation. Access meth-
ods for multidimensional numerical data are inappropriate
for this problem and specialized indexes are needed. We
propose a method that represents set data as bitmaps (sig-
natures) and organizes them into a hierarchical index, suit-
able for similarity search and other related query types. In
contrast to a previous technique, the signature tree is dy-
namic and does not rely on hardwired constants. Experi-
ments with synthetic and real datasets show that it is robust
to different data characteristics, scalable to the database
size and efficient for various queries.

1 Introduction

Similarity search is a core operation of many data
analysis tasks in data mining, multimedia and time-series
databases, biological and scientific databases. Database re-
search has primarily focused on the special case, where the
data and queries are points in a multidimensional space and
the domains of the dimensions are numerical. However, in
many applications multivariate analysis is applied on com-
plex data domains which do not have a natural order.

Consider, for example, a database � that contains con-
sumer transactions. Given a transaction � , corresponding
to a customer, a search problem is finding the most similar
transactions in the database, in order to provide recommen-
dations about items the customer would be interested in. If�

is the total number of available items, this problem can be
thought of as nearest neighbor search in an

�
-dimensional

space, where the (discrete) domain of each dimension is���	��

�
. A related problem is similarity search in a multi-

dimensional space, where the dimensions have categorical
domains. It is not hard to see that it is a special case of

the search problem in transactional data described above;
the items correspond to values of categorical attributes and
they are divided into � groups ��� � ��� ��������� ��� , which cor-
respond to the natural dimensions (i.e., the attributes). The
data are � -tuples ����� � ��� ��������� ����� , where �� is an element of
group �� . In this case the data tuples have fixed size and no
two items (i.e., values) of the same group co-exist in a tu-
ple; essentially, an attribute takes exactly one value in each
tuple.

Although these problems are fundamental in data anal-
ysis tasks, they have not received much attention from the
database literature, as opposed to the extensive work (e.g.,
[20, 18, 23, 21, 6]) for similarity search in low and high di-
mensional spaces of ordered domains. On the other hand,
categorical and set data types are ubiquitous. For example,
in most high-dimensional datasets of the UCI-KDD Archive
[22], collected by real application domains, the majority of
the attributes are categorical. In addition, set data types
(e.g., market basket transactions) are frequently used to de-
scribe complex data in object-oriented/object-relational sys-
tems [11].

In this paper we show how a hierarchical index can be
used to process efficiently similarity search and other re-
lated query types on sets and categorical data. In contrast
to a previous method [1], the signature tree (SG–tree) is
suitable for a dynamic environment with frequent updates
and does not rely on hardwired constants, which are hard
to define a-priori. The SG–tree is a natural extension of the
B ! –tree and the R–tree [13], found in many commercial
DBMSs. Thus, the index carries many advantages of these
structures; it is (i) easy to implement (sharing most of its
modules with them) and (ii) appropriate for various query
types.

The remainder of the paper is organized as follows. Sec-
tion 2 defines the problem of similarity search in sets and
reviews related work. In Section 3 we describe the hier-
archical indexing method. Section 4 shows how similar-
ity search and other related queries can be evaluated us-
ing the SG–tree. Section 5 includes an experimental study

which demonstrates the efficiency and applicability of our
approach on synthetic and real data. Finally, Section 6 con-
cludes the paper, with a discussion on issues not covered but
well-worth studying in the future.

2 Background and Related Work

In this section we formalize the similarity search prob-
lem. The data space is defined and also the similarity func-
tion we use throughout the paper. Then we review related
work with a focus on the previous method used to solve the
problem.

2.1 Definitions

Consider a set � of items, with cardinality � ��� , which
are available in a supermarket, and assume that a customer
transaction � can be modeled by a subset of � , indicating
the items the customer bought. We can map � to an � -
dimensional point, where each coordinate takes values from���	��

�

, or an � ��� -length bitmap, called signature:

Definition 1 Let � be an ordered collection of interesting
items. Let � be a subset of � containing the items bought
in a transaction. The signature ��� �	�
��� of � with respect to
� is an � ��� -length bitmap. For each � ��
�
 �
 � ��� , the � -th
bit of ��� �	�
��� is

iff the � -th item of � is present in � .

For example, let ��� ��� ��� ������� ��� ��� �
. Transactions

� � � ��� ��� �
and � � � ������� ��� �

can be represented by sig-
natures ��� ����� �����
��
�� � �

and ��� ����� ����� � �	

��

, respec-

tively. We now define some useful operations on signatures.

Definition 2 Let � be a signature, i.e. a fixed-length
bitmap. The area of � , denoted by �! ��� �"��� , is defined by
the number of 1’s in � . Let �
� � ��� be two signatures. Let # ,$

, and % denote the bitwise operations AND, OR and XOR,
respectively, on bitmaps of the same length. The overlap&(' !)�*��� � ����� between �
� and ��� is defined by �! ��� �*�
�+#,����� .
The difference -.� ��� �*��� � ����� of ��� from ��� is defined by
 �! ��� �"���(%/�*���(#0������� . Finally, ��� is said to contain or
cover ��� iff ���1#2�����3��� .

In other words, the overlap between two signatures is
the number of common 1-bits in them, and the difference
-.� ��� �*��� � ����� (non-commutative) is the number of 1-bits in
� � but not in ��� . Finally, ��� contains (or covers) � � if all set
bits in � � are also set in � � . For example, �! ��� �
��	

�� � �4�5

,
&(' !6�
��

�� �	��� � �

�� �,�

, -.� ��� �
��	

�� �	� � � �

�� �(�7
, and

��

��
covers both

��

�� �
and

� � �	

��
.

Thus, given two transactions � � � � � , �! ��� �*��� ����� � ���8�
� � � � , �! ��� �*��� �	�
� � �9�:� � � � � , &(' !6�"��� ����� � � � ��� ����� � ��� =
� � �6;�� �<� , -.� ��� �"��� ����� ��� � ��� ����� ���9� = � � �>=?� �@� , and ��� ����� �A�
contains ��� �	�
� ��� iff ��� ����� �A�B;C��� ����� �A�D����� �	�
� ��� . The

reason for which we define these operations separately for
transactions and signatures is that, as we will see later, they
apply not only for single transactions, but also for sets of
transactions. In addition, their computation on signatures is
cheap and straightforward.

Similarity functions like the Euclidean distance are in-
appropriate for set (and categorical) data [12]. We use the
hamming distance, a popular metric for this data space.
Other metrics with similar effects are the Jaccard coefficient
and the cosine function [16].1

Definition 3 Let � � � � � be two transactions. Their (ham-
ming) distance is defined by the number of items in either
transaction, but not in both of them: -.�E������� � � � � �F�G� � � =
� �@�AHI� � �J=K� �L� . Let ��� � ��� be two signatures. The distance
-.�E�����*��� � ����� between ��� and ��� is defined by �! ��� �"���M%N����� .

