
Efficient Top-k Aggregation of Ranked Inputs

NIKOS MAMOULIS

University of Hong Kong

MAN LUNG YIU

Aalborg University

KIT HUNG CHENG

University of Hong Kong

and

DAVID W. CHEUNG

University of Hong Kong

A top-k query combines different rankings of the same set of objects and returns the k objects

with the highest combined score according to an aggregate function. We bring to light some key
observations, which impose two phases that any top-k algorithm, based on sorted accesses, should

go through. Based on them, we propose a new algorithm, which is designed to minimize the

number of object accesses, the computational cost, and the memory requirements of top-k search
with monotone aggregate functions. We provide an analysis for its cost and show that it is always

no worse than the baseline “no random accesses” algorithm in terms of computations, accesses,
and memory required. As a side contribution, we perform a space analysis, which indicates the

memory requirements of top-k algorithms that only perform sorted accesses. For the case, where

the required space exceeds the available memory, we propose disk-based variants of our algorithm.
We propose and optimize a multiway top-k join operator, with certain advantages over evaluation

trees of binary top-k join operators. Finally, we define and study the computation of top-k cubes

and the implementation of roll-up and drill-down operations in such cubes. Extensive experiments
with synthetic and real data show that, compared to previous techniques, our method accesses

fewer objects, while being orders of magnitude faster.

Categories and Subject Descriptors: H.2 [Database Management]: General; H.3.3 [Informa-
tion Search and Retrieval]: General

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Top-k queries, rank aggregation

This work was supported by grant HKU 7160/05E from Hong Kong RGC. Nikos Mamoulis, Kit
Hung Cheng, and David W. Cheung are with the Department of Computer Science, University of

Hong Kong, Pokfulam Road, Hong Kong. Their emails are (in author list order) nikos@cs.hku.hk,
khcheng9@graduate.hku.hk, and dcheung@cs.hku.hk. Man Lung Yiu is with the Department of

Computer Science, Aalborg University, DK-9220 Aalborg, Denmark. His email is mly@cs.aau.dk.
A preliminary version of this paper appears in [Mamoulis et al. 2006].
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20XX ACM 0362-5915/20XX/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX, Pages 1–0??.

2 · Nikos Mamoulis et al.

1. INTRODUCTION

Several applications combine ordered scores of the same set of objects from different
(potentially distributed) sources and return the objects in decreasing order of their
combined scores, according to an aggregate function. Assume for example that
we wish to retrieve the restaurants in a city in decreasing order of their aggregate
scores with respect to how cheap they are, their quality, and their closeness to
our hotel. If three separate services can incrementally provide ranked lists of the
restaurants based on their scores in each of the query components, the problem is to
identify the k restaurants with the best combined (e.g., average) score. Additional
applications include the retrieval of images according to their aggregate similarity
to an example image with respect to various features, like color, texture, shape, etc.
[Ortega et al. 1997] and the e-commerce services sorting their products according
to user preferences to facilitate purchase decision [Agrawal and Wimmers 2000].

This problem, known as the top-k query, has received considerable attention from
the database and information retrieval communities [Ortega et al. 1997; Chang et al.
2000; Fagin et al. 2001; Fagin 2002; Kießling 2002; Ilyas et al. 2004]. Fagin’s early
algorithm [Fagin 1999], later optimized in [Nepal and Ramakrishna 1999; Güntzer
et al. 2000; Fagin et al. 2001], assumes that the score of an object x can be accessed
from each source Si both sequentially (i.e., after all objects with higher ranking than
x have been seen there), or randomly by explicitly querying Si about x. On the other
hand, in this paper, we focus on top-k queries in the case where the atomic scores
in each source can be accessed only in sorted order; i.e., it is not possible to know
the score of an object in source Si, before all objects better than x in Si have been
seen there. This case has received increasing interest [Güntzer et al. 2001; Natsev
et al. 2001; Ilyas et al. 2002; 2003] for several reasons. First, in many applications,
random accesses to scores are impossible [Fagin et al. 2001]. For instance, a typical
web search engine does not explicitly return the similarity between a query and a
particular document in its database (it only ranks similar to the query documents).
Second, even when random accesses are allowed, they are usually considerably more
expensive that sorted accesses. Third, we may want to merge (possibly unbounded)
streams of ranked inputs [Ilyas et al. 2003], produced incrementally and/or on-
demand from remote services or underlying database operators, where individual
scores of random objects are not available at anytime.

[Fagin et al. 2001] proposed a top-k algorithm that performs “no random ac-
cesses” (NRA) and proved that it is asymptotically no worse (in terms of accesses)
than any top-k method based on sorted accesses only. Nevertheless, as shown in
[Güntzer et al. 2001; Natsev et al. 2001; Ilyas et al. 2002; 2003], in practice NRA
algorithms can have significant performance differences in terms of (i) accesses, (ii)
computational cost, and (iii) memory requirements. The number of accesses is a
significant cost factor, especially for middleware applications which charge by the
amount of information transferred from the various (distributed) sources. The com-
putational cost is critical for real-time applications, whereas memory is an issue for
NRA algorithms, which, as opposed to random-access based methods (e.g., [Nepal
and Ramakrishna 1999]), have large buffer requirements [Natsev et al. 2001; Ilyas
et al. 2002].

The first contribution of this paper is the identification of some key observations,
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 3

which have been overlooked by past research and apply on the whole family of “no
random accesses” (NRA) algorithms that perform top-k search with monotone ag-
gregate functions. These observations impose two phases that any NRA algorithm
should go through; a growing phase, during which the set of top-k candidates grows
and no pruning can be performed and a shrinking phase, during which the set of
candidates shrinks until the top-k result is finalized.

Our second contribution is a careful implementation of a top-k algorithm, which
is based on these observations and employs appropriate data structures to minimize
the accesses, computational cost, and memory requirements of top-k search. The
proposed Lattice-based Rank Aggregation (LARA) algorithm, during the shrinking
phase, employs a lattice to minimize its computational cost. LARA can be imple-
mented as a standalone rank aggregation tool or as a multiway merge join operator
for dynamically produced ranked inputs. We analyze the time and space complexity
of our method and demonstrate its superiority to previous baseline implementations
of NRA top-k retrieval; its per-access computational cost is only O(log k + 2m),
where m is the number of inputs that are merged. For the case, where the space
requirements of our method exceed the available memory, we propose extensions
that perform disk-based management of the candidate top-k objects.

As a third contribution, we discuss how our algorithm can be seamlessly adapted
for top-k search variants. We present an extension of our algorithm that can be
used as a top-k join operator [Natsev et al. 2001; Ilyas et al. 2003], suitable for
queries that request the results of a (multiway) join to be output in order of some
aggregate score. The technique we propose “pushes” the ordering predicate in the
ripple-join-like evaluation component. We propose an optimization of our top-k
join algorithm for sparse join graphs, where the maintenance of partially joined
tuples that correspond to Cartesian products is avoided. In addition, we propose
an interesting variant of top-k search in an OLAP context; given a set of m ranked
inputs and an aggregate function γ, retrieve for each of the 2m − 1 combinations
of inputs the top-k objects by applying γ only to them. We show how LARA can
be adapted to compute top-k cubes efficiently. Finally, we define browsing (roll-up
and drill-down) operations among top-k results of different cuboids. Extensions
of LARA that perform browsing incrementally (i.e., by continuing search from the
state where the result of the previous query was finalized) are proposed.

We conduct an extensive experimental evaluation with synthetic and real data
and show that, compared to previous techniques, our method accesses (sometimes
significantly) fewer objects, while being orders of magnitude faster. The exper-
iments also demonstrate the efficiency and practicality of LARA extensions on
top-k variants, as well as the accuracy of our theoretical analysis.

The rest of the paper is organized as follows. In Section 2 we review related work
on top-k query processing. Section 3 motivates this research and identifies some
key properties on the behavior of NRA algorithms. Section 4 describes LARA, our
optimized NRA algorithm, which is built on these properties. A time/space com-
plexity analysis for LARA and NRA algorithms in general is presented in Section
5 together with several optimizations that improve the efficiency of our algorithm
in practice. In Section 6, we discuss variants of top-k queries and how LARA can
be adapted for each of them. LARA is experimentally compared with previous

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

4 · Nikos Mamoulis et al.

algorithms of NRA top-k search in Section 7. Finally, Section 8 concludes the
paper.

2. BACKGROUND AND RELATED WORK

This section formally defines top-k queries and provides a literature review for the
basic problem and its variants, discusses other related problems and sets the focus
of this paper.

2.1 Problem definition

Let D be a collection of n objects (e.g., images) and S1, S2, . . . , Sm be a set of
m ranked inputs (e.g., search engine results) of the objects, based on their atomic
scores (e.g., similarity to a query) on different features (e.g., color, texture, etc.). An
aggregate function γ (e.g., weighted sum) maps the m atomic scores x1, x2, . . . , xm

of an object x in S1, S2, . . . , Sm to an aggregate score γx. Function γ is monotone
if (xi ≤ yi,∀i) ⇒ γx ≤ γy. Given γ, a top-k query on S1, S2, . . . , Sm (also called
rank aggregation) retrieves R, a k-subset of D (k < n), such that ∀x ∈ R, y ∈
D−R : γx ≥ γy. Consider the example of Figure 1 showing three ranked inputs for
objects {a, b, c, d, e} and assume that the score of an object in each source ranges
from 0 to 1. A top-1 query with sum as aggregate function γ returns b with score
γb = γ(0.6, 0.8, 0.8) = 2.2.

2.2 Fagin’s algorithms

[Fagin et al. 2001] present a comprehensive analytical study of various methods for
top-k aggregation of ranked inputs by monotone aggregate functions. They identify
two types of accesses to the ranked lists; sorted accesses and random accesses. The
first operation, iteratively reads objects and their scores sequentially, whereas a
random access is a request for an object’s score in some Si given the object’s ID. In
some applications, both sorted and random accesses are possible, whereas in others,
some of the sources may allow only sorted or random accesses.

For the case where sorted and random accesses are possible, a threshold algorithm
(TA) (independently proposed in [Fagin et al. 2001; Nepal and Ramakrishna 1999;
Güntzer et al. 2000]) retrieves objects from the ranked inputs in a round-robin fash-
ion1 and directly computes their aggregate scores by performing random accesses
to the sources where the object has not been seen. A priority queue is used to
organize the best k objects seen so far. Let li be the last score seen in source Si;
T = γ(l1, . . . , lm) defines a threshold (i.e., a lower bound) for the aggregate score
of objects never seen in any Si yet. If the k-th highest aggregate score found so
far is at least equal to T , then the algorithm is guaranteed to have found the top-k
objects and terminates.

Consider again the example of Figure 1 and assume that the aggregate function is
γ = sum and k = 1. In the first round, TA retrieves objects c (from S1 and S3) and
a (from S2). Since c has not been seen before and its aggregate score is incomplete,
a random access in performed to S2 to access c’s score there and derive γc = 2.0.

1In fact, the access of the ranked inputs needs not be round-robin by essence; we discuss this
access pattern for the ease of discussion. All presented algorithms can operate independently of

the order by which information is accessed.

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 5

S1 S2 S3

c 0.9 a 0.9 c 0.9

d 0.8 b 0.8 a 0.9

b 0.6 e 0.6 b 0.8
e 0.3 d 0.4 d 0.6

a 0.1 c 0.2 e 0.5

Fig. 1. Three ranked inputs

Similarly, two random accesses are performed to compute γa = 1.9. After the first
round, c is the best object found so far, but γc is lower than T = γ(0.9, 0.9, 0.9) =
2.7. Thus, it is likely that a better solution can be found and the algorithm proceeds
to the next round. There, objects d,b, and a are accessed, the aggregate scores of d
and b are computed by random accesses (a has been seen before, so it is ignored),
and b is found to be the top object (with γb = 2.2). A better object can still be
found (T = 2.5), so the algorithm proceeds to the next round, retrieving the new
object e (but still b remains the best object seen so far). A fourth round is not
required since now T = 2.0 ≤ γb. Thus, TA terminates returning b, after 9 sorted
and 9 random accesses.

For the case where random accesses are either impossible or much more expensive
compared to sorted ones, [Fagin et al. 2001] proposes an algorithm, referred to as
“no-random accesses” (NRA). NRA computes the top-k result, performing sorted
accesses only. It iteratively retrieves objects x from the ranked inputs and maintains
these objects and upper γub

x and lower γlb
x bounds of their aggregate scores, based

on their atomic scores seen so far and the upper and lower bounds of scores in each
Si where they have not been seen. Bound γub

x is computed by assuming that for
every Si, where x has not been seen yet, x’s score in Si is the highest possible (i.e.,
the score li of the last object seen in Si). Bound γlb

x is computed by assuming that
for every Si, where x has not been seen yet, x’s score in Si is the lowest possible
(i.e., 0 if scores range from 0 to 1). Let Wk be the set of the k objects with the
largest γlb. If the smallest lower bound in Wk is at least the largest γub

x of any
object x not in Wk, then Wk is reported as the top-k result and the algorithm
terminates. NRA is described by the pseudocode of Figure 2.

Algorithm NRA(ranked inputs S1, S2, . . . , Sm)

1. perform a sorted access on each Si;

2. for each newly accessed object x update γlb
x ;

3. if less than k objects have been seen so far then goto Line 1;
4. for each object x seen so far compute γub

x ;
5. Wk := the k objects with the highest γlb;

6. t := min{γlb
x : x ∈ Wk};

7. u := max{γub
x : x /∈ Wk};

8. if t < u then goto Line 1;

9. report Wk as the top-k result;

Fig. 2. The NRA algorithm

Let us see how NRA processes the top-1 query for the ranked inputs of Figure 1
and γ = sum, assuming that the atomic scores in each source range from 0 to 1. In
the first loop, NRA accesses c (from S1 and S3) and a (from S2). W1 = {c}, where

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

6 · Nikos Mamoulis et al.

γlb
c = 1.8. In addition, the object with the highest γub is a, with γub

a = 2.7. Since
γlb

c < γub
a , NRA loops to access a new round of objects (Line 8). After a second

and a third round of accesses, W1 = {b}, with γlb
b = 2.2 (which happens to be the

exact score γb of b, since we saw it in all sources). NRA still does not terminate,
because γub

c = 2.4 > γlb
b (i.e., c may eventually become the best object). After the

fourth round, Wk = {b} and the highest upper bound is γub
c = 2.2. Since γub

c ≤ γb

the algorithm terminates, reporting b as the top-1 object.

2.3 Variants of NRA

A simple variation of the basic NRA algorithm is Stream-Combine (SC) [Güntzer
et al. 2001]. SC reports only objects which have been seen in all sources, thus their
scores should be exact and above the best-case score of all objects not in Wk. In
addition, an object is reported as soon as it is guaranteed to be in the top-k set.
In other words, the algorithm does not wait until the whole top-k result has been
computed in order to output it, but provides the top-k objects with their scores
on-line. A difference of SC with NRA is that it does not maintain Wk, but only
the top-k objects with the highest γub. If one of these objects has its exact score
computed, it is immediately output.

[Ilyas et al. 2002] implemented NRA as a “partially” non-blocking operator, which
outputs an object as soon as it is guaranteed to be in the top-k (like SC), however,
without necessarily having computed its exact aggregate score (like NRA). The idea
is to maintain the threshold of TA (i.e., the aggregate of the last seen atomic scores
at all sources) and report objects as soon as their worst-case score is larger than
the threshold and the best-case scores of all partially seen objects.

2.4 Top-k joins

The top-k query we have seen so far is a special case of top-k join queries [Natsev
et al. 2001; Ilyas et al. 2003; Ilyas et al. 2004], where the results of joins are to be
output in order of an aggregate score on their various components. Consider, for
example, the following top-k query expressed in SQL:

SELECT R.id, S.id, T.id

FROM R, S, T

WHERE R.a = S.a

AND S.b = T.b

ORDER BY R.score + S.score + T.score

STOP AFTER k;

The top-k query we have examined is a special case, where id = a = b, tuple
ids are unique, all R, S, T have the same collection of tuple ids, and tuples from
each relation are ranked based on their scores. [Natsev et al. 2001; Ilyas et al. 2003]
propose algorithms for solving generic top-k joins. The J* algorithm [Natsev et al.
2001], for each input stream, defines a variable whose domain is the values from
that stream. The goal is to find a valid assignment (based on the join conditions)
for all variables of maximal aggregate score. Each partial join result (i.e., valid
assignment for a subset of variables) is called a state and has an upper bound for
the aggregate scores of the complete join results that include it. The algorithm
maintains a heap for all partial and complete states (i.e., complete join results). At
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 7

each step, the state at the top of the heap is popped, missing values are sought for it
(if partial) by accessing the corresponding streams and the results are pushed back
on the heap. The algorithm terminates if the top state in the heap is a complete
one. J* can produce ranked join results incrementally.

