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Abstract

Many applications track the movement of mobile objects,
which can be represented as sequences of timestamped lo-
cations. Given such a spatio-temporal series, we study
the problem of discovering sequential patterns, which are
routes frequently followed by the object. Sequential pat-
tern mining algorithms for transaction data are not directly
applicable for this setting. The challenges to address are
(i) the fuzziness of locations in patterns, and (ii) the iden-
tification of non-explicit pattern instances. In this paper,
we define pattern elements as spatial regions around fre-
quent line segments. Our method first transforms the orig-
inal sequence into a list of sequence segments, and detects
frequent regions in a heuristic way. Then, we propose al-
gorithms to find patterns by employing a newly proposed
substring tree structure and improving Apriori technique.A
performance evaluation demonstrates the effectiveness and
efficiency of our approach.

1 Introduction

The movement of an object (i.e., trajectory) can be de-
scribed by a sequence of spatial locations sampled at con-
secutive timestamps (e.g., with the use of Global Position-
ing System (GPS) devices). Parts of the object routes are
often repeated in the archived history of locations. For in-
stance, buses move along series of streets repeatedly, people
go to and return from work following more or less the same
routes, etc. The movement routes of most objects (e.g., pri-
vate cars) are not predefined. Even for objects (e.g., buses)
with pre-scheduled paths, the routes may not be repeated
with same frequency due to different schedule in weekends
or some special days. We are interested in finding fre-
quently repeated paths, i.e.,spatio-temporal sequential pat-
terns, from a long spatio-temporal sequence. These patterns
could help to analyze/predict the past/future movement of
the object, support approximate query on the original data,
and so on. However, they cannot be obtained straightfor-

wardly by eliminating the noisy movement because of the
largevolume of the spatio-temporal data.

Discovery of sequential patterns from transactional data-
bases has attracted lots of interest since Agrawal et al. in-
troduced the problem [1]. In such a database, each trans-
action contains a set of items bought by some customer in
one time, and a transaction sequence is a list of transac-
tions ordered by time. For example,〈(a, b), (a, c), (b)〉 is
a sequence containing three transactions(a, b), (a, c) and
(b). Given a collection of transaction sequences, the prob-
lem is to find ordered lists of itemsets appearing with high
frequency. E.g.,〈(b), (a), (b)〉 is a pattern supported by the
above sequence.

Unfortunately, pattern discovery techniques in transac-
tional databases are not readily applicable for finding se-
quential patterns in spatio-temporal data. First, the elements
in a transactional pattern are items that explicitly appearin
pattern instances. On the other hand, location coordinatesin
a spatio-temporal series are real numbers, which do not re-
peat themselvesexactlyin every pattern instance. Second,
the patterns are discovered from explicitly defined sets of
sequences, like〈(a, b), (a, c), (b)〉, in the previous example.
Thus, a transaction list only contributes 0 or 1 to the sup-
port of a pattern, depending on whether the pattern appears
or not in the specific sequence-set. In our setting, however,
we detect frequent patterns fromone long spatio-temporal
sequence, without predefined segmentation of the data. The
challenge is to identify the segments that contribute to a pat-
tern, without allowing them to overlap with each other.

To summarize, the main contributions of this paper are:
(i) We propose a model for spatio-temporal sequential pat-
terns mining, based on appropriate definitions for pattern
elements and pattern instances. (ii) We present an effective
method for extracting pattern elements. (iii) We provide
efficient pattern mining algorithms for discovering longer
patterns. The remainder of the paper is organized as fol-
lows. Section 2 reviews the related literature. The formal
definition of spatio-temporal sequential pattern is given in
Section 3. Section 4 presents our solutions in detail. An ex-



perimental evaluation about the effectiveness and efficiency
of our approach is presented in Section 5. Finally, Section
6 concludes this paper.

2 Related work

Our work is most related to pattern discovery from se-
quential data, which include time series, event sequences,
and spatio-temporal trajectories.