For example, consider two transactions � � � �
 � 7 ��O �
,

� � � � 7 � 5 �
. Their distance -P�Q�����
� � � � � � can be calculated

by -.�E�����

�� � �	
 � �	

�� � � �R� 5 . We are now ready to define
the similarity search problem in set spaces with which we
deal in this paper:

Definition 4 Let � be an ordered collection of interesting
items and let � be a database of transactions, such that
each �TS � is a subset of � . Let �VUW� be a query
transaction and X an integer smaller than the size of the
database � �Y� . The similarity search query retrieves from� the X -closest transactions to � with respect to the dis-
tance function.

Definition 4 is just one of the possible variations of sim-
ilarity search, modeled by the X -nearest-neighbors query.
There are several other variants which are useful in data
analysis tasks. In Section 4 we define some of the most pop-
ular ones and show how they can be processed efficiently,
using the SG–tree.

2.2 Related work

Similarity search in multidimensional spaces of numeric,
ordered attributes is a well-studied topic. When the data are
indexed by a hierarchical multidimensional access method
[8], like the R–tree [13], a branch-and-bound nearest neigh-
bor search algorithm [20, 15] can prune the search space ef-
ficiently. We propose a similar method to perform search on
the SG–tree. In [19, 5] this method is combined with a spa-
tial join algorithm [4] to evaluate similarity joins and clos-
est pair queries in low-dimensional spaces. As the dimen-
sionality increases, the effectiveness of R–tree to cluster to-
gether points close to each other degenerates and alternative

1Given two transactions Z+[, Z<\ , their Jaccard coefficient is defined by] ^�_9`L^�a�]] ^�_9bL^�a�] . Their cosine angle is defined by
] ^�_E`c^�a�]d] ^�_�] e d] ^�a�] .

2

methods are considered for nearest neighbor search. Some
(e.g., [18]) are based on dimensionality reduction, others
(e.g., [23, 21]) on compression and others (e.g., [6]) on data
or query skew.

However, extending these methods to operate on set and
categorical data is not straightforward. To our knowledge
the only method previously proposed for similarity search
in set and categorical data spaces is [1]. Due to its high rel-
evance to our approach, we describe it in detail in the fol-
lowing paragraph. The similarity search problem for sets
has also been studied in [11], where hash-based indexes
which provide approximate results are proposed. In this pa-
per, we deal with the problem of finding the exact answers
to queries, thus our method is not directly comparable to
these indexes. Finally, a similar hierarchical index to the
SG–tree was proposed in [7]. Nevertheless optimization of
insertions and splits has not been studied and the method
is tuned/tested only for exact retrieval of signatures. More-
over, as shown in [14] signature trees are not appropriate
for set equality or subset queries, which are best processed
by inverted indexes and hash-based indexes. In this paper
we demonstrate that the SG–tree is conversely suitable for
similarity search.

The related problem of clustering categorical data has
been studied during the past few years and several algo-
rithms have been proposed (e.g., [10, 12, 9]). These meth-
ods apply on a static set of categorical data and consider
the number of common neighbors as a metric of similarity
between two transactions. Using the same techniques for
nearest neighbor search requires preprocessing information
which may not be available in a dynamic environment.

2.2.1 The signature table

The signature table (SG–table) is a hash-based index, built
from a static set of market-basket data � . It is used to hash
the transactions into a set of buckets based on their similar-
ity to � frequent itemsets called signatures in [1]. In our
paper we will refer to them as vertical signatures, to distin-
guish them from the signature definition that we use.

The SG–table [1] is constructed in two steps. First a
minimum spanning tree algorithm is run to cluster the set
of items � into � groups each containing frequently cor-
related items. The grouping process starts by consider-
ing each item a separate cluster and progressively refines
the clusters by merging item pairs with the maximum co-
occurrence frequency. In order to achieve clusters whose
contents appear with approximately the same frequency in
some transaction, groups for which the total support in
the database of their contents exceeds a certain threshold
(called critical mass) are removed before they grow larger.

The itemsets of the resulting clusters formulate the set of
� vertical signatures, which are used to construct the SG–

A = {a,e}

B = {c,d}

C = {b,f,g}

T1 = {c,d}

T2 = {a,b,c}

T3 = {a,b,e}

T4 = {b,d,f,g}

T5 = {a,b,c,d,e}

T6 = {b,e,f}

S = {a,b,c,d,e,f,g}

A B C

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

signature table
(in memory) transactions

(in disk)

{T2}

{T1}

{}
{T5}

{T3}
{}

{T4,T6}

{}

(a) dictionary, vertical signatures,
and transactions

(b) the signature table

Figure 1. Example of signature table

table and hash the transactions. Let ! be a small constant
called activation threshold. If a transaction � has at least !
common items with a vertical signature � (� �2;�� ���C!), �
is said to activate � . Based on which vertical signatures a
transaction activates it is hashed into one of the

7��
entries

of the SG–table. Figure 1 shows an example of a signa-
ture table and a set of transactions

� � � ��������� ��� � hashed into
it. The items in the dictionary � are split into three groups
 �
	 �
�

, and the activation threshold is set to 2. For exam-
ple, transaction �
� activates only the vertical signature
(� ���B; ?��� 7

), and is hashed to the partition with binary
code

�� �
.

The index is used to answer similarity queries as follows.
The query transaction is compared to each signature � and
a lower bound for the distance between � and the trans-
actions indexed by the table entries, depending on whether
their � -th bit is

�
or

, is computed. These lower bounds are

accumulated for each table entry in an (optimistic) estima-
tion of the distance between � and the transactions indexed
by that entry. The table entries are sorted in increasing or-
der of their lower-bound distance and the hash buckets are
read in this order to be compared with � . If after reading a
partition the distance between � and the X -nearest neighbor
found so far is smaller than the optimistic bound in the next
table entry (in the sorted order) the search stops, since none
of the remaining entries may point to a closer transaction in
the worst case (see [1] for more details).

Although the signature table can be fast for nearest
neighbor search queries, it suffers from certain drawbacks.
First, its performance is sensitive to various parameters
(number of vertical signatures, critical mass, activation
threshold) which are hard to determine a-priori and have to
be tuned to achieve good performance. Second, it is appro-
priate for static data, on which a clustering algorithm has to
be applied in order to determine the vertical signatures. The
preprocessing cost is rather high and the index is sensitive
to data updates (which may change the correlations between
the items and their optimal grouping). Thus expensive pe-
riodic re-organization of the index is required in a dynamic
environment. Finally, the SG–table is not efficient when the

3

memory resources are limited. The experiments in [1] in-
dicate that its performance drops fast as the space allocated
for the memory-resident table decreases. Moreover, since
the size of the table is hardwired at construction time, it
does not adapt to dynamic changes in memory resources.
In the next section we show how a hierarchical index can
alleviate these problems.

