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ABSTRACT
This paper studies the problem of recommending new venues
to users who participate in location-based social networks
(LBSNs). As an increasingly larger number of users par-
take in LBSNs, the recommendation problem in this setting
has attracted significant attention in research and in practi-
cal applications. The detailed information about past user
behavior that is traced by the LBSN differentiates the prob-
lem significantly from its traditional settings. The spatial
nature in the past user behavior and also the information
about the user social interaction with other users, provide a
richer background to build a more accurate and expressive
recommendation model.

Although there have been extensive studies on recom-
mender systems working with user-item ratings, GPS trajec-
tories, and other types of data, there are very few approaches
that exploit the unique properties of the LBSN user check-in
data. In this paper, we propose algorithms that create rec-
ommendations based on four factors: a) past user behavior
(visited places), b) the location of each venue, c) the social
relationships among the users, and d) the similarity between
users. The proposed algorithms outperform traditional rec-
ommendation algorithms and other approaches that try to
exploit LBSN information.

To design our recommendation algorithms we study the
properties of two real LBSNs, Brightkite and Gowalla, and
analyze the relation between users and visited locations. An
experimental evaluation using data from these LBSNs shows
that the exploitation of the additional geographical and so-
cial information allows our proposed techniques to outper-
form the current state of the art.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: [Miscella-
neous]
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1. INTRODUCTION
In location-based social networks (LBSNs), users share in-

formation about their locations, the places they visit and
their movement alongside with other social information.
Visits are reported explicitly (by user check-ins in known
venues and locations) or implicitly by allowing smartphone
applications to report visited locations to the LBSN. This in-
formation is then shared with other users who are socially re-
lated (e.g., friends). The same information can be exploited
by the LBSN operator to propose new points of interest to
users. Recommending new locations is an important issue;
it allows to efficiently advertise companies with a physical
presence (theaters, bars, restaurants, etc.) and create rev-
enue for the LBSN operator.

Recommender systems are widely used and they have been
studied in research quite extensively. The most popular ap-
proach in recommender systems is that of collaborative filter-
ing, where recommendations are created based on whether a
user has purchased a product in the past and on whether she
liked it or not. Using the past behavior of a user, new rec-
ommendations are created based on the similarity of users or
the similarity of products (items). While these algorithms
can be adjusted to the problem of recommending new loca-
tions to users, by taking into account previous user check-
ins, significant information like the distance of the proposed
location to the user neighborhood or the social interaction
between the user and those users that have visited this lo-
cation are ignored.

By studying real LBSN data we can confirm that the social
links of a user and the distance of a location to her previ-
ous visits are important factors in predicting whether she
will visit a new location or not. By analyzing the publicly
available data of Gowalla [4] we show that more than 80%
of the new places visited by a user are in the 10km vicinity
of previous check-ins and more than 30% of the new places
visited by a user have been visited by a friend or a friend-
of-a-friend in the past. These facts imply that geographical
and social information significantly affect the choices of a
user when deciding which new place to visit.



While there are several papers that study the behavior
of users in LBSNs, works that exploit geographical and so-
cial information for creating recommendations have only re-
cently appeared. The most closely related work to ours
is the work of [16], which proposes a recommendation al-
gorithm that takes into account the rich knowledge of the
LBSNs. It is shown that the additional information allows
for more accurate recommendations than those created by
traditional algorithms. Our proposal delves deeper in the
properties of LBSNs, that people often visit new locations
that are geographically close to their past visited locations,
and such new visits are usually influenced by their social
relationships. Based on such properties, we propose recom-
mendation algorithms that outperform the methods of [16]
by a wide margin. The contribution of the paper can be
summarized as follows:

• We analyze datasets from real LBSNs (Brightkite and
Gowalla) and we identify several useful correlations be-
tween visited venues, their location and social informa-
tion about the users of the network.

• We propose new recommendation algorithms that ex-
ploit the correlations in the data and perform superi-
orly to the current state of the art.

• We experimentally evaluate the proposed techniques
in real work data.

2. DATASETS AND DATA ANALYSIS
In this section, we focus on the analysis of two LBSN

datasets, Brightkite and Gowalla [4], both of which are pub-
licly available from the Stanford network analysis project
(SNAP)1. We present the basic statistical properties and we
then focus on the importance of the geographical and social
factors in the choice of the venues that are visited by a user.
In brief, our findings are that a) most visits in the data
are first-time visits, b) people usually visit nearby locations;
and c) friendships are related to the choice of venues that
are visited by users.

2.1 Datasets
Brightkite was an LBSN created in 2007 and closed after

April 2012. The dataset contains 2,627,870 check-in records
made by 58,228 users involving 772,933 locations over 942
days from 21 Mar 2008 to 18 Oct 2010. Among all the users
there are in total 214,078 friendship links.

Gowalla was an LBSN launched in 2007, purchased by
Facebook in 2011, and closed in 2012. The dataset contains
6,264,203 check-in records made by 196,591 users involving
1,280,956 locations over a time period of 627 days from 04
Feb 2009 to 23 Oct 2010. The dataset also contains 950,327
friendship links among users.

2.2 First-time Visits
Our main interest in the data lies in first-time visits, i.e.,

the event that a user visits a venue for the first time. We
believe that recommending to a user a new location, where
she has never been before, is of great importance, while rec-
ommending some already visited location is not as useful.
Still, every past visit is of importance to algorithms that
make recommendations.