Mannila et al. [10] investigated the discovery of frequent
episodesfrom event sequences. An episodes is a (partially
or totally) ordered list of events, thus is a variant of sequen-
tial pattern. A fixed sliding windoww is used to extract
segments (i.e., subsequences) in the event series, and the
contribution of every segment to each candidate episode’s
frequency is counted. The segments supporting one episode
may overlap, which is reasonable since episodes try to cap-
ture the appearing order of instantaneous events. However,
this methodology may not get satisfactory results in finding
spatio-temporal patterns, for several reasons. First, thewin-
dow limits the length of the patterns. Second, pattern sup-
ports may not be counted correctly. E.g., the object’s move-
ment isaabbcdefg, where each charactera, b, etc. corre-
sponds to a spatial region. The occurrence of the patternabc

should be 1, since the object moves froma to c, once. How-
ever, if w is 5, patternabc has support 4 due to the contri-
bution of 4 segments (a b c, ab c, a bc, and a bc). Third,
as opposed to well-defined categorical values for event in-
stances, object locations do not repeat themselves exactly
in pattern instances, for they are usually ordinal and inex-
act. Yang et al. investigated mining long sequential patterns
in [13], also dealing with event series with noise.

Previous work on detecting patterns from time-series
(e.g, [2, 7]) converted the problem to finding subsequences
in lists of categorical data (e.g., event sequences), by pre-
processing the original sequence to a string. A windoww of
fixed size is slided along the sequence, and a subsequence
with length w is extracted forevery position. In [2], the
subsequences are clustered based on their shapes, and each
cluster is given an id. In [7], some features are extracted
from each subsequence (e.g., the slope of the best-fitting
line of the sub-series, the mean of the signal, etc.). The fea-
ture space is divided into groups of similar values, and every
subsequence is converted to a group-id. The raw sequence is
then transformed to a string of cluster-ids or group-ids. The
use of the window may over-count the patterns due to the
reason explained above. In addition, sincew is fixed, the ex-
tracted subsequences have the same length, which may af-
fect the resultant patterns. Furthermore, for spatio-temporal
data, even when we extract the subsequences using a slid-
ing window and get simple features from these segments,
we cannot directly group these features using methods in
[2] and [7]. The cluster-based approach ([2]) has been dis-
credited by [8]. The way to group the subsequence features

([7]) may be effective for time-series with 1-dimension val-
ues. For more complex spatio-temporal data, if we directly
apply this method, i.e., split the features into groups, we
may miss the information about the spatial proximity of seg-
ments, which is essential for grouping.

The first study on finding frequent sequential patterns
from spatio-temporal data is [11]. The raw data here is not a
long sequence, but lists of spatial locations. After discretiz-
ing the locations topre-definedspatial decomposition, the
process is intrinsically similar to that in transactional data-
bases.

[9] addresses the problem of discoveringperiodic pat-
terns in spatio-temporal data, which is a generalization of
mining periodic patterns in event sequences. Given ape-
riod T , in the case of spatio-temporal data, a periodic pat-
tern is a (not necessarily contiguous) sequence of spatial
regions, which appears frequently everyT timestamps and
describes the object movement (e.g., a bus moves from dis-
trict a to districtb and then toc with high probability, every
three hours). The contribution of [9] is that it does not treat
spatio-temporal series as event sequences, by merely replac-
ing each location by a predefined region enclosing it, but
automatically discovers the regions that form the patterns.
This method, although effective for its purpose, relies on
a fixedT (i.e., the patterns repeat themselves every regular
time periods). In addition, it is prone to distortions/shiftings
of the pattern instances, i.e., periodic segments where the
pattern does not appear in the same positions as in the pat-
tern definition do not contribute to the pattern’s support.

3 Spatio-temporal sequential patterns
A spatio-temporal sequenceS is a list of locations,

(x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn), whereti repre-
sents the timestamp of location(xi, yi) (1 ≤ i ≤ n). Figure
1 illustrates the movement of an object which repeats a sim-
ilar route in three runs. We are interested in movement pat-
terns repeated frequently in such a series. This section first
motivates our solution, then formally defines the problem.

3.1 Motivation

Locations are not repeatedexactly in every instance of
a movement pattern. Our idea is to summarize a series of
spatial locations to that of spatial regions.