3 The Signature Tree (SG–tree)

A nice property of the signatures is that we can use the
same representation (i.e., a bitmap) for transactions and
groups of transactions. In other words, assuming that � is a
group of transactions, we can characterize it by a signature
which has 1 in a position iff the corresponding item exists
in at least one transaction in � . Formally:

Definition 5 Let � be a set of transactions. The signature
of � is defined by

��� �	��� �F� ��� ���������� ���F�
	����� ��� ������� (1)

This property is employed by a simple, yet efficient, hi-
erarchical index for signatures. The SG–tree (or signature
tree) is a dynamic balanced tree similar to R–tree [13] for
signature bitmaps. Each node of the tree corresponds to a
disk page (using multipage nodes is a potential implemen-
tation) and contains entries of the form �*��� � ��� �Q!
� . In a leaf
node entry, ��� � is the signature of the transaction and

� �Q! is
a transaction-id.2 The signature of a directory node entry
is the logical OR of all signatures in the node pointed by it
and

� �Q! is a pointer to this node. In other words, the signa-
ture of each entry is the signature of all transactions in the
subtree pointed by it. All nodes contain between

�
and

�

entries, where
�

is the maximum capacity and
�
 ��
 7

,
except from the root which may contain fewer entries. Fig-
ure 2 shows an example of a signature tree. The leaf entries
contain the signatures and ids of nine transactions. In this
graphical example the maximum node capacity

�
is three

and the signatures are six bits long. In practice,
�

is in the
order of several tens and the length of the signatures in the
order of several hundreds.

The SG–tree is not useful only for restricted types of
queries, but can serve as a general-purpose index for set
data. In Section 4 we will describe how it can be used to
evaluate similarity search queries. Here we will discuss
briefly how it can be used for simple queries, like itemset
containment queries, e.g., find all transactions containing
items

�
and

�
. Assuming that � � ��� ��� ������� ��� ��� �

, this
2The transaction-id, although not necessary during nearest neighbor

search, may be useful when search on the tree is combined with other op-
erations (e.g., there may be additional features related to a transaction, like
customer class).

100000 100010

T1 T2

001010 001100

T3 T4

001100

T5

110000 011000

T8 T9

100001 010001

T6 T7

100010 001110 110001 111000

101110 111001

level 0

level 1

level 2

Figure 2. Example of a signature tree

query can be transformed to a signature ��� �	� ����� �	
�� � �

and the tree is traversed in a depth-first fashion to evaluate it.
The search algorithm follows entries whose signature con-
tains ��� �	� ��� ; if the signature of an entry does not contain
��� ��� � � , no transaction indexed in the subtree below it can
participate in the result. Consider for example the tree of
Figure 2. Since the first entry of the root has 0 in the sixth
position, we know that no transaction indexed in the sub-
tree under it can participate in the query result. On the other
hand, the second entry should be followed and the right-
most node of the next level (i.e., level 1) is visited. Only the
first entry of this node contains the query signature, and it is
followed. Finally, the query result is found in the third leaf
node. The qualifying entries are highlighted in the figure.
Observe that the number of visited pages in this case is op-
timal. On the other hand, assuming that we are looking for
transactions containing item

�
, multiple paths are traversed

and a significant part of the tree is accessed. Therefore the
efficiency of the tree increases if transactions with similar
signatures are clustered together in the leaf nodes. This
observation holds for all query types including similarity
search.

3.1 Construction and updates

The insertion algorithms of hierarchical access methods
aim at a common goal: to bring together indexed units
which have small distance between them and separate well
ones with large distance. The B ! –tree uses the natural or-
der of the indexed domain to solve the problem optimally.
Multidimensional access methods like the R–tree employ
heuristics to achieve this goal, since there is no total or-
dering of objects in space that preserves spatial proximity
[8]. Figure 3 shows the generic insertion algorithm used
for these hierarchical access methods. When a new entry�

needs to be inserted, the algorithm is called with param-
eters the root node and

�
and recursively traverses the tree

in order to find the most appropriate leaf node to accommo-
date

�
. If the leaf node overflows a split algorithm divides

the entries into two groups and moves one group to a newly
created node. A pointer to the new node is returned to the
parent directory node and a new entry is created for it. Splits
are recursively propagated upwards.

The core components of the ��� � � !�� function are������� � � ��� � �Q! ��� and � ��� � � . The first chooses the most ap-

4

function ���������
	 (Node � , Entry �): Node ����
���	����
�����
if � is a leaf node then �

insert � into � ;
if � overflows then
���������
��� := ����
���	������ ;
return ��������� �!� ;"

else � /* � is a directory node */
����#$:= %�&��
�
��� ��'�(�	��)���!�*�,+��
� ;
����
-��	����
��� := ���.�����
	��*����#$	�+/� � ;
if ����
���	����
���102 �3'3
-
 then

insert new entry pointing to ����
-��	����
��� in � ;
if � overflows then
���������
��� := ����
���	������ ;
return ��������� �!� ;"

return �3'3
-
 ;"

Figure 3. Insertion in balanced tree indexes

propriate entry of the current node � in order to insert
�

un-
der it. The second divides the entries of an overflowed node
into two groups. Both functions should be tuned to maxi-
mize the efficiency of the tree. For the SG–tree, we need to
define quality criteria based on which these functions oper-
ate. The directory node entries of a good SG–tree should
have (i) a small area3, which intuitively decreases the dis-
tance between the transactions in the subtrees indexed by
them and (ii) small overlap between them, if they are at the
same level, which intuitively discriminates as much as pos-
sible the branches of the search process and maximizes the
data that are pruned during search.

The
������� � � ��� � �Q! ��� algorithm we used in our SG–tree

implementation can be described as follows. When a entry�
is to be inserted in the subtree under node � three cases

are considered. In the first case, only one entry
� FS � con-

tains the new entry
�

and it is directly chosen. In the second
case, multiple entries contain

�
. The algorithm chooses the

one with the minimum area, since this refines the structure
(in analogy to choosing the smaller MBR that contains the
new entry in R–trees). Finally, the third case applies when
no
� S � contains

�
. The algorithm in this case picks the

entry which requires the smallest area enlargement to index�
under it, or more formally the entry for which -.� ��� � � ��� �

is the minimum. Ties are broken by choosing the entry with
the minimum area. We also implemented another version of��� ��� � � ��� � �Q! ��� that picks the entry which, after extended,
has the minimum overlap increase with the rest of the en-
tries in the same node. Nevertheless, through experimenta-
tion we found that the minimum area enlargement heuristic
creates trees of the same quality at a much lower insertion
cost.