1http://snap.stanford.edu/index.html
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Figure 1: Daily number of check-in records in
Brightkite and Gowalla.

The majority of visits in the available data are first-time
visits. This does not necessarily reflect the fact that users
constantly visit new places; it is probable that users are
more enthusiastic when they first visit a place, but omit
to report recurring visits to a place. The daily numbers
of check-ins and the daily numbers of first-time visits for
both Brightkite and Gowalla datasets are shown in Figure 1.
From the figures we see that Gowalla shows a distinct trend
of growing, whereas Brightkite is shrinking after around the
500th day. In both cases among all the check-in records
(black bold lines) a certain portion are first-time visits (gray
lines). In fact, in Brightkite 40.83% of the check-ins are first-
time visits, and in Gowalla this number goes up to 63.56%.

We are also interested in establishing whether the large
number of first-time visits is attributed to a few particular
very active users (for instance, world travellers) or whether
it is a common behavior of many users. Figure 2 presents
a more detailed view of the first-time visits in the data.
For each user u, we take her check-in records Cu and the
set of locations Lu that she has ever visited. The quantity
rnew = |Lu| / |Cu| thus describes how often user u visits new
locations. Figure 2 depicts the (cumulative) distribution of
rnew in both datasets. It shows how many users have a
larger ratio of new visits r′new for every value of rnew from 0
to 100%. A point on the horizontal axis represents a value of
rnew, and the corresponding point on the vertical axis shows
the ratio of users of which have r′new ≥ rnew.
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Figure 2: Cumulative distribution of ru.

To prevent bias from less active users who only visit a
small number of locations and thus have an rnew very close
to 100%, we consider only those users with sufficient many
check-in records (|Cu| ≥ 10). It turns out that, as shown in
Figure 2, reporting visits mostly on new locations is indeed
a common behavior of the majority of the users. Even if
recurring visits are omitted, the data shows that users visit
many new locations and that they are enthusiastic enough
to report them. This fact strengthens the motivation for
creating a recommendation algorithm for unvisited venues.



2.3 Importance of Nearby Locations
Although in both datasets the locations are distributed

all over the world, from real-life experience we know that
people do not frequently visit locations far away from their
usual active area (e.g., home, office, etc.). To verify this
hypothesis, we have calculated the following statistics. For
each user u, we take the list of locations that she has vis-
ited, Lu = (`u,1, `u,2, · · · , `u,n), sorted in order of their first
time of visit. Then, for each newly visited location `u,i
(i > 1), we calculate the geographical distance between
`u,i and the history Hu,i = {`u,1, `u,2, · · · , `u,i−1}, which
is defined as geodist(`u,i, Hu,i) = minj<i geodist(`u,i, `u,j),
where geodist(`1, `2) is the geographical distance between
the two locations `1 and `2. This distance measures how far
a newly visited location is from the closest location in the
user’s past visits list. Intuitively, it measures how far are
the new places that are visited by a user, from the places
she has visited in the past.

Figure 3 shows the distributions of such distance values in
both datasets. The horizontal axis traces the distance value

(a) Brightkite (b) Gowalla

Figure 3: Distribution of the distance between a
newly visited location and previously visited loca-
tions.

d, and the vertical axis the total number of user-location
pairs (u, `) such that, when u visited ` for the first time, the
distance between ` and u’s previous visited locations is d.
Note that both axes are in log scale.

While Brightkite and Gowalla differ in percentage of first-
time visits, they exhibit highly similar distributions of check-
in distance values. Most check-ins happen near some past
check-ins. In particular, a small radius of 10 kilometers,
covers 67.57% of first-time visits in Brightkite and 81.93%
in Gowalla.

This observation shows that taking proximity into account
when recommending a new venue to a user can increase the
quality of the recommendation.

2.4 Importance of Friendships
The impact of social interaction in the choice of venues

has already been identified in research literature (and used
for recommendations [23, 24]), and it is something we ex-
pect from real world experiences. To assess how friends and
the broader community of a user affect her choice of places,
we measure the following statistics: for each user u who has
visited venues Lu = {`u,1, `u,2, · · · , `u,n}, we calculate the
percentage of places in Lu that have been visited by a friend
of u or a friend-of-friend of u prior to u’s first visit to them.
The results for both datasets are depicted in Figure 4. The
horizontal axis in Figure 4 traces the percentage of first-time
visits that take place in a venue that has been previously
visited by a friend or a friend-of-friend and the vertical axis

shows the number of users whose behavior matches this per-
centage.
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Figure 4: Distribution of users according the impact
of the community in the places they choose to visit.

The results of the aforementioned experiment show that
around 31% of the first time visits in Gowalla and 23% in
Brightkite take place in a venue that has been previously
visited by a friend or a friend-of-friend. Given that the av-
erage size of the friends-of-friends community is around 1%
of total users in Gowalla and 0.5% in Brightkite, we believe
that the community of friends is an important factor that
affects the users when choosing a new place to visit.

3. RECOMMENDATION MODEL AND
BACKGROUND

This section formalizes the recommendation problem and
presents the necessary background for describing our al-
gorithms in Section 4. We complement the section with
the brief presentation of recommendation techniques which
will be used as a point of reference for our contribution.
These techniques include current state-of-the-art methods
and näıve methods which model the impact of individual
factors in the user’s choice of venues.