[Ilyas et al. 2003] proposed another version of NRA that outputs exact scores
on-line (like SC) and can be applied for any join predicate (like J*). This algo-
rithm uses a threshold which is inexpensive to compute, appropriate for generic
rank join predicates. However, it is much looser compared to T and incurs more
object accesses than necessary in top-k queries. Let hi and li be the highest
and lowest scores seen so far in Si. The threshold used by [Ilyas et al. 2003] is
maxm

i=1 γ(h1, . . . , hi−1, li, hi+1, . . . , hm). They also focus on the implementation of
a binary top-k join operator, whose instances can be combined in evaluation trees
for multiway top-k queries. This operator, called hash-based rank-join (HRJN), is
based on iterator functions that read the tuples of each of the two ranked inputs
and probe them against the tuples of the other input that have already been seen.
Join results are organized in a priority queue. Join results in the queue having
aggregate score larger than the threshold T = max{γ(hleft, lright), γ(lleft, hright)}
are guaranteed to have higher aggregate score than any join result not produced
yet, so they are incrementally output. Here, hleft, lleft (hright, lright) denote the
highest and lowest atomic score values seen in the left (right) input. In this paper,
we propose an efficient non-binary operator for top-k queries which can also be
adapted for generic rank joins, as we show in Section 6.1.

2.5 Other related work

The methods we discussed so far in Sections 2.2 and 2.3 focus on top-k query pro-
cessing for middleware, where the input sources are distributed. [Marian et al. 2004]
study top-k queries for web data where the scores of the objects can be accessed
sequentially from only one source, whereas the other sources allow (possibly expen-
sive) random score evaluations. Adapted versions of TA were proposed for this case.
[Chang and Hwang 2002] study top-k query evaluation for the case where random
accesses are only possible for some query components, due to the involvement of
expensive predicates.

Top-k queries have also been studied for centralized, relational databases. [Bruno
et al. 2002] process top-k queries, after converting them to multidimensional range
queries. They utilize multidimensional histograms to accelerate search. Other
work on expressing and evaluating top-k and other preference queries in rela-
tional databases includes [Carey and Kossmann 1997; Agrawal and Wimmers 2000;
Kießling 2002].

Materialization and maintenance of top-k query results has been studied in [Hris-
tidis and Papakonstantinou 2004] and [Yi et al. 2003]. A recent work on the main-
tenance of top-k query results for streaming data constrained by sliding windows is
[Mouratidis et al. 2006]. Index-based approaches for computing top-k query results
for centralized data are presented in [Tsaparas et al. 2003; Tao et al. 2007]. Fi-
nally, probabilistic extensions of top-k algorithms for approximate retrieval (based
on underlying indexes) have been proposed in [Theobald et al. 2004].

There are several other problems which are highly related to top-k queries. In par-
ticular, the popular nearest neighbor problem (a.k.a. similarity search) in interval-

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

8 · Nikos Mamoulis et al.

scaled high dimensional data can be seen as a special case of top-k search, where the
atomic scores of objects map to absolute attribute value differences to a reference
object and there is a preference function (usually an Lp measure) that combines
them. Thus, certain types of top-k queries can be evaluated by techniques for simi-
larity search in multidimensional data [Roussopoulos et al. 1995; Beyer et al. 1999;
de Vries et al. 2002]. [Balke and Güntzer 2004] extends the concept of top-k queries
to more generic multi-objective queries that also include the popular skyline query
[Börzsönyi et al. 2001].

The focus of this paper is on the implementation of efficient top-k aggregation
of ranked inputs, without relying on indexes or precomputed materialized views.
There are several reasons why index-based approaches or materialized views may be
inapplicable or infeasible in practice. First, the combination of possible aggregation
attributes and merging functions can be very large and it might be impractical to
create and maintain indexes or views for all these combinations. If the number of
attributes that might be considered for aggregation is m, there are 2m − 1 − m
combinations of two or more attributes to be considered for indexing or top-k view
materialization. This number has to be multiplied with the number of functions
that could be considered for aggregation (e.g., weighted sum, min, hybrid functions,
etc.). Besides, the space occupied by these views and indexes might be too large.
In addition, such approaches may not applicable for the case where the ranked lists
are produced from distributed (e.g., web) sources, due to unavailability of on-line
data or privacy constraints.

Like most of the past research on top-k aggregation of sorted lists [Güntzer et al.
2001; Natsev et al. 2001; Ilyas et al. 2002; 2003], we focus on the case where only
sequential accesses are allowed (i.e., NRA top-k search). Random accesses may be
impossible or very expensive if the lists are generated by distributed servers (e.g.,
web services). Even in centralized databases, the difference between random and
sequential I/Os increases over the years, due to the mechanical operations involved
in random disk seeks. Finally, we may want to merge (possibly unbounded) streams
of ranked inputs [Ilyas et al. 2003], produced incrementally and/or on-demand from
remote services or underlying database operators, where individual scores of random
objects are not available at anytime. Since NRA [Fagin et al. 2001] has already been
shown optimal in terms of number of accesses (although there can be significant
practical differences between implementations of the algorithm [Ilyas et al. 2002]),
our goal is to optimize the computational performance of this method, subject to
keeping the access cost minimal. In the next section, we present some observations
that can help toward achieving this goal.

3. THE TWO PHASES OF NRA METHODS

In this section, we motivate our research and bring to light some key observations
on the behavior of “no random accesses” (NRA) top-k algorithms. Provided that
k is a priori known, these observations impose two phases that any NRA algorithm
essentially goes through; a growing and a shrinking phase.

3.1 Motivation

NRA (see Figure 2) repeatedly accesses objects from the sorted inputs, updates
the worst-case and best-case scores of all objects seen so far, and checks whether
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 9

the termination condition holds. Note that, from these operations, updating γlb
x

and Wk can be performed fast. First, only a few objects x are seen at each loop
and γlb

x should be updated only for them. Second, the k highest such scores can
be maintained in Wk efficiently with the help of a priority queue. On the other
hand, updating γub

x for each object x is the most time-consuming task of NRA. Let
li be the last score seen so far in Si. When a new object is accessed from Si, li
is likely to change. This change affects the upper bounds γub

x for all objects that
have been seen in some other stream, but not Si. Thus, a significant percentage of
the accessed objects must update their γub

x ; it is crucial to perform these updates
efficiently and only when necessary.

Another important issue is the minimization of the required memory, i.e., the
maximum number of candidate top-k objects. NRA (see Figure 2) allocates memory
for every newly seen object, until the termination condition t ≥ u is met. However,
during top-k processing, we should avoid maintaining information about objects
that we know that may never be included in the result. Finally, we should avoid
redundant accesses to any input Si that does not contribute to the scores of objects
that may end up in the top-k result.

3.2 Behavior of NRA algorithms

We now provide a set of lemmas that impose some useful rules toward defining a
top-k algorithm of minimal computational cost, memory requirements, and object
accesses. Let t be the k-th highest score in Wk and T = γ(l1, . . . , lm). We can show
the following:

Lemma 1. If t < T , every object which has not been seen so far at any input
can end up in the top-k result.

Proof. Let y be the k-th object in Wk and x be an object, which has not been
seen so far in any Si. The score of y in all inputs where y has not been seen, could
be the lowest possible, that is γy = γlb

y = t. In addition, the atomic scores of x
could be the highest possible, i.e., xi = li in all inputs Si, resulting in γx = T .
t < T implies that we can have γy < γx, thus x can take the place of y in the top-k
result.

Lemma 2. If t < T , any of the objects seen so far can end up in the top-k result.

Proof. Let y be the k-th object in Wk and x be an object which has been seen
in at least one input. If x ∈ Wk the lemma trivially holds. Let x /∈ Wk. From the
monotonicity property of γ, we can derive that T ≤ γub

x , since in the sources Si,
where x has been seen, x’s score is at least li and in all other inputs Sj , x’s score
can be lj in the best case. From γlb

y = t < T and T ≤ γub
x , we get γlb

y < γub
x , which

implies that x can replace y in the top-k result.

Lemmas 1 and 2 imply that while t < T the set of candidate objects can only
grow and there is nothing that we can do about it. Thus, while t < T , we should
only update Wk and T while accessing objects from the sources and need not apply
expensive updates and comparisons on γub

x upper bounds.
As soon as t ≥ T holds, NRA should start maintaining upper bounds and compare

the highest γub
x (∀x /∈ Wk) with t, in order to verify the termination condition of

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

10 · Nikos Mamoulis et al.

Line 8 in Figure 2. An important observation is that if t ≥ T , all objects that have
never been seen in any Si cannot end up in the top-k result:

Lemma 3. If t ≥ T , no object which has not been seen in any input can end up
in the top-k result.

Proof. Let y be the k-th object in Wk and x be an object, which has not been
seen so far in any Si. Then γx ≤ T , because xi ≤ li,∀i and due to the monotonicity
of γ. Thus γx ≤ T ≤ t ≤ γlb

y ≤ γy, i.e., the aggregate score of x cannot exceed the
aggregate score of y.

The implication of Lemma 3 is that once condition t ≥ T is satisfied, the memory
required by the algorithm can only shrink, as we need not keep objects never been
seen before. Summarizing, Lemmas 1 through 3 imply two phases that all NRA
algorithms go through; a growing phase during which T < t and the set of top-k
candidates can only grow and a shrinking phase during which t ≥ T and the set of
candidate objects can only shrink, until the top-k result is finalized. Finally, the
next corollary (due to Lemma 3) helps reducing the accesses during the shrinking
phase.

Corollary 1. If t ≥ T and all current candidate objects have already been
seen at input Si, no further accesses to Si are required in order to compute the
top-k result.

4. LATTICE-BASED RANK AGGREGATION

Our Lattice-based Rank Aggregation (LARA) algorithm is an optimized “no ran-
dom accesses” method, based on the observations discussed in the previous section.
We identify the operations required in each (growing and shrinking) phase and
choose appropriate data structures, in order to support them efficiently. LARA
takes its name from the lattice it uses to reduce the computational cost and the
number of sorted accesses in the shrinking phase. For now, we will assume that
the aggregate function γ is (weighted) sum. Later, we will discuss the evaluation
of top-k queries that involve other aggregate functions, as well as combinations
thereof.

4.1 The growing phase

As discussed, while t < T (i.e., during the growing phase), the set of candidate
objects can only grow and it is pointless to attempt any pruning. Thus LARA only
maintains (i) the set of objects seen so far with their partial aggregate scores2 and
the set of sources where from each object has been accessed, (ii) Wk, the set of
top-k objects with the highest lower score bounds (used to compute t), and (iii) an
array L with the highest scores seen so far from each source (used to incrementally
compute T).

We implement (i) by a hash table H (with object-ID as search key) that stores,
for each already seen object x, its ID, a bitmap indicating the sources where from
x has been seen, its aggregate score γlb

x so far, and a number posx (to be discussed

2The partial aggregate score is (incrementally) derived when γ is applied only on the set of inputs

where x has been seen. If γ is (weighted) sum then this score corresponds to γlb
x .

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 11

shortly). For (ii), we use a heap (i.e., priority queue) to organize Wk. Whenever an
object x is accessed from an input Si, we update the hash table with γlb

x (in O(1)
time). At the same time, we check if x is already in Wk. For this, we use entry
posx, which denotes the position of x in the heap of Wk (posx is set to k + 1 if x is
not in Wk). If x already existed in Wk, its position is updated in Wk (in O(log k)
time) and the O(log k) positional updates of any other object in Wk are reflected
in the hash table (in O(1) time for each affected object). If x is not in Wk, its
updated γlb

x is compared to that of the k-th object in Wk (i.e., the current value of
t) and, if larger, a replacement takes place (again in O(log k) time). Finally, L is
updated and T is incrementally computed from the previous value in O(1) time; if
γ = sum and T prev (lprev

i) denotes the value of T (li) before the last access, then
T = T prev − lprev

i + li.
After each access, the data structures are updated and the condition t ≥ T is

checked. The first time this condition is true, the algorithm enters the shrinking
phase, discussed in the next paragraph. The overall time required to update the
data structures and check the condition t ≥ T for advancing to the shrinking phase
is O(log k) per access, which is worst-case optimal given the operations required at
this phase.

4.2 The shrinking phase

Once t ≥ T is satisfied, LARA progresses to the shrinking phase, where upper score
bounds are maintained and compared to t, until the top-k result is finalized. LARA
applies several optimizations, in order to improve the performance of this phase.

4.2.1 Immediate pruning of unseen objects. According to Lemma 3, during the
shrinking phase, no new objects can end up in the top-k query result; if a newly
accessed object is not found in the hash table, it is simply ignored and we proceed
to the next access. This not only saves many unnecessary computations, but also
reduces the memory requirements to the minimal value (i.e., the number of accessed
objects until t ≥ T); no more memory will ever be needed by the algorithm.

4.2.2 Efficient verification of termination. Let C be the set of candidate objects
that can end up in the top-k result. Let x be the object in (C−Wk) with the greatest
γub

x ; the algorithm terminates if γub
x ≤ t. An important issue is how to efficiently

maintain γub
x . A brute-force technique (to our knowledge, used by previous NRA

implementations [Fagin et al. 2001; Güntzer et al. 2001; Ilyas et al. 2002]) is to
explicitly update γub for all objects in C and recompute γub

x , after each access
(or after a number of accesses from each source). This involves a great deal of
computations, since all objects must be accessed and updated.

Instead of explicitly maintaining γub
x for each x ∈ C, LARA reduces the compu-

tations based on the following idea. For every combination v in the powerset of m
inputs {S1, . . . , Sm}, we keep track of the object xv in C such that (i) xv has been
seen exactly in the v inputs, (ii) xv /∈ Wk, and (iii) xv has the highest partial ag-
gregate score among all objects that satisfy (i) and (ii). Note that if γub

xv ≤ t we can
immediately conclude that no candidate seen exactly in the v inputs may end up
in the result. Thus, by maintaining the set of xv objects, one for each combination

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

12 · Nikos Mamoulis et al.

v, we can check the termination condition by performing only a small number3 of
O(2m) comparisons.

Specifically, as soon as LARA enters the shrinking phase, it constructs a (virtual)
lattice G. For every combination v of inputs (i.e., node in G), it maintains the ID of
its leader xv, which is the object with the highest partial aggregate score seen only
in v, but currently not in Wk. If t is not smaller than any γub

xv for each v, LARA
terminates reporting Wk.

Let us now discuss how the data structures maintained by LARA are updated
after a new object x has been accessed from an input Si. One of the following cases
apply, after x is looked up in the hash table H:

(1) x is not found in H. In this case, x is ignored, as discussed in paragraph 4.2.1.
(2) x ∈ Wk (checked by posx). In this case, γlb

x is updated and so is x’s position in
the priority queue of Wk.

(3) x /∈ Wk. In this case, we first check whether x was the leader of the lattice node
vprev

x where x belonged, before it was accessed at Si. If so, a new leader for
vprev

x is selected. Then, we check whether x can now enter Wk (by comparing
it with tprev). If so, we check whether the object evicted from Wk becomes a
leader for its corresponding lattice node. Otherwise, x is promoted from vprev

x

to the parent node which contains Si in addition to the other inputs, where x
has been seen (and we check whether it becomes the new leader there).

4.3 The basic version of LARA

LARA, as presented so far, is described by the pseudocode of Figure 3. The algo-
rithm repeatedly accesses objects from the various inputs and depending on whether
it is in the growing or shrinking phase it performs the appropriate operations. As
an example of LARA’s functionality, consider again the top-1 query on the three
inputs of Figure 1, for γ = sum. Let us assume that the inputs are accessed in
a round-robin fashion. After three rounds of sorted accesses (9 accesses), LARA
enters the shrinking phase, since t = γlb

b = 2.2 and T = 0.6 + 0.6 + 0.8 = 2.0.
Figure 4a shows the contents of the lattice, Wk (k = 1), and L = {l1, l2, l3} at this
stage. For instance, object c (assigned to node S1S3, where it is also the leader)
has been seen at exactly S1 and S3. c’s score considering only these dimensions
is 1.8. To compute γub

xS1S3 = γub
c , LARA adds l2 (the highest possible score c can

have in S2) to γlb
c . Since γub

xS1S3 > t, LARA proceeds to access the next object from
S1, which is e. Now, γlb

e becomes 0.9 < t and the object is promoted to node S1S2.
We still have γub

xS1S3 > t, thus LARA accesses the next object from S2, which is d.
Now, γlb

d becomes 1.2 < t and the object is promoted to S1S2. Figure 4b shows the
lattice at this stage. Note that now γub

xv for every (occupied) lattice node is at most
t (i.e., γub

xS1S2 = γub
d = 2.0, γub

xS1S3 = γub
c = 2.2, γub

xS2S3 = γub
a = 2.1), thus LARA

terminates.
Note that no objects can be assigned to the bottom ∅ and top S1 . . . Sm nodes

of the lattice. ∅ virtually contains all (useless) objects never been seen during

3Top-k queries usually combine a small m ≤ 10 number of ranked inputs [Fagin et al. 2003].
Thus, in typical applications, n � 2m. In Section 5.1 we analyze the per-access cost of LARA

and compare it to that of simple NRA.