3For simplicity, we extend the function definitions of Section 2.1, to
apply on SG–tree node entries, e.g., 4��)��5����
�7684��
� 5$����9 ����:;� .

For the split algorithm of the SG–tree we consider sev-
eral alternatives. The first one is based on the quadratic-split
method of the R–tree [13]. We first pick the pair of entries
in the overflowed node with the maximum distance. We call
these two entries seeds and assign them to two groups, with
initial signatures same as the seeds. The rest of the entries
are assigned to the group that requires the smallest signa-
ture area enlargement to include them. Ties are broken by
choosing the group with the minimum area. In case of a
new tie the group with the minimum number of entries is
selected. If at some point the cardinality of a group plus
the number of remaining entries equals

�
, the remaining en-

tries are assigned to the group to avoid underflow in the new
node.

We also consider two more approaches for splitting a
node. The first is based on hierarchical clustering with
group average [16]. Initially, all entries are considered
as clusters. Then clusters are hierarchically merged until
only two remain; these will form the new nodes after the
split. The next pair of clusters � � � �
� � � to be merged is
the one for which the average distance -.�E����� � � � ��� � ��� � � ��� �)�
between pairs � � � ��� � � of entries

� � S � � ��� � S � � in
them is the smallest. In order to avoid under-utilization of
a node, when a cluster grows above a threshold (accord-
ing to

�
) the other clusters are immediately merged and the

algorithm terminates. We denote this method by � � � ��� � � .
The last split policy is based on hierarchical clustering ac-
cording to the minimum spanning tree; the next pair of clus-
ters � � � �
� ��� to be merged is the one containing the closest
pair of entries � � � ��� ��� ��� � S � � ��� � S � � . We denote this
method by < ��� � ��� � � . In Section 5 we compare ! � ��� � � ,� � � ��� � � , and < ��� � ��� � � .

Finally, deletions in the SG–tree are handled as in the R–
tree; if a leaf node underflows, it is deleted, the entries are
put in a temporary buffer and reinserted to the tree. This
increases space utilization and the quality of the tree.

3.2 Compression

In many cases the signatures are very sparse, i.e., a single
transaction contains only a small percentage of the possible
items. Only few bits are then set in the signatures and saving
them as bitmaps would waste a lot of space. In order to
alleviate this problem we use a compression technique; if a
bitmap is too sparse we choose to encode the signature as
a list of positions, where the bits are set (or else as a list
of item-ids). For example a 256-bit signature having only
10 1’s would be encoded by a sequence of 10 characters
indicating the positions of the 1’s which occupy 10 bytes as
opposed to 32 bytes needed to store the bitmap. We also
store an extra flag-byte, which stores the number of 1’s and
also indicates that the next bytes contain the positions of 1’s.
Other compression schemes can also be employed, but it is

5

out of the scope of this paper to study their effectiveness.

4 Query Processing

In this section we describe how the branch-and-bound
techniques for similarity search on R–tree-like structures
can be adapted to perform search on the SG–tree efficiently.
We discuss first the most common and simple types of sim-
ilarity search and then some more complex queries.

4.1 Similarity search

Given a query transaction � , we can identify two types
of similarity search queries on a database � of transactions,
which constitute components of various data analysis tasks.
The first is the similarity range query, asking for all � S �
within some distance � from � . The second is the nearest
neighbor search query, asking for the X closest � S � to � ,
given a (small) constant X . Both queries can be evaluated
efficiently if the database is indexed by an SG–tree. The
search algorithms are adaptations of the equivalent ones that
apply on an R–tree and they take advantage of the coverage
property of the entries in the directory nodes to derive dis-
tance bounds for the transactions indexed by them. We first
confine our discussion on the evaluation of nearest neighbor
queries, where X =1 (i.e., simple nearest neighbor queries)
and then show how the same techniques can be extended
for the other cases.

Figure 4 shows a depth-first search algorithm for nearest
neighbor queries on R–trees [20], adapted for the SG–tree.
Two variables

� �
and

� � � �E��� are initialized to � � � � and
� , corresponding to the nearest neighbor found so far and
its distance from � . The branch-and-bound - � � � � ��� ! ���
algorithm is initially called for the root of the SG–tree.
It recursively traverses the tree, following the entries that
are most likely to contain the query result. When visit-
ing a directory node, the entries

�
are sorted according to

-.� ��� � � ��� � ��� �)� , which provides a lower (optimistic) bound
for the nearest neighbor of � in the subtree indexed by

�
.

Intuitively, by visiting the subtrees in this order, the chances
of finding early the result are maximized. Ties between en-
tries having the same lower bound are broken by picking
first the one with the minimum area. This secondary sort-
ing key is due to the fact that among several subtrees with
the same number of common items with � the one with the
smallest area is more likely to index an entry with exactly
these common items (i.e., the optimistic nearest neighbor).
In other words, given two groups of transactions � � , � � ,
where � � � �L� � � � � and �! ��� �*��� ��� � � �9��� �! ��� �*��� �	� � � ��� ,
and an itemset � that could be included in both � � and � �
(i.e., both ��� ��� ����� and ��� ��� � ��� cover ��� �	���<�), probabilis-
tically the group with the smallest area (i.e., � �) is more

likely to contain � .4

function ��� ���.��� 5��)% & (Node � , 	 ,
�
 , int
�
 ������) �
if � is a directory node then �

sort entries � in � in ascending order of � �
������	 +/�!9 ����: � ;
break ties by placing first the entries with the smallest area;
for each entry � in this order do /* recursive call */

(1) if � �
������	 +��!9 � ��:;����
�
 �)� � 	 then
��� �3�.��� 5��)% & (�!9 �$	�� , 	 ,
�
 ,
�
 ������);

else break for loop; /* no need to visit other subtrees */"
else /* � is a leaf node */

for each entry � in � do
(2) if � ����	���	1+���9 ����:;����
�
 ������	 then /* new NN found */

�
 := � ;
�
 ������	 := � � � 	���	 +/�!9 � ��:;� ;"

Figure 4. A depth-first search algorithm for
NN queries

The nodes under the entries are visited in this order. If
the optimistic bound for some subtree is greater than the
distance of the nearest neighbor found so far, search is not
required for this subtree and the remaining ones in the or-
der, since they may not contain a closer neighbor to the one
already found. When a leaf node is visited during the search
process, the distances between � and all its entries are com-
puted and the bounds

� �
and

� � � �E��� are updated if a
closer neighbor is found.

