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Abstract wardly by eliminating the noisy movement because of the
large volume of the spatio-temporal data.

Many applications track the movement of mobile objects,  Discovery of sequential patterns from transactional data-
which can be represented as sequences of timestamped Idases has attracted lots of interest since Agrawal et al. in-
cations. Given such a spatio-temporal series, we studytroduced the problem [1]. In such a database, each trans-
the problem of discovering sequential patterns, which are action contains a set of items bought by some customer in
routes frequently followed by the object. Sequential pat- one time, and a transaction sequence is a list of transac-
tern mining algorithms for transaction data are not dirgctl  tions ordered by time. For exampléa, b), (a,c), (b)) is
applicable for this setting. The challenges to address are a sequence containing three transaction®), (a,c) and
(i) the fuzziness of locations in patterns, and (ii) the iden (b). Given a collection of transaction sequences, the prob-
tification of non-explicit pattern instances. In this pgper lem is to find ordered lists of itemsets appearing with high
we define pattern elements as spatial regions around fre-frequency. E.g.{(b), (a), (b)) is a pattern supported by the
guent line segments. Our method first transforms the orig- above sequence.
inal sequence into a list of sequence segments, and detects Unfortunately, pattern discovery techniques in transac-
frequent regions in a heuristic way. Then, we propose al- tional databases are not readily applicable for finding se-
gorithms to find patterns by employing a newly proposed quential patterns in spatio-temporal data. First, the efgm
substring tree structure and improving Apriori technigée.  in a transactional pattern are items that explicitly appear
performance evaluation demonstrates the effectivenesbs an pattern instances. On the other hand, location coordiiates
efficiency of our approach. a spatio-temporal series are real numbers, which do not re-
peat themselvesxactlyin every pattern instance. Second,

. the patterns are discovered from explicitly defined sets of
1 Introduction sequences, lik§a, b), (a, c), (b)), in the previous example.

The movement of an object (i.e., trajectory) can be de- Thus, a transaction list only contributes 0 or 1 to the sup-
scribed by a sequence of spatial locations sampled at conjort of a pattern, depending on whether the pattern appears
secutive timestamps (e.g., with the use of Global Position- or not in the specific sequence-set. In our setting, however,
ing System (GPS) devices). Parts of the object routes arewe detect frequent patterns frommelong spatio-temporal
often repeated in the archived history of locations. For in- Sequence, without predefined segmentation of the data. The
stance, buses move along series of streets repeatedlyepeopchallenge is to identify the segments that contribute tata pa
go to and return from work following more or less the same tern, without allowing them to overlap with each other.
routes, etc. The movement routes of most objects (e.g., pri- To summarize, the main contributions of this paper are:
vate cars) are not predefined. Even for objects (e.g., busesfi) We propose a model for spatio-temporal sequential pat-
with pre-scheduled paths, the routes may not be repeatederns mining, based on appropriate definitions for pattern
with same frequency due to different schedule in weekendselements and pattern instances. (ii) We present an eféectiv
or some special days. We are interested in finding fre- method for extracting pattern elements. (iii) We provide
quently repeated paths, i.epatio-temporal sequential pat-  efficient pattern mining algorithms for discovering longer
terns from a long spatio-temporal sequence. These patterngatterns. The remainder of the paper is organized as fol-
could help to analyze/predict the past/future movement of lows. Section 2 reviews the related literature. The formal
the object, support approximate query on the original data,definition of spatio-temporal sequential pattern is given i
and so on. However, they cannot be obtained straightfor-Section 3. Section 4 presents our solutions in detail. An ex-



perimental evaluation about the effectiveness and effigien ([7]) may be effective for time-series with 1-dimension-val
of our approach is presented in Section 5. Finally, Sectionues. For more complex spatio-temporal data, if we directly

6 concludes this paper. apply this method, i.e., split the features into groups, we
may miss the information about the spatial proximity of seg-
2 Related work ments, which is essential for grouping.