A naive method is to use a regular grid (or some pre-
defined spatial decomposition) to divide the space into re-
gions by taking a user-defined parameterG,an approximate
number that each axis will be split to. Then, the locations
series can become a sequence of grid-ids utilizing a trans-
formation approach. The first method, Grid I, converts each
location to the id of the cell it falls in. E.g., the raw se-
ries in Figure 1a, can be transformed to the cell-id sequence
c2c4c8c9c6c2 . . . c3. Although intuitive, this method has
two problems. First, we lose the information on how the
object moves inside a cell, if the space decomposition is



coarse. The patterns may not be very descriptive. Second,
for two instances of a pattern, the locations may not fall into
the same cell (i.e., two adjacent locations appear in neigh-
boring cells). We may miss some frequent patterns, whose
instances are divided between different grid-based patterns.
The first problem could be alleviated by decreasingG, how-
ever, this would increase the chances of missing patterns
due to the second problem. An alternative conversion tech-
nique adds the ids of cells that intersect with the line seg-
ments connecting consecutive locations to the transformed
sequence. In the example of Figure 1a, Grid II converts the
sequence for the first run toc2c1c4c7c8c9c6c3c2. Neverthe-
less, by this improvement, the new series may be signifi-
cantly longer than the original one, which may already be
extremely long, like spatio-temporal sequences usually are.

1 2 3

4 5 6

7 8 9

run 1
run 2
run 3

l

run 1
run 2
run 3

(a) (b)

Figure 1. Object Movement

Thus, we need a better way to abstract the trajectory.
Motivated by line simplification techniques ([3]), we repre-
sent segments of the spatio-temporal series by directed line
segments. Figure 1b shows that the line segmentl summa-
rizes the first three points in each of the three runs with little
error. In this way, not only do we compress the original data,
decreasing the mining effort, but also the derived line seg-
ments (which approximately describe movement) provide
initial seeds for defining the spatial regions, which could be
expanded later by merging similar and close segments.

3.2 Problem definition

A segmentsij in a spatio-temporal sequenceS (1 ≤
i < j ≤ n) is a contiguous subsequence ofS, starting
from (xi, yi, ti) and ending at(xj , yj , tj). Givensij , we de-
fine its representative line segment~lij with starting point
(xi, yi) and ending point(xj , yj). Let ǫ be a distance er-
ror threshold,sij complies with ~lij with respect toǫ and
is denoted assij ∝ǫ

~lij , if dist((xk, yk), ~lij) ≤ ǫ for all
k(i ≤ k ≤ j), where dist((xk, yk),~l) is the distance be-
tween(xk, yk) and line segment~l. Whensij ∝ǫ

~lij , each
point (xk, yk), i ≤ k ≤ j, in sij can be projected to a point
(x′

k, y′

k) on ~lij . (x′

k, y′

k) implicitly denotes the projection
of (xk, yk) to ~lij . Figure 2a illustrates a segmentsij com-
plying with ~lij and shows the projection(x′

k, y′

k) of point

(xk, yk) on ~lij . A segmental decompositionSs of S is
defined by a list of consecutive segments that constituteS.
Formally, Ss = sk0k1

sk1k2
. . . skm−1km

, k0 = 1, km =

n,m < n, whereskiki+1
∝ǫ

~lkiki+1
for all i, To simplify

notation, we uses0s1 . . . sm−1 to denoteSs.

Let~l represent a directed line segment,~l.angle and~l.len
be its slope angle and length respectively. Two line seg-
ments ~lij and ~lgh representing segmentssij and sgh are
similar , denoted by~lij ∼ ~lgh, with respect to angle dif-
ference thresholdθ and length factorf (0 ≤ f ≤ 1) if:
(i) | ~lij .angle − ~lgh.angle| ≤ θ and
(ii) | ~lij .len − ~lgh.len| ≤ f × max( ~lij .len, ~lgh.len) If
~lij ∼ ~lgh, sij and sgh are also treated as similar to each
other. Note that similarity is symmetric. The location infor-
mation of segments is not considered in defining similarity,
since we use it when defining the segments’ closeness.

Line segment~lij is closeto ~lgh if for ∀(x′

k, y′

k) ∈ ~lij ,
dist((x′

k, y′

k), ~lgh) ≤ ǫ. When ~lij is close to ~lgh, we also
say that the segmentsij is close to the segmentsgh, where
sij ∝ǫ

~lij andsgh ∝ǫ
~lgh. As opposed to similarity, close-

ness is asymmetric. Figure 2b shows an example. Let~lij

is parallel to ~lgh andǫ = 5.0. The distance between these
two parallel line segments is4.5. Observe that~lij is close to
~lgh because the distance from each point in~lij to ~lgh is less

than5.0. However, ~lgh is not close to~lij for the point in the
right upper part has distance to~lij bigger than5.0.