The search algorithm of Figure 4 is appropriate for find-
ing one nearest neighbor of � . It can be easily adapted
for finding all nearest neighbors with the same (minimum)
distance from � , by maintaining a set of current nearest
neighbors instead of a single variable

� �
, and changing

the predicates in lines (1) and (2) of the algorithm to ‘

’.
In the general problem, where the X nearest neighbors are
required (X -NN search) the parameter

� �
is replaced by a

priority queue of size X , organizing the X nearest neighbors
found so far, and

� � � �E��� bound corresponds to the first el-
ement of the queue, i.e., the one with the largest distance,
among the X -NN found so far.

The algorithm of Figure 4 can also be used to evaluate
similarity range queries. In this case, the

� � � �E��� bound
is replaced by the (fixed) query parameter � and all transac-
tions within this distance from � are retrieved. The direc-
tory entries with -P� ��� � � ��� � ��� � ����� are pruned as before,
filtering out large parts of the data early.

Finally, we need to mention that the - � � � � ��� ! ��� al-
gorithm of Figure 4 is, in fact, sub-optimal for nearest
neighbor search on the SG–tree. An optimal

	 � � � � ��� ! ���
algorithm (in terms of node accesses) follows a best-first
search paradigm [15] and employs a priority queue. This
queue organizes � � � -.� ��� � � ��� � ��� �)� � tuples for directory

4 � [has higher density than � \ and thus higher probability to include�
.

6

node entries. The first element of the queue contains al-
ways the entry with the minimum -.� ��� � � ��� � ��� � � and ties
are broken using the minimum area as above. Initially,
the queue contains the root entries, and the nearest neigh-
bor information (

� �
and

� � � �E���) is initialized as in
- � � � � ��� ! ��� . At each step

	 � � � � ��� ! ��� gets the en-
try

���
in the first element of the queue and the correspond-

ing SG–tree node is loaded. If it is a non-leaf node, its
entries are inserted into the queue. Otherwise, the trans-
actions are compared with � to potentially update

� �
and� � � �Q��� . If at some point, after removing a queue element� �

, -.� ��� � � ��� � � ��� �)� � � � �Q��� , search stops since we know
that the remaining elements of the queue may not point to a
closer leaf entry than the already found

� �
.

4.2 Other query types

Since the SG–tree has similar properties with the R–tree,
other data analysis queries can be evaluated by adapting the
corresponding algorithms used for R–trees. In this section
we provide some examples, without intending to exhaus-
tively cover all potential query types. The evaluation of
these queries is based on tree traversal; the signatures at the
upper levels of the tree(s) are used to derive some bounds
that facilitate pruning large parts of the search space.

An extension of the nearest neighbor search query is
when the query transaction is not a simple transaction � ,
but a set of transactions � and we wish to find the trans-
action � in � which minimizes an aggregate function
of its distances from the queries in � [1]. An example
query is ‘find the transaction with minimum average dis-
tance from � � � � � � � � � � � � ’. More formally, assuming
that

�
is an aggregate function (e.g. average), the near-

est neighbor of � in � is defined by: � S �������6�
	,S� ��� �*-.�E����� � � �(� ��� � S
�(� � � �*-.�E����� � � ��	 � ��� � S
�(� .
This query can be easily evaluated by applying the nearest
neighbor search algorithms described in the previous sec-
tion. Consider for simplicity the - � � � � ��� ! ��� algorithm.
At intermediate nodes the entries are sorted using the ag-
gregate of the -.� ��� � � ��� � ��� � � of all � S�� . This value
is used to prune subtrees, if the lower distance bounds are
monotonic to the application of the aggregate function. The
most popular aggregate functions (e.g., weighted average,
min, etc.) have this monotonicity property.

Other query types used for automated data analysis tasks
like clustering are similarity join queries [19] and closest
pairs queries [5]. They can be thought of as extensions
of the similarity range query and nearest neighbor search,
respectively. The similarity join query retrieves from two
datasets � � and � � the pairs of transactions ��� � � � � � , � � S� � and � � S � � , such that -.�E������� � � � � � � � , where �
is a small constant. The closest pairs query retrieves from
two datasets ��� and � � the X closest pairs of transactions

��� � � � ��� , � � S � � and � � S � � . Both query types have
been defined and studied before for numerical data, but to
our knowledge not for set data and categorical data. In-
dexing � � and � � using SG–trees can facilitate processing
them, if we use extensions of the search algorithms defined
for R–trees (see [19, 5] for details).

5 Experimental Evaluation

In this section we evaluate the efficiency of the SG–tree
for various similarity search queries over synthetic and real
datasets. We implemented the SG–tree and the SG–table
[1], the previous method for similarity search in market-
basket data. The parameters � and activation threshold !
for the SG–table were tuned to � �
��

and ! �

.5 For

the SG–tree we used a node size of 4K. The experiments
were run on a PC with a Pentium III 800MHz processor
and 256MB of memory, running Linux 2.4.7-10. In the next
subsection we describe the characteristics of the synthetic
and real data used in the experiments.

5.1 Description of the datasets

We generated synthetic market basket data using the gen-
erator from [2, 1], which produces large collections of trans-
actions simulating actual customer behavior. Given a set of� �
�� � �

items (i.e., � ���@� �
), initially a set of �0� 7 � � �

maximal itemsets is generated, modeling maximal itemsets
frequently found in transactions. The number of items in
each itemset is a random variable from a Poisson distribu-
tion of mean value I. The items in the first itemset are picked
randomly. To simulate the fact that common items are often
found in frequent itemsets, each successive itemset is gener-
ated by picking half of the items from the previous one and
generating the other half randomly. Each of the � itemsets
are assigned a weight from an exponential distribution with
unit mean. The generated transactions are noisy combina-
tions of these itemsets. The size of a transaction follows a
Poisson distribution of mean value T. Itemsets are randomly
chosen by rolling a weighted � -sided die, according to their
weights, and inserted to a transaction until it is full. If an
itemset does not fit to a transaction it is inserted to it with
probability

� � �
. Some noise is added while adding an item-

set in the transaction; we keep dropping an item from the
itemset as long as a uniformly random number between 0
and 1 is less than

�	���
. More details about the generator can

be found in [2, 1].
Thus, each dataset is characterized by three parameters:

the mean transaction size T, the mean size of a potentially
5Small values of � lead to fewer entries on the SG–table and a less

refined data partitioning. On the other hand, large values of � assign few
transactions to each table entry, increasing the number of random accesses
and the costs of comparing 	 to each table entry and sorting them.