The first study on finding frequent sequential patterns
from spatio-temporal data is [11]. The raw data here is not a
long sequence, but lists of spatial locations. After diszre
ing the locations tgre-definedspatial decomposition, the
process is intrinsically similar to that in transactionatal
bases.

Our work is most related to pattern discovery from se-
guential data, which include time series, event sequences
and spatio-temporal trajectories.

Mannila et al. [10] investigated the discovery of frequent
episodegrom event sequences. An episodes is a (partially

or totally) ordered list of events, thus is a variant of segue [9] addresses the problem of discoveriperiodic pat-

tial pattern.. A fixed sliding wmd_ovvw ISUSECio -extract terns in spatio-temporal data, which is a generalization of
Segm.e“t? (., subsequences) in the event. senes,.and thmining periodic patterns in event sequences. Givgrea
contnbutlop of every segment to each cand|.date eDISO.de'Sriod T, in the case of spatio-temporal data, a periodic pat-
frequency is coupteql. The segment; suppqrtlng one epISOd?ern is a (not necessarily contiguous) sequence of spatial
may overlap, Wh|ch is reaso_nable since episodes try to cap-regions which appears frequently evéyimestamps and
ture the appearing order of instantaneous events. Howeverdescribc’as the object movement (.g., a bus moves from dis-
this methodology may not get satisfactory results in finding o

. . trict a to districtb and then ta: with high probability, every
spatio-temporal patterns, for several reasons. Firstyihe M g :
- three hours). The contribution of [9] is that it does not trea
dow limits the length of the patterns. Second, pattern sup-

ports may not be counted correctly. E.g., the object’s move__spatlo-temporal series as event sequences, by merelgrepla

ment isaabbcde f g, where each character b, etc. corre- ng each Iocatiqn by predefin.ed region enclosing it, but
spondsto a spatiayl region. The occurrence (')f the padtern auFomancaIIy discovers the regions t.hat form the pe}tterns
should be 1, since the object moves frano ¢, once. How- Th!s methpd, although effective for its purpose, relies on
ever, ifw is ,5 patterrube has support 4 dué to the contri- ?f'xedT. (ie., the patterns repeat thems_elveg every _regular
butic;n of4se,gment$L(b ¢, .ab.c, a_be, and.a_bc). Third time periods). I_n addmon,_lt is pronet_o distortions/sini§js
A o ' . of the pattern instances, i.e., periodic segments where the
as opposed to well-defined categorical values for event m_pattern does not appear in the same positions as in the pat-
stances, object locations do not repeat themselves exactI){ern definition do not contribute to the pattern’s support
in pattern instances, for they are usually ordinal and inex- '

act. Yang et al. investigated mining long sequential paster 3  Spatio-temporal sequential patterns

in [13], also dealing with event series with noise. A spatio-temporal sequences is a list of locations,
Previous work on detecting patterns from time-series (21,91, 11), (T2, Y2, t2)s -y (Tns Yns t), Wheret; repre-

(e.g, [2,7]) conve.rted the problem to finding subsequencesgegnis the timestamp of locatién;, y;) (1 < i < n). Figure

in lists of categorical data (e.g., event sequences), by pre 1 jjystrates the movement of an object which repeats a sim-

processing the original sequence to a string. Awindoof jjar route in three runs. We are interested in movement pat-

fixed size is slided along the sequence, and a subsequencg s repeated frequently in such a series. This sectidn firs

with lengthw is extracted forevery position In [2], the  mgtivates our solution, then formally defines the problem.
subsequences are clustered based on their shapes, and each

cluster is given an id. In [7], some features are extracted -1 Motivation

from each subsequence (e.g., the slope of the best-fitting Locations are not repeatexkactlyin every instance of
line of the sub-series, the mean of the signal, etc.). The fea a movement pattern. Our idea is to summarize a series of
ture space is divided into groups of similar values, andyever spatial locations to that of spatial regions.

