
Efficient Aggregation of Ranked Inputs∗

Nikos Mamoulis, Kit Hung Cheng, Man Lung Yiu, and David W. Cheung
Department of Computer Science

University of Hong Kong
Pokfulam Road

Hong Kong
{nikos,khcheng,mlyiu2,dcheung}@cs.hku.hk

Abstract

A top-k query combines different rankings of the same set
of objects and returns the k objects with the highest com-
bined score according to an aggregate function. We bring
to light some key observations, which impose two phases
that any top-k algorithm, based on sorted accesses, should
go through. Based on them, we propose a new algo-
rithm, which is designed to minimize the number of ob-
ject accesses, the computational cost, and the memory re-
quirements of top-k search. Adaptations of our algorithm
for search variants (exact scores, on-line and incremental
search, top-k joins, other aggregate functions, etc.) are
also provided. Extensive experiments with synthetic and
real data show that, compared to previous techniques, our
method accesses fewer objects, while being orders of mag-
nitude faster.

1 Introduction

Several applications combine ordered scores of the same set
of objects from different (distributed) sources and returnthe
objects in decreasing order of their combined scores, ac-
cording to an aggregate function. Assume for example that
we wish to retrieve the restaurants in a city in decreasing or-
der of their aggregate scores with respect to how cheap they
are, their quality, and their closeness to our hotel. If three
separate services can incrementally provide ranked lists of
the restaurants based on their scores in each of the query
components, the problem is to identify thek restaurants
with the best combined (e.g., average) score.

This problem, known as the top-k query, has received con-
siderable attention. Fagin’s early algorithm [4], later opti-
mized in [13, 7, 6], assumes that the score of an objectx
can be accessed from each sourceSi bothsequentially (i.e.,
after all objects with higher ranking thanx have been seen

∗Work supported by grant HKU 7380/02E from Hong Kong RGC.

there), orrandomly by explicitly queryingSi aboutx. On
the other hand, in this paper, we focus on top-k queries in
the case where the atomic scores in each source can be ac-
cessed only in sorted order; i.e., it is not possible to know
the score of an object in sourceSi, before all objects better
thanx in Si have been seen there. This case has received
increasing interest [8, 12, 9, 10] for several reasons. First,
in many applications, random accesses to scores are impos-
sible [6]. For instance, a typical web search engine does
not explicitly return the similarity between a query and a
particular document in its database (it only ranks similar to
the query documents). Second, even when random accesses
are allowed, they are usually considerably more expensive
that sorted accesses. Third, we may want to merge (pos-
sibly unbounded) streams of ranked inputs [10], produced
incrementally and/or on-demand, where individual scores
of random objects are not available at anytime.

Fagin et al. [6] proposed a top-k algorithm that performs
“no random accesses” (NRA) and proved that it is asymp-
totically no worse (in terms of accesses) than any top-k
method based on sorted accesses only. Nevertheless, as
shown in [8, 12, 9, 10], NRA algorithms can have signif-
icant performance differences in terms of (i) accesses, (ii)
computational cost, and (iii) memory requirements. The
number of accesses is a significant cost factor, especially for
middleware applications which charge by the amount of in-
formation transferred from the various (distributed) sources.
The computational cost is critical for real-time applications,
whereas memory is an issue for NRA algorithms, which, as
opposed to random-access based methods (e.g., [13]), have
large buffer requirements [12, 9].

The first contribution of this paper is the identification of
some key observations, which have been overlooked by past
research and apply on the whole family of “no random ac-
cesses” (NRA) algorithms. These observations impose two
phases that any NRA algorithm should go through; agrow-
ing phase, during which the set of top-k candidates grows
and no pruning can be performed and ashrinking phase,

during which the set of candidates shrinks until the top-
k result is finalized. Our second contribution is a careful
implementation of a top-k algorithm, which is based on
these observations and employs appropriate data structures
to minimize the accesses, computational cost, and memory
requirements of top-k search. Our algorithm can be imple-
mented as a standalone rank aggregation tool or as a multi-
way merge join operator for dynamically produced ranked
inputs. Extensive experiments with synthetic and real data
show that, compared to previous techniques, our method ac-
cesses (sometimes significantly) fewer objects, while being
orders of magnitude faster.