3.1 Problem Formalization
The original data is a series of records that describe users
U , locations L and check-ins C. C is a set of pairs (v, t),
where v is a visit that associates a user with a place, and
t is the timestamp of the visit. We represent an LBSN as
a graph G = (U,L,EF , EV , CV ). U are nodes representing
users from U ; L are nodes representing locations from L.
EF ⊆ U × U are edges, which represent the friendship links
between users; EV ⊆ U × L are edges which represent the
visits of users to locations; and CV are weights attributed to
each edge from EV , counting the number of visits performed
by a single user u ∈ U to a single location ` ∈ L. We
consider all edges undirected. The aforementioned model is
broad enough to support every recommendation algorithm
we present in this work. Still, not all information is exploited
by every technique. An example of a graph G is depicted in
Figure 5. User nodes (u1–u3) are represented by circles and
location nodes (`1–`3) are represented by triangles. The
figure includes two friendship edges (f1, f2) and four visit
edges (v1–v4) with their weights. In the rest of the paper,
we omit the labels for the edges and show only the weights
in the visit edges to provide less verbose examples.

The recommendation problem that we are studying is for-
malized as follows. Given a network G and a user u, create a
list of N location recommendations, that have not yet been
visited by user u. Recommendations are successful if the
locations are visited by the user in a specified time window
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Figure 5: An example of a social network graph

in the future, e.g., two months after a recommendation is
made.

3.2 Background
The proposed algorithms reuse the idea of personalized

PageRank (PPR) [8], which was introduced to endow web-
pages with a universal ranking. In this section we describe
the idea of PageRank and personalized PageRank and we
present the bookmark-coloring algorithm we employ to cal-
culate the latter.

The fundamental idea underlying PageRank is a recursive
illustration of “important pages” that important pages are
referenced by many important pages. In a graph G of n
nodes, the PageRank value πi of node i ∈ G is defined as

πi =
1− α
n

+ α

(
π1

d1
+ · · ·+ πi−1

di−1
+
πi+1

di+1
+ · · ·+ πn

dn

)
,

where α is a constant usually set to 0.85 and di is the out-
degree of node i. The above definition leads to the following
vector form:

πT = α · πTP + (1− α) · 1

n
· 1T , (1)

where P is the row-normalized adjacency matrix of the
graph. Eq. (1) models the Markovian behavior of a ran-
dom surfer in the graph who, at any node, follows a random
out-link to a neighbor with probability α, or “teleports” to
an arbitrary node with probability 1− α.

Personalized PageRank (PPR) [8] extends the basic idea
of PageRank by replacing the uniformly random teleporta-
tion term 1

n
· 1T in Eq. (1) by a personalized vector uTi , in

which only the i-th element is 1 and all the others are 0.
Given a source node i, the PPR for the whole graph, π, is
given by Eq. (2):

πT = α · πTP + (1− α) · uTi . (2)

In terms of random surfing, instead of teleporting to a ran-
dom node in the graph, at any step, the surfer returns to
node i with a certain probability, thus this model is also
known as random walk with restart (RWR). An element πj
in the steady-state solution of Eq. (2) actually reflects how
close node j is to node i.

To efficiently calculate the PPR values of a graph G ac-
cording to Eq. (2), we use the bookmark-coloring algorithm
(BCA) introduced in [3]. Algorithm 1 summarizes the ba-
sic steps of BCA. Intuitively, BCA assumes that we have
a fixed amount of paint on node u (called bookmark, Line
3) and emulates the spread of paint to nearby nodes. Each
node keeps 1−α portion of the paint that it receives and dis-
tributes the remaining paint to its neighbors. The transition
probabilities are given by Eq. (2) and the process terminates
if the paint to be redistributed at each node does not exceed
a small constant ε.

Algorithm 1 Bookmark-coloring for Computing PPR

BCA(G, u, α, ε)
// Input: G = (U,E) is a graph; u ∈ U is a node; α is

the constant as in Eq. (2); ε is a tolerance
threshold

// Output: PPR vector π = (π1, π2, · · · , π|U|)
1: for each i ∈ U do
2: πi := 0; di := number of friends of user i

3: Initialize a zero-valued vector b of size |U |; set bu := 1
4: repeat
5: for each i ∈ U do
6: if bi < ε then continue
7: πi := πi + (1− α) · bi
8: for each friend j of i do
9: bj := bj + α · bi/di

10: until no change in b
11: return π

3.3 Baseline Strategies for Location Recom-
mendation

3.3.1 User-based Collaborative Filtering
User-based collaborative filtering (UserCF) is based on the

idea that similar users have similar preferences on locations.
To estimate the interest of u in location `, UserCF considers
u1, u2, · · · , u|U| who have visited ` and see how similar they
are to u. Intuitively if u is similar to most of these users,
then it is highly possible that u will be interested in location
` too.

This idea is easily applicable in our setting. For each user
u we consider her visiting profile, and ignore any friendship
information (i.e., EF edges in G are ignored). Based on the
locations that u has visited and their visiting frequencies (v
edges on the graph), we create the profile of user u as a
vector pu of length |L|,

pu =
(
wu,`1 , wu,`2 , · · · , wu,`|L|

)
, (3)

where wu,`i is 0 if there is no edge between u and `i
and else wu,`i ∈ WV is defined as the normalized fre-
quency of user u visiting location `i ∈ L, i.e., wu,`i =
freq(u, `i)/

∑
j freq(u, `j).