subsequence is converted to a group-id. The raw sequenceis A naive method is to use a regular grid (or some pre-
then transformed to a string of cluster-ids or group-idse Th defined spatial decomposition) to divide the space into re-
use of the window may over-count the patterns due to thegions by taking a user-defined paramefgan approximate
reason explained above. In addition, sinces fixed the ex- number that each axis will be split to. Then, the locations
tracted subsequences have the same length, which may akeries can become a sequence of grid-ids utilizing a trans-
fect the resultant patterns. Furthermore, for spatio-tealp  formation approach. The first method, Grid |, converts each
data, even when we extract the subsequences using a slidecation to the id of the cell it falls in. E.g., the raw se-
ing window and get simple features from these segments,ries in Figure 1a, can be transformed to the cell-id sequence
we cannot directly group these features using methods incocycgcgcges - .. cs. Although intuitive, this method has
[2] and [7]. The cluster-based approach ([2]) has been dis-two problems. First, we lose the information on how the
credited by [8]. The way to group the subsequence featuresobject moves inside a cell, if the space decomposition is



coarse. The patterns may not be very descriptive. Second(xy,yx) on l:] A segmental decompositionS® of S is

for two instances of a pattern, the locations may not fadl int

the same cell (i.e., two adjacent locations appear in neigh-

defined by a list of consecutive segments that constitute

Formally, S* = Skok1Skiks « -+ Skyn—_1km ko = l,km =

boring cells). We may miss some frequent patterns, whose,, m < n, wheresy,i,,, x. lkd;H for all i, To simplify

instances are divided between different grid-based petter
The first problem could be alleviated by decreasifygnow-

ever, this would increase the chances of missing patterns
due to the second problem. An alternative conversion tech-

nigue adds the ids of cells that intersect with the line seg-

ments connecting consecutive locations to the transformed>
sequence. In the example of Figure 1a, Grid Il converts the

sequence for the first run t@c; c4crcgcocgescs. Neverthe-
less, by this improvement, the new series may be signifi-
cantly longer than the original one, which may already be
extremely long, like spatio-temporal sequences usuadly ar

3runl
run 2| —e
run 3 |-

run 3

@)

Figure 1. Object Movement

Thus, we need a better way to abstract the trajectory.

Motivated by line simplification techniques ([3]), we repre
sent segments of the spatio-temporal series by directed lin
segments. Figure 1b shows that the line segrhenomma-
rizes the first three points in each of the three runs witle litt
error. In this way, not only do we compress the original data,

decreasing the mining effort, but also the derived line seg-

ments (which approximately describe movement) provide
initial seeds for defining the spatial regions, which cowd b
expanded later by merging similar and close segments.

3.2 Problem definition

A segments;; in a spatio-temporal sequenée(l <
1 < j < n)is a contiguous subsequence $f starting
from (x;,y;, t;) and ending az;, y;,¢;). Givens,;, we de-
fine itsrepresentative line segmentfj with starting point
(x;,y:) and ending pointz;,y;). Lete be a distance er-
ror threshold,s;; complies with l:j with respect toe and
is denoted as;; o, l; if dist((xk,yk),l;j) < ¢ for all
k(i < k < j), where dist(zx, yx), () is the distance be-
tween (zy,yi) and line segment Whens,; o, I;;, each
point (@, yx),? < k < j,in s;; can be projected to a point
(x%, y3) on l; (x},, ;) implicitly denotes the projection
of (zk,yr) to l:j Figure 2a illustrates a segment com-
plying with l;j and shows the projectiofx}, y;,) of point

notation, we usegs ... s,,—1 to denoteS?.

Let/ represent a directed line segmentngle andl.len

its slope angle and length respectively. Two line seg-
mentsl;j and l;,,, representing segments; and s, are
imilar, denoted byi;; ~ I,,, with respect to angle dif-
ference threshold and length factorf (0 < f < 1) if:

(@) |l:j.angle — l;h.angle| < #fand

(ii) |l;j.len - l;h.len\ < fx max(li_;-.len, l;h.len) If

lij ~ lgn, si; ands,, are also treated as similar to each
other. Note that similarity is symmetric. The location irfo
mation of segments is not considered in defining similarity,
since we use it when defining the segments’ closeness.