The rest of the paper is organized as follows. In Section 2
we review related work on top-k query processing. Section
3 motivates this research and identifies some key properties
on the behavior of NRA algorithms. Section 4 describes
LARA, our optimized NRA algorithm, which is built on
these properties. In Section 5, we discuss important vari-
ants of top-k queries and how LARA can be adapted for
each of them. LARA is experimentally compared with pre-
vious algorithms of NRA top-k search in Section 6. Finally,
Section 7 concludes the paper.

2 Background and Related Work

Let D be a collection ofn objects (e.g., images) and
S1, S2, . . . , Sm be a set ofm ranked inputs (e.g., search
engine results) of the objects, based on theiratomic scores
(e.g., similarity to a query) on different features (e.g., color,
texture, etc.). An aggregate functionγ (e.g., weighted sum)
maps them atomic scoresx1, x2, . . . , xm of an objectx
in S1, S2, . . . , Sm to an aggregate scoreγx. Functionγ is
monotone if (xi ≤ yi,∀i) ⇒ γx ≤ γy. Givenγ, a top-k
query on S1, S2, . . . , Sm (also calledrank aggregation) re-
trievesR, ak-subset ofD (k < n), such that∀x ∈ R, y ∈
D − R : γx ≥ γy. Consider the example of Figure 1 show-
ing three ranked inputs for objects{a, b, c, d, e} and assume
that the score of an object in each source ranges from0 to
1. A top-1 query withsum as aggregate functionγ returns
b with scoreγb = γ(0.6, 0.8, 0.8) = 2.2.

Fagin et al. [6] present a comprehensive analytical study
of various methods for top-k aggregation of ranked inputs
by monotone aggregate functions. They identify two types
of accesses to the ranked lists;sorted accesses andrandom
accesses. The first operation, iteratively reads objects and
their scores sequentially, whereas a random access is a re-
quest for an object’s score in someSi given the object’s ID.
In some applications, both sorted and random accesses are
possible, whereas in others, some of the sources may allow
only sorted or random accesses.

For the case where sorted and random accesses are possi-
ble, a threshold algorithm (TA) (independently proposed

S1 S2 S3

c 0.9 a 0.9 c 0.9
d 0.8 b 0.8 a 0.9
b 0.6 e 0.6 b 0.8
e 0.3 d 0.4 d 0.6
a 0.1 c 0.2 e 0.5

Figure 1. Three ranked inputs

in [6, 13, 7]) retrieves objects from the ranked inputs in a
round-robin fashion and directly computes their aggregate
scores by performing random accesses to the sources where
the object has not been seen. A priority queue is used to or-
ganize the bestk objects seen so far. Letli be the last score
seen in sourceSi; T = γ(l1, . . . , lm) defines athreshold
(i.e., a lower bound) for the aggregate score of objects never
seen in anySi yet. If thek-th highest aggregate score found
so far is at least equal toT , then the algorithm is guaranteed
to have found the top-k objects and terminates.

For the case where random accesses are either impossible
or much more expensive compared to sorted ones, [6] pro-
poses an algorithm, referred to as “no-random accesses”
(NRA). NRA computes the top-k result, performing sorted
accesses only. It iteratively retrieves objectsx from the
ranked inputs in a round-robin fashion. NRA maintains
these objects and upperγub

x and lowerγlb
x bounds of their

aggregate scores, based on their atomic scores seen so far
and the upper and lower bounds of scores in eachSi where
they have not been seen. Boundγub

x is computed by assum-
ing that for everySi, wherex has not been seen yet,x’s
score inSi is the highest possible (i.e., the scoreli of the
last object seen inSi). Boundγlb

x is computed by assuming
that for everySi, wherex has not been seen yet,x’s score
in Si is the lowest possible (i.e.,0 if scores range from0 to
1). Let Wk be the set of thek objects with the largestγlb.
If the smallest lower bound inWk is at least the largestγub

x

of any objectx not inWk, thenWk is reported as the top-k
result and the algorithm terminates. NRA is described by
the pseudocode of Figure 2.