Let L be a set of segments from sequenceSs. Themean
line segmentfor L, ~lc, is a line segment that best fits all
the points inL with the minimum sum of squared errors
(SSE). In other words, ifPSet contains all the points of
the segments inL, the mean line segment~lc is such that∑

p∈PSet dist(p, ~lc) ≤
∑

p∈PSet dist(p,~l) ∀~l 6= ~lc.
Let tol be the average orthogonal distance of all the

points inL to ~lc. A spatial pattern element is a rectangu-
lar spatial regionrL with four sides determined by(~lc, tol)
as following: (1) two sides ofr’s that are parallel to~lc, have
the same length as~lc, and their distances to~lc aretol; (2)
the other two vertical sides have length2 · tol, and their
midpoints are the two end points of~lc. We refer to~lc as
thecentral line segmentof regionrL. We say that region
rL containsk segments ork segments contribute torL if L

consists ofk segments. Figure 2c visualizes this definition.
A spatio-temporal sequential patternP is an ordered se-
quence of pattern elements:r1r2 . . . rq, (1 ≤ q ≤ m). The
length of patternP is the number of regions in it.

A contiguous subsequence ofSs, sisi+1 . . . si+q−1, is a
pattern instance for P : r1r2 . . . rq if ∀j(1 ≤ j ≤ q), if
the representative line segment for segmentsi+j−1 is sim-
ilar andcloseto the central line segment of regionrj . A
pattern’s instances cannot overlap in time (the pattern may
be over-counted like that in [10] otherwise), i.e., if two con-
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Figure 2. Example of definitions

tinuous subsequences ofSs, si . . . sj andsg . . . sh, are two
instances for patternP , eitherj < g or h < i. Given pat-
ternsP ′: r′1r

′

2 . . . r′i andP : r1r2 . . . rj , P ′ is asubpattern
of P if i ≤ j and∃k, (1 ≤ k ≤ j− i+1) such thatr′1 = rk,
r′2 = rk+1, . . ., r′i = rk+i−1. P is asuperpattern of P ′.

The support of a patternP is the number of instances
supportingP . Given a support thresholdmin sup, P is
frequent if its support exceedsmin sup. Since a pattern
with same frequency to one of its supersets is redundant, we
focus on detectingclosedfrequent patterns [4], for which
every proper subpattern has equal frequency. The mining
problem is to find frequent patterns from a long spatio-
temporal sequenceS with respect to a support threshold
min sup, and subject to a segmenting distance error thresh-
old ǫ, a similarity parameterθ and a length factorf . The
parameter values depend on the application domain, or can
be tuned as part of the mining process [2]. In using the raw
data to discover patterns, we discuss how to set the parame-
ters in Section 5.1 more applicably.

4 Solution

In this section, we describe how to discover frequent sin-
gular patterns, i.e., frequent spatial regions (Section 4.1)
and longer closed patterns (Section 4.2).

4.1 Discovering frequent singular patterns

The segmentation (line simplification) algorithm ([3, 5,
6]) is used to convert the locations series to segments se-
quences so that each raw sequence segment could be ab-
stracted by a line segment. Our idea is to transformS to
Ss using such a technique, and take the segments obtained
as seed for the desired spatial regions, whose central line
segments best fit the points of segments in the regions. The
DP (Douglas-Peucker) algorithm [3] is a classical top down
approach for this problem. [6] provides an online algorithm
in splitting a sequence to segments with quite good quality.
Since it is important to keep the internal movement inside a
region, we need to capture the sharp turn of the movement
in the transformation. We employ DP method because it
has been proved to be the best algorithm in choosing split-
ting points [12]. In brief, DP algorithm recursively decom-
posesS: {p1, . . . , pn} to a series of line segmentsl1, . . . lm,
m ≤ n, each of which,li, simplifies a subsequenceSli ,

such that the perpendicular distance from every point inSli

to li is at mostǫ. For efficiency purpose, DP’s improved
version ([5]) could be adopted.