Line segment;; is closeto Iy, if for ¥(z},y}) € L,
dist((«,, y;), l,n) < €. Whenl,; is close tol,;,, we also
say that the segmeny; is close to the segmea},,, where
sij e li; andsgy, o, . As opposed to similarity, close-
ness is asymmetric. Figure 2b shows an example.l;l,;et
is parallel tol,;, ande = 5.0. The distance between these
two parallel line segments is5. Observe thalt;j is close to
1, because the distance from each pointjrto [, is less
than5.0. However,l,, is not close td,, for the point in the
right upper part has distancelﬁ; bigger tharb.0.

Let L be a set of segments from sequei¢e Themean
line segmentfor L, I, is a line segment that best fits all
the points inL with the minimum sum of squared errors
(SSE). In other words, i’Set contains all the points of
the segments i, the mean line segrrlerifi is such that
> pepser dist(p,1¢) <37 pger dist(p, 1) VI # 1°.

Let tol be the average orthogonal distance of all the
points in L to . A spatial pattern element is a rectangu-
lar spatial region-;, with four sides determined by, tol)
as following: (1) two sides of’s that are parallel téf, have
the same length as, and their distances tts aretol; (2)
the other two vertical sides have length tol, and their
midpoints are the two end points &f. We refer tol® as
the central line segmentof regionr;. We say that region
r1, containsk segments ok segments contribute tg, if L
consists ofc segments. Figure 2c visualizes this definition.
A spatio-temporal sequential patternP is an ordered se-
quence of pattern elementsirs ... 7, (1 < ¢ <m). The
length of patternP is the number of regions in it.

A contiguous subsequence 8f, s;s;+1 ... Sitq—1, 1S a
pattern instance for P: riry...rq if V(1 < j < q), if
the representative line segment for segmgnt_; is sim-
ilar andcloseto the central line segment of regien. A
pattern’s instances cannot overlap in time (the pattern may
be over-counted like that in [10] otherwise), i.e., if twaeo



(a) Segment complies wilﬂj (b) Example for closeness (c) Regipmletermined b)(lz, tol)

Figure 2. Example of definitions

tinuous subsequences 8f, s;...s; ands, ...s,, aretwo  such that the perpendicular distance from every poiisijn
instances for patter#®, eitherj < g or h < i. Given pat- to [; is at moste. For efficiency purpose, DP’s improved

ternsP’: riry...r; andP: riry...7;, P’ is asubpattern version ([5]) could be adopted.
of Pif i < jand3k, (1 <k < j—i+1)suchthat] = ry, Discoveringfrequent singular patternsom S* is a hard
Th = Tkt1, ... Th = Tkyi—1. P IS asuperpattern of P’. problem, since in the worst-case, all combinations of seg-

The support of a patternP is the number of instances ments inS® have to be considered as candidate. To expe-
supportingP. Given a support thresholdhin_sup, P is dite the process, we employ a heuris@Grpwing Let Segs
frequent if its support exceedsvin_sup. Since a pattern  be a set initially containing all the segmentsSnh. Grow-
with same frequency to one of its supersets is redundant, weng works as follows. It selects the segmenwith median
focus on detectinglosedfrequent patterns [4], for which  length, i.e., the median of the lengths of the segments in
every proper subpattern has equal frequency. The miningSegs, as seed for the initial spatial region Then,r is
problem is to find frequent patterns from a long spatio- grown by merging other segmentsSiags throughfiltering
temporal sequencé with respect to a support threshold andverificationsteps, described later. Next, for the set of
min_sup, and subject to a segmenting distance error thresh-remaining segments not mergedstothe segmens’ with
old ¢, a similarity parametef and a length factof. The median length in it is selected as seed for growing. Finally,
parameter values depend on the application domain, or carthe overall algorithm terminates after all segments (i)ehav
be tuned as part of the mining process [2]. In using the raw been assigned to a region (as initial seeds or to the region of
data to discover patterns, we discuss how to set the parameanother seed), or (ii) have been found not to belong to any
ters in Section 5.1 more applicably. frequent region and marked as outliers. Selecting the seg-
. ment with median length as seed could help to absorb short
4 Solution segments with less error, compared to taking segment with