Algorithm NRA (ranked inputsS1, S2, . . . , Sm)
1. perform a sorted access on eachSi;
2. for each newly accessed objectx updateγlb

x ;
3. if less thank objects have been seen so farthen goto Line 1;
4. for each objectx seen so far computeγub

x ;
5. Wk := thek objects with the highestγlb;
6. t := min{γlb

x : x ∈ Wk};
7. u := max{γub

x : x /∈ Wk};
8. if t < u then goto Line 1;
9. reportWk as the top-k result;

Figure 2. The NRA algorithm

Let us see how NRA processes the top-1 query for the
ranked inputs of Figure 1 andγ = sum, assuming that the

atomic scores in each source range from0 to 1. In the first
loop, NRA accessesc (from S1 andS3) anda (from S2).
W1 = {c}, whereγlb

c = 1.8. In addition, the object with
the highestγub is a, with γub

a = 2.7. Sinceγlb
c < γub

a ,
NRA loops to access a new round of objects (Line 8). Af-
ter a second and a third round of accesses,W1 = {b}, with
γlb

b = 2.2 (which happens to be the exact scoreγb of b, since
we saw it in all sources). NRA still does not terminate, be-
causeγub

c = 2.4 > γlb
b (i.e., c may eventually become the

best object). After the fourth round,Wk = {b} and the
highest upper bound isγub

c = 2.2. Sinceγub
c ≤ γb the

algorithm terminates, reportingb as the top-1 object.

A simple variation of the basic NRA algorithm is Stream-
Combine (SC) [8]. SC reports only objects which have been
seen in all sources, thus their scores should be exact and
above the best-case score of all objects not inWk. In addi-
tion, an object is reported as soon as it is guaranteed to be
in the top-k set. In other words, the algorithm does not wait
until the whole top-k result has been computed in order to
output it, but provides the top-k objects with their scores
on-line. A difference of SC with NRA is that it does not
maintainWk, but only the top-k objects with the highest
γub. If one of these objects has its exact score computed, it
is immediately output.

J* is a more generic rank aggregation operator proposed in
[12]. J* is appropriate for merging ranked inputs based on a
join condition on attributes other than the scores, such that
only thek join results with the highest aggregate scores are
output. The top-k query we have defined is a special case
of this problem, where the joined attributes are the object
IDs (unique in eachSi) and the join condition is equality.
J* can be used as an operator in a query plan which joins
multiple ranked inputs. Nevertheless, for top-k queries J*
is less efficient than NRA, as shown in [9].

NRA-RJ [9] is a ‘partially’ non-blocking version of NRA,
which outputs an object as soon as it is guaranteed to be
in the top-k (like SC), however, without necessarily having
computed its exact aggregate score (like NRA). This may
affect the operability of following operators, if they require
exact aggregate scores or values of other attributes than the
score. In view of this, [10] proposed another version of
NRA that outputs exact scores on-line (like SC) and can
be applied for any join predicate (like J*). This algorithm
uses a threshold which is inexpensive to compute, appro-
priate for generic rank join predicates. However, it is much
looser compared toT and incurs more object accesses than
necessary in top-k queries. [12], [9], and [10] focused on
binary implementations of top-k join algorithms, which can
be used as operators in queries that involve ranking. How-
ever, as already shown in [9], non-binary algorithms could
be more efficient than combinations of binary operators for
problems withm > 2. In this paper, we propose an effi-

cient non-binary operator for top-k queries which can also
be adapted for generic rank joins.

Finally, [2, 3] study top-k queries in environments where
the scores of the objects can be accessed sequentially from
only one source, whereas the other sources allow (possibly
expensive) random score evaluations. Adapted versions of
TA were proposed for this case. Besides, probabilistic ex-
tensions of top-k algorithms for approximate retrieval have
been proposed in [14].

3 The Two Phases of NRA Methods

In this section, we motivate our research and bring to light
some key observations on the behavior of “no random ac-
cesses” (NRA) top-k algorithms. These observations im-
pose two phases that any NRA algorithm should essentially
go through; agrowing and ashrinking phase.