Discoveringfrequent singular patternsfrom Ss is a hard
problem, since in the worst-case, all combinations of seg-
ments inSs have to be considered as candidate. To expe-
dite the process, we employ a heuristic,Growing. Let Segs

be a set initially containing all the segments inSs. Grow-
ing works as follows. It selects the segments with median
length, i.e., the median of the lengths of the segments in
Segs, as seed for the initial spatial regionr. Then, r is
grown by merging other segments inSegs throughfiltering
andverificationsteps, described later. Next, for the set of
remaining segments not merged tor, the segments′ with
median length in it is selected as seed for growing. Finally,
the overall algorithm terminates after all segments (i) have
been assigned to a region (as initial seeds or to the region of
another seed), or (ii) have been found not to belong to any
frequent region and marked as outliers. Selecting the seg-
ment with median length as seed could help to absorb short
segments with less error, compared to taking segment with
longer length as seed. Meanwhile, it could prevent gener-
ating regions with too fine granularity, which could happen
when shorter length segment is used as seed.Growing is
deterministic in using this seed selection procedure.

The filtering process checks two conditions. First, for
eachsi in Segs the angle differencediff ai between~ls and
si is computed, andsi is treated ascandidateif diff ai is
less thanθ. All the candidate segments are put into a setC.
Second, the minimum distance from every segment inC to
~ls is computed and all segments whose minimum distances
to ~ls is larger thanf · ~ls.len are pruned. The remaining
segments inC will be used for verification.

The filtering step computes the minimum distance be-
tween segments, but it does not consider the length differ-
ence (second condition of similarity), between each~lsi

∈ C

and~ls, and the exact spatial distances of segments inC to
~ls (closeness condition). In the verification step, Algorithm
1 (shown below) merges the segments inC to the spatial re-
gionr around~ls, if si ∈ C satisfies the closeness and length
difference condition. Otherwise, we extract fromsi the part
that satisfies the condition, and merge this part withr. The
remaining part ofsi is a new segment and inserted back to



Segs (Line 15) for later processing.

Algorithm 1 Verification(~ls, C, Segs, f , min sup)

1: α := ~ls.len × f ; m:=0;
2: //length check
3: for each segmentsi in C do
4: intersectsi with ~ls, gets′ and ~ls′ ;
5: if (diff(~ls.len, ~ls′ .len) ≤ α) m++;
6: end for
7: //closeness check
8: while (m ≥ min sup) do
9: Get~lc from all intersected points for regionr;

10: Validate all intersected parts fromC;
11: if (all intersected parts are close to~lc) break;
12: end while
13: if (m<min sup) return ;
14: for each segmentsi in C do
15: Add non-intersected part ofsi to Segs;
16: Removesi from Segs;
17: end for
18: Remove segment that~ls represents fromSegs;

We explain how we compute the intersected part ofsi

and ~ls in Line 4. Let ~lsi
be the representative line seg-

ment for si. If all projection points(x′

k, y′

k) in ~lsi
have

distance to~ls no more thanα (Line 1), its related location
point (xk, yk) in the segment is put into the intersected part
s′. The line segment created by mapping each point ins′

to ~lsi
is denoted as~ls′ . For example, letsi represent seg-

ment (x10, y10, t10), . . . , (x30, y30, t30). Assume that the
distances from points in~lsi

to ~ls are all smaller thanα ex-
cept points from(x′

10, y
′

10) to (x′

15, y
′

15). Then,s′ is seg-
ment(x16, y16, t16), . . ., (x30, y30, t30), and ~ls′ represents
line segment from(x′

16, y
′

16) to (x′

30, y
′

30) in ~lsi
.

4.2 Deriving longer patterns

After finding frequently visited spatial regions, original
dataS is converted to a seriesSR of spatial regions by
changing the segments in frequent regions to region ids,
and those not in any region to outliers.SR preserves the
motion continuity of the object by showing how it moves
among regions. Although each region inSR is repeated
frequently, the concatenation of some regions may not be
frequent. E.g., a person living inr1 often goes to a placer2

in some days and to regionr3 in other days.r1, r2 andr3

are frequently visited, but the pathr2r3 is not frequent. This
section discusses how to detect the longer frequent patterns.