In this section, we describe how to discover frequent sin- longer length as seed. Meanwhile, it could prevent gener-
gular patterns, i.e., frequent spatial regions (Sectidr) 4. ating regions with too fine granularity, which could happen
and longer closed patterns (Section 4.2). when shorter length segment is used as sé&ebwing is
deterministic in using this seed selection procedure.

The filtering process checks two conditions. First, for

The segmentation (line simplification) algorithm ([3, 5, €achs; in Segs the angle differencéi f f_a; betweer, and
6]) is used to convert the locations series to segments sesi IS computed, and; is treated asandidateif dif f_a; is
quences so that each raw sequence segment could be aless thard. All the candidate segments are put into aGet
stracted by a line segment. Our idea is to transféfio Second, the minimum distance from every segmeiit to
S* using such a technique, and take the segments obtained is computed and all segments whose minimum distances
as seed for the desired spatial regions, whose central lindo , is larger thanf - I,.len are pruned. The remaining
segments best fit the points of segments in the regions. Thesegments i’ will be used for verification.

DP (Douglas-Peucker) algorithm [3] is a classical top down  The filtering step computes the minimum distance be-
approach for this problem. [6] provides an online algorithm tween segments, but it does not consider the length differ-
in splitting a sequence to segments with quite good quality. ence (second condition of similarity), between elcle C
Since it is important to keep the internal movement inside aandl,, and the exact spatial distances of segments o
region, we need to capture the sharp turn of the movement,, (closeness condition). In the verification step, Algorithm
in the transformation. We employ DP method because it 1 (shown below) merges the segment§’ito the spatial re-
has been proved to be the best algorithm in choosing split-gionr around,, if s; € C satisfies the closeness and length
ting points [12]. In brief, DP algorithm recursively decom- difference condition. Otherwise, we extract frafthe part
posesS: {p1,...,p,} toaseries of line segmenits . . . L,,,, that satisfies the condition, and merge this part witithe

m < n, each of which/;, simplifies a subsequen@i, remaining part ok; is a new segment and inserted back to

4.1 Discovering frequent singular patterns



Segs (Line 15) for later processing.

Algorithm 1 Verification@;, C, Segs, f, min_sup)

to some but not all the others ifi. This constraint can
help reduce the number of generated candidates, as follows.
We first construct a connectivity graph for all the spatial re
gions inS%. A directed edge from; to r; is added to the

;; ﬁ,é}é‘i#iﬁé{’m'_o‘ graph if the substring;r; appears in the sequence. The
3: for each segment; in C do edge weight is the frequency that-; appears in the se-
4:  intersects Withjl, gets’ andl/; quence. Letir,...7; be a frequent pattern, ang only

5. if (diff (Is.len, g .len) < a) m++; points tor; andr;, only two candidates;;rs ... ryr; and

? ;’;ﬂ)gﬂess check riry...7yr; are generated. Further, if the edge weight from
8: while (m > min_sup) do ri, to some element, say, is no more thamin_sup, we

9:  Getl from all intersected points for region need not generate candidaie: . .. rr;.

10:  Validate all intersected parts frof Property 2 (Closeness Property):Given a pattern?,

11 if (all intersected parts are closeltQ break; .