3.1 Motivation

NRA (see Figure 2) repeatedly accesses objects from the
sorted inputs, updates the worst-case and best-case scoresof
all objects seen so far, and checks whether the termination
condition holds. Note that, from these operations, updating
γlb

x andWk can be performed fast. First, only a few objects
x are seen at each loop andγlb

x should be updated only for
them. Second, thek highest such scores can be maintained
in Wk efficiently with the help of a priority queue. On the
other hand, updatingγub

x for each objectx is the most time-
consuming task of NRA. Letli be the last score seen so far
in Si. When a new object is accessed fromSi, li is likely
to change. This change affects the upper boundsγub

x for all
objects that have been seen in some other stream, but not
Si. Thus, a significant percentage of the accessed objects
must update theirγub

x ; it is crucial to perform these updates
efficiently and only when necessary.

Another important issue is the minimization of the required
memory, i.e., the maximum number of candidate top-k ob-
jects. NRA (see Figure 2) allocates memory for every newly
seen object, until the termination conditiont ≥ u is met.
However, during top-k processing, we should avoid main-
taining information about objects that we know that may
never be included in the result. Finally, we should avoid re-
dundant accesses to any inputSi that does not contribute to
the scores of objects that may end up in the top-k result.

3.2 Behavior of NRA algorithms

We now provide a set of claims that impose some use-
ful rules towards defining a top-k algorithm of minimal
computational cost, memory requirements, and object ac-
cesses. Lett be thek-th highest score inWk and T =
γ(l1, . . . , lm). We can show the following:

Claim 1 If t < T , objects which have not been seen so far

in any input can end up in the top-k result.
Proof. Let y be thek-th object inWk andx be an object,
which has not been seen so far in anySi. The score ofy
in all inputs wherey has not been seen, could be the lowest
possible, that isγy = γlb

y = t. In addition, the atomic scores
of x could be the highest possible, i.e.,xi = li in all inputs
Si, resulting inγx = T . t < T implies that we can have
γy < γx, thusx can take the place ofy in the top-k result.
�

Claim 2 If t < T , any of the objects seen so far can end up
in the top-k result.
Proof. Let y be thek-th object inWk andx be an object
which has been seen in at least one input. Ifx ∈ Wk the
claim trivially holds. Letx /∈ Wk. From the monotonicity
property ofγ, we can derive thatT ≤ γub

x , since in the
sourcesSi, wherex has been seen,x’s score is at leastli
and in all other inputsSj , x’s score can belj in the best
case. Fromγlb

y = t < T andT ≤ γub
x , we getγlb

y < γub
x ,

which implies thatx can replacey in the top-k result. �

Claims 1 and 2 imply that whilet < T the set of candidate
objects can onlygrow and there is nothing that we can do
about it. Thus, whilet < T , we should only update Wk

and T while accessing objects from the sources and need
not apply expensive updates and comparisons on γub

x upper
bounds.

As soon ast ≥ T holds, NRA should start maintaining
upper bounds and compare the highestγub

x (∀x /∈ Wk) with
t, in order to verify the termination condition of Line 8 in
Figure 2. An important observation is that ift ≥ T , all
objects that have never been seen in anySi cannot end up
in the top-k result:
Claim 3 If t ≥ T , no object which has not been seen in any
input can end up in the top-k result.
Proof. Let y be thek-th object inWk andx be an object,
which has not been seen so far in anySi. Thenγx ≤ T ,
becausexi ≤ li,∀i and due to the monotonicity ofγ. Thus
γx ≤ T ≤ t ≤ γlb

y ≤ γy, i.e., the aggregate score ofx
cannot exceed the aggregate score ofy. �

The implication of Claim 3 is that once conditiont ≥ T
is satisfied, the memory required by the algorithm can only
shrink, as we need not keep objects never been seen before.
Summarizing, Claims 1 through 3 imply two phases that all
NRA algorithms go through; agrowing phase during which
T < t and the set of top-k candidates can only grow and a
shrinking phase during whicht ≥ T and the set of candidate
objects can only shrink, until the top-k result is finalized.
Finally, the next corollary (due to Claim 3) helps reducing
the accesses during the shrinking phase.
Corollary 1 If t ≥ T and all current candidate objects have
already been seen accessed from inputSi, no further ac-
cesses toSi are required in order to compute the top-k re-
sult.