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 13

Algorithm LARA(ranked inputs S1, S2, . . . , Sm)
1. growing := true; /* initially in growing phase */

2. access next object x from next input Si;

3. if growing then
4. update γlb

x ; /* partial aggregate score */

5. if γlb
x > t then

6. update Wk to include x in the correct position;
7. update T ;

8. if t ≥ T then

9. growing := false; construct lattice;
10. goto Line 2;

11. else /* shrinking phase */
12. if x in H then

13. update γlb
x ; /* partial aggregate score */

14. if x ∈ Wk then /* already in Wk */
15. update Wk to include x in the correct position;

16. else /* x was not in Wk */

17. vprev
x := lattice node where x belonged;

18. if x was leader in vprev
x then

19. update leader for vprev
x ;

20. if γlb
x > t then

21. update Wk to include x in the correct position;

22. check if y (evicted from Wk) is leader of vy ;

23. else check if x is leader of node vx := vprev
x ∪ Si;

24. u := max{γub
xv : v ∈ G}; /* use lattice leaders */

25. if t < u then goto Line 2;

26. report Wk as the top-k result;

Fig. 3. The LARA algorithm

S1S2 S1S3 S2S3

S1 S2 S3

S1S2S3

∅

Wk= {(b, 2.2)}

{(c, 1.8)} {(a, 1.8)}

{(e, 0.6)}{(d, 0.8)}

Lattice when entering the shrinking phase
γc

ub = 2.4

l1=0.6, l2=0.6, l3=0.8

S1S2 S1S3 S2S3

S1 S2 S3

S1S2S3

∅

Wk= {(b, 2.2)}

{(c, 1.8)} {(a, 1.8)}{(d, 1.2),
(e, 0.9)}

Lattice after one access
γc

ub = 2.2 Now LARA stops!

l1=0.3, l2=0.4, l3=0.8

(a) after 9 accesses (b) after 11 accesses

Fig. 4. The lattice at two stages of LARA

the growing phase and S1 . . . Sm contains objects seen at all sources. None of the
objects seen at all sources can be further improved; γub = γlb for them. Thus these
are either in Wk, or pruned.

5. ANALYSIS AND OPTIMIZATIONS

In this section, we analyze the time and space complexity of LARA and compare it
to that of NRA. Throughout our analysis, we assume that the rankings of objects
at different inputs are statistically independent and that we follow a round-robin

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

14 · Nikos Mamoulis et al.

access schedule. Although we consider the aggregate function to be sum in the
analysis, our results can be easily extended to other common monotone functions
(e.g., min). After analyzing the expected complexity of LARA (based on the above
assumptions), we propose some optimizations that may reduce the computational
cost and the number of accesses by LARA, in practice. In addition, we propose
adaptations of LARA for the case where the volume of candidates to be managed
exceeds the capacity of the main memory.

5.1 Time complexity

As discussed in Section 4.1, the per-access computational cost of LARA in the
growing phase is O(log k). Now assume that we are in the shrinking phase and we
access an atomic score from source Si. Assume also that we have accessed so far
α · n atomic scores from each source (0 < α < 1). In other words, α denotes the
probability that a random object has been seen at a specific source. We have the
following possibilities:

—The accessed atomic score belongs to an object x that has never been seen before
(x /∈ H). The probability for this to happen is (1 − α)m. The object is just
pruned in this case and the cost of LARA to update the lattice is just O(1).

—The atomic score belongs to an object x that has been seen before. The probability
for a random object y, seen at some but not all sources, to currently belong to
a node v of the lattice L with arity l is Py∈v = αl(1−α)m−l

(1−(1−α)m)−αm . The nominator
corresponds to the probability that y has been seen at a particular combination
of l sources and the denominator is the probability that the object has been seen
in at least one (1 − (1 − α)m) but not at all sources (αm). In other words, the
current cardinality of a node v ∈ L is Py∈v · |C|, where |C| is the number of
candidate objects (excluding those seen at all sources). Given a particular node
v, and because we assume that the rankings of objects in different sources are
independent, the probability of v’s leader to be the currently accessed object x
is 1

Py∈v·|C| , since Py∈v · |C| is the expected number of objects in v. Thus, the
probability of x currently being a leader in one of the nodes of the lattice L is∑

v∈L,Si /∈v
1

Px∈v·|C|Px∈v = (2m−2)/2
|C| .

When x is accessed at Si, LARA (i) potentially updates Wk, (ii) potentially
updates the leader of the lattice node vprev

x where x existed, and (iii) potentially
updates the leader of the lattice node where to x is promoted. Operation (i) costs
O(log k) time (as in the growing phase). The cost of (ii) is O(|C|), where |C| is the
number of candidates, since we need to scan the entire candidates set C in order
to find the new leader. Nevertheless, (ii) is not required unless x used to be the
leader of vprev

x , which happens with probability (2m−2)/2
|C| , as shown above. Thus,

the expected per-access cost of LARA due to (ii) is (2m−2)/2
|C| ·O(|C|)=O(2m).4

The cost of operation (iii) is O(1), since a mere comparison to the previous leader
is required. Summing up, for each access in the shrinking phase, the expected

4In our experiments, we verified that leader promotions in typical runs of LARA are very few (less

than ten).

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 15

S1 S2 S3

o1 0.9 o34 0.9 o67 0.9

o2 0.9 o35 0.9 o68 0.9

.
o33 0.9 o66 0.9 o99 0.9

o100 0.4 o100 0.4 o100 0.4

o67 0.25 o1 0.25 o34 0.25
o68 0.25 o2 0.25 o35 0.25

.
o99 0.25 o33 0.25 o66 0.25

o34 0.1 o67 0.1 o1 0.1
o35 0.1 o68 0.1 o2 0.1

.

o66 0.1 o99 0.1 o33 0.1

Fig. 5. A worst-case scenario for LARA

lattice maintenance cost for LARA is O(log k+2m) and checking the termination
condition requires O(2m) comparisons (as discussed).

Overall, the cost of LARA (at each access) is O(log k) in the growing phase
and O(log k + 2m) in the shrinking phase. The worst-case scenario for LARA is
that, during the shrinking phase, every access causes a promotion of a leader. A
(pathological) example for n = 100, m = 3, k = 1, and γ = sum is shown in Figure
5. LARA will enter the shrinking phase when o100 is accessed. Then t = 1.2,
whereas γub

xS1 = γub
xS2 = γub

xS3 = 1.7. From this point and until o34 is accessed at
S1, LARA promotes the current leader of a singleton node (i.e., S1, S2, or S3) at
a doubleton node (S1S2, S2S3, or S1S3, respectively). LARA will terminate after
another leader promotion (when o34 is accessed at S1) and two more accesses (when
o1 is accessed at S3). As a result, for almost all its accesses in the shrinking phase
(i.e., half the overall accesses) the computational cost of LARA is O(|C|). Even
in such a rare, worst-case scenario, LARA maintains its significant advantage over
NRA in the growing phase. In order to minimize the effect of such pathological
cases and at the same time achieve better scalability with m, in Section 5.3.1 we
suggest an alternative implementation of LARA (called LARA-MAT).

The time complexity of NRA is dominated by the computation and maintenance
of the upper score bounds of all objects that have been partially seen. In other
words, the cost of NRA in both phases is O(|C|) per access. We now analyze the
relationship between |C| and n, as a function of the fraction α of atomic scores
accessed at each source. Assume that we have accessed α · n atomic scores from
each source (0 < α < 1). Now suppose that we access an atomic score from source
Si. Our objective is to estimate the number of objects for which we have to update
their upper bound scores after this access. This corresponds to the number of
objects seen at any source, but not Si. The probability of a random object x not
seen at source Si is P¬Si = (1−α). The probability of the same object x seen at one
or more sources other than Si is Pany Sj |Sj 6=Si

= (1− (1− α)m−1). Therefore, the
expected number of objects for which NRA has to update their upper bound after
an access is P¬Si

·Pany Sj |Sj 6=Si
·n or (1− (1−α)m−1)(1−α)n. As we show in the

next paragraph (space analysis), NRA requires accessing large fractions of the lists
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

16 · Nikos Mamoulis et al.

before it can terminate, therefore the O(|C|) per-access complexity of NRA grows
much higher than the O(2m) per-access cost of LARA, as the number of candidates
|C| increases during the growing phase.

5.2 Space complexity

The maximum space required by LARA corresponds to the maximum number of
candidates that need to be maintained. Based on the lemmata of Section 3, this
corresponds to the number of distinct objects accessed until the shrinking phase
begins (i.e., until t ≥ T). Our space complexity analysis is based on the assumption
that the distribution of scores in the sources are uniform and independent. This
assumption implies that the atomic score of the (α · n)-th top object at any list
Si is 1 − α. Assume that we are still in the growing phase and α · n objects
have been accessed from each source. Then, T = m · (1 − α), assuming γ =
sum. At this stage, the expected number of objects which have been seen at all
m sources is n(α)m. In general, at exactly m′ sources, we expect to have seen
n
(

m
m′

)
(α)m′

(1 − α)m−m′
objects. In addition, the probability of an object seen at

all sources to have aggregate score at least T is 1, whereas the expected γlb
x bound

of an object x seen exactly at m′ sources is m′(1− α
2). Overall, assuming that we

have accessed α · n scores from each source, the expected number of objects for
which the lower bound is at least T is:

m∑
m′=1

(
bn
(

m

m′

)
(α)m′

(1− α)m−m′
c × (m′(1− α

2
) ≥ T)

)
(1)

The second factor of each summed term is a boolean formula that translates to
integer 1 or 0. The goal is to find the smallest α for which the sum above is at least
k. This can be achieved by numerical analysis (i.e., using the bisection method).
Then, based on the found α, the expected distinct number of candidates that enter
the shrinking phase (i.e., the space complexity of LARA) is n(1− (1−α)m). NRA
can also achieve the same space complexity, if any newly seen object whose upper
bound is at most t is not stored (this happens as soon as t ≥ T).

Figure 6a visualizes our analysis for m = 2 and γ=sum. If α · n atomic scores
have been seen from each source, the space can be divided into three regions;
(i) completely seen region (dark gray), whose objects have been accessed from all
sources, (ii) partially seen region (light gray), whose objects have been accessed
from some but not all sources, and (iii) unseen region (white), whose objects have
not been accessed from any source. Under our uniformity assumption, the number
of objects in each region is estimated as the area of the region multiplied by n. The
candidate size corresponds to the total number of objects in dark gray and light
gray regions. In Figure 6b, the dotted contour line represents all objects having
aggregate score t (i.e., the current lowest score in Wk). The aggregate score of
any object lying below the contour is less than t. The growing phase ends when
the contour does not intersect the unseen region. In the shrinking phase, among
the partially seen objects, those having upper bound scores smaller than t can be
pruned as they cannot lead to better result. In Figure 6b, these objects reside in the
bold-framed rectangles. As LARA accesses more scores, α increases and the non-
pruned partially seen regions are trimmed. Eventually, the number of candidates
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 17

drops to zero and LARA terminates.

α

0 1

1

S1

S2
α

partial

complete

unseen

[A] In the above figure, we access both sources by the depth “alpha”. Dark gray region
corresponds to points which have been completely seen. Light gray region corresponds to
points which have been partially seen. Note that we do not know the exact coordinates of
points in the light gray region.
In LARA/NRA, we only keep a fixed number of points (the best ones) for the dark gray
region. Thus, the candidate size corresponds to the area of light gray region.

[B] Consider the above figure, in which the score bound “gamma” is drawn as a dotted
line. Note that “gamma” can either be the score of a completely seen point or the lower
bound score of a partially seen point. (Growing phase ends when the line covers no white
area.) The bold rectangles refer to candidates that cannot lead to better result.
With this idea, it is possible for us to capture the number of REMAINING candidates in
each “trimmed” light gray stripe. This is important and allows us to know when the
algorithm terminates in the shrinking phase. For example, the algorithm terminates when
the whole dotted line is completely covered by the dark gray region.
Note: Such pruning constraint is easy to visualize in 2D case. For higher dimensional
cases, the constraint translates to a hyper-plane, and the pruning area/volume needs to be
computed by a COMPLEX volume formula.

0 1

1

S1

S2

score
bound

pruned

potential
results

α

0 1

1

S1

S2
α

partial

complete

unseen

[A] In the above figure, we access both sources by the depth “alpha”. Dark gray region
corresponds to points which have been completely seen. Light gray region corresponds to
points which have been partially seen. Note that we do not know the exact coordinates of
points in the light gray region.
In LARA/NRA, we only keep a fixed number of points (the best ones) for the dark gray
region. Thus, the candidate size corresponds to the area of light gray region.

[B] Consider the above figure, in which the score bound “gamma” is drawn as a dotted
line. Note that “gamma” can either be the score of a completely seen point or the lower
bound score of a partially seen point. (Growing phase ends when the line covers no white
area.) The bold rectangles refer to candidates that cannot lead to better result.
With this idea, it is possible for us to capture the number of REMAINING candidates in
each “trimmed” light gray stripe. This is important and allows us to know when the
algorithm terminates in the shrinking phase. For example, the algorithm terminates when
the whole dotted line is completely covered by the dark gray region.
Note: Such pruning constraint is easy to visualize in 2D case. For higher dimensional
cases, the constraint translates to a hyper-plane, and the pruning area/volume needs to be
computed by a COMPLEX volume formula.
[constrained area/volume (of each piece): (delta^m) / m! , where m is dimensionality]

0 1

1

S1

S2

score
bound

pruned

potential
results

(a) domain space (b) score bound
[constrained area/volume (of each piece): (delta^m) / m! , where m is dimensionality]

0 1

1

S1

S2

pruned

2γ SS 1+ 1 = 0.5

α '
α ''

node S

node S

2

1

[C] Recall that the “drying out” effect is small for sources with similar weights but large
for sources with different weights. Let’s use the above model to explain the “drying out”
effect for the weighted case: w1=0.5 and w2=1.

Observe that the dotted line (indicating the current score bound) is slanted towards S2.
Thus, in the shrinking phase of LARA, we have few candidates in the lattice node <S1>
and many candidates in the lattice node <S2>.
When the access depth later becomes α’, there will be NO candidates in the lattice node
<S1>. All remaining candidates are in S2 and their S2 values have been seen. Thus, we
can “dry out” the source S2 and subsequently the dark gray will only expand along S1
until it covers the α’’ x α’ rectangular region.

On the other hand, NRA continues expansion along both sources and it terminates when
the dark gray region covers the α’’ x α’’ rectangular region, which is much larger than
the one in LARA.

0 1

1

S1

S2

pruned

αf ()1

αf ()2

[D] For non-uniform datasets, we can use histograms to estimate the access cost, number
of candidates, the score bound (gamma) in the growing phase and the shrinking phase.
However, we need to assume that data values from different sources are independent.

The number of candidates in a hyper rectangle [a1,b1]x[a2,b2]x…[a_m,b_m]
= n \product_{i \in [1,m]} selectivity ([a_i,b_i])

For simplicity, we consider the case at k=1.
In the journal paper, we first introduce the above figure (or similar figures) and then we
proceed to solve the following problems. In the following, the access depth “alpha”
means that “alpha*n” objects are accessed from each source.

{Growing phase}
1. For each region (e.g., gray and dark gray regions in this example), determine the
required access depth “alpha” such that the expected number of points in the region is 1.

For this, we can apply iterative approximation (numerical method) to solve the problem.
Note that the process below has to be repeated for each region.

Iterative approximation
First, we set alpha=0.5 and estimate the (expected) number of points in the region
by using the histogram.
If the number is greater (less) than 1, then we set alpha=0.75 (alpha=0.25) in the
next round.
We continue the procedure until alpha cannot be refined further.

2. For each region (with the corresponding “alpha” found above), determine the
“expected” lower-bound score of the object. We use the mean value (i.e., center) for each
seen dimension (from histogram) and 0 for unseen dimensions.
Then, we consider all regions and take the HIGHEST lower-bound score as “gamma”.

3. The growing phase terminates when the hyper-plane (defined by “gamma”) does not
intersect the white region. We can also estimate this by using the histogram.