2

Cosine similarity can be used to measure the similarity
between the visiting profiles of two users. Therefore, the
preference of user u on location ` can be estimated as

score(u, `) =

∑
u′∈U cos (pu,pu′) · wu′,`∑

u′∈U cos (pu,pu′)
. (4)

After estimating u’s preference on all the unvisited loca-
tions, a recommendation list can be naturally generated by
selecting the N locations with the highest scores [1].

3.3.2 Location-based Collaborative Filtering
Location-based collaborative filtering (LocCF) comes from

the assumption that people visit similar locations and it is

2More advanced weighting schemes are possible. For ex-
ample, TF-IDF methods can be used to penalize commonly
visited locations (see, for example [13]). However via ex-
periments we found that such advanced schemes were not
as good as the simple method here. The reason is that the
data is sparse, thus even the most popular location cannot
be really considered as “common” in the TF-IDF sense.



a direct application of item-based collaborative filtering [1].
To estimate the preference of user u on location `, instead
of comparing the user vectors as in UserCF, we compare
location profiles p`:

p` =
(
wu1,`, wu2,`, · · · , wu|U|,`

)
, (5)

where wui,` is 0 if there is no edge between ui and `, else
wui,` = freq(i, `)/

∑
j freq(j, `) and

score(u, `) =

∑
`′∈L cos (p`,p`′) · wu′,`∑

`′∈L cos (p`,p`′)
. (6)

As in UserCF, the N new locations with the highest scores
are extracted as the final recommendation. Again the friend-
ship information of G is ignored.

3.3.3 Location Nearest Neighbor
Motivated by the observation in Section 2.3 that users

tend to visit places nearby their previous whereabouts, we
create a simple reference recommender termed location near-
est neighbor (LocNN) based only on the spatial distance of
a location to the locations that have been previously vis-
ited by a user. Specifically, based on u’s visiting history
Lu = {`1, `2, · · · , `n} ⊆ L, score(u, `) of every ` 6∈ Lu is
simply defined over the geographical distance between ` and
Lu:

score(u, `) =
1

min`′∈Lu geodist(`, `′)
. (7)

The N unvisited locations with the highest scores are pro-
vided as recommendations to u.

3.3.4 Friend-based Collaborative Filtering
Unlike previous methods which do not consider any social

relationship, friend-based collaborative filtering (FriendCF)
proposed in [23] exploits the influence of friendships.
FriendCF is based on the assumption that people listen
to their friends and follow their friends’ recommendations.
FriendCF calculates the preference of a target user u on some
location ` in a similar way to Eq. (4). The only difference is
that FriendCF considers only u’s direct friends Fu, i.e., the
users that are directly associated to u with an friendship
edge f in G instead of all users U . Thus the score in this
case is given by the following equation:

score(u, `) =

∑
u′∈Fu

cos (pu,pu′) · wu′,`∑
u′∈Fu

cos (pu,pu′)
. (8)

The N unvisited locations with the highest scores are rec-
ommended to user u. FriendCF uses all information in G,
but in a rather simple way; direct friendship information is
only used as a filter in the comparison with similar users.

3.3.5 Random Walk with Restart
The authors of [16] argue that not only direct friends but

also distant friends have influence on user check-in behav-
iors. Therefore they employ a random walk with restart
model for location recommendation, which we call RWR.

Given an LBSN G = (U,L,EF , EV ,WV ), RWR takes a uni-
fied view of user nodes and location nodes and also a unified
view of friendship and visit edges, thus G is simply a net-
work with |U | + |L| nodes and |EF | + |EV | edges between
them. To estimate the preference of user u on location `,

RWR calculates the PPR value of ` with respect to u. Specif-
ically, the out-going transition probability from a user u ∈ U
to any node j that is directly associated with u is defined as

puj =

{ 1
2|Fu| , if user j ∈ U is a friend of u,
wu,j

2
, if location j ∈ L is visited by u.

(9)

Here |Fu| is the number of friends of user u, and wu,j is the
weight associated with the visiting edge that links location
j to u. We assume wu,j = 0 if no such edge exists. Since
there is no link between locations, the transition probability
out of a location ` ∈ L is simply p`,j = w`,j , where j ∈ U
is a user and w`,j is the weight of the edge between ` and
j. The score is given by Eq. (2). The N unvisited locations
with the highest score are recommended to user u.
LocNN and FriendCF are aimed to demonstrate the impact

of locality and social interaction in user choices, whereas
UserCF and LocCF represent the state of the art in tradi-
tional recommendation settings. The RWR method is the
most closely related work to our own and the most effec-
tive recommendation technique that exists in the literature
for location recommendation in LBSNs.

4. RECOMMENDATION ALGORITHM
In this section we propose two algorithms for making

recommendations in LBSNs. The proposed algorithms are
based on the observations we found in Section 2 and they
rely on PPR, which we calculate using BCA [3] (Section 3.2).

We believe that, similar to the spread of the paint on the
graph, the fame and recommendations spread in the real
world social network. Assume that Jane asks one of her
friends, Stella, for a new interesting bar. Stella recommends
to Jane the places she likes and frequently visits, but she
does not stop there; she also reports bars that have been
recommended to her by her own friends. These places in-
clude of course places that have been recommended by her
friends’ friends and so on. Finally, Jane decides to visit those
places that are highly recommended by her community, even
if she does not personally know every person (“everyone goes
there!”) and that are not far away from her home. In the
rest of the section, we propose two algorithms that follow
this rationale, but calculate the flow of information and the
construct the local community in a different way.