4 Lattice-based Rank Aggregation

Our Lattice-based Rank Aggregation (LARA) algorithm is
an optimized “no random accesses” method, based on the
observations discussed in the previous section. We iden-
tify the operations required in each (growing and shrinking)
phase and choose appropriate data structures, in order to
support them efficiently. LARA takes its name from the
lattice it uses to reduce the computational cost and the num-
ber of sorted accesses in the shrinking phase. For now, we
will assume that the aggregate functionγ is (weighted) sum.
Later, we will discuss the evaluation of top-k queries that
involve other aggregate functions, as well as combinations
thereof.

4.1 The growing phase

As discussed, whilet < T (i.e., during the growing phase),
the set of candidate objects can only grow and it is pointless
to attempt any pruning. Thus LARA only maintains (i) the
set of objects seen so far with their partial aggregate scores1

and the set of sources where from each object has been ac-
cessed, (ii)Wk, the set of top-k objects with the highest
lower score bounds (used to computet), and (iii) an arrayL
with the highest scores seen so far from each source (used
to incrementally computeT).

We implement (i) by a hash tableH (with object-ID as
search key) that stores, for each already seen objectx, its
ID, a bitmap indicating the sources where fromx has been
seen, its aggregate scoreγlb

x so far, and a numberposx (to
be discussed shortly). For (ii), we use a heap (i.e., priority
queue) to organizeWk. Whenever an objectx is accessed
from an inputSi, we update the hash table withγlb

x (in O(1)
time). At the same time, we check ifx is already inWk.
For this, we use entryposx, which denotes the position of
x in the heap ofWk (posx is set tok + 1 if x is not inWk).
If x already existed inWk, its position is updated inWk (in
O(log k) time) and the O(log k) positional updates of any
other object inWk are reflected in the hash table (in O(1)
time for each affected object). Ifx is not in Wk, its up-
datedγlb

x is compared to that of thek-th object inWk (i.e.,
the current value oft) and, if larger, a replacement takes
place (again in O(log k) time). Finally,L is updated andT
is incrementally computed from the previous value in O(1)
time; if γ = sum andT prev (lprev

i) denotes the value ofT
(li) before the last access, thenT = T prev − lprev

i + li.

After each access, the data structures are updated and the
condition t ≥ T is checked. The first time this condition
is true, the algorithm enters the shrinking phase, discussed
in the next paragraph. The overall time required to update

1Thepartial aggregate score is (incrementally) derived whenγ is ap-
plied only on the set of inputs wherex has been seen. Ifγ is (weighted)
sum then this score corresponds toγlb

x .

the data structures and check the conditiont ≥ T for ad-
vancing to the shrinking phase is O(log k) per access, which
is worst-case optimal given the operations required at this
phase.

4.2 The shrinking phase

Oncet ≥ T is satisfied, LARA progresses to the shrinking
phase, where upper score bounds are maintained and com-
pared tot, until the top-k result is finalized. LARA applies
several optimizations, in order to improve the performance
of this phase.

4.2.1 Immediate pruning of unseen objects

According to Claim 3, during the shrinking phase, no new
objects can end up in the top-k query result; if a newly ac-
cessed object is not found in the hash table, it is simply
ignored and we proceed to the next access. This not only
saves many unnecessary computations, but also reduces the
memory requirements to the minimal value (i.e., the num-
ber of accessed objects untilt ≥ T); no more memory will
ever be needed by the algorithm.

4.2.2 Efficient verification of termination

Let C be the set of candidate objects that can end up in
the top-k result. Letx be the object in(C − Wk) with
the greatestγub

x ; the algorithm terminates ifγub
x ≤ t. An

important issue is how to efficiently maintainγub
x . A brute-

force technique (to our knowledge, used by previous NRA
implementations [6, 8, 9]) is to explicitly updateγub for all
objects inC and recomputeγub

x , after each access (or after a
number of accesses from each source). This involves a great
deal of computations, since all objects must be accessed and
updated.

Instead of explicitly maintainingγub
x for eachx ∈ C,

LARA reduces the computations based on the following
idea. For every combinationv in the powerset ofm inputs
{S1, . . . , Sm}, we keep track of the objectxv in C such that
(i) xv has been seen exactly in thev inputs, (ii) xv /∈ Wk,
and (iii) xv has the highest partial aggregate score among
all objects that satisfy (i) and (ii). Note that ifγub

xv ≤ t we
can immediately conclude that no candidate seen exactly in
thev inputs may end up in the result. Thus, by maintaining
the set ofxv objects, one for each combinationv, we can
check the termination condition by performing only a small
number2 of O(2m) comparisons.