4.2.1 Level-wise mining

A direct way is to perform level-wise pattern mining. How-
ever, this approach suffers from the disadvantage thatSR

needs to be scanned many times. We propose solutions to
reduce the number of candidates and scans in probing long
candidates, based on the following properties we observe.

Property 1 (Connectivity Constraint): Due to conti-
nuity of object movement, a spatial region can only connect

to some but not all the others inSR. This constraint can
help reduce the number of generated candidates, as follows.
We first construct a connectivity graph for all the spatial re-
gions inSR. A directed edge fromri to rj is added to the
graph if the substringrirj appears in the sequence. The
edge weight is the frequency thatrirj appears in the se-
quence. Letr1r2 . . . rk be a frequent pattern, andrk only
points tori andrj , only two candidates,r1r2 . . . rkri and
r1r2 . . . rkrj are generated. Further, if the edge weight from
rk to some element, sayri, is no more thanmin sup, we
need not generate candidater1r2 . . . rkri.

Property 2 (Closeness Property):Given a patternP ,
suppose its last element connects tor1, r1 connects tor2,
. . ., rm−1 connects torm, (m ≥ 2). We can get pattern
P1 = Pr1 (concatenatingP and r1), P2 = Pr1r2, . . .,
Pm = Pr1r2 . . . rm. Obviously, ifP1 and Pm have the
same support, anyPi, (1 < i < m) also has the same
support. This property helps to generate candidates more
efficiently. Letresultbe the frequent patterns at the end of
thekth scan andP be a pattern in it with last elementr. We
can extendP using other patterns inresultthat start withr.
For instance, letP = r1r2r3, andr3 only connect tor4 in
the connectivity graph. In addition, assume thatresultcon-
tains only one pattern starting fromr3: P ′ = r3r4r6r7. P

can then be extended to candidatesr1r2r3r4 (using Property
1), andr1r2r3r4r6r7 (using Property 2). Ifr1r2r3r4 and
r1r2r3r4r6r7 have the same support after the counting, we
only need to consider candidates longer thanr1r2r3r4r6r7

later, significantly reducing the number of scans.

4.2.2 Mining using the substring tree

We propose asubstring treestructure to facilitate counting
of long substrings with different elements. The substring
tree is a rooted directed tree whose root links to multiple
substring sub-trees. Each node in a sub-tree consists of pat-
tern element and a counter, which counts the number of
substrings (i.e., subsequences of elements) that contribute
to the pattern formed by the path from the root to this node.
A substring tree example is shown in Figure 3a.

To construct the tree, in scanningSR, we extract sub-
strings containing distinct elements, and insert them to the
tree. In seeing an elementr in SR, we concatenate it to
the substrings found so far that do not containr. Also, if
no substring starting withr is found,r is treated as a new
substring. We give an example to illustrate the extraction of
substrings. LetSR ber1r2r3r4r1r3r4r2r3r4r1r2r3r4. Ini-
tially, no substring is extracted. When see the firstr1, we
create a new substring for it. On seeing the second element
r2, we create a new substringr2 since no substring starting
with r2 exists. In addition, we concatenate it to the only
substringr1 and getr1r2. The process continues until we
see the fifth elementr1. There is already a stringr1r2r3r4

with r1 as first element, sor1r2r3r4 is inserted to the tree,



and a new substring starting fromr1 is created. Figure 3a
shows the full substring tree for sequenceSR.

root

3r

2r

4r

1r

1 2r

4 4r

4 3r

2 1r

1 2r

1 2r

2 1r

3 4r

1 3r

1 3r

3r

2r
3

2 3r

2 2r

2 4r

1r3

3r1

1 2r

4r

3

1

1
1 3

2
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Figure 3. Mining using substring tree