(c) weighted query (d) non-uniform dataset

Fig. 6. Geometric analysis

Although our space analysis assumes uniform distribution of atomic scores, it
can be easily extended for the case of non-uniform (i.e., real) datasets, provided
that (i) the sources are independent, and (ii) for each source Si, a histogram for
the scores distribution there is available. In this case, Equation 1 is replaced by:

∑
combination v

(
bn · (α)arity(v) · (1− α)m−arity(v)c × ((

∑
i∈v

Si[fi(α), 1]) ≥ T)

)
(2)

In the above equation, for every combination v of sources (i.e., every node of
the lattice) we estimate the number of objects seen exactly at these inputs (first
factor in sum). In the second factor of each summed term,

∑
i∈v Si[fi(α), 1] is the

expected γlb
x of an object x seen at combination v. In this quantity, fi(α) is the

(α · n)-th atomic score at input Si and Si[a, b] is the mean score of the items in Si

whose score is in the interval [a, b]. Both fi(α) and Si[a, b] can be easily estimated
from the histogram of Si.

If multi-dimensional histograms are available, which not only capture the score
distributions at the different input, but also the correlation between them, then we
can derive an even more accurate formula. We can estimate the objects seen at a
combination v by a multi-dimensional range-count query with extent [fi(α), 1] at

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

18 · Nikos Mamoulis et al.

the inputs (i.e., dimensions) that appear in v and [0, fi(α)] at the inputs not in
v. From these objects, we can estimate the ones with γlb

x at least T again by a
range-count query with constraint γx ≥ T , where γ applies only to the dimensions
in v. To illustrate this method, consider the geometric example of Figure 6a and
assume that a 2D histogram is available. We can estimate the number of objects
seen only at combination v = {S2}, after accessing α · n objects from both inputs,
by applying a range-count query having as extent the upper light gray rectangle.
Assuming that the dotted contour line in Figure 6b represents the objects having
aggregate score T , we can estimate the number of objects x ∈ v with γlb

x at least T
by a range-count query having as extent the upper light gray rectangle excluding its
bold-framed part. If we repeat this operation for all combinations v, we can derive
an estimate for the total number of candidates for any value of T , which allows us
to apply a numerical analysis technique for estimating the space requirements of
LARA.

5.3 Optimizing the performance of LARA in practice

In this section, we present several optimizations of LARA that minimize its num-
ber of accesses and the computational cost in practice. In a nutshell, we (i) prune
candidates as soon as they are known to have lower upper bound than t, (ii) use
Corollary 1 to detect and dry up inputs that cannot contribute to the top-k re-
sult, and (iii) delay the expensive computation and update of upper bounds when
entering the shrinking phase.

5.3.1 Reducing the number of candidates. The basic version of LARA (see Fig-
ure 3), does not explicitly prune any object, but keeps updating their lower and
upper bounds until the termination condition holds. However, we can reduce the
number of top-k candidates at minimal cost, during the regular operations of LARA.
First, if for the last accessed object x, γub

x ≤ t, we can immediately delete x from
H and avoid its promotion to the parent lattice node vx. Consider again the appli-
cation of LARA on the example of Figure 1, right after the 9th access (Figure 4a).
When e is accessed from S1 (10th access), γub

e becomes 0.9 + 0.8 < 2.2 = t, thus
LARA can immediately prune e and avoid promoting it to node S1S2.

As a second optimization, during the execution of the algorithm, if all objects
in a lattice node v have γub not greater than t (verified by comparing t with the
leader xv of v), we can safely prune all objects from v, significantly reducing the
number of candidates in H and avoiding redundant update operations (for these
objects) in the future.

An implementation of LARA that efficiently performs the second optimization
and also scales better with m materializes the lattice; i.e., candidates are explicitly
partitioned into sets according to the lattice nodes where they belong. In this
LARA-MAT implementation, leader updates do not require the scanning of the
whole candidate set, but only the objects currently in the node where the leader
should be updated. The price to pay is that at each access (e.g., of object x), the
contents of two nodes must be updated (e.g., x is deleted from vprev

x and inserted
to vx). Therefore, if the leader of a node v has γub not greater than t, we can
immediately prune the objects in v, without having to access all candidates. In
addition, if a leader is promoted from node v, the new leader for v can be selected
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 19

from the objects that belong to v only (i.e., there is no need to scan the whole set
C of candidates). If m is large (i.e., the lattice is large), the probability that the
currently accessed object is a leader in a node increases, thus leader promotions
become frequent. In this case, LARA-MAT is expected to be more efficient than
LARA. Finally, for large values of m there can be many nodes of the lattice that
are empty. Thus, the comparison of t with the upper bounds of leaders (see Line
24 of Figure 3) is restricted to checking only the non-pruned leaders, which are
much fewer than 2m. As a result, the per-access cost of LARA-MAT can be much
smaller than that of the original algorithm which performs at least 2m comparisons
per access.

5.3.2 Reducing the number of accesses. At the latter stages of LARA, we can
exploit Corollary 1 to avoid accessing inputs that do not contribute to the aggregate
score of remaining candidates. Let Si be a source (e.g., S1), such that (i) all objects
in Wk have already been seen at Si and (ii) for all lattice nodes v that do not contain
that source (e.g., S2, S3, S2S3) γub

xv ≤ t. Obviously, no object in any of these nodes
can end up in the top-k result. In addition, for all objects x in all other nodes (e.g.,
S1, S1S2, S1S3, S1S2S3), xi is already known. Thus, no more accesses to Si are
needed for computing the top-k result.

Based on this idea, LARA, while checking for the termination condition, keeps
track of the pruned/empty nodes, whose subsets are all pruned/empty (i.e., by the
use of a bitmap). In addition, it maintains a bitmap bWk

which indicates the sources
where all objects in Wk have been seen. The termination condition is checked in a
level-wise bottom-up fashion, starting from nodes with one input Si, then moving
to nodes with two inputs SiSj , etc. At the first level, all pruned/empty nodes which
are also set in bWk

are marked as “dead”. At level l a node is marked “dead” only
if (i) the node is pruned/empty, (ii) its immediate subsets are all marked “dead”,
and (iii) the corresponding combination of bits in bWk

is set. A dead node v needs
never been checked again in the future, since, there may be no new object x that
can end up in v with γub

x > t. We can “dry up” inputs by exploiting Corollary 1 as
follows. Let v = S1S2 . . . Si−1Si+1 . . . Sm be a lattice node that contains all nodes
but Si. If v is marked dead, then we know that it is pointless to attempt any more
accesses from Si. Si is then dried up and the total number of accesses is decreased.

Note that if LARA follows the same read schedule as NRA, it never performs
more accesses. Thus, LARA is instance optimal [Fagin et al. 2001] with respect to
the number of performed accesses. On the other hand, LARA may perform fewer
accesses than NRA in the possible case that an input Si has been dried up before
the top-k result has been finalized, by simply rejecting accesses to Si from the read
schedule.

The impact of drying up inputs to the access cost of LARA can be geometrically
demonstrated in the example of Figure 6c. Consider the weighted sum aggregate
function γ = 0.5 · S1 + 1 · S2. Recall that each partially seen region (in light gray)
corresponds a lattice node in LARA. In the figure, the topmost (rightmost) region
corresponds to the objects seen only at node S2 (S1). Since the (score bound)
contour is slanted towards the S2 axis, the number of candidates at lattice node
S1 is much fewer than that those at node S2. As LARA continues accessing the
sources, at some stage the width of the horizontal strip becomes α′ (i.e., α′ · n

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

20 · Nikos Mamoulis et al.

scores are accessed from S2). At that time, node S1 becomes empty (all candidates
there are pruned since the contour is above the a′ point). Thus, LARA dries up
source S2 and accesses S1 until the width of the vertical strip grows to α′′. On
the other hand, NRA continues expansion along both sources until the width of
both strips become α′′. Therefore, the access cost saving of LARA over NRA can
be significant (especially for functions with vastly different weights). Drying up
sources can also save many accesses at uniform functions (like sum) on non-uniform
(e.g., real) datasets. In this case, when the same number of scores have been
accessed from each source, different strips have different widths for non-uniform
sources. For instance, in Figure 6d, the α · n-th score at S1 (i.e., f1(α)) is larger
than the α ·n-th score at S2 (i.e., f2(α)), thus the vertical light gray strip is thinner
than the horizontal light gray strip. This causes the contour to prune the candidates
in S1 and to dry S2 up, early.

5.3.3 Reducing the number of comparisons. At the beginning of the shrinking
phase, the majority of the lattice nodes are populated and highly unlikely to be
pruned, since t is marginally greater than T and much smaller than the upper
score bounds of most objects. Since we expect that the comparisons right at the
beginning of the shrinking phase will hardly prune any object or node, it is wise to
delay pruning attempts until there are high chances for the termination condition
to hold.

Let u be the largest upper bound of objects not in Wk, when LARA enters
the shrinking phase (i.e., u := max{γub

xv : v ∈ G}). If u ≤ t, LARA immediately
terminates (Lines 25–26 of Figure 3). Every new access (e.g., from source Si)
reduces γub

xv for half of the lattice nodes (e.g., those including Si) by ∆l = lprev
i − li,

where lprev
i is the previous value in Si (before li was accessed). In addition, the new

access might increase t. However, note that it is not possible to prune all lattice
nodes, while u−∆l > t. Thus, after computing u for the first time, and after every
consequent access, instead of performing lattice operations, while u−∆l > t, we set
u := u−∆l (and update t as usual), without attempting any actual comparisons.
As soon as u − ∆l ≤ t, we begin updating upper bounds (and u). A subtle thing
to note for this optimization is that together with the initial computation of u we
also keep track of the leader which is responsible for u. If this leader enters Wk, the
actual upper bound may drop by a value larger than ∆l; in that case, the actual
upper bound u and the corresponding leader are re-computed.

A closer look reveals that the above computational optimization may weaken the
power of the access cost optimization of Section 5.3.2. Even when the highest upper
bound of lattice leaders is greater than t, we can dry up a source Si provided that
(i) all objects in Wk have already been seen at Si and (ii) for each lattice node v
that does not include Si, γub

xv ≤ t holds. In order to preserve the full power of the
access cost optimization, we can modify the above computational optimization as
follows. Instead of using the maximum upper bound score of the lattice, we take
u = min{u1, u2, ..., um}, where ui is the maximum upper bound score of all nodes
without the source Si. We decrement u by ∆l each time a source is accessed, until
u − ∆l ≤ t. At that time, we recompute u and also check whether any source can
be dried up.
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 21

5.4 Disk-based management of candidates

Existing “no random accesses” algorithms [Fagin et al. 2001; Natsev et al. 2001;
Ilyas et al. 2002] assume that the memory is large enough to accommodate all
candidates, which may not hold in practice. The space analysis of Section 5.2 and
our experimental evaluation unveils that the number of top-k candidates during
LARA (or NRA) could grow to a large percentage of the total number of objects.
In problem settings, where the system’s memory is too small to fit the partial score
of every candidate, the application of LARA (and NRA algorithms in general) is
infeasible.

In this section, we propose adaptations of LARA for bounded memory, which
manage candidates and their partial scores on disk. Our objective is to minimize
the disk I/O, while keeping the number of accesses close to the minimum possible:
the accesses incurred by a version of LARA which has unlimited memory. We
emphasize that the number of accesses accounts for the middleware cost and its
interpretation is different from the I/O cost for managing candidates on disk.

Figure 7 shows the pseudo-code of an eager algorithm for top-k processing with a
memory constraint B. Let B be the maximum number of entries that the hash table
H can accommodate. During the growing phase, the algorithm operates exactly
like LARA until H becomes full. At this stage, the candidates in H are sorted by
object id, written to a disk file Z, and H is cleaned up. LARA-EAGER continues
accessing objects and updating H and Wk. At any subsequent occasion when H
becomes full again, its contents are sorted and merged with Z; the resulting merged
list Z is again written back to disk. We call Lines 8–9 a refresh operation because
it derives tight lower score bounds for objects which have been seen (from any
source). Observe that, between adjacent refresh operations, the lower bound score
γlb

x derived at Line 4 is loose, since it does not consider any atomic scores which
have been seen before and stored in Z. After the growing phase ends, we store the
candidates of H into Z and clean up H (Lines 12–14).

In the shrinking phase, we distinguish between two cases; (i) Z is empty (no
candidates on disk) and (ii) Z is not empty. If Z is not empty and its contents do
not fit in memory, the algorithm operates similarly to the growing phase; atomic
scores are read from the inputs and a main-memory set of candidates is maintained
in H, while Wk is updated. If H becomes full, we perform a refresh operation; H
is merged with the set Z of candidates on disk and Wk is updated using the actual
lower bounds. During merging, entries y ∈ Z with γub

y ≤ t are deleted from Z.
Also, after each merging we apply the optimization of Section 5.3.2 to potentially
dry up inputs (not shown in the pseudocode). Note that if Z is not empty, we
need to store every accessed object in H, as we do not immediately check whether
it has been seen before (we cannot use Lemma 3). As soon as the total number of
candidates in Z fits in memory, they are loaded to the memory-resident H and case
(i) applies. Since the set of candidates can only shrink, we construct the lattice and
the algorithm operates like the normal shrinking phase of LARA, until termination.

We found by experimentation that the above disk-based algorithm incurs higher
I/O cost in the growing phase than in the shrinking phase. The reason is that Z
can grow very large and each refresh operation scans the whole Z. To alleviate
this problem, we propose a lazy approach which operates differently in the growing

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

22 · Nikos Mamoulis et al.

Algorithm LARA-EAGER(memory bound B, ranked inputs S1, S2, . . . , Sm)
1. Z:=new (empty) sorted list of objects on disk;

2. repeat /* growing phase */

3. access next object x from next input Si;
4. update x in H and compute γlb

x ; /* partial aggregate score */

5. update Wk if γlb
x > t;

6. update T ;
7. if |H| = B then /* memory full */

8. union-merge the entries in H and Z by object id, and write the merged list to Z;

9. during merging, update γlb
y of objects y ∈ Z and update Wk;

10. remove all entries from H;

11. until t ≥ T ;

12. if Z 6= ∅ and H 6= ∅ then /* clean up candidates in memory */
13. perform Lines 8–10;

14. remove all entries with γub
y ≤ t from Z;

15. repeat /* shrinking phase */
16. if 0 < |Z| ≤ B then

17. load entries of Z into H, clear Z, and construct lattice;
18. access next object x from next input Si;

19. if Z 6= ∅ then /* entries on disk */

20. update x in H and compute γlb
x ;

21. update Wk if γlb
x > t;

22. if |H| = B then /* memory full */

23. for each object y ∈ Z such that y ∈ H;
24. update γlb

y in Z and Wk;

25. remove all entries from H;

26. remove all entries with γub
y ≤ t from Z;

27. else /* no entries on disk */

28. perform the shrinking phase of LARA;

29. u := max{γub
xv : v ∈ G}; /* use lattice leaders */

30. until Z = ∅ and t ≥ u;

31. report Wk as the top-k result;

Fig. 7. Disk-based LARA-EAGER algorithm

phase. When H becomes full, we simply append new coming objects to Z and avoid
scanning the whole Z. After the growing phase terminates, we perform external
sorting on Z by object id and then execute the refresh operation. LARA-LAZY
can have lower I/O cost than LARA-EAGER. On the other hand, LARA-LAZY
may have much higher access cost than LARA-EAGER, since the refresh operation
is delayed until the end of the growing phase. During the growing phase of LARA-
LAZY, Wk contains the highest lower bounds only from objects in H (i.e., the first
H objects seen) and t is a loose bound. As a result, the termination of the growing
phase delays.

In fact, there is a trade-off between accesses and I/O cost for disk-based im-
plementations of LARA. LARA-EAGER performs refresh operations frequently,
leading to low access cost and high I/O cost. On the other hand, LARA-LAZY de-
lays refresh operations so it has low I/O cost but incurs many accesses. In order to
achieve a good trade-off, we extend LARA-LAZY into a LARA-ADAPT algorithm,
which performs refresh operations adaptively in the growing phase, aiming at bal-
ancing the access cost and disk I/O cost. Similar to LARA-LAZY, LARA-ADAPT
simply appends new objects to Z after H becomes full. However, LARA-ADAPT
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 23

differs from LARA-LAZY in the following points. Initially, a variable ϕ is set to
the memory size B. Whenever |Z| reaches ϕ, LARA-ADAPT performs a refresh
operation and doubles ϕ.5 Thus, LARA-ADAPT is expected to (i) incur fewer I/O
accesses than LARA-EAGER and (ii) perform fewer accesses than LARA-LAZY.