Specifically, as soon as LARA enters the shrinking phase, it
constructs a (virtual) latticeG. For every combinationv of
inputs (i.e., node inG), it maintains the ID of itsleader xv,
which is the object with the highest partial aggregate score

2Top-k queries usually combine a smallm ≤ 10 number of ranked
inputs [5]. Thus, in typical applications,n ≫ 2

m

seen only inv, but currently not inWk. If t is not smaller
than anyγub

xv for eachv, LARA terminates reportingWk.

Let us now discuss how the data structures maintained by
LARA are updated after a new objectx has been accessed
from an inputSi. One of the following cases apply, afterx
is looked up in the hash tableH:

1. x is not found inH. In this case,x is ignored, as dis-
cussed in paragraph 4.2.1.

2. x ∈ Wk (checked byposx). In this case,γlb
x is updated

and so isx’s position in the priority queue ofWk.

3. x /∈ Wk. In this case, we first check whetherx was
the leader of the lattice nodevprev

x wherex belonged,
before it was accessed atSi. If so, a new leader for
vprev

x is selected. Then, we check whetherx can now
enterWk (by comparing it withtprev). If so, we check
whether the object evicted fromWk becomes a leader
for its corresponding lattice node. Otherwise,x is pro-
moted from vprev

x to the parent node which contains
Si in addition to the other inputs, wherex has been
seen (and we check whether it becomes the new leader
there).

4.3 The basic version of LARA

LARA, as presented so far, is described by the pseudocode
of Figure 3. The algorithm repeatedly accesses objects from
the various inputs and depending on whether it is in the
growing or shrinking phase it performs the appropriate op-
erations. As an example of LARA’s operability, consider
again the top-1 query on the three inputs of Figure 1, for
γ = sum. Let us assume that the inputs are accessed in
a round-robin fashion. After three rounds of sorted ac-
cesses (9 accesses), LARA enters the shrinking phase, since
t = γlb

b = 2.2 and T = 0.6 + 0.6 + 0.8 = 2.0. Fig-
ure 4a shows the contents of the lattice,Wk (k = 1), and
L = {l1, l2, l3} at this stage. For instance, objectc (as-
signed to nodeS1S3, where it is also the leader) has been
seen at exactlyS1 andS3. c’s score considering only these
dimensions is1.8. To computeγub

xS1S3
= γub

c , LARA adds
l2 (the highest possible scorec can have inS2) to γlb

c . Since
γub

xS1S3
> t, LARA proceeds to access the next object from

S1, which ise. Now, γlb
e becomes0.9 < t and the object

is promoted to nodeS1S2. We still haveγub
xS1S3

> t, thus
LARA accesses the next object fromS2, which isd. Now,
γlb

d becomes1.2 < t and the object is promoted toS1S2.
Figure 4b shows the lattice at this stage. Note that nowγub

xv

for every (occupied) lattice node is at mostt (i.e.,γub
xS1S2

=

γub
d = 2.0, γub

xS1S3
= γub

c = 2.2, γub
xS2S3

= γub
a = 2.1), thus

LARA terminates.

Note that no objects can be assigned to the bottom∅ and
top S1 . . . Sm nodes of the lattice.∅ virtually contains all

Algorithm LARA (ranked inputsS1, S2, . . . , Sm)
1. growing := true; /* initially in growing phase */
2. access next objectx from next inputSi;
3. if growing then
4. updateγlb

x ; /* partial aggr. score */
5. if γlb

x > t then
6. updateWk to includex in the correct position;
7. updateT ;
8. if t ≥ T then
9. growing := false; construct lattice;
10. goto Line 2;
11. else/* shrinking phase */
12. if x in H then
13. updateγlb

x ; /* partial aggr. score */
14. if x ∈ Wk then /* already inWk */
15. updateWk to includex in the correct position;
16. else/* x was not inWk */
17. vprev

x := lattice node wherex belonged;
18. if x was leader invprev

x then
19. update leader forvprev

x ;
20. if γlb

x > t then
21. updateWk to includex in the correct position;
22. check ify (evicted fromWk) is leader ofvy ;
23. elsecheck ifx is leader of nodevx := vprev

x ∪ Si;
24. u := max{γub

xv : v ∈ G}; /* use lattice leaders */
25. if t < u then goto Line 2;
26. reportWk as the top-k result;