7

large itemset I, and the cardinality D. For example, a dataset
with 200,000 transactions of mean size 10 and large item-
sets of mean size 6 is denoted by T10.I6.D200K. By tuning
these parameters we were able to generate a wide range of
datasets with various characteristics.

We also experimented with a real, categorical dataset
from the UCI KDD Archive [22]. The dataset contains cen-
sus data extracted from the 1994 and 1995 current popula-
tion surveys conducted by the U.S. Census Bureau. Each tu-
ple corresponds to an individual and includes demographic
and employment related information. After removing some
numerical attributes and cleaning the data (e.g., missing val-
ues were replaced by an extra special value for each at-
tribute), we ended up with 36 categorical attributes, the do-
main sizes of which vary from 2 to 53 (the total number
of values is 525). The data are split into two datasets with
200K and 100K tuples, respectively. We indexed the first
dataset (which we denote as CENSUS) and we used ran-
dom samples from the second for querying it.

5.2 Comparison between split policies

In the first experiment we compare the three SG–tree
split policies described in 3.1. We generated three (uncom-
pressed) SG–trees for the CENSUS dataset, using ! � ��� � � ,� � � ��� � � , and <2��� � ��� � � , respectively. Table 1 compares the
characteristics of the resulting trees and shows their relative
performance averaged on 100 nearest-neighbor queries.

Table 1. Comparison of the three split policies
comparison metric � ����
-��	 :;5 ����
���	 � ��	 ����
-��	
average 4��)��5����
� at level 1 90 73 74
average 4��)��5����
� at level 2 210 158 154
average 4��)��5����
� at level 3 458 325 348
insertion cost (msec) 0.331 0.655 0.645
% of data accessed 15.79 4.78 5.72
CPU time (msec) 119 34.6 41.8
I/O accesses 862 266 323

All three trees have 4 levels. The entries in level 0 (leaf
level) have fixed area 36 (since all data tuples have 36 val-
ues). The first three rows of Table 1 show the average
area of the entries at levels 1,2, and 3 (root). This can
be considered as a quality metric for the three split poli-
cies; the smaller the average area of the entries at the in-
termediate levels, the better the quality of the clustering.
The � � � ��� � � and < ��� � ��� � � policies construct much better
trees than ! � ��� � � , and this can be validated from the last
three rows of the table which show the average pruning (in
terms of data accessed), the average CPU cost, and average
number of node accesses at nearest neighbor search queries.
On the other hand, ! � ��� � � has the lowest average insertion
cost and tree construction time. Experimentation with other

datasets shows similar results. In the sequel we use � � � ��� � �
as the standard split policy for the SG–tree, since it achieves
the best quality of the three at an acceptable cost.

5.3 NN search on synthetic data

We compared the performance of SG–table and SG–tree
on nearest neighbor search by generating a series of syn-
thetic datasets and using the same itemsets and parame-
ters to also generate a number of queries for each dataset.
Figures 5 through 12 show the relative performance of the
methods for various parameter settings. For each experi-
mental instance, the results were averaged over 100 queries.
Figures 5, 7, 9, 11, and 12 show in combined diagrams the
pruning efficiency (bars) and computational cost (lines) of
the two methods. The pruning efficiency is measured in
terms of the transactions accessed and compared with the
query transaction (percentage). Figures 6, 8, and 10 com-
pare the number of random I/Os on the two indexes for three
of the five experimental instances.

Figures 5 and 6 show the performance of the indexes
when the size of itemsets is fixed (I=6), the size of the
dataset is 200K, and the size of the transactions (T) varies.
When T is small, both indexes have similar performance,
but as T increases the SG–tree starts to (slightly) outper-
form the SG–table, managing to prune more transactions.
Especially the I/O cost difference is high for large values
of T, since in that case the distance of the nearest neighbor
usually increases and the contents of many entries of the
SG–table need to be visited.

Figures 7 and 8 show the relative costs for T=30 as the
size of the large itemsets (I) increases. This increase gen-
erates datasets where the transactions are better clustered
having smaller average distance between them and favors
both structures. Observe that the relative performance be-
tween them increases, and the SG–tree becomes signifi-
cantly faster than the SG–table when both T and I are large.

In the third experimental instance (Figures 9 and 10) we
fix the ratio I/T to 0.6 and increase the transaction size. The
rationale is to test the robustness of the indexing methods to
the dimensionality of the problem, when the data skew re-
mains constant. Clearly, the SG–tree is robust to the trans-
action size, whereas the SG–table fails to index well large
transactions even if they contain well-clustered data. This
observation is also validated at the comparison of the struc-
tures for real categorical datasets of high dimensionality
(see Section 5.4).

We also tested the robustness of the two structures to
the database size, by fixing T=10 and I=6 (two parameter
values for which the SG–table performs well) and increas-
ing the dataset cardinality D. Figure 11 shows that the rel-
ative pruning efficiency of the SG–tree increases with the
database size. The I/O cost diagram is omitted since it

8

0

5

10

15

20

25

30

35

40

10 15 20 25 30

average number of i tems in transactions (T), I=6, D=200K

%
 o

f
d

at
a

p
ro

ce
ss

ed

0

50

100

150

200

250

300

350

400

450

500

ti
m

e(
m

se
c)

SG-table(%data)

SG-tree(%data)

SG-table(time)

SG-tree(time)

Figure 5. Pruning and CPU time, varying T

0

2000

4000

6000

8000

10000

12000

14000

10 15 20 25 30

average number of i tems in transactions (T), I=6, D=200K

n
u

m
b

er
 o

f
ra

n
d

o
m

 I/
O

s

SG-table

SG-tree

Figure 6. Random I/Os, varying T

0

5

10

15

20

25

30

35

40

6 12 18 24

average length of large itemsets (I), T=30, D=200K

%
 o

f
d

at
a

p
ro

ce
ss

ed

0

50

100

150

200

250

300

350

400

450

500

ti
m

e(
m

se
c)

SG-table(%data)

SG-tree(%data)

SG-table(time)

SG-tree(time)

Figure 7. Pruning and CPU time, varying I

0

2000

4000

6000

8000

10000

12000

14000

6 12 18 24

average length of large itemsets (I), T=30, D=200K

n
u

m
b

er
 o

f
ra

n
d

o
m

 I/
O

s

SG-table

SG-tree

Figure 8. Random I/Os, varying I

0

2

4

6

8

10

12

14

16

T=10,I=6 T=20,I=12 T=30,I=18 T=40,I=24 T=50,I=30

Varying T and I, I/T=0.6, D=200K

%
 o

f
d

at
a

p
ro

ce
ss

ed

0

20

40

60

80

100

120

140

160

ti
m

e(
m

se
c)