4.1 Friendship-based Bookmark-coloring Al-
gorithm (FBCA)

The idea of the first recommendation algorithm, the
friendship-based bookmark-coloring algorithm (FBCA), is to
perform a BCA on G, by taking into account only the friend-
ship edges EF . We start from the user u (who will be the
recipient of the recommendations) and color all users. After
all users are colored, we attribute color to the places they
have visited and we report the places with the highest color
that are within a distance threshold from the visit history
of u. The pseudo-code for the algorithm is depicted in Al-
gorithm 2.

For each user, the PPR value is computed (Line 2) and
then distributed to her visited locations (Lines 4-6). After
filtering out those locations far away from u’s visiting his-
tory (Line 8), N locations that accumulate the highest PPR
values are eventually recommended to the user (Lines 9-13).
To carry out the PPR computation at Line 2, we employ
BCA (Algorithm 1).



Algorithm 2 FBCA for Location Recommendation

FBCA (G, u, d,N)
// Input: G = (U,L,EF , EV ,WV ) is an LBSN; u ∈ U

is the target user; d is a threshold for
geographical distance; N is the number of
new locations to recommend

// Output: A set of N locations, R, implemented as a
priority queue

1: Get the set of locations that user u has visited, Lu
2: Compute PPR values πv for all v ∈ U\ {u} based on the

user-friendship graph (U,EF )
3: Initialize s` := 0 for each ` ∈ L\Lu
4: for each v ∈ U\ {u} do
5: for each ` ∈ L visited by v do
6: s` := s` + πv · wv,`
7: for each ` ∈ L\Lu do
8: if geodist(`, Lu) > d then continue
9: if |R| < N then R := R ∪ {(`, s`)}

10: else if s` ≤ min(R) then continue
11: else
12: R.pop min()
13: R := R ∪ {(`, s`)}
14: return R

4.2 Location-friendship Bookmark-coloring
Algorithm (LFBCA)

We assume that information flows through friendship and
social interaction links are intuitive and lead to trustwor-
thy recommendations; this is also indicated by the experi-
mental results for FBCA in Section 5. Still, some people are
friends online only because they are friends offline or they
have other common interests not necessarily related to vis-
iting locations. The importance of using users that behave
similarly to the target user u to create recommendation,
should not be completely ignored. The location-friendship
bookmark-coloring algorithm (LFBCA) we propose in this sec-
tion aims at reconciling social interaction and similarity in
a common recommendation algorithm.

To capture both the friendship and similarity relations
between users in G, we augment G = (U,L,EF , EV ,WV ) to

G̃ = (U,L,ES , EV ,WV ,WS), where friendship edges have
been replaced with similarity edges and additional similarity
edges have been introduced. Moreover, each similarity edge
is annotated with a weight w ∈ WS , which quantifies how
similar two users are.

The augmentation procedure is depicted in Figure 6.
Figure 6(a) shows the original graph G with friendship
edges linking different users. Check-in edges are anno-
tated with their frequencies. The first step is to add
a similarity edge between every two users who have vis-
ited a common location, i.e., we add the edges ES =
{(u, u′) | ∃` ∈ L s.t. (u, `) ∈ EV ∧ (u′, `) ∈ EV }. This leads
to Figure 6(b) where additional similarity edges have been
added to the graph as dashed edges (we omit locations to
simplify the graph). Note that two users can be associated
with both a friendship and a similarity edge. Each similarity
edge is associated with a tentative weight which is given by
the following similarity function:

sim(u1, u2) = cos (pu1 ,pu2) , (10)

where pu is given by Eq. (3). In the example of Figure 6(b)

we have:

sim (u, u1) = cos (pu,pu1) = 0.0485,

sim (u, u3) = cos (pu,pu3) = 0.8193.

The next step is to merge the friendship edges to the sim-
ilarity edges. We use a parameter, β ∈ [0, 1], to tune the im-
portance of the similarity and friendship edges. More specifi-
cally, regardless of the teleportation, at the node of user u we
follow the similarity location-friend links with probability β
and follow the original friendship links with probability 1−β.
Let Fu and LFu be the sets of all u’s friends and location-
friends respectively (those that are associated directly with
a similarity edge), and let Su =

∑
v∈LFu

sim(u, v). The final
out-going transition probability at u is now adjusted as

pu,v =


(1− β) · 1

|Fu| , if v ∈ Fu\LFu,(
1−β
|Fu| + β

Su
· sim(u, v)

)
, if v ∈ Fu ∩ LFu,

β
Su
· sim(u, v), if v ∈ LFu\Fu.

(11)

Note that when β = 0, G̃ degenerates to the original G
we used in FBCA. Using Eq. (11) we update the weights of
all similarity edges and we merge friendship and similarity
edges, to a single similarity edge in the cases where users
were linked with both of them.
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Figure 6: An example of network augmentation.

By applying Eq. (11) to the example in Figure 6 with β =
0.8, we get the final transition probabilities shown in Figure
6(c). Although not even a friend of u, u3 gets the highest
probability since, judging from their common preference on
location `4, u and u3 are more like-minded. Also, although
both u1 and u2 are friends of u, u1 gets a slight advantage
over u2 because u1 had some common interest with u on
location `2.