12 end while suppose its last element connects-tpr; connects ta-,

13: if (m<min_sup) return; .+, "m—1 CONNects ta-,,, (m > 2). We can get pattern
14: for each segment; in C' do P, = Prqy (concatenatingP andry), P, = Pryrg, ...,

ig Qg‘jn gggfnft;ﬁe;zds_r’a“ of to Segs; P,, = Prirs...r,. Obviously, ifP; and P, have the
17- endfor ' same support, any’;, (1 < 4 < m) also has the same

: Remove segment that represents fronvegs;

support. This property helps to generate candidates more

efficiently. Letresultbe the frequent patterns at the end of
the kth scan and® be a pattern in it with last element We
can extendP using other patterns iresultthat start withr.
For instance, leP = ryryr3, andrs only connect ta- in
the connectivity graph. In addition, assume tregultcon-
tains only one pattern starting from: P’ = rsryrgr7. P
can then be extended to candidatesrsr, (Uusing Property

We explain how we compute the intersected pars,of
and/, in Line 4. Letl,, be the representative line seg-
ment fors;. If all projection points(z}, v} ) in I,, have
distance td_; no more tharu (Line 1), its related location
point (zx, yx) in the segment is put into the intersected part

s’. The line segment created by mapping each point in 1 -
- - , and using Property 2). If- and
to [, is denoted as,,. For example, let; represent seg- ) rirerararery (USInG Property 2). [irarsrs

riror3rarery have the same support after the counting, we
ment (210, 410, t10), -+, (T30, Ys0,s0). Assume that the o\ need to consider candidates longer tharyrsrsrors
distances from points ify, to [, are all smaller tham ex- later, significantly reducing the number of scans.
cept points from(z, vio) 10 (215.vi5). Then,s’ is seg-
ment(z16, Y16, t16)s - - -» (T30, Y30, t30), andljf represents
line segment fronfx! g, vis) 10 (24g, y5o) IN I,

4.2.2 Mining using the substring tree

We propose aubstring treestructure to facilitate counting

of long substrings with different elements. The substring
tree is a rooted directed tree whose root links to multiple
substring sub-trees. Each node in a sub-tree consists-of pat
tern element and a counter, which counts the number of
substrings (i.e., subsequences of elements) that cotaribu

motion continuity of the object by showing how it moves to the pattern formed by the path from the root to this node.

among regions. Although each region $f is repeated A substring tree example !s shown.ln Figure 3a.
frequently, the concatenation of some regions may not be  T0 construct the tree, in scannirf’, we extract sub-
frequent. E.g., a person living in often goes to a place strings containing distinct elements, and insert them ¢o th
in some days and to region in other days.r,, r» andrs tree. In seeing an elementin S%, we concatenate it to
are frequently visited, but the pathrs is not frequent. This ~ the substrings found so far that do not containAlso, if

section discusses how to detect the longer frequent pattern N0 substring starting with is found,  is treated as a new
substring. We give an example to illustrate the extraction o

SUbStringS. Les™ be7'17’27"37'47’17"37’47’27"37‘47’17"27‘37"4. Ini-

A direct way is to perform level-wise pattern mining. How- tially, no substring is extracted. When see the fifstwe

ever, this approach suffers from the disadvantage $at  create a new substring for it. On seeing the second element

needs to be scanned many times. We propose solutions te,, we create a new substrimg since no substring starting

reduce the number of candidates and scans in probing longvith r, exists. In addition, we concatenate it to the only

candidates, based on the following properties we observe. substringr; and getryro. The process continues until we
Property 1 (Connectivity Constraint): Due to conti- see the fifth element,. There is already a string rors3r,

nuity of object movement, a spatial region can only connectwith r; as first element, s, r,r3ry4 is inserted to the tree,

4.2 Deriving longer patterns

After finding frequently visited spatial regions, original
data S is converted to a serieS” of spatial regions by
changing the segments in frequent regions to region ids,
and those not in any region to outlier$”* preserves the

4.2.1 Level-wise mining



and a new substring starting from is created. Figure 3a  Finally, our algorithm outputs frequentosedpatterns.
shows the full substring tree for sequerté. )
5 Experiments

This section evaluates our proposed approach with real
and synthetic data. After discussing the way to set the para-
meters in Section 5.1, we study the effectivesness and effi-
ciency in Section 5.2.