6. VARIANTS OF TOP-K SEARCH

So far we have discussed how LARA processes top-k queries when γ = sum. In
addition, note that LARA can terminate before the complete scores of all objects
in the top-k result are known. Finally, the algorithm does not output any result
until the whole top-k set is known and does not incrementally output the results
in increasing order of their aggregate scores. In [Mamoulis et al. 2006], we have
shown that LARA can easily be adapted for different variants and requirements
of a top-k search. In this section, we propose adaptations of LARA for top-k join
queries, top-k cube queries, and browsing operations between top-k cuboids.

6.1 Top-k join queries

The top-k query we have seen so far is a special case of top-k join queries [Natsev
et al. 2001; Ilyas et al. 2003; Ilyas et al. 2004], where the results of joins are to be
output in order of an aggregate score on their various component (see the discussion
at Section 2.4). Here, we show how LARA can be converted to LARA-J, a top-
k join operator that incrementally outputs join results based on their aggregate
scores. Instead of maintaining a single hash table with all objects seen so far,
LARA-J materializes the lattice and stores for each combination of sources, tuples
that partially satisfy the join. Consider, for example, the top-k query expression
of Section 2.4. Tuples from R that match with tuples from S are stored in node
R ◦ S of the lattice. For each lattice node v, the highest upper bound γub

xv for
any partial tuple xv ∈ v is maintained as usual. This is computed by considering
the last scores seen at any sources not in v. LARA-J does not keep a Wk, but
combinations in the top lattice node (e.g., R ◦ S ◦ T) are organized in a priority
queue based on their aggregate scores. These are output incrementally, as soon
as they are known to have greatest score than all γub in the rest of lattice nodes.
When a new tuple is read (e.g., from R), it is immediately joined with combinations
in the lattice nodes that do not include its source. The new tuple is accommodated
in the corresponding lattice node and join results are immediately added to the
corresponding nodes. Partial results in each lattice node are indexed in order to
facilitate efficient probing (i.e., using hash tables).

The pseudocode of Figure 8 describes the functionality of LARA-J. The algo-
rithm operates in a multiway ripple-join fashion, which has an integrated ranking
component. Theorem 1 shows that it produces the correct results and only once
(i.e., no duplicate join results are generated). The version of LARA-J shown in
Figure 8 can be easily converted to an incremental algorithm, by replacing lines
9–10 by a while-loop that outputs the top tuple in S1 ◦ S2 ◦ · · · ◦ Sm and removes
it from the node, while its score is at least u.

5The rationale behind doubling ϕ is to result in total disk I/O that is approximately the sum of

a geometric series (bounded by a constant factor of the number of accesses in the growing phase).

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

24 · Nikos Mamoulis et al.

Theorem 1. LARA-J produces the correct top-k join results and there are no
duplicates in the final response set.

Proof. We will first show that all complete multiway join results (i.e., if we
exclude the top-k component of the query) are produced correctly and forwarded
to the top lattice node only once. Let τ be a tuple in the multiway join result. Let
x be the component of τ that arrived after all other components of τ in the lattice
and assume that it arrived from source Si. Clearly, τ will be generated at the lattice
node only once and when x was read from Si, since x would not have otherwise
been known. In addition, the combination τ\x of all other components in τ except
x should be at lattice node v = S1◦· · ·◦Si−1◦Si+1◦· · ·◦Sm when x arrives. We can
easily prove this assertion by induction, by considering the last arrived component
x′ of τ\x. The basis of the induction is that the temporally first component of τ
(e.g., xj that arrived from Sj) is trivially added once to the lattice node populated
by the corresponding source (e.g., the node having Sj alone). In addition, the fact
that tuples generated at any lattice node correspond to correct partial join results
can also be easily proved by induction, since they are generated after probing the
currently seen tuple to the contents of lattice nodes one level below. Finally, since
upper bounds for partial results at all nodes are used, the ranking component of
LARA-J is also correct.

Algorithm LARA-J(ranked inputs S1, S2, . . . , Sm)

1. initialize lattice G;
2. access next tuple x from next input Si;

3. add x to node corresponding to source Si;

4. for each lattice node v not containing source Si

5. join x with the contents of v;

6. add join results to node v ◦ Si;

7. update upper bound of v ◦ Si, if applicable;
8. u := max{γub

xv : v ∈ G};
9. t := k-th largest score at top node S1 ◦ S2 ◦ · · · ◦ Sm;

10. if t < u then goto Line 2;
11. report tuples with the k-th largest scores at top node S1 ◦ S2 ◦ · · · ◦ Sm;

Fig. 8. The LARA-J algorithm

As already shown in [Ilyas et al. 2002], non-binary algorithms (like our LARA-J)
could be more efficient than combinations of binary operators for problems with
m > 2. LARA-J is expected to have several advantages over trees of binary opera-
tors like HRJN. First, LARA-J outputs the produced join results (produced at the
top node) by comparing their scores with the upper bounds of the produced partial
results at the lattice nodes. These upper bounds are expected to be lower than the
thresholds used by HRJN (based on the best-case scores of potential future join
results), so the output rate of LARA-J is expected to be higher than that of a plan
of HRJN operators. In addition, the efficiency of the plan of HRJN operators is
based on demand-driven evaluation, as the technique schedules GetNext() calls at
the various nodes of the operation tree. On the other hand, LARA-J adapts grace-
fully to production-based evaluation of top-k joins, as it produces all (complete and
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 25

partial) join results as soon as a new tuple is available at any input. Finally, LARA-
J does not rely on the generation and maintenance of an efficient plan of binary
operators, but it produces the next join result with the highest score as soon as it
can be guaranteed without any unnecessary accesses. The superiority of LARA-J
compared to binary trees of HRJN is verified by our experimental evaluation.

6.1.1 Reducing the number of lattice nodes in top-k joins. Note that LARA-J
joins each newly accessed tuple x with 2m−1 lattice nodes. However, not all these
nodes may correspond to connected subgraphs of the complete multiway join graph.
For instance, in the example query of Section 2.4, there is no join condition between
R and T, thus lattice node R ◦ T essentially stores the Cartesian product of R and T.
This implies that whenever a tuple is read from source R it will unconditionally be
combined with all tuples at lattice node T and written to R ◦ T. Thus, the cost of
writing to R◦T is quadratic to the number of tuples seen from R and T. In addition,
space is wasted for this redundant Cartesian product. Finally, each tuple x read
from S is joined with the very large Cartesian product stored in R◦T, while the join
results it contributes to R◦S◦T are exactly determined by the tuples from R that join
with x and the tuples from T that join with x (and these will be computed anyway).
Thus, maintaining lattice nodes that correspond to disconnected subgraphs of the
join graph leads to a waste of computational and storage resources.

We propose LARA-J∗, an improved version of LARA-J which materializes only
nodes of the lattice that correspond to connected query subgraphs. For this purpose,
we model a multiway join query with a ranking component by a graph Γ, where
nodes correspond to the joined relations and edges correspond to join predicates
between attributes from the connected nodes.

The first difference between LARA-J and LARA-J∗, is that the latter does not
consider lattice nodes corresponding to sets of nodes that do not form a connected
subgraph of Γ. The elimination of these nodes implies the second difference between
the algorithms; special treatment is required for new tuples (e.g., from S), which
were originally probed against a Cartesian product lattice node (e.g., R ◦ T) that
now no longer exists. Not only do we have to generate partial results for non-
eliminated nodes (e.g., R ◦ S and S ◦ T) having a join condition with the current
source, but we may also need to generate tuples for other nodes of the lattice (e.g.,
R ◦ S ◦ T) that correspond to connected join (sub)graphs including the currently
accessed source (e.g., S) and otherwise disconnected components (e.g., R and T).
For our example join graph, when a tuple is accessed from R (T) it is joined with
nodes S and S ◦ T (R ◦ S), as in LARA-J. On the other hand, a new tuple s that
arrives from S is joined with nodes R and T only, but they produce results for R ◦ S,
S ◦ T, and R ◦ S ◦ T. The tuples for the top node of the lattice are easily produced
by taking the Cartesian product of the set of tuples from R and T that join with s;
formally, the set s ◦ ((Rns)× (Tns)), where n denotes a semi-join. For instance, if
s joins with {r1, r2} from R and {t1} from T, {r1, s, t1} and {r2, s, t1} are added to
node R◦S◦T without the need of extra computations.

Thus, the handling of newcoming tuples varies between different sources, depend-
ing on the corresponding nodes of the join graph. In order to avoid re-computing
from scratch the set of lattice nodes that are affected and the corresponding op-
erations for every tuple, LARA-J∗ includes a query preprocessing phase, where for

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

26 · Nikos Mamoulis et al.

every source Si a schedule Ψi of operations to lattice nodes is generated. This
schedule is static throughout the join evaluation and it is computed beforehand.
Every time a tuple is read from Si, a sequence of operations are performed to lattice
nodes as indicated by Ψi. Figure 9 shows a pseudocode for this preprocessing step.
First, lattice nodes corresponding to disconnected subgraphs of Γ are eliminated.
Then, nodes of the lattice that do not contain Si, but they are connected to Si in
the join graph, are added to schedule Ψi. A single lattice v node in Ψi indicates that
a new tuple that arrives from Si will be probed against the contents of v (partial
tuples) and the resulting tuples will be promoted to node v ◦ Si. The final step of
the preprocessing step is to identify the lattice nodes where Cartesian products of
the computed join results will be inserted. For each combination of lattice nodes
{v1, v2, . . . , vl} in Ψi which are disjoint (in pairs) in Γ, LARA-J∗ should generate
tuples in nodes v1 ◦ v2 ◦ · · · ◦ vl ◦ Si}, by taking the Cartesian products of the new
tuples at each vj ◦ Si.

Algorithm LARA-J∗-prep(ranked inputs S1, S2, . . . , Sm, join graph Γ)

1. initialize lattice G;

2. eliminate nodes from G corresponding to disconnected subgraphs of Γ;
3. for each input Si

4. for each node v of G, such that Si /∈ v and v is connected to Si in Γ

5. add {v} to Ψi;
6. for each combination {v1, v2, . . . , vl} of lattice nodes in input Ψi

7. if ∀x, y ∈ [1, l], sources(vx) ∩ sources(vy) = ∅ and

∀x, y ∈ [1, l], sources(vx) ∪ sources(vy) form a disconnected subgraph in Γ then
8. add {v1, v2, . . . , vl} to Ψi;

Fig. 9. The preprocessing phase of LARA-J∗

Figure 10 shows an example top-k join query, the corresponding join graph, the
nodes of the lattice that remain and the schedule Ψi for each source Si. Note
that source T divides connected subgraph {R,T,U} into disconnected components
({R} and {U}); the combination of these components is included it its schedule.
T, if removed, also splits {S,T,U} and {R,S,T,U} to disconnected components. Thus
({S},{U}) and ({R ◦ S},{U}) are added to ΨT.

The pseudocode of LARA-J∗ is described in Figure 11. First, the preprocessing
phase is called to initialize and prune the lattice G and generate a schedule for each
source. Then, tuples are accessed from the various inputs and the necessary join

SELECT R.id, S.id, T.id, U.id
FROM R,S,T,U
WHERE R.a = S.a AND S.b=T.b

AND R.c = T.c AND T.a = U.a
ORDER BY R.score+S.score+

T.score+U.score

R

S

T

U

RSTU

RST RTU STU

RS ST RT TU

R S T U

ΨR= S,T,ST,TU,STU

ΨS= R,T,RT,TU,RTU

ΨT= R,S,U,RS,{R,U},
{S,U}, {RS,U}

ΨU= T,RT,ST,RST

(a) query (b) join graph Γ (c) pruned lattice (d) schedules

Fig. 10. Example of LARA-J∗ preprocessing

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 27

operations are performed. For each tuple x accessed from Si, first x is added to
node Si and then it is probed against the contents of the single nodes in Φi (i.e.,
not node combinations) to generate and promote partial join results. Finally, for
each combination of lattice nodes that appears in Ψi the Cartesian product of the
new join results (due to x) is generated and promoted to the corresponding lattice
node. For the example query of Figure 10, if a tuple x is accessed from source T,
first x is probed against the contents of nodes R, S, U, and R ◦ S. The new join
results are promoted to the corresponding nodes that include T, in addition to the
other sources. Finally, the Cartesian products of the new results produced at R ◦ T
and T ◦ U is computed and inserted to R ◦ T ◦ U; the same process is applied for the
remaining composite components of Φi, i.e., ({S},{U}), and ({R ◦ S},{U}). Like in
LARA-J, the contents of the top node are organized in a priority queue and output
incrementally as they are found greater than the upper bounds of the remaining
nodes. Theorem 2 proves the correctness and completeness of LARA-J∗.

Theorem 2. LARA-J∗ produces the correct top-k join results and there are no
duplicates in the final response set.

Proof. The proof is based on that of Theorem 1. The difference between the
algorithms is due to the elimination of lattice nodes that correspond to Cartesian
products. In other words, we only need to prove that the contents of such nodes
(which are not materialized) are considered in the generation of tuples at levels
above them. This is ensured by the schedule list of each source. In specific, let y
be a tuple to be generated at node v by joining the currently read tuple x from Si

with the contents of node v\Si (i.e., containing all sources of v but Si). Assume
that v\Si is not materialized because it corresponds to a Cartesian product. In
that case, the set of connected subgraphs in the join subgraph containing the nodes
of v\Si will be in the schedule Ψi corresponding to source Si. The contents of this
non-materialized node that should be joined with x are generated on-demand by
LARA-J∗, as discussed, so no join results will be missed.

Algorithm LARA-J∗(ranked inputs S1, S2, . . . , Sm, join graph Γ)

1. LARA-J∗-prep(S1, S2, . . . , Sm, Γ);
2. access next tuple x from next input Si;

3. add x to node corresponding to source Si;
4. for each single lattice node v in Ψi

5. join x with the contents of v;

6. add join results to node v ◦ Si;
7. update upper bound of v ◦ Si, if applicable;

8. for each combination of lattice nodes {v1, v2, . . . , vl} in Ψi

9. generate Cartesian product of newly generated results from each vj ◦ Si

and promote them to node {v1 ◦ v2 ◦ · · · ◦ vl ◦ Si};
10. u := max{γub

xv : v ∈ G};
11. t := k-th largest score at top node S1 ◦ S2 ◦ · · · ◦ Sm;
12. if t < u then goto Line 2;

13. report tuples with the k-th largest scores at top node S1 ◦ S2 ◦ · · · ◦ Sm;

Fig. 11. The LARA-J∗ algorithm

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

28 · Nikos Mamoulis et al.

6.2 Other aggregate functions

We now discuss how LARA (and NRA top-k methods in general) can be adapted
to solve top-k queries with aggregate functions other than sum and combinations of
them. A trivial function is max; a top-k max query can be processed by accessing
at most k objects from each input, which guarantees that the k objects with the
maximum score in any input are found.

6.2.1 The min aggregate function. A function which requires special attention
is min; a top-k min query asks for the k objects with the highest minimum score
at all inputs. Without loss of generality, let us assume that the minimum possible
score at each input is 0. In that case, γlb

x is 0 for all objects which have not been
seen at all inputs. As a result, the growing phase terminates when k objects have
been seen at all inputs. When this happens, the score of the last object in Wk is at
least the smallest score seen in any input (i.e., t ≥ T). Thus, when γ = min, only
exact (not partial) scores can be output.

In the shrinking phase, accessing objects from any Si where li ≤ t is of no use,
since no object which has not been seen there can end up in the top-k result. When
LARA enters the shrinking phase, it immediately prunes all lattice nodes (and their
objects) that do not include any of these streams and “dries up” the streams. These
operations are encompassed by the optimization of Section 5.3.2.

We can further improve the efficiency of LARA by delaying the beginning of the
shrinking phase as follows. Instead of accessing the inputs in a round-robin fashion,
we always expand the input with the largest li. By doing so, the number of objects
with γub greater than t, when the shrinking phase begins, will be minimized, since
their maximum potential scores in the inputs where they have not been seen will not
be much greater than t. The effect of this optimization is experimentally studied
in [Mamoulis et al. 2006].

6.2.2 Weighted and complex aggregates. So far, we have discussed top-k queries
for which all components have equal weights. In practice, the user may assign
weights of importance to each input of the aggregate function. For example, as-
suming that m = 3, a weighted sum function could be defined as γx = 0.5x1+0.3x2+
0.2x3, indicating that the importance of S1 (50%) is greater than the importances
of S2 (30%) and S3 (20%) in the merged scores. Similarly, weight coefficients can
be combined with other aggregate functions, like min. LARA can be directly ap-
plied for weighted functions. A simple optimization is to access inputs of higher
weight with higher probability, as they contribute more to the aggregate function.
In this way, objects which have not been seen in the sources of higher weights will
be pruned earlier, resulting at an early termination of the algorithm.