Algorithm 3 summarizes the above method. Note that

Algorithm 3 LFBCA for Location Recommendation

LFBCA(G, u, d, β,N)
// Input: G = (U,L,EF , EV ,WV ) is an LBSN; u ∈ U

is the target user; d is a threshold for
geographical distance; β is the augmentation
parameter; N is the number of new locations
to recommend

// Output: A set of N locations, R
1: Get the set of locations that user u has visited, Lu
2: Augment snapshot Gt into G̃t with parameter β
3: In G̃t, compute PPR values πv for all v ∈ U\ {u}
4: // Same as Lines 3-13 in Algorithm 2.
5: return R

unlike G in which all edges between users are unweighed,



the edges between users in the augmented graph G̃ are all
weighted according to Eq. (11). As a result, when computing
PPR, Line 9 of Algorithm 1 should be adjusted to handle
non-uniform distributions (the adjustment is trivial).

5. EXPERIMENTS
In this section we experimentally evaluate the proposed

algorithms FBCA and LFBCA. As a point of reference we
also present results for all other algorithms of Section 3.3
(UserCF, LocCF, FriendCF, LocNN , and RWR). All algorithms
have been implemented in C++, and tested in Linux.

5.1 Methodology
We have tested the algorithms using the Gowalla and

Brightkite datasets. In each dataset we defined snapshots,
which are basically subsets of the complete dataset which
describe the condition of the dataset in the past. We
used the snapshots to create recommendations, and then
we checked whether a user had followed the recommenda-
tions during the testing period, i.e., a fixed time period
starting at the moment of the snapshot. More specifically,
we define a snapshot of a social network G at timestamp
t as Gt =

(
U,L,EF , E

t
V ,W

t
C

)
, where U , L, EF are as

in G, and EtV and W t
C refer only to the check-ins that

have taken place up to time t, i.e., they are built over
Ct = {(c, t′) ∈ C | t′ < t}.3 A testing period of size pd defines
a time interval [t, t+ pd), during which we check whether a
user visited a recommended location or not. Since Brightkite
contains check-in records of 942 days and Gowalla 627 days,
we split the datasets into the snapshot Gt and the testing
data Ct+pdt based on a sliding timestamp t. We always use
a constant time period pd. Specifically, we run the recom-
menders at the end of every month, and evaluate the qual-
ity of recommendation using known facts within the next
two-month period. In other words, we recommend based on
the snapshot Gt, and evaluate the recommendations using
the known facts in Ct+60

t = Ct+60\Ct. To guarantee suffi-
cient data for the recommendation and evaluation, we set
t = 90, 120, · · · , 870 for Brightkite and t = 90, 120, · · · , 510
for Gowalla. In addition, in all the experiments we con-
sider only active users, i.e., users who have at least one new
visit in the testing period Ct+60

t . Note that in order for all
the random walk methods to work, in the snapshots every
friendship link is replaced by two directed links.

Figure 7 shows how the number of active users and the
number of visits in the snapshot and the testing period
evolve over time. Gray bars show the total number of new
visits in the snapshot Gt, and white bars in the testing pe-
riods Ct+pdt . The curves show the number of active users in
the testing periods. The basic conclusion of Figure 7 is that
while Gowalla was a growing network, Brightkite was being
abandoned by its users after some point and less and less
users were active. This observation allows interpreting the
rest of the results on the quality of recommendations.

5.2 Metrics
Assume that we have K active users in a testing period

Ct+pdt , which contains
∣∣∣Ct+pdt

∣∣∣ = T testing records, and an

3Note that we define the snapshot only in terms of visits; we
do not have any information about how the other character-
istics of the network evolve (e.g., friendship links, addition
on new users, etc.)

100 200 300 400 500 600 700 800 900
Time

0

1

2

3

4

5

N
um

be
r o

f n
ew

 v
is

its
 (u

ni
t: 

1
0

5
) Snapshot

Test period

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
um

be
r o

f a
ct

iv
e 

us
er

s (
un

it:
 1

0
4

)

(a) Brightkite

100 200 300 400 500
Time

0

2

4

6

8

10

12

14

16

N
um

be
r o

f n
ew

 v
is

its
 (u

ni
t: 

10
5

) Snapshot
Test period

0

1

2

3

4

5

6

N
um

be
r o

f a
ct

iv
e 

us
er

s (
un

it:
 1

0
4

)

(b) Gowalla

Figure 7: Sizes of the snapshots / testing datasets
and number of active users

algorithm A that generates a set of N locations for each
active user u, Ru = {`u,j}j=1,2,··· ,N . We define the hits Hu
of the algorithm as

Hu =
∣∣∣{(u, `) ∈ Ct+pdt | ` ∈ Ru

}∣∣∣ ,
i.e., the number of recommended locations that are actually
visited by the user in the testing period. This number can
be interpreted in different ways, each showing one aspect of
the recommender:

Precision@N (A) =
∑

u
Hu/(K ×N),

Recall@N (A) =
∑

u
Hu/T,

Utility@N (A) = |{u | Hu > 0}| .

Precision@N and Recall@N are well known metrics in infor-
mation retrieval and they are used as defined here in the
evaluation of the main competitor method, the RWR, in [16].
Furthermore, we define the Utility@N metric to capture the
quality of the recommendations in terms of the size of the
community that follows at least one of them. We perform
the evaluation of the proposed methods based on these met-
rics and we also report the Coverage of each method. The
Coverage is the percent of active users for whom the algo-
rithm is able to produce a recommendation.