SG-table(%data)

SG-tree(%data)

SG-table(time)

SG-tree(time)

Figure 9. Pruning and CPU time, fixed I/T

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T=10,I=6 T=20,I=12 T=30,I=18 T=40,I=24 T=50,I=30

Varying T and I, I/T=0.6, D=200K

n
u

m
b

er
 o

f
ra

n
d

o
m

 I/
O

s

SG-table

SG-tree

Figure 10. Random I/Os, fixed I/T

0

1

2

3

4

5

6

7

100 200 300 400 500

Dataset cardinali ty, T=10, I=6

%
 o

f
d

at
a

p
ro

ce
ss

ed

0

10

20

30

40

50

60

70

80

90

ti
m

e(
m

se
c)

SG-table(%data)

SG-tree(%data)

SG-table(time)

SG-tree(time)

Figure 11. Pruning and CPU time, varying D

0

10

20

30

40

50

60

0 1 to 3 4 to 10 11 to 20 >20

distance of nearest neighbor (T30.I18.D200K)

%
 o

f
d

at
a

p
ro

ce
ss

ed

0

100

200

300

400

500

600

700

800

ti
m

e(
m

se
c)

SG-table(%data)

SG-tree(%data)

SG-table(time)

SG-tree(time)

Figure 12. Pruning and CPU time, var.
���������	�

9

shows a pattern similar to the CPU cost (as in the previous
experiments).

During the experiments we observed that queries hav-
ing a close nearest neighbor were processed fast using both
structures, whereas for cases with distant neighbors the
SG–tree was significantly faster than the SG–table. We
validated this observation by running 1000 queries on the
T30.I18.D200K dataset and averaging the query costs for
various distance ranges of the nearest neighbor. Figure 12
shows the average pruning and CPU cost for five distance
ranges. When the distance is small search is fast for both
methods (actually for distances in the range 1–3, the SG–
table outperforms the SG–tree). However the distant cases
are handled much faster by the SG–tree, showing that this
access method is more robust to ‘outlier’ queries.

As a general conclusion from this set of experiments, the
SG–tree is a more efficient and robust access method than
the SG–table, in addition to its other inherent advantages
(dynamic data handling, independence to hard-wired con-
stants). In the next subsection we compare the indexes for
other query types on both synthetic and real data.

5.4 Real data and other queries

Figures 13 and 14 show the performance of the indexes
for X -NN queries on the T30.I18.D200K synthetic dataset
and the CENSUS dataset, respectively, for various values
of X . The results for each experimental instance were aver-
aged over 100 queries. In both figures, for small to medium
values of X the SG–tree is significantly faster than the SG–
table. When X is large (�
�� � �

), the fraction of the data
that need to be visited becomes too large for the indexes
to be useful. This is due to the fact that the search space
becomes less appropriate for search. For example, when
X �
�� � � �

we observed that the average distance of the
X -th neighbor is very large (31.81 for T30.I18.D200K and
18.06 for CENSUS) and very close to the average distance
of all transactions from � . This is due to the ‘dimension-
ality curse’ effect [3] often observed in high-dimensional
search problems. Observe, that the SG–tree is less sensitive
to this effect, since its performance degenerates at a smaller
pace, especially for the real dataset.

We also compared the indexes for similarity range
queries (Figures 15 and 16). The same datasets and queries
as before are used and the distance threshold from the query
varies from 2 to 10. For �N� 7

, the SG–table outperforms
the SG–tree on the synthetic dataset. In all other cases the
tree is much faster. Observe that on the real dataset, in par-
ticular, for both X -NN queries and range queries the per-
formance difference quite large in favor of the tree. This
indicates that the structure can perform very well in real life
cases.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000

k-nn search, varying k (T30.I18.D200K)

%
 o

f
d

at
a

p
ro

ce
ss

ed

0

200

400

600

800

1000

1200

1400

ti
m

e(
m

se
c)

SG-table(%data)

SG-tree(%data)

SG-table(time)

SG-tree(time)

Figure 13. � -NN queries (T30.I18.D200K)

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000

k-nn search, varying k (CENSUS)

%
 o

f
d

at
a

p
ro

ce
ss

ed

0

100

200

300

400

500

600

ti
m

e(
m

se
c)

SG-table(%data)

SG-tree(%data)

SG-table(time)

SG-tree(time)

Figure 14. � -NN queries (CENSUS)

5.5 Dynamic data changes

In this experiment we compare the structures simulat-
ing a case where the nature of the data changes dynami-
cally. We generated a synthetic dataset T10.I6.D100K and
built an SG–table and SG–tree for it. We then gradually
updated the structures by inserting batches of 100K trans-
actions each with the same characteristics (i.e., T=10, I=6),
but putting different seeds to the random generator (i.e., the
large itemsets used were different for each batch). We ran
nearest neighbor queries on the two structures after each in-
sertion phase. The queries for phase

�
(after batch

�
has

been inserted,

 �K
 �

) are generated as follows. For
each query (i) a random number � from 1 to

�
is chosen and

(ii) the generator parameters (i.e., large itemsets) for batch
� are used to produce the query. For example, a query for
the phase where the dataset contains 300K data is generated
using randomly one of the generators of batches 1, 2 or 3.

Figure 17 shows the average pruning efficiency and CPU
time of the two structures. Initially, both have similar per-
formance, but as more data with different characteristics are
inserted into the structures the performance of the SG–table
degenerates, since it is optimized for the first 100K data.

10

0

5

10

15

20

25

30

35

40

2 4 6 8 10

similarity range queries, varying epsilon (T30.I18.D200K)

%
 o

f
d

at
a

p
ro

ce
ss

ed

0

50

100

150

200

250

300

350

400

ti
m

e(
m

se
c)

SG-table(%data)

SG-tree(%data)

SG-table(time)

SG-tree(time)

Figure 15. Range queries (T30.I18.D200K)

0

10

20

30

40

50

60

70

80

2 4 6 8 10

similarity range queries, varying epsilon (CENSUS)

%
 o

f
d

at
a

p
ro

ce
ss

ed

0

50

100

150

200

250

300

350

400

ti
m

e(
m

se
c)

SG-table(%data)

SG-tree(%data)

SG-table(time)

SG-tree(time)

Figure 16. Range queries (CENSUS)

On the other hand, the SG–tree is robust to updates and ex-
hibits very good query performance, since each batch con-
tains skewed data (generated from a different collection of
large itemsets).