In general, an aggregate function can be defined by a regular expression involving
nested (potentially weighted) sum, min, max subexpressions. An example of such
a function is γ = min{x1, sum{0.5x2, 0.5x3}}. An interesting issue is whether we
can extend top-k algorithms to process such complex functions. A plausible so-
lution is to use binary, incremental top-k operators in a query evaluation tree, as
suggested in [Natsev et al. 2001; Ilyas et al. 2002; 2003; Ilyas et al. 2004]. An-
other possibility is to process all inputs simultaneously by a single application of
a top-k algorithm. In this case, lower and upper bounds are defined for an object
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 29

by applying the complex aggregate function using the values seen so far and the
minimum and maximum values at the inputs, where the object has not been seen.
LARA can directly be applied for such complex aggregate functions. In Section
7, we compare an implementation of LARA for complex aggregate functions to a
simple implementation of NRA.

6.2.2.1 Multiple leaders in complex aggregate functions. The computational ef-
ficiency of LARA in the shrinking phase is achieved by maintaining a leader object
xv at each lattice node v, which helps to prune all objects currently seen at the
combination of inputs in v. Recall that xv is the object with the highest partial
aggregate score seen only in v, but currently not in Wk.

The above technique requires the monotone aggregate function γ to be complete
subset-decomposable, i.e., for any subset v of sources, there exist monotone aggregate
functions fv and gv, such that γ(x) = gv(fv(x), x) where (i) inputs of fv come only
from atomic scores of x in v, and (ii) inputs of gv come from fv(x) and atomic scores
of x not in v.6 If γ is complete subset-decomposable, then the partial aggregate fv

defines a total order for objects within the same node, regardless of the latest values
seen from other sources. Simple functions such as (weighted) sum, min, and max
belong to this class of functions. This means that we can compute a partial score
for each seen object and use these partial scores to define unique leaders for lattice
nodes. In addition, the leader of a node v cannot change, unless it is promoted to
another node or a new object is promoted to v.

Nevertheless, some complex aggregate functions are not complete subset-deco-
mposable, which means that we can find lattice nodes v, for which we cannot
define monotone functions fv and determine unique partial scores for the objects
seen only there. For such nodes, we cannot define unique leaders; i.e., the upper
bounds of objects there do not define a fixed total order. As an example, consider
function γ = min{S1, S2}+min{S3, S4} and node v = S2S3. Assume that v contains
two objects a = (?, 0.5, 0.7, ?) and b = (?, 0.6, 0.4, ?). For these two objects, it is
necessary to keep both atomic scores in order to derive their upper bound. In
addition, a and b are not dominated by each other.7 As a result, the object with
the highest upper bound (i.e., the leader of v), depends on the last values seen at
S1 and S4. For example, if l1 = l4 = 0.75, then γub

a > γub
b . However, if l1 = 0.65

and l4 = 0.35, then γub
b > γub

a . Thus, we cannot define a unique leader for v that is
guaranteed to remain unchanged if the contents of v remain constant.

A possible solution to this problem is to maintain the skyline of leaders [Börzsönyi
et al. 2001] at each problematic node of a complex aggregate. Nevertheless the
skyline can be very large even for 2 dimensional datasets, leading to an uncontrolled
number of leaders per node and possible explosion of LARA’s computational cost.
Besides, the maintenance of skylines is expensive. Instead, we suggest a variant of
the LARA-MAT algorithm (proposed in Section 5.3.1), which explicitly maintains
the set of objects associated with the lattice nodes. Let Cv be the set of (candidate)

6The subset-decomposable function is a generalization of the distributive monotone function [Gray

et al. 1997]. For distributive monotone functions γ, we have γ = gv = fv .
7A multidimensional object x dominates object y, if the atomic scores of x are no smaller than the
corresponding atomic scores of y. The concept of dominance is used in skyline queries [Börzsönyi

et al. 2001].

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

30 · Nikos Mamoulis et al.

objects (not in Wk) associated with node v. For each node v, which has non-unique
leader, we pick a random object in Cv and use it as approximate leader. The selected
leader is kept fixed, unless it is promoted or it gets pruned. Whenever the upper
bound score of an approximate leader is below t, there exists some objects in Cv

(at least one) that can be pruned. Thus, we scan Cv and remove objects having
upper bound score below t. From the remaining objects, a random object is picked
as the new approximate leader for the node of v. Eventually, the node v is marked
empty after all its associated objects have been pruned.

This version of LARA-MAT is expected not to have high computational overhead
compared to the application of the algorithm on nodes with unique leaders. Each
time we pick an approximate leader at a node its expected upper bound is the
median of the upper bounds of nodes in Cv. Thus, each time the leader is used
to prune Cv, its size shrinks by half. Assuming that Cv remains constant during
LARA-MAT, the total number of objects examined until it is completely pruned
is: |Cv|(1 + 1/2 + 1/4 + · · ·)=2|Cv|. This cost is acceptable when compared to the
lower bound cost |Cv| of examining and pruning all objects (i.e., if the approximate
leader happens to be the one with the largest upper bound). Finally, note that a
more principled approach, which would pick/maintain the best leader (based on the
number of objects it dominates in Cv), is expected to have higher computational
cost.

6.3 Top-k Cubes

In this section, we investigate an interesting subset of OLAP queries that involve
ranking and design effective extensions of LARA for them. Consider a set of m
ranked inputs and assume that we are interested to retrieve the top-k objects in
every combination of these sources. The result of this operation is called the top-k
cube. For instance, the top-1 cube for the data of Figure 1, (assuming γ = sum)
is {〈S1, c〉 〈S2, a〉 〈S3, c〉 〈(S1, S2), b〉 〈(S1, S3), c〉 〈(S2, S3), a〉 〈(S1, S2, S3), b〉}. Data
analysts could use the top-k cube to compare objects that appear in top-k results
of different combinations of sources. For instance, if a particular object appears in
multiple top-k sets it can be considered globally important for different users that
search for top-k results by combining different ranking attributes. The top-k cube
can also be used to identify correlations between attribute sets, if they share many
common top-k results.

A brute-force method for the computation of a top-k cube from m ranked inputs
is to apply LARA (or NRA), iteratively; once for every combination of sources.
The computational cost and the required accesses of such an approach is high. In
addition, we might not be able to apply this method if the sources are allowed
to be accessed only once (e.g., they come as pipelined results of other database
operations).

A more suitable technique is to run an NRA algorithm only once and compute
the top-k set for each combination v of sources simultaneously. The simple NRA
algorithm can be adapted to an NRA-CUBE method, which maintains for each
combination of sources (corresponding to a lattice node v), a set W v

k ; the k objects
with the highest vγlb, where vγ denotes the result of the aggregate function γ when
considering only the set of sources v. In order for NRA-CUBE to terminate, for
every W v

k there should be no object x /∈ W v
k , such that vγub

x > tv, where tv is the
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 31

S1 S2 S3

a 0.9 b 0.9 b 0.9

f 0.2 a 0.7 e 0.3

.

Fig. 12. Top-k cubing example

k-th score in W v
k . This check is much more expensive compared to the termination

check of the simple NRA algorithm.
We now investigate the essential changes to be performed on LARA, in order to

come up with LARA-CUBE, an efficient top-k cube algorithm.

6.3.1 The growing phase. Let Tv = γ{li : i ∈ v}, i.e., the result of the aggre-
gate function when applied to the last values seen in the sources that appear in
a combination v. Let W v

k be the k objects with the highest vγlb at any instance
of the algorithm and tv be the k-th score in W v

k . Similarly to the basic version of
LARA, we cannot prune any object until tALL ≥ TALL, where ALL is the combi-
nation S1S2 . . . Sm of all sources. Furthermore, even when tALL ≥ TALL, if there
is a v 6= ALL, such that tv < T v, any object not seen at all yet could end up in
the top-k set of v. Figure 12 illustrates an example. Assume k = 2 and γ =sum.
After two rounds of accesses, WALL

k = {(b, 1.8), (a, 1.6)} and tALL > TALL(= 1.2).
However, WS2S3

k = {(b, 1.8), (a, 0.7)} and tS2S3 < TS2S3(= 1.0), which means that
objects not seen yet could enter the top-k set of combination S2S3. This example
shows that we should not terminate the growing phase until tv ≥ T v for all v and
no monotonicity property holds among combinations (i.e., the combination S2S3

does not satisfy tv ≥ T v although its subsets and supersets do).
In our example, tv ≥ T v for all v, except S2S3. In order to avoid accessing more

objects than necessary, we can stall the accesses to source S1, until the condition
tS2S3 ≥ TS2S3 . Stalling accesses to one or more sources during the growing phase
of top-k cube computation is similar to the “drying up” of sources (see Section
5.3.2); stalling of Si is applied as soon as the condition tv ≥ T v holds for all v that
include Si. When LARA-CUBE enters the shrinking phase, we resume accesses to
the stalled sources.

6.3.2 The shrinking phase. The shrinking phase of the basic LARA algorithm
creates the virtual lattice by holding for each combination the object seen exactly
in these sources with the highest upper bound that does not currently appear in
Wk. A direct extension of this idea for the shrinking phase of top-k cube queries is
to create a separate lattice for each of the 2m − 1 aggregate functions and for each
function create/update a W v

k set and a 2arity(v) set of leaders. After each access —
e.g., object x from source Si — the W v

k set of each combination v that includes Si

and its respective leaders are potentially updated. Once the W v
k for a combination

v is finalized, the corresponding lattice and leaders are deleted. If at some stage a
source Si cannot contribute to any W v

k , then the source is dried up (as in Section
5.3.2).

For example, consider the lattice of Figure 4. For combination v = S1S2, we keep
(i) WS1S2

k ; the set of k objects with the highest S1S2γ
lb; (ii) leaders at nodes S1 and

S2 with respect to combination S1S2 and function S1S2γ. Thus, an object x seen at
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

32 · Nikos Mamoulis et al.

S1 and S3 could be a leader at node S1 for the top-k query of combination S1S2; in
the basic LARA algorithm x could only be a leader at S1S3. To determine whether
WS1S2

k is the exact top-k set for function S1S2γ, tS1S2 (that is the k-th object in
WS1S2

k) must be not smaller than the upper bounds of all S1S2-related leaders for
v′ ∈ {S1, S2}.

The above technique requires much more bookkeeping compared to the basic
LARA algorithm, since we need to maintain and update

∑m
l=1

(
m
l

)
2l instead of

O(2m) leaders. To reduce this computational burden, in the shrinking phase, we
avoid processing the query for all source combinations concurrently, but compute
the top-k results of combinations iteratively, in breadth first order, starting from the
topmost combination. Consider, for example, a top-k cube query on three inputs
S1S2S3. In the shrinking phase of LARA-CUBE, we first consider the topmost
combination v = S1S2S3, by constructing the lattice for v, and running the basic
LARA (without pruning objects) until the top-k results of v are computed. Objects
are not pruned because they could appear in top-k results of other combinations
(e.g., {S1, S3}) that will be later processed. To minimize accesses, a source Si is
dried up (see Section 5.3.2) when all qualified candidates for v (those with upper
bound score above tv) have been seen from Si. After the top-k results of S1S2S3

are computed, we continue to the next combination (e.g., v′ = S1S2) from the
state where the computation has stopped. Thus, we scan the hash table to update
W v′

k , and construct the lattice for v′, computing leaders (based on v′γ) for its
nodes S1 and S2. Accesses are continued from inputs S1 and S2 (if necessary)
until the top-k result (based on v′γ) is finalized. LARA-CUBE, continues in this
manner and computes iteratively the results for the remaining combinations (i.e.,
{S2, S3}, {S1, S3}, {S1}, {S2}, and {S3}). This implementation of LARA-CUBE
saves numerous computations as leaders and top-k sets for different combinations
are not maintained concurrently.

6.4 Browsing Through Top-k Results at Different Dimension-Sets

Similar to browsing operations in OLAP systems, a user may wish to navigate
through the top-k results of various combinations of ranked lists that can be ag-
gregated. For instance, consider a user who has at hand the top-10 restaurants in
terms of price, quality, and distance to her location. Being not satisfied by these
results she may wish to roll-up to the list of top-10 restaurants in terms of price
and distance only, or she may want to drill-down to the top-10 set in terms of price,
quality, distance, and size.

Formally, given a top-k query on a set S of m ranked inputs, rolling-up (drilling-
down) refers to the operation of retrieving the top-k results by applying the same γ
function to any subset (superset) of S. As we show in the following, LARA allows
the derivation of the new top-k set fast, subject to certain (minor) changes applied
to the original algorithm. Our roll-up and drill-down techniques save significant
access cost and computational time, over running the query from scratch.

6.4.1 Rolling Up. Assume that the set of top-k objects, aggregated using a
γ function over m sources S, has been finalized. Assume that the user requests
the top-k objects with respect to only a subset v ⊂ S of sources. If, during the
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 33

shrinking phase of the previous query, LARA has not pruned any object,8 we can
avoid processing the new query from scratch. The main idea is to move the original
top-k problem from the top node of the original query’s lattice to the node v of the
roll-up query. For this, the following steps are applied:

—Compute W v
k by accessing the objects that are assigned to all lattice nodes (of

the original query) which have at least one source common with v. For all these
objects vγlb should be computed.

—Compute the leader objects at all nodes of the original lattice that are descendants
of v.

—Terminate if tv ≥ max{vγub
xv′ : v′ ⊂ v}, where xv′ is the new leader of node v′

(with respect to vγub and W v
k). Resume a projected version of LARA on the v

sources and the constrained lattice to subsets of v, otherwise.

For example, consider the lattice at Figure 4 for the top-1 sum query on the data
of Figure 1. Figure 4b shows the contents of the lattice when LARA terminates
returning b with score 2.2. Assume that the user at this stage requests the object
with the highest sum of atomic scores at sources S1 and S2 only. The incremental
roll-up LARA module first computes WS1S2

k by accessing the objects seen at source
combinations {S1, S2, S1S2, S1S3, S2S3, S1S2S3} and computing their S1S2γ

lb. This
results to WS1S2

k = b, with S1S2γ
lb
b =S1S2 γb = 1.4. Then leaders for nodes S1 and S2

are computed; these are c and a, respectively, with S1S2γ
ub
c = 1.3 and S1S2γ

ub
a = 1.2.

Since both leaders have lower upper bound than b’s score, the algorithm terminates
reporting b. In this example, no additional accesses are required by the roll-up
operation.

6.4.2 Drilling Down. For drill-down top-k operations, we also assume that LARA
has not pruned any object during the shrinking phase of the previous query. Similar
to rolling-up, our objective is to avoid starting LARA from scratch, but to move
the original top-k problem from the top node of the original query’s lattice to the
new top node after introducing new sources and extending the current lattice by
all combinations with the existing ones. More specifically, the following steps are
applied:

—Extend the lattice to include the new sources and combinations.
—Compute Wk for the new top node by applying the γlb function to the top-k set

of the previous query (no object outside this set could be in the top-k of the new
query without any access to the new sources).

—Keep the leaders of the original lattice nodes; they do not have to be revised,
since we start with the Wk of the previous query.

—Resume LARA by accessing objects from the old and the new sources.

Again, consider the lattice at Figure 4b after the termination of the top-1 sum
query on the data of Figure 1. Consider a fourth source S4 and assume that we want
to determine the object with the highest sum of atomic scores at all four inputs.
First, we extend the lattice to include all combinations of sources that include S4.

8otherwise top-k results of dimensional subsets may be lost as discussed in Section 6.3

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

34 · Nikos Mamoulis et al.

Drill-down example

S1S2 S1S3 S2S3

S1 S2 S3

S1S2S3

∅

Wk = {(b, 2.2)}

{(c, 1.8)} {(a, 1.8)}{(d, 1.2),
(e, 0.9)}

l1=0.3, l2=0.4, l3=0.8, l4=1.0

S4

S1S4 S2S4 S3S4

S1S2S4 S1S3S4 S2S3S4

S1S2S3S4

Fig. 13. Lattice derived by a drill-down top-k query

The existing Wk = {(b, 2.2)} now refers to the combination of all four sources.
Thus t = 2.2 remains valid. The revised lattice is shown in Figure 13. The existing
leaders at nodes S1S2, S2S3, and S2S3 remain valid. The termination condition
does not hold after the inclusion of source S4, since the upper bound for c (who is
leader in S1S3) is γlb

c + 0.4 + 1.0 = 3.2 > t (we assume that the scores in S4 range
from 1 to 0). LARA continues by accessing objects from all four sources, until
the top-k result is finalized. Note that this incremental drill-down operation has
minimal cost, since no computations are required to update leaders or Wk before
we resume the accesses. On the other hand, rolling up requires scanning the objects
seen at any of the sources of the new query and updating Wk and the leaders.

7. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the effectiveness of LARA, by comparing
it with previous NRA algorithms. For each top-k variant, (i.e., classic top-k search,
top-k join, etc.), a version of LARA is compared with a version of NRA known
to perform best for that variant. All algorithms were implemented in C++ and
experiments were run on a Pentium D 2.8GHz PC with 1GB of RAM.

7.1 Description of datasets

For the experiments, we used both synthetically generated and real data. All gener-
ated object scores range from 0 to 1. We produced three types of synthetic datasets
to model different input scenarios, using the same methodology as [Börzsönyi et al.
2001]. In datasets of type UI the object scores are random numbers uniformly
and independently generated for the different sources. CO contains datasets where
object scores are correlated. In other words, the score xi of an object x in source
Si is very close to xj in all other sources Sj 6= Si with high probability. An real
dataset example that falls in this class is a set of movies with their scores according
to different criteria (actors performance, costumes design, visual effects, etc.). A
good movie is likely to have high scores in all criteria, whereas a bad movie is likely
to perform averagely or bad in all of them. To generate an object x, first, a number
µx from 0 to 1 is selected using a Gaussian distribution centered at 0.5. x’s atomic
scores are then generated by a Gaussian distribution centered at µx. Finally, AC
contains datasets where object scores are anti-correlated. In this case, objects that
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 35

are good in one dimension are bad in one or all other dimensions. For instance, a
good hotel in terms of quality (e.g., 5-star) is usually a bad one in terms of price
(e.g., very expensive) and vice versa. To generate an object x, first, we pick a
number µx from 0 to 1, like we did for CO datasets. This time, however, we use
a very small variance, so that µx for different x are very close to 0.5 and to each
other. The atomic scores of x are then generated uniformly and normalized to sum
up to µx. In this way, the aggregate scores of all objects are quite similar, but their
individual scores vary significantly.

We used the following real dataset from the UCI KDD Archive.9 FC contains
a set of 581,012 objects, corresponding to 30 × 30-meter forest land cells. Each
object is described by various variables, e.g., distances to hydrology, roadways, fire
points, etc. Assuming that the values of these attributes are obtained from different
sources, we simulate top-k queries that combine them in an aggregate score (e.g.,
find the k cells with the smallest aggregate distance to hydrology, roadways, and
fire points). The values of each attribute were normalized in the range between 0
and 1. For some attributes, the scores were reversed (by subtracting them from
1) in order for 1 to indicate high preference and 0 low preference. In [Mamoulis
et al. 2006], the effectiveness of LARA is also evaluated on another real dataset
with similar results.

7.2 Experiments for classic top-k queries

In the first set of experiments, we compare LARA with the NRA algorithm of
[Fagin et al. 2001] for top-k queries with γ = sum, in terms of object accesses
and computational cost. We implemented both algorithms so that they check the
termination condition after every access. In this way, the number of accesses is
minimized, since every access in the shrinking phase can potentially terminate
search.

Figures 14a, 15a, and 16a compare the efficiency (in CPU time) of the two meth-
ods on uniform data (UI), for a range of parameter values. The default values
for the parameters are n = 50K, k = 20, and m = 3. In each experiment, we
fix two parameters to their default values and vary the value of the third one. In
Figures 14a and 15a, LARA is about 2 orders of magnitude faster than NRA. First,
as explained in Section 4, LARA does not attempt checking for termination during
the growing phase. Second, the shrinking phase of LARA is much more efficient
than that of NRA, since at each access only a few updates are performed and the
number of comparisons is O(2m), as opposed to O(|C|) required by NRA. This ex-
plains the increase of performance gap with the increase of n. On the other hand,
the difference is insensitive to k, as shown in Figure 15a.

LARA outperforms NRA in terms of the number of object accesses, as well,
but the difference is marginal. Indicatively, Figure 14b shows the number of object
accesses on uniform data by both methods as a function of n. LARA’s optimization
described in Section 5.3.2 saves 1%–5% of NRA’s accesses, because of “dried up”
streams toward the end of the algorithm. As shown in Figure 15b, the difference in
accesses is similar when the parameter k changes. As we will see later, LARA may
accesses significantly fewer objects than NRA in top-k queries on real data, where

9http://kdd.ics.uci.edu

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

36 · Nikos Mamoulis et al.

1.0e1

1.0e2

1.0e3

1.0e4

1.0e5

1.0e6

10 20 30 40 50 60 70 80 90 100

tim
e

(m
se

c)

of objects (x1000)

NRA
LARA

0

10000

20000

30000

40000

10 20 30 40 50 60 70 80 90 100

ac
ce

ss
es

of objects (x1000)

NRA
LARA

(a) time (b) accesses

Fig. 14. Effect of n on top-k queries (γ =sum, UI, m = 3, k = 20)

1.0e1

1.0e2

1.0e3

1.0e4

1.0e5

1.0e6

0 20 40 60 80 100 120 140 160 180 200

tim
e

(m
se

c)

k

NRA
LARA

0

10000

20000

30000

40000

50000

0 20 40 60 80 100 120 140 160 180 200

ac
ce

ss
es

k

NRA
LARA

(a) time (b) accesses

Fig. 15. Effect of k on top-k queries (γ =sum, UI, n = 50K, m = 3)

the distribution of scores in different inputs varies significantly.
Figure 16a plots the CPU time with respect to the number of sources m. As m

grows, the size of the lattice increases exponentially and the CPU time difference
between NRA and LARA shrinks. For large values of m, the number of objects
at each lattice node becomes small and it becomes more likely for a leader to be
promoted. In addition, the total number of leaders (2m) greatly increases with m.
For values of m above 15, the computational cost of LARA exceeds that of NRA.
For high values of m, LARA-MAT, the alternative implementation of LARA dis-
cussed in Section 5.3.1, turns out to be more efficient and scalable. Its performance
is also plotted in Figure 16a. LARA-MAT materializes the lattice by explicitly
maintaining for each node the set of candidates seen at the corresponding set of
inputs. In this implementation, leader updates do not require the scanning of the
whole candidate set, but only the objects currently in the node where the leader
should be updated. In addition, LARA-MAT keeps track of the subset of nodes
for which the leader (and remaining objects) have not been pruned. This number
is much smaller than 2m, and as a result LARA-MAT scales very well for large
values of m, maintaining its advantage over NRA. The overhead of LARA-MAT
compared to LARA is that at each access (e.g., of object x), the contents of two
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 37

1.0e2

1.0e4

1.0e6

1.0e8

2 4 6 8 10 12 14 16

tim
e

(m
se

c)

of sources

NRA
LARA

LARA-MAT

0

200000

400000

600000

800000

2 4 6 8 10 12 14 16

ac
ce

ss
es

of sources

NRA
LARA

UB

(a) time (b) accesses

Fig. 16. Effect of m on top-k queries (γ =sum, UI, n = 50K, k = 20)

1.0e1

1.0e2

1.0e3

1.0e4

10 20 30 40 50 60 70 80 90 100

tim
e

(m
se

c)

of objects (x1000)

NRA
LARA

1.0e1

1.0e2

1.0e3

1.0e4

1.0e5

1.0e6

1.0e7

10 20 30 40 50 60 70 80 90 100

tim
e

(m
se

c)

of objects (x1000)

NRA
LARA

(a) CO (correlated) (b) AC (anti-correlated)

Fig. 17. Time of top-k queries on non-uniform data (γ =sum, m = 3, k = 20)

nodes must be updated (e.g., x is deleted from vprev
x and inserted to vx). Note

that this overhead does not pay off at low values of m, where leader updates are
very rare and there are few nodes in the lattice. Figure 16b shows the number of
accesses as a function of m. In the graph, we also include UB, the access cost of
reading all scores from all sources. Observe that LARA has fewer accesses than
NRA for all values of m. However, as m increases, the performance gap between
UB and NRA/LARA shrinks, due to the dimensionality curse [Beyer et al. 1999].
This figure also confirms that top-k retrieval on uniform data is not meaningful for
large m.

The performance gap between NRA and LARA is similar for correlated and
anti-correlated data (Figures 17a and 17b). As expected, the cost of both methods
is relatively low for correlated data, however, NRA becomes significantly more
expensive than LARA for large n, since (i) the number of candidates |C| increases
with n and (ii) the cost of NRA is O(|C|) (refer to the space and time complexity
analysis of Section 5). For AC, the cost is high (extreme for NRA), because many
accesses are required until the top-k result is finalized. The shrinking phase delays
and a lot of unnecessary bookkeeping is performed by NRA. The value of n has a
smoother effect on LARA, which retrieves the result very fast compared to NRA.

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

38 · Nikos Mamoulis et al.

In the next experiment, we compare LARA and NRA for top-k queries on real
data. From the FC dataset we extracted seven rankings of the objects accord-
ing to their horizontal distance to hydrology (hh), vertical distance to hydrology
(vh), horizontal distance to roadways (hr), horizontal distance to fire points (hf),
morning hill-shade (sa), noon hill-shade (sn), and afternoon hill-shade (sp). The
distances in each ranking were normalized from 0 to 1 and reversed (by subtracting
them from 1) in order for 1 to indicate high preference and 0 low preference. For
different combinations of these rankings, we applied a top-20 query and compared
the performances of LARA and NRA. Figure 18 summarizes the results. NRA
performs 23% to 65% more accesses than LARA. As illustrated in Section 5.3.2,
this is attributed to the distribution of the scores which is irregular in some sources
(e.g., sa); these sources are “dried up” during the shrinking phase of LARA, when
the remaining scores there cease to be relevant to the top-k result. On the other
hand, NRA accesses objects in a round-robin fashion, without pruning any input,
until the top-k result is finalized. Observe that LARA is 3 to 4 orders of magnitude
faster than NRA for the tested queries. Next to each time measurement, we also in-
clude in parentheses the time spent by each algorithm until t ≥ T for the first time.
The numbers show that LARA is significantly faster than NRA not only because it
avoids expensive bookkeeping and checking during the growing phase (t < T), but
also because it minimizes the operations and comparisons at the shrinking phase
(t ≥ T).

Figure 19 shows the number of objects x with γub
x ≥ t during the execution of

LARA for the top-k queries of Figure 18. The x-axis is the ratio of accesses until
termination. The plot shows that in all queries the candidates grow linearly with the
number of accesses during the growing phase, and there is a sharp drop during the
shrinking phase (especially for smaller values of m). The memory requirements of
LARA (and NRA algorithms in general) are high in queries of higher dimensionality
(more than 50% of the objects become candidates during the growing phase for
m = 5 and m = 6). This result is consistent with our space analysis and with
our argument that the O(|C|) per-access cost of NRA can be very large, compared
to LARA’s O(log k) and O(log k + 2m) costs in the growing and shrinking phases,
respectively. An interesting observation from the diagram is that at least 70% of the
accesses in the shrinking phase are spent to verify whether the very few remaining
candidates can be part of the top-k result. This indicates that a mixed strategy
(i.e., computing the scores of remaining candidates by random accesses if these
drop to a very small percentage of n) could be more beneficial than a pure NRA
algorithm. If random accesses are not possible, one could resort to an approximate
technique, which returns all candidates if their number is a small multiple of k. A
detailed study of approximate top-k NRA methods with quality guarantees is out
of the scope of this paper, but remains an interesting subject for future work.

7.3 Experiments for top-k search with bounded memory

We performed an experiment to validate the effectiveness of LARA for cases where
the set of candidates does not fit in memory (see Section 5.4). We set the disk page
size to 1K bytes, such that each page can hold up to 100 objects with their partial
scores. Figure 20 summarizes the access cost and disk I/O cost (in terms of disk
page accesses) of the algorithms as a function of the memory bound B, expressed
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 39

number of accesses time in seconds
attributes of FC NRA LARA NRA LARA

{hh, hr, sa} 1047027 639400 1473 (560) 1.8 (0.5)

{hh, vh, hr, sn} 1875047 1297259 5514 (3964) 4.1 (1.4)

{hh, hr, hf, vh, sp} 1573173 980098 9004 (6840) 4.5 (1.8)

{hh, hr, hf, vh, sa, sp} 2867548 2323667 37493 (27228) 13.4 (3.6)

{hh, hr, hf, vh, sa, sn, sp} 3345486 2531264 39276 (29067) 19.6 (3.7)

Fig. 18. Forest coverage (γ =sum, k = 20)

 0

 100000

 200000

 300000

 400000

 0 0.2 0.4 0.6 0.8 1

ca
nd

id
at

e
si

ze

fraction of total accesses

{hh, hr, sa}
{hh, vh, hr, sn}

{hh, hr, hf, vh, sp}
{hh, hr, hf, vh, sa, sp}

{hh, hr, hf, vh, sa, sn, sp}

Fig. 19. Evolution of top-k candidates during LARA for the queries of Figure 18

as a percentage of the required memory to store all n objects and their scores. The
result confirms our observation in Section 5.4. For small memory bounds, LARA-
EAGER and LARA-LAZY have high I/O cost and high access cost respectively.
When compared to LARA-EAGER and LARA-LAZY, the performance of LARA-
ADAPT is less sensitive to the memory size and the algorithm achieves a good
balance between access cost and disk I/O cost. Note that the access cost of LARA-
ADAPT (and LARA-EAGER) is very close to the minimum possible (i.e., the cost
of LARA for unbounded memory), even for very low values of B. Summing up,
we recommend LARA-ADAPT as the most appropriate algorithm for top-k search
with bounded memory.

7.4 Experiments for top-k joins

We compare the top-k join version of LARA (i.e., LARA-J, LARA-J∗) with a tree
of binary HRJN operators [Ilyas et al. 2003]. We joined three relations R, S, and
T, of the same schema: (id, score, j). j is the attribute with respect to which
all relations are joined (i.e., R.j = S.j = T.j in a join result) and the results are
ranked by sum{R.score, S.score, T.score}. The selectivity of the join is 0.2% (we
also experimented with different join selectivities and derived similar results). The
three relations are ranked by score and their tuples are retrieved incrementally.
For HRJN, we used the evaluation plan (R 1 S) 1 T (other plans have similar
performance). Figure 21 plots the number of tuples accessed by HRJN, LARA-
J, and LARA-J∗ until they output the same number of results. This reflects the
output rate of the approaches (i.e., how many results they can produce after a

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

40 · Nikos Mamoulis et al.

0

10000

20000

30000

40000

50000

60000

0 2 4 6 8 10

ac
ce

ss
es

memory size (%)

EAGER
LAZY

ADAPT

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10

di
sk

I/O

memory size (%)

EAGER
LAZY

ADAPT

(a) accesses (b) disk I/O

Fig. 20. Effect of memory size on top-k search (γ =sum, n = 50K, m = 3, k = 20)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 20 40 60 80 100 120 140 160 180 200

ac
ce

ss
es

k

HRJN
LARA-J

LARA-J*

Fig. 21. Top-k join with complete join graphs, (UI, n = 50K, m = 3)

specific number of accesses). Observe that LARA-J (LARA-J∗) produces results
much earlier than HRJN. The space used by the two methods to accommodate
intermediate results (not shown in the graph) is roughly proportional to the number
of accesses. Both methods are computationally efficient (200 results are output in
just 78 msec by LARA-J and 94 msec by the plan of HRJN operators). HRJN’s
efficiency is due to the computationally cheap threshold bound it uses; however,
more accesses are required to compute the same result as LARA-J. This experiment
not only demonstrates the applicability of LARA to top-k join queries (LARA-J
is as efficient as HRJN, at no expense of accessing more objects than necessary)
but also indicates that multiway top-k operators can be more effective (in terms of
accesses) than trees of binary join operators.

For the query in the last experiment, the optimized LARA-J∗ algorithm proposed
in Section 6.1.1, has identical performance to that of LARA-J, since the join edges
form a complete graph. In the following experiment, we compare LARA-J, LARA-
J∗, and HRJN for complex top-k join queries with graphs Γ that are not complete.
We generated four relations R, S, T, U, each ordered in descending order of their
score attribute. The score of each tuple was uniformly generated in the range [0, 1].
Each relation also has three additional attributes a,b,c, used in join conditions. The
values of these attributes were randomly generated integers in [1,100]. Finally an
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 41

id (primary key) was generated for each tuple. The cardinality of each relation
is n = 50000. Figure 22 compares LARA-J, LARA-J∗, and the best HRJN plan
(i.e., the one with the fewer accesses). The comparison includes computational
cost, number of accesses, and the total number of intermediate results when each
method terminates. The last figure corresponds to the maximum memory required
until the top-k join result is output. Note that we implemented and compared
incremental versions of all algorithms, which means that no partial join results are
pruned during join evaluation.