5.3 Results
The default parameters for the the FBCA and the LFBCA are

β = 0.8, d = 2.0, the snapshot of Gowalla being on the 270th
day and for Brightkite on the 600th day. We create N = 10
recommendations for each algorithm. Figures 8 and 9 show
the results for all algorithms as we examine the snapshots of
the LBSNs at the end of each month starting from the 3rd
month. The horizontal axis in all graphs depicts the time
in days, taking values t = 90, 120, · · · , 870. A first observa-
tion is that algorithms who are exploiting the network struc-
ture and not only past user behavior (FBCA, LFBCA, and RWR)
are able to produce recommendations for every active user
(Coverage = 1) whereas the rest produce recommendation
only for a fraction of the active users. The most important
point is that FBCA and LFBCA demonstrate the best results,
with LFBCA dominating every other algorithm for almost all
the snapshot under every metric.4 These are the results of
taking into account, additionally to past user preferences,
the spatial distance of venues and the social interaction of

4Occasional exceptions happen at times when, according to
Figure 7, the snapshots are extremely small, and thus there
lacks data for building highly qualified recommenders.



the network. As time goes by and more information about
past user preferences is known, traditional approaches are
able to reduce the performance gap, but they are still infe-
rior to FBCA and LFBCA. Finally, it is worth noticing that the
algorithms in both datasets do not follow the same trend
as the snapshots progress through time. The results for all
algorithms in the Brightkite dataset are worse as time pro-
gresses, whereas for Gowalla, after an initial vibration in
quality the results become better as the network becomes
more mature. We believe that the explanation lies in Figure
7. In Brightkite the number of active users reaches a peak
and it is relatively stable in days from 300-500, and then de-
creases. The reduction of the number of active users is part
of the overall reduction of activity in the network (even ac-
tive users, are less active than in other periods) and this has
a direct impact on the number of recommendation that will
be followed (or reported as followed) in the testing period.
In Gowalla, we have very few users in the first months of its
operation, so the very good behavior of the first months may
be attributed to partly random effects, and as the number of
active users grows, we have a stable increase in the quality
of the recommendations.

100 200 300 400 500 600 700 800 900
Time

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e

UserCF
LocCF
FriendCF
LocNN

RWR
FBCA
LFBCA

(a) Coverage

100 200 300 400 500 600 700 800 900
Time

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ec

is
io

n@
N

UserCF
LocCF
FriendCF
LocNN

RWR
FBCA
LFBCA

(b) Precision@N

100 200 300 400 500 600 700 800 900
Time

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

R
ec

al
l@

N

UserCF
LocCF
FriendCF
LocNN

RWR
FBCA
LFBCA

(c) Recall@N

100 200 300 400 500 600 700 800 900
Time

0.00

0.05

0.10

0.15

0.20

U
til

ity
@

N

UserCF
LocCF
FriendCF
LocNN

RWR
FBCA
LFBCA

(d) Utility@N

Figure 8: Results for different snapshots of
Brightkite

Figures 10 and 11 show how the performance of the
algorithms changes as the number of recommendations,
N , varies from 10 to 100 at typical snapshots (t = 600
for Brightkite and 270 for Gowalla). The Coverage re-
mains stable for all algorithms (it decreases only slightly
for FriendCF). Precision@N decreases as more recommenda-
tions are created, whereas Recall@N and Utility@N increase
as the chance that a visited place has been recommended
increases. The results are more or less the same for both
datasets. Finally, in Figure 12 we present the impact of the
distance filtering threshold d, that we use both in FBCA and
LFBCA. In the interest of space we present results only for the
Utility@N, but Precision@N and Recall@N follow the same
trend. Figure 12(a) shows the effect of d in Brightkite and
Figure 12(b) in Gowalla. As expected from the analysis of
Section 2, a smaller d leads to better results, as users tend
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Figure 9: Results for different snapshots of Gowalla

to visit venues in their vicinity. The effect of d for LFBCA

in Brightkite is very limited, but due to the lack of a large
number of active users, it could be the result of random
factors.

In brief, the evaluation shows that the proposed algo-
rithms FBCA and LFBCA manage to exploit the additional
social and geographical information of the LBSNs and LF-

BCA outperforms the current state-of-the-art in all settings.
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Figure 10: Results for Brightkite (varying N)

6. RELATED WORK

6.1 Recommender Systems based on User-
Item Rating Matrix
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Figure 11: Results for Gowalla for different values
of N
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Figure 12: The effect of d on utility for both datasets

Since the mid-1990s, recommender systems have become
an important research area in computer science [1]. In the
traditional setting, a recommender system deals with a user-
item rating matrix. The matrix has one row for each user
and one column for each item (the transpose matrix can
be used depending on the algorithm). Each element of the
matrix shows the preference of a user for an item. User
u’s rating on item i, rui, usually takes values from a small
discrete domain (e.g., integers 0 to 5), modeling the degree
of user’s preference to the item (e.g., 5 means “love” and 0
means “hate”). Since it is very unlikely that all users have
rated all items, the essential task of a recommender system
is to predict the “missing” ratings, i.e., users’ preference on
their un-rated items. An item can be then recommended to
a user if the estimated rating is high.