For deriving frequent patterns from the substring tree,
we utilize a stack. Each element in the stack comprises of
a pattern, its countand alevel, indicating whether the pat-
tern has reached a leaf or not. First, we add to the stack the
patterns associated with the root’s children. Then, we itera-
tively pop patterns with highest frequency from the stack. If
the popped up pattern is not at leaf level and is frequent, we
output it, and extend it by concatenating it with its children’s
elements and push the extended patterns to the stack; oth-
erwise, the pattern is just output (if frequent). In the above
example, there are initially four elements in the stack. Fig-
ure 3b shows the first several steps for the mining process.
Let min sup = 2. When poppingr3(4) from the initial
stack, we output it as result, and extend it tor3r4 since
it is not at the leaf level. Next, we pop upr3r4(4) and
deleter3(4) from the result because its frequency is the
same to that ofr3r4 (definition of closed patterns). This
process continues until no pattern exists in the stack. The
final closed patterns arer3r4(4), r1(3), r2r3r4(3), r4r1(2),
r3r4r1(2), r1r2r3r4(2), r2r3r4r1(2). The patterns discov-
ered from the substring tree are not the final results be-
cause they only contain patterns with distinct elements. We
extend the patterns using the level-wise method. The re-
sult may contain overlapping patterns liker1r2r3r4(2) and
r2r3r4r1(2). We report all of them though the pattern space
may be large. The reason is that if we output only one of
them, sayr1r2r3r4(2), the information thatr4 connects to
r1 (necessary for generating longer patterns) will be missed.

Finally, our algorithm outputs frequentclosedpatterns.

5 Experiments

This section evaluates our proposed approach with real
and synthetic data. After discussing the way to set the para-
meters in Section 5.1, we study the effectivesness and effi-
ciency in Section 5.2.

Real datasets:The real data contain tracked bus move-
ments in Patras, Greece. Each sequence is the movement
of a bus in a single day. The coordinates in the sequence
are in meters following the EGSA84 projection (A Greek
coordinate system). Bus locations were sampled every 30
seconds. However, since a vehicle might stop intermittently
and the GPS is switched off during that period, the move-
ment in a sequence may not be straightly continuous. The
series length varies in the range between 1000 to 7000.

Synthetic data: We also generated long sequences to
facilitate the performance study. The generator takes three
parameters,|p|, n, andm. |p| is the number of line segments
constituting circular paths (i.e., patterns) of the movement.
n denotes the sequence length. Andm represents the num-
ber of times that the object repeats the patterns. Obviously,
n > |p| × m. The generator first creates circular routes
with |p| connected line segments. Then, it generates lo-
cations along the routes to simulate the object movement.
The actual number of positions for each run is produced
by adding/reducing some random values to/from⌊ n

m
⌋. In

every run, the locations for each line segment are approxi-
mately the same. The description of the artificial series is
given in related experiments.

5.1 Setting the parameters
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Figure 4. Parameter estimation example

We employ a heuristic based on sampling, to determine
the value of parameterǫ. We choose a random sample from
the dataset and keep only the locations, for which thex co-
ordinates are very close to a set ofx values, sayx1, x2, x3.
For each value in the set, we cluster they coordinates of
the sample points and derive dense ranges ofy values. For
instance, in Figure 4 forx valuesx1 = 1, x2 = 2, x3 = 3,
we can identify 6 dense rangesY R1, Y R2, . . . , Y R6 —
denoted by the bold (red in color mode) vertical short line
segments.
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Figure 5. Raw sequence and patterns discovered

We define ǫy as the average length of thesey val-
ues. Similarly,ǫx can be obtained. Finally, we setǫ =
min{ǫx, ǫy} as smallerǫ will allow pattern definition at a
finer granularity. Experimentally, we found that, for most
datasets, by settingǫ to the estimated value (even vary a
little), θ to around 0.3 radians, andf to around 0.2 (20%
rule), our algorithm retrieves hidden patterns in the data,
i.e., pre-scheduled paths for bus data and patterns generated
for synthetic data.

5.2 Effectiveness and efficiency study

We examine the effectiveness of our method taking as
input a raw bus movement sequence shown in Figure 5a,
which contains 6921 locations. This movement exhibits
partial regularity and consists of noise.