As the figure shows, LARA-J∗ has significant improvement over LARA-J, in
terms of computational cost and required memory. The difference is because of two
reasons. First, Cartesian products are not computed and materialized in LARA-
J∗, which apart from the large space savings, implies savings also in computational
time. Second, joins with Cartesian products are avoided and replaced by the dy-
namic production of the results of such joins, for each incoming tuple x. That
is, for each Cartesian product (e.g., A × B) to be joined with x, there is an en-
try in the schedule of the input Si, where x arrived from (e.g., ({A}, {B})). The
join results which contain x and tuples from the Cartesian product are produced
dynamically (e.g., by computing x ◦ (A n x) × (B n x), after A n x and B n x
have essentially been computed). Thus a lot of time is saved from the avoidance of
these joins. In addition, the performance improvement of LARA-J∗ over LARA-J
increases with the number of Cartesian products that are avoided. For instance,
the second query corresponds to the worst case for LARA-J, due to the unnecessary
management of products S×T, S×U, T×U, and S×T×U. On the other hand, the first
query has products R×T and S×U only, with not as bad effect on the performance
of LARA-J. When comparing LARA-J∗ to the HRJN plan, we observe that the
plan of binary joins is more efficient in terms of time and memory requirements.
This is expected since the intermediate results are fewer compared to LARA-J∗,
which materializes partial join results for more input combinations (i.e., for each
connected subgraph).10 On the other hand, LARA-J∗ incurs minimal accesses to
the joined inputs with the savings being more significant in queries with more join
edges. In summary, LARA-J∗ accesses (significantly) fewer tuples than plans of
HRJN operators, while being much faster computationally than LARA-J.

7.5 Experiments with various aggregate functions

In [Mamoulis et al. 2006] we have compared NRA with versions of LARA for top-
k min queries. Here, we compare LARA and NRA for the top-k queries with
complex aggregate functions that are combinations of min, max and sum. We used
six random synthetic datasets (D1 to D6) of n = 50000. Figure 23 shows the
relative performance of the two methods for five queries (all with k = 20) that
combine some of the datasets. As expected, applications of the min function are
slower than those of sum, which in turn take more time than those of max for
both LARA and NRA. Note that LARA performs better than NRA in terms of
computations in all cases and the results are consistent with previous experiments
with uniform data. The difference is due to the reasons we explained before for

10Note that the execution times of all algorithms are roughly proportional to the number of tuples

that must be managed in memory.

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

42 · Nikos Mamoulis et al.

Query Function HRJN LARA-J LARA-J∗

chain SELECT R.id, S.id, T.id FROM R, S, T, U CPU: 18msec CPU: 390msec CPU: 31msec
WHERE R.a=S.a AND S.b=T.b AND T.c=U.c accesses: 534 accesses: 483 accesses: 483
ORDER BY R.score+S.score+T.score+U.score mem: 1311 mem: 83356 mem: 1030
STOP after k

star SELECT R.id, S.id, T.id, U.id FROM R, S, T, U CPU: 18msec CPU: 7578msec CPU: 31msec
WHERE R.a=S.a AND R.b=T.b AND R.c=U.c accesses: 560 accesses: 523 accesses: 523
ORDER BY R.score+S.score+T.score+U.score mem: 1399 mem: 2081629 mem: 1879
STOP after k

loop SELECT R.id, S.id, T.id, U.id FROM R, S, T, U CPU: 122msec CPU: 2484msec CPU: 328msec
WHERE R.a=S.a AND S.b=T.b AND T.c=U.c accesses: 3484 accesses: 1636 accesses: 1636

AND U.b=R.b mem: 18666 mem: 372281 mem: 37787
ORDER BY R.score+S.score+T.score+U.score
STOP after k

other SELECT R.id, S.id, T.id, U.id FROM R, S, T, U CPU: 122msec CPU: 5031msec CPU: 219msec
WHERE R.a=S.a AND S.b=T.b AND R.c=T.c accesses: 2983 accesses: 1562 accesses: 1562

AND T.a=U.a mem: 15014 mem: 942611 mem: 22609
ORDER BY R.score+S.score+T.score+U.score
STOP after k

Fig. 22. Top-k join with arbitrary join graphs (n = 50K, k = 20)

number of accesses time in seconds
Query ID Function NRA LARA NRA LARA

1 min(D1,max(D2,D3,D4)) 2723 2639 5.469 0.016

2 min(sum(D1,D2),sum(D3,D4)) 37656 37548 116.796 0.516

3 max(sum(D1,D2),sum(D3,D4)) 3971 3968 1.875 0.047

4 sum(min(D1,D2),max(D3,D4)) 15627 15626 23.796 0.250

5 sum(max(D1,D2),max(D3,D4,D5)) 3179 3175 1.250 0.062

6 0.5 ·D1 + D2 + D3 27338 19589 16.516 0.110

7 0.2 ·D1 + D2 + D3 40042 23741 18.843 0.110

8 0.2 ·D1 + 0.2 ·D2 + D3 31208 24248 19.515 0.078

9 0.2 ·D1 + D2 + D3 + D4 107489 61560 67.797 0.281

Fig. 23. Comparison of LARA and NRA in complex aggregate (n = 50K, k = 20)

simpler queries. For easier queries (e.g., query 5) the difference not large, but it
increases with the query complexity (e.g., see query 2). In terms of accesses, the
difference is marginal due to the uniformity of the data.

Nevertheless, LARA has significant access cost saving over NRA for weighted
queries (i.e., queries 6–9). As explained in Section 5.3.2, during the shrinking phase
of LARA, most of the (unpruned) candidates have been accessed from sources with
high weights, leading to early drying up of such sources. NRA does not dry up
sources, therefore its access cost is significantly higher.

7.6 Experiments for top-k OLAP queries and browsing through top-k sets

We proceed to investigate the performance of the algorithms for top-k cube queries,
as well as roll-up and drill-down queries.

Figure 24 shows the performance of the algorithms for top-k cube queries, on
the FC dataset. Due to the drying up effect, LARA-CUBE performs 11% to 36%
fewer accesses than NRA-CUBE. In addition, LARA-CUBE is at least 3 orders
of magnitude faster than NRA-CUBE. The efficiency of LARA-CUBE renders it
practical for top-k cube queries in real applications.

Figure 25 shows the performance of the algorithms for top-k roll-up/drill-down
ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 43

number of accesses time in seconds
attributes of FC NRA-CUBE LARA-CUBE NRA-CUBE LARA-CUBE

{hh, hr, sa} 1053485 841545 17312 3.1

{hh, vh, hr, sn} 2106736 1352031 55359 10.5

{hh, hr, hf, vh, sp} 1694683 1153573 50234 22.1

{hh, hr, hf, vh, sa, sp} 3219426 2886574 140922 132.7

{hh, hr, hf, vh, sa, sn, sp} 3798457 3157553 167531 376.6

Fig. 24. Top-k cube queries on forest coverage data (γ =sum, k = 20)

number of accesses time in seconds
old attributes new attributes LARA LARA-R LARA LARA-R

{hh, hr, sa} {hh, hr, sa, hf} 818045 109156 2.969 2.906

{hh, hr, sa, hf} {hh, hr, sa} 639400 59456 1.969 0.391

{hh, hr, sa, hf} {hh, hr, sa, hf, vh} 1489431 842260 6.907 8.219

{hh, hr, sa, hf, vh} {hh, hr, sa, hf} 818045 2 2.969 0.016

{hh, hr, sa, hf, vh} {hh, hr, sa, hf, vh, sp} 2323667 952870 13.859 8.501

{hh, hr, sa, hf, vh, sp} {hh, hr, sa, hf, vh} 1489431 60891 6.907 0.344

Fig. 25. Top-k roll-up/drill-down on forest coverage (γ =sum, k = 20)

queries, on the FC dataset. In Section 6.4, we propose LARA-R; incremental ver-
sions of LARA that accelerate processing of the new query by reusing the candidate
set and data sources of the old query. We compare LARA-R with running LARA
on the new query from scratch. Since LARA-R reuses data sources of the old query,
its access cost on the new query is much lower than restarting LARA. In addition,
LARA-R can be applied in problem settings where the data can be read only once.
On the other hand, the CPU time of LARA-R is not necessarily smaller than LARA
(see for example the third query of Figure 25). Recall that for LARA-R to be ap-
plicable, no candidates should be pruned during processing the old query. Keeping
a large candidate size compromises the computational efficiency of running the new
query. Nevertheless LARA-R is faster than applying LARA from scratch in most
cases. Especially for roll-up queries the cost savings are very high, because very few
additional accesses are required to derive the results. If fewer inputs are involved,
the aggregate object scores are more distinguishable from each other and fewer ac-
cesses overall are required to finalize the result (see also Figure 18). On the other
hand, in drill-down queries, the appearance of additional inputs requires accesses
more scores until the top-k set is finalized. Therefore, LARA-R is generally faster
faster at rolling-up than at drilling-down.

8. CONCLUSIONS

In this paper we proposed a new algorithm for processing top-k queries by sequen-
tially accessing sources of ranked atomic object scores. LARA is based on some core
observations about the behavior of all “no-random-accesses” (NRA) algorithms.
The main advantage of LARA compared to previous NRA implementations is its
high efficiency at no cost of redundant object accesses. LARA employs a lattice
to facilitate efficient computation of the result and easy detection and pruning of
sources that do not contribute to the result. Experimental comparison with pre-
vious NRA implementations, show that LARA is orders of magnitude faster. In

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

44 · Nikos Mamoulis et al.

addition, LARA incurs fewer object accesses; the savings are marginal for synthetic
data, but can be significant for real data. We also propose and evaluate techniques
for disk-based management of candidates by LARA, at large top-k problems.

By a theoretical analysis, we show that the expected per-access computational
cost of LARA is O(log k +2m), where m is the number of aggregated inputs, which
is much lower than the O(|C|) cost of NRA (|C| is the number of candidates). We
also analyze the expected memory requirements for LARA for uniform data, as a
parameter of m, n, and k. Our results can be used as a tool for predicting the
allocated memory for NRA top-k search operators.

We also studied the application of LARA for queries with various aggregate
functions, including weighted combinations of simple monotone functions. A case
of top-k search that we studied in more depth are queries which rank (multiway) join
results. For this class of problems, we proposed an effective adaptation of LARA,
called LARA-J, which we demonstrated to have higher output rate compared to
evaluation trees of binary HRJN operators [Ilyas et al. 2003]. To deal with the
potentially high CPU cost and memory requirements of LARA-J, we proposed an
optimized version of it (LARA-J∗), which avoids the computation of Cartesian
products derived from sparse query graphs and the join of any incoming tuple with
them. Finally, we define the top-k cube query and browsing operations between
top-k cuboids. For these queries we suggest effective adaptations of LARA and
experimentally evaluate their performance. Summing up, this paper presents a
set of powerful techniques for top-k search, in the common case where only sorted
accesses to ranked inputs are allowed.

REFERENCES

Agrawal, R. and Wimmers, E. L. 2000. A framework for expressing and combining preferences.
In Proceedings of the ACM SIGMOD Conference on the Management of Data. 297–306.

Balke, W.-T. and Güntzer, U. 2004. Multi-objective query processing for database systems.

In Proceedings of the Very Large Databases Conference. 936–947.

Beyer, K. S., Goldstein, J., Ramakrishnan, R., and Shaft, U. 1999. When is ”nearest

neighbor” meaningful? In Proceedings of the 7th International Conference on Database Theory
(ICDT). 217–235.

Börzsönyi, S., Kossmann, D., and Stocker, K. 2001. The skyline operator. In Proceedings of

the IEEE International Conference on Data Engineering. 421–430.

Bruno, N., Chaudhuri, S., and Gravano, L. 2002. Top-k selection queries over relational

databases: Mapping strategies and performance evaluation. ACM Transactions on Database
Systems 27, 2, 153–187.

Carey, M. J. and Kossmann, D. 1997. On saying ”enough already!” in sql. In Proceedings of
the ACM SIGMOD Conference on the Management of Data. 219–230.

Chang, K. C.-C. and Hwang, S.-W. 2002. Minimal probing: supporting expensive predicates for

top-k queries. In Proceedings of the ACM SIGMOD Conference on the Management of Data.

346–357.

Chang, Y.-C., Bergman, L. D., Castelli, V., Li, C.-S., Lo, M.-L., and Smith, J. R. 2000. The
onion technique: Indexing for linear optimization queries. In Proceedings of the ACM SIGMOD

Conference on the Management of Data. 391–402.

de Vries, A. P., Mamoulis, N., Nes, N., and Kersten, M. L. 2002. Efficient k-nn search on ver-

tically decomposed data. In Proceedings of the ACM SIGMOD Conference on the Management
of Data. 322–333.

Fagin, R. 1999. Combining fuzzy information from multiple systems. Journal of Computer and

System Sciences 58, 1, 83–99.

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

Efficient Top-k Aggregation of Ranked Inputs · 45

Fagin, R. 2002. Combining fuzzy information: an overview. SIGMOD Record 31, 2, 109–118.

Fagin, R., Kumar, R., and Sivakumar, D. 2003. Efficient similarity search and classification

via rank aggregation. In Proceedings of the ACM SIGMOD Conference on the Management
of Data. 301–312.

Fagin, R., Lotem, A., and Naor, M. 2001. Optimal aggregation algorithms for middleware. In

Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems. 102–113.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow,

F., and Pirahesh, H. 1997. Data cube: A relational aggregation operator generalizing group-by,

cross-tab, and sub totals. Data Mining and Knowledge Discovery 1, 1, 29–53.

Güntzer, U., Balke, W.-T., and Kießling, W. 2000. Optimizing multi-feature queries for

image databases. In Proceedings of the Very Large Databases Conference. 419–428.

Güntzer, U., Balke, W.-T., and Kießling, W. 2001. Towards efficient multi-feature queries in

heterogeneous environments. In Proceedings of the IEEE Int’l Conf. on Information Technology
(ITCC). 622–628.

Hristidis, V. and Papakonstantinou, Y. 2004. Algorithms and applications for answering

ranked queries using ranked views. The VLDB Journal 13, 1, 49–70.

Ilyas, I. F., Aref, W. G., and Elmagarmid, A. K. 2002. Joining ranked inputs in practice. In
Proceedings of the Very Large Databases Conference. 950–961.

Ilyas, I. F., Aref, W. G., and Elmagarmid, A. K. 2003. Supporting top-k join queries in

relational databases. In Proceedings of the Very Large Databases Conference. 754–765.

Ilyas, I. F., Shah, R., Aref, W. G., Vitter, J. S., and Elmagarmid, A. K. 2004. Rank-aware
query optimization. In Proceedings of the ACM SIGMOD Conference on the Management of

Data. 203–214.

Kießling, W. 2002. Foundations of preferences in database systems. In Proceedings of the Very

Large Databases Conference. 311–322.

Mamoulis, N., Cheng, K. H., Yiu, M. L., and Cheung, D. W. 2006. Efficient aggregation of
ranked inputs. In Proceedings of the IEEE International Conference on Data Engineering.

Marian, A., Bruno, N., and Gravano, L. 2004. Evaluating top- queries over web-accessible

databases. ACM Transactions on Database Systems 29, 2, 319–362.

Mouratidis, K., Bakiras, S., and Papadias, D. 2006. Continuous monitoring of top-k queries
over sliding windows. In Proceedings of the ACM SIGMOD Conference on the Management

of Data. 635–646.

Natsev, A., Chang, Y.-C., Smith, J. R., Li, C.-S., and Vitter, J. S. 2001. Supporting incre-
mental join queries on ranked inputs. In Proceedings of the Very Large Databases Conference.

281–290.

Nepal, S. and Ramakrishna, M. V. 1999. Query processing issues in image (multimedia)

databases. In Proceedings of the IEEE International Conference on Data Engineering. 22–
29.

Ortega, M., Rui, Y., Chakrabarti, K., Mehrotra, S., and Huang, T. 1997. Supporting

similarity queries in MARS. In Proceedings of the ACM International Multimedia Conference.
403–414.

Roussopoulos, N., Kelley, S., and Vincent, F. 1995. Nearest neighbor queries. In Proceedings

of the ACM SIGMOD Conference on the Management of Data. 71–79.

Tao, Y., Hristidis, V., Papadias, D., and Papakonstantinou, Y. 2007. Branch-and-bound

processing of ranked queries. Information Systems 32, 3, 424–445.

Theobald, M., Weikum, G., and Schenkel, R. 2004. Top-k query evaluation with probabilistic

guarantees. In Proceedings of the Very Large Databases Conference. 648–659.

Tsaparas, P., Palpanas, T., Kotidis, Y., Koudas, N., and Srivastava, D. 2003. Ranked join

indices. In Proceedings of the IEEE International Conference on Data Engineering. 277–288.

Yi, K., Yu, H., Yang, J., Xia, G., and Chen, Y. 2003. Efficient maintenance of materialized top-k
views. In Proceedings of the IEEE International Conference on Data Engineering. 189–200.

ACM Transactions on Database Systems, Vol. X, No. X, XX 20XX.