Real datasets:The real data contain tracked bus move-
ments in Patras, Greece. Each sequence is the movement
of a bus in a single day. The coordinates in the sequence
are in meters following the EGSA84 projection (A Greek
coordinate system). Bus locations were sampled every 30

(a) Substring tree example

stack result stack result seconds. However, since a vehicle might stop intermitgentl
r3(4) r3ra(4) and the GPS is switched off during that period, the move-
283 N :; 83 ment in a sequence may not be straightly continuous. The
74(3) r4(3) r3(4) series length varies in the range between 1000 to 7000.
Synthetic data: We also generated long sequences to
1’}2% %83 facilitate the performance study. The generator take®thre
- ra(3) ) r1(3) parametergp|, n, andm. |p| is the number of line segments
rarari(2) | ra3ra(4) rirarara(2) | r3ra(4) constituting circular paths (i.e., patterns) of the movetne
o _ n denotes the sequence length. Andepresents the num-
(b) Mining patterns from the substring tree ber of times that the object repeats the patterns. Obvipusly

n > |p| x m. The generator first creates circular routes
with |p| connected line segments. Then, it generates lo-
cations along the routes to simulate the object movement.

For deriving frequent patterns from the substring tree, Th€ actual number of positions for each run is produced
we utilize a stack. Each element in the stack comprises ofty adding/reducing some random values to/frofal. In-
a pattern its countand alevel indicating whether the pat-  €very run, the locations for each line segment are approxi-
tern has reached a leaf or not. First, we add to the stack themately the same. Thg description of the artificial series is
patterns associated with the root’s children. Then, waiter 9iven in related experiments.
tively pop patterns with highest frequency fromthe statk. | 51  Setting the parameters
the popped up pattern is not at leaf level and is frequent, we
output it, and extend it by concatenating it with its chilalse

Figure 3. Mining using substring tree

elements and push the extended patterns to the stack; oth- z N

erwise, the pattern is just output (if frequent). In the abov . b

example, there are initially four elements in the stack- Fig 3 i .

ure 3b shows the first several steps for the mining process. 2 YR wvﬁ

Let min_sup = 2. When popping-3(4) from the initial 1 | JIT o

stack, we output it as result, and extend itrtp, since 0y

it is not at the leaf level. Next, we pop upr,(4) and

deleters(4) from the result because its frequency is the Figure 4. Parameter estimation example

same to that of3r, (definition of closed patterns). This

process continues until no pattern exists in the stack. The

final closed patterns argry(4), r1(3), rorsra(3), rar1(2), We employ a heuristic based on sampling, to determine
rarary(2), rirarsra(2), rorsrar(2). The patterns discov-  the value of parameter We choose a random sample from
ered from the substring tree are not the final results be-the dataset and keep only the locations, for whichutlce-
cause they only contain patterns with distinct elements. Weordinates are very close to a setiofalues, say;, zo, x3.
extend the patterns using the level-wise method. The re-For each value in the set, we cluster theoordinates of
sult may contain overlapping patterns likgr3r4(2) and the sample points and derive dense rangeg\Gflues. For
rorsrary (2). We report all of them though the pattern space instance, in Figure 4 far valuesz; = 1,20 = 2,23 = 3,
may be large. The reason is that if we output only one of we can identify 6 dense rangésR1,Y R2,...,Y R6 —
them, sayrirorsrs(2), the information that, connects to denoted by the bold (red in color mode) vertical short line
r1 (necessary for generating longer patterns) will be missed.segments.
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Figure 5. Raw sequence and

We definee, as the average length of thegeval-
ues. Similarly,e, can be obtained. Finally, we set=
min{e,, ¢, } as smallere will allow pattern definition at a

(f) Grid Il (G=20)

(g) Grid Il (G=100)

patterns discovered

and G=100 are shown in Figure 5f and Figure 5g. They
improve on accuracy with the increase®@f however, the
patterns in the cell abovg; (related to pattern in Figure 5d)

finer granularity. Experimentally, we found that, for most is still missed. Furthermore, the mining efficiency degsade
datasets, by setting to the estimated value (even vary a significantly. Our approach takes about 200ms, while Grid
little), 0 to around 0.3 radians, anfito around 0.2 (20% 1l with G = 100 takes about 450ms, which is more than
rule), our algorithm retrieves hidden patterns in the data, double. In summary, the results show that our method can

i.e., pre-scheduled paths for bus data and patterns gederat
for synthetic data.