For visualization purpose, we show its interesting part
in more detail in Figure 5b because the remainder contains
noise segments appearing only once. According to the de-
scription in Section 5.1, we tune the parameters toǫ = 20
(map size is100 × 100), f = 0.2, θ = 0.3 radian, and
min sup = 3. In this movement, the frequently repeated
paths are around cellc51. Figure 5c and 5d show the two
longest closedpatterns discovered by our method. For sim-
plicity, only the central line segments for the regions in the
patterns are plotted. The arrow of each central line seg-
ment shows the movement direction inside that region and
the connection of these directed line segments illustratesthe
movement from one region to another. They are not con-
nected because of the noise movement near the boundary of
grid 51 (see Figure 5b). We also plot the results discovered
by Grid II since it is more effective than Grid I. WhenG is
10, the pattern discovered near cell51 is c50c51c60 in Figure
5e (movement from the region of cellc50 to cell c51 then to
cell c60). This is quite coarse, since the movement inside
each cell is unknown. Thelongest closedpatterns forG=20

andG=100 are shown in Figure 5f and Figure 5g. They
improve on accuracy with the increase ofG, however, the
patterns in the cell abovec51 (related to pattern in Figure 5d)
is still missed. Furthermore, the mining efficiency degrades
significantly. Our approach takes about 200ms, while Grid
II with G = 100 takes about 450ms, which is more than
double. In summary, the results show that our method can
find hidden sequential patterns effectively. Given properG,
Grid II can also discover coarse movement patterns. How-
ever, it suffers from two disadvantages (i) the internal move-
ment in a grid cell cannot be found; (ii) it is less efficient
than our method in finding patterns of similar quality.

We used synthetic data to evaluate theefficiency. We
first analyze the performance of finding frequent singular
patterns. The parameters of the data generator were set to
|p| = 20, n = 30K, andm = 50 in a map of size=1×1. We
set the mining parametersǫ = 0.01, f = 0.2 andθ = 0.3,
and varymin sup. The performance is shown in Table
1a.NumP1

is the number of frequent singular patterns and
SR

len is the length ofSR. We observe that the time rises
only when the increase ofmin sup brings the decrease of
NumP1

. It is because theGrowing method inspects more
seeds before it finds satisfactory spatial regions when the re-
sultantNumP1

is smaller. In the worst case, every segment
in Segs need to be examined.

Table 1b compares the total time spent by our methods,
and the grid methods which use the substring tree for find-
ing longer patterns. The generating parameters are|p| =
100, m = 50, andn = 500K. The substring tree technique
slightly outperforms the level-wise method in all cases since
it uses most time (about 12s) to find singular frequent pat-
tern and most patterns contain long subpatterns with distinct
elements. Their time is nearly constant tomin sup because
SR

len is the same for differentmin sup. The grid methods



min sup NumP1
SR

len
time (ms)

≤ 82 18 1576 560
83,84 11 1268 600

85 3 423 1130
≥ 86 2 339 1190

(a) Time for discovering singular patterns vs.min sup

time (s) for differentmin sup

Method 50 60 70
Level-wise 17.35 17.33 17.32

Substring tree 13.47 13.49 13.49
Grid I (G = 10) 42.58 42.56 16.11
Grid II (G = 10) 30.52 30.56 30.51
Grid I (G = 20) 57.38 33.86 22.00
Grid II (G = 20) 345.35 58.56 45.54

(b) Total time vs. variousmin sup

Table 1. Efficiency comparison

take longer time, since the transformed cell-ids sequence
is much longer (i.e.,n or higher) than that ofSR. When
we increaseG from 10 to 20, the time increases sharply,
since the number of cells quadruplicates and the sequence
becomes much longer. Sometimes, Grid II may take less
time than Grid I (e.g., forG=10 andmin sup=50 and 60).
This happens because many cells in the sequence become
outliers for this case, thus Grid II discovers shorter patterns
(whereas Grid I finds longer ones, since it does not intro-
duce intermediate cells at a sharp movement).
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Figure 6. Scalability

Figure 6 tests the scalability of our method in using the
substring tree. We generate the datasets, keeping|p| con-
stant (50) and changingn (the number of spatial locations
in S) from 50K to 1.5M. The total cost is nearly linear to
n, although it includes the cost for sorting the segments
lengths and computing angle differences, which is about
O(mlogm) wherem (m ≪ n) is the number of segments.

6 Conclusion
In this paper, we modeled the problem of mining sequen-

tial patterns from spatio-temporal data by considering both
spatial and temporal information. Singular frequent pat-

terns are found effectively, by grouping segments not only
by similar shape (like previous work in time-series min-
ing), but also by closeness in space. In addition, we em-
ployed special properties of the problem (spatial connectiv-
ity, closeness) and a newly proposed substring tree to accel-
erate search for longer patterns.
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