6 Conclusions and Future Work

We presented a hierarchical indexing method for simi-
larity search in sets and categorical data. The SG–tree is a
disk-based height-balanced tree that organizes fixed-length
bitmaps and is appropriate for various query types. We have
shown how several branch-and-bound methods, which ap-
ply on R–tree-like structures, can be adapted for efficient
similarity search on the SG–tree. Extensive experimental
evaluation has shown that the SG–tree is in most cases much
faster than the SG–table, a previous, hash-based index. The
advantages of the SG–tree can be summarized as follows:

� It is efficient and robust to various data types (both cat-
egorical and set data) and characteristics (cardinality,
density, dimensionality). It is a versatile structure that
can be used for several query types.

� The tree is dynamically adapted to updates and re-

0

2

4

6

8

10

12

100 200 300 400 500

Dataset cardinali ty, T=10, I=6

%
 o

f
d

at
a

p
ro

ce
ss

ed

0

20

40

60

80

100

120

140

160

180

200

ti
m

e(
m

se
c)

SG-table(%data)

SG-tree(%data)

SG-table(time)

SG-tree(time)

Figure 17. NN search after dynamic updates

quires no preprocessing of the data. Thus it can be
useful for analyzing data which change dynamically
over time.

� It relies on no hardwired constants, and requires no
tuning using a-priori defined parameters.

� It is a disk-based, paginated data structure, so it can
operate with limited memory resources, and dynami-
cally changing memory resources. Caching policies,
previously used for the B ! –tree and the R–tree can be
seamlessly applied on this structure.

There are several directions for extending the current
work. In our study we used hamming distance as the sim-
ilarity metric. However, the SG–tree can also be defined,
tuned and searched for other set theoretic similarity met-
rics. For example if the Jaccard coefficient is used, the
lower distance bound (in fact the upper similarity bound)
for nearest neighbor search can be defined by �! ��� � � =� � ��� �)�
 �! ��� � � � . We plan to test the effectiveness of the
structure using alternative metrics.

Another direction for future work is to study methods for
bulk-loading SG–trees, instead of inserting the data one-
by-one. We can adapt categorical clustering algorithms
[12, 9] for this purpose. Another approach is to sort the
transactions using gray codes as key, in analogy to using
space-filling curves for bulk-loading multidimensional data
to an R–tree [17]. Alternatively, hashing techniques can
be used to group similar signatures together. The result-
ing ‘globally-optimized’ tree could have much better qual-
ity characteristics, while being built faster. In a reverse di-
rection, we can investigate whether the SG–tree can be used
for clustering large, dynamic collections of set and categor-
ical data. The cost of existing methods is at least

& � � � � and
the tree could be used to derive good clusters much faster
(e.g., by merging the leaf nodes using their signatures as
guides).

Finally, we plan to empirically test the efficiency of
the tree to the query types, discussed in Section 4.2. In

11

addition, for some data types search can be further opti-
mized. For example, if the indexed categorical data have
fixed-dimensionality

�
we know that the area of each in-

dexed signature is fixed to
�
. We can use this property

to derive stricter lower bounds for the directory node en-
tries

�
, instead of the rather relaxed -P� ��� � � ��� � ��� � � . For

this example, a better bound is -.� ��� � � ��� � ��� � ��H � � =&(' !)� � � ��� � � � �9� . We plan to study such search optimiza-
tions, using domain properties or statistics from the indexed
data.

References

[1] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. A New
Method for Similarity Indexing of Market Basket
Data. SIGMOD Conference, pages 407–418. 1999.

[2] R. Agrawal and R. Srikant. Fast Algorithms for Min-
ing Association Rules in Large Databases. VLDB Con-
ference, pages 487–499. 1994.

[3] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When Is “Nearest Neighbor” Meaningful?
International Conference on Database Theory, pages
217–235. 1999.

[4] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient
Processing of Spatial Joins Using R-Trees. SIGMOD
Conference, pages 237–246. 1993.

[5] A. Corral, Y. Manolopoulos, Y. Theodoridis, and
M. Vassilakopoulos. Closest Pair Queries in Spa-
tial Databases. SIGMOD Conference, pages 189–200.
2000.

[6] A. P. de Vries, N. Mamoulis, N. Nes, and M. Ker-
sten. Efficient k-NN Search on Vertically Decom-
posed Data. SIGMOD Conference, pages 322–333.
2002.

[7] U. Deppisch. S-Tree: A Dynamic Balanced Signature
Index for Office Retrieval. ACM SIGIR Conference,
pages 77–87. 1986.

[8] V. Gaede and O. Günther. Multidimensional Access
Methods. ACM Computing Surveys, 30(2):170–231,
1998.

[9] V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS–
clustering categorical data using summaries. ACM
SIGKDD Conference on Knowledge Discovery and
Data mining, pages 73–83. 1999.

[10] D. Gibson, J. M. Kleinberg, and P. Raghavan. Clus-
tering Categorical Data: An Approach Based on Dy-
namical Systems. VLDB Conference, pages 311–322.
1998.

[11] A. Gionis, D. Gunopulos, and N. Koudas. Efficient
and Tunable Similar Set Retrieval. SIGMOD Confer-
ence. 2001.

[12] S. Guha, R. Rastogi, and K. Shim. ROCK: A Ro-
bust Clustering Algorithm for Categorical Attributes.
International Conference on Data Engineering, pages
512–521. 1999.

[13] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. SIGMOD Conference, pages 47–
57. 1984.

[14] S. Helmer and G. Moerkotte. A Study of Four Index
Structures for Set-Valued Attributes of Low Cardinal-
ity. Technical Report, University of Mannheim, num-
ber 2/99. 1999.

[15] G. R. Hjaltason and H. Samet. Distance Browsing in
Spatial Databases. TODS, 24(2):265–318, 1999.

[16] A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice-Hall, 1988.

[17] I. Kamel and C. Faloutsos. Hilbert R-tree: An Im-
proved R-tree using Fractals. VLDB Conference,
pages 500–509. 1994.

[18] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and
Z. Protopapas. Fast Nearest Neighbor Search in Med-
ical Image Databases. VLDB Conference, pages 215–
226. 1996.

[19] N. Koudas and K. C. Sevcik. High Dimensional Simi-
larity Joins: Algorithms and Performance Evaluation.
International Conference on Data Engineering, pages
466–475. 1998.

[20] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
Neighbor Queries. SIGMOD Conference, pages 71–
79. 1995.

[21] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima.
The A-tree: An Index Structure for High-Dimensional
Spaces Using Relative Approximation. VLDB Confer-
ence, pages 516–526. 2000.

[22] The UCI KDD Archive. http://kdd.ics.uci.edu.

[23] R. Weber, H.-J. Schek, and S. Blott. A Quantita-
tive Analysis and Performance Study for Similarity-
Search Methods in High-Dimensional Spaces. VLDB
Conference, pages 194–205. 1998.

12