Figure 3. The LARA algorithm

S1S2 S1S3 S2S3

S1 S2 S3

S1S2S3

∅

W
k
= {(b, 2.2)}

{(c, 1.8)} {(a, 1.8)}

{(e, 0.6)}{(d, 0.8)}

Lattice when entering the shrinking phase

c
ub = 2.4

l1=0.6, l2=0.6, l3=0.8

S1S2 S1S3 S2S3

S1 S2 S3

S1S2S3

∅

W
k
= {(b, 2.2)}

{(c, 1.8)} {(a, 1.8)}{(d, 1.2),

(e, 0.9)}

Lattice after one access

c
ub = 2.2 Now LARA stops!

l1=0.3, l2=0.4, l3=0.8

(a) after 9 accesses (b) after 11 accesses

Figure 4. The lattice at two stages of LARA

(useless) objects never been seen during the growing phase
andS1 . . . Sm contains objects seen at all sources. None
of the objects seen at all sources can be further improved;
γub = γlb for them. Thus these are either inWk, or pruned.

4.4 Analysis and Optimizations

Each access in the shrinking phase of LARA may involve
(i) updatingWk, (ii) updating the leader of the lattice node
wherex existed, and/or (iii) updating the leader of the lattice
node where tox is promoted. Operation (i) costs O(log k)
time (as in the growing phase). The cost of (ii) is O(n),
since we need to scan the entire set of candidates in order to
find the new leader. Nevertheless, (ii) is not required unless
x used to be the leader ofvprev

x , which happens with ex-
pected probability 1

|vprev
x |

. Thus, the amortized cost of op-
eration (ii) is O(n

|vprev
x |

). Quantity|vprev
x | is n in the worst

case, but its expected value isn
2m . Hence, the cost of (ii) is

expected to be O(2m). Finally, the cost of (iii) is O(1), since
a mere comparison to the previous leader is required. Sum-
ming up, for each access in the shrinking phase, the lattice
maintenance cost for LARA is O(log k + 2m) and check-
ing the termination condition requires O(2m) comparisons
(as discussed). Overall, the cost of LARA (at each access)
is O(log k) in the growing phase and O(log k + 2m) in the
shrinking phase. These numbers are much lower compared
to the O(n) cost of NRA (assumingn ≫ 2m). Our exper-
imental results verify the performance gap between LARA
and past NRA algorithms. In the next paragraphs, we dis-
cuss some optimizations that further reduce the computa-
tional cost and the number of object accesses during the
shrinking phase of LARA.

4.4.1 Reducing the number of candidates

The basic version of LARA (see Figure 3), does not explic-
itly prune any object, but keeps updating their lower and
upper bounds until the termination condition holds. How-
ever, we can reduce the number of top-k candidates at min-
imal cost, during the regular operations of LARA. First, if
for the last accessed objectx, γub

x ≤ t, we can immedi-
ately deletex from H and avoid its promotion to the parent
lattice nodevx. Consider again the application of LARA
on the example of Figure 1, right after the 9th access (Fig-
ure 4a). Whene is accessed fromS1 (10th access),γub

e

becomes0.9 + 0.8 < 2.2 = t, thus LARA can immediately
prunee and avoid promoting it to nodeS1S2.

As a second optimization, during the execution of the algo-
rithm, if all objects in a lattice nodev haveγub not greater
thant (verified by comparingt with the leaderxv of v), we
can safely prune all objects fromv, significantly reducing
the number of candidates inH and avoiding redundant up-
date operations (for these objects) in the future.

4.4.2 Reducing the number of comparisons

At the beginning of the shrinking phase, the majority of the
lattice nodes are populated and highly unlikely to be pruned,
sincet is marginally greater thanT , and as a result much
smaller than the upper score bounds of most objects. Since
we expect that the comparisons right at the beginning of the
shrinking phase will hardly prune any object or node, it is