Collaborative filtering (CF) strategies offer personalized
recommendations and they are very popular in practice [1,
13, 18, 20]. CF assumes that users with similar behavior in
the past will like the same items (user-based CF) and that a
user will prefer items that are similar to other items he has
liked in the past (item-based CF). In user-based CF a rating
rui is estimated by aggregating the ratings of other users
u1, u2, · · · , un for item i, while the aggregation is based on
the user-user similarity sim(u, ui). Analogously, item-based
CF estimates rui based on u’s past ratings on other items
as well as item-item similarity.

Recently, model-based methods have been proposed for
recommendation systems [7, 10, 21]. Suppose there are n
users and m items, such methods assume that the actual
rating matrix Rn×m can be well-approximated by a user
profile matrix, Un×k, and an item profile matrix Vm×k, i.e.,
Rn×m ≈ Un×k · V Tm×k. U and V can be found via principle
component analysis (PCA) and other low-rank techniques
[21], or some iterative refinement process [7, 10].

Even though the above methods are quite popular in tradi-
tional settings, when adjusted for LBSNs (UserCF and LocCF

in Section 3), they perform worse than the proposed algo-
rithms, since they do not take into account social and spatial
information.

6.2 Trust-based Recommender Systems
Traditional CF methods assume that users are indepen-

dent, and they only take into account their past behavior.
Trust-based methods aim to exploit the opinions that users
have about other users. Briefly speaking, a trust network
is a directed network showing users’ mutual trust. Every
directed edge u→ v is attached a rating showing how much
u trusts v. Such trust is designed to be transitive [5] and
thus typically has a wider scope of application. In many
cases the similarity cannot be computed (e.g., due to lack of
information), however a trust value can still be inferred.

To predict a rating rui, TidalTrust [5] finds all the users
who have rated item i using a breadth first search, and then
aggregates all the ratings r.i with direct or inferred trust
values. MoleTrust [14, 15] further limits the breadth first
search within a maximum depth. In a recent work, Trust-
Walker [6] proposed by Jamali and Ester combines user trust
and item similarity into random walk processes. To predict
the rating rui, TrustWalker performs a random walk in the
trust network starting from user u. At any user node v,
TrustWalker terminates reporting rvi if v has rated i, oth-
erwise TrustWalker takes a probabilistic action that either
continues the random walk or terminates reporting some rvj
where item i and item j are similar; the probability is cal-
culated based on user trust, item similarity, and the current
random walk length. More recently, Yang et al. [22] studied
friend circles to get more domain-specific trust values. In
our location recommendation problem, we do not have any
trust information between users, therefore the trust-based
methods are not applicable.

6.3 Social Network-based Recommendation
Pham et al. [17] find user and item clusters in social net-

works and use such information to enhance CF methods.
Random walk has also been exploited for recommendation.
Yildirim and Krishnamoorthy [25] build a graph of items, in
which each link is weighed by the similarity of its two owner
items. Given a user u who has rated a set of items I, random
walks on this item graph are adopted to find the items sim-
ilar to I. In order to guarantee the connectivity of the item
graph, two items are linked with a small weight even if the
similarity is not computable. This approach makes the the
method unsuitable for large datasets. Konstas et al. study
CF methods on a music social network to predict music play-
counts [9]. They create a heterogeneous graph containing
users, music tracks, and tags, and show that a random walk
on the graph outperforms traditional CF methods. Their
technique is tailored for music data and it is not applicable
in our problem.



6.4 Location-based Services and Recom-
menders

Scellato et al. study the problem of predicting friendship
links using user check-in records [19]. They find that the ef-
fective link prediction on location-based services can greatly
benefit from focusing only on the friends-of-friends and on
the place-friends of a user.

Leung et al. propose a framework for location recommen-
dation based on GPS trajectories [11]. A GPS trajectory is
a sequence of time-stamped latitude/longtitude pairs, which
are collected every a few seconds. Stay ponits (i.e., geo-
graphic regions at which a user spent sufficiently long time)
are identified from the GPS log and treated as locations.
Comparing to our user check-in data, GPS data are much
more dense and contain more routine activities (e.g., trav-
elling from home to office every morning). Based on such
characteristics of GPS data, [11] performs a co-clustering on
users and stay points to enhance CF recommendation.

Bao et al. study location recommendation with a location
category hierarchy (e.g., food, shop, etc. and their subcat-
egories) [2]. Their main observation is that different users
may have different expertise on different types of locations,
thus they must be treated differently in the recommenda-
tion. They develop a systematic approach that can (i) learn
users’ preferences/expertise from the category information,
and (ii) recommend new locations within a user specified
spatial range. These approaches rely heavily on the cate-
gory hierarchy and are thus not applicable to our problem.

Levandoski et al. consider item recommendation using
location information [12]. In their work an item may have
spatial and non-spatial ratings, and may have a spatial at-
tribute itself. A location hierarchy is then built to facilitate
the recommendation process.

7. CONCLUSIONS
In this work we proposed two algorithms for recommend-

ing new venues to users in LBSNs. Unlike traditional ap-
proaches, the algorithms do not solely rely on past user
preferences, but they also exploit the social relations of the
network and the geographical location of the venues. The
experimental evaluation shows that our approach outper-
forms traditional methods and the related state-of-the-art
algorithms for recommendations in LBSNs.

Future work includes a deeper study of the network prop-
erties, the identification of communities and the incorpora-
tion of venue categories in the recommendation algorithm.
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