5.2 Effectiveness and efficiency study
We examine the effectiveness of our method taking as

input a raw bus movement sequence shown in Figure 5a,

which contains 6921 locations. This movement exhibits
partial regularity and consists of noise.
For visualization purpose, we show its interesting part

in more detail in Figure 5b because the remainder contains

noise segments appearing only once. According to the de
scription in Section 5.1, we tune the parameters to 20
(map size isl00 x 100), f = 0.2, # = 0.3 radian, and
min_sup = 3. In this movement, the frequently repeated
paths are around cetk;. Figure 5c and 5d show the two
longest closegatterns discovered by our method. For sim-
plicity, only the central line segments for the regions ia th
patterns are plotted. The arrow of each central line seg-
ment shows the movement direction inside that region and
the connection of these directed line segments illustthtes
movement from one region to another. They are not con-

find hidden sequential patterns effectively. Given prager
Grid Il can also discover coarse movement patterns. How-
ever, it suffers from two disadvantages (i) the internal exov
ment in a grid cell cannot be found; (ii) it is less efficient
than our method in finding patterns of similar quality.

We used synthetic data to evaluate #feiciency We
first analyze the performance of finding frequent singular
patterns. The parameters of the data generator were set to
Ip| = 20, n = 30K, andm = 50 in a map of size=%1. We

et the mining parametees= 0.01, f = 0.2 andd = 0.3,
and varymin_sup. The performance is shown in Table
la. Nump, is the number of frequent singular patterns and
SE is the length ofST. We observe that the time rises
only when the increase ofiin_sup brings the decrease of
Nump,. Itis because th&rowing method inspects more
seeds before it finds satisfactory spatial regions wherethe r
sultantNum p, is smaller. In the worst case, every segment
in Segs need to be examined.

S

Table 1b compares the total time spent by our methods,
and the grid methods which use the substring tree for find-

nected because of the noise movement near the boundary ahg longer patterns. The generating parametersjzdre-
grid 51 (see Figure 5b). We also plot the results discovered100, m = 50, andn = 500K . The substring tree technique

by Grid Il since it is more effective than Grid I. Whénis
10, the pattern discovered near ¢dllis c5oc51c60 In Figure
5e (movement from the region of cel, to cell c5; then to
cell ¢gp). This is quite coarse, since the movement inside
each cell is unknown. Thengest closegatterns foiG=20

slightly outperforms the level-wise method in all casessin

it uses most time (about 12s) to find singular frequent pat-
tern and most patterns contain long subpatterns with distin
elements. Their time is nearly constantiton_sup because
SE is the same for differentvin_sup. The grid methods

len



minsup | Nump, | Sf, | time (ms) terns are found effectively, by grouping segments not only
538824 ﬁ ig;g ggg by similar shape (like previous work in time-series min-
a5 3 193 1130 ing), but als_o by close_ness in space. In add!tlon, we em-
> 86 2 339 1190 ployed special properties of the problem (spatial conuecti

ity, closeness) and a newly proposed substring tree to-accel

(a) Time for discovering singular patterns vain_sup erate search for Ionger patterns

time (s) for differentmin_sup Ackn ow|edgements
Method 50 60 70 _ .

Level-wise 17.35 | 17.33 17.32 The authors would like to thank Dieter Pfoser and CTI
Substringtree | 13.47 | 13.49 13.49 for providing us with the real bus dataset. Unfortunately,
grri'(? |I| ((Cé:_ 1100)) gg'gg ‘3‘3'22 ;géi the data are copyrighted and cannot be made publicly avail-
Grd1(G —20) | 57.38 | 33.86 5500 able. The work was supported by grant HKU 7142/04E

Grid I (G = 20) | 345.35 | 58.56 | 4554 from Hong Kong RGC.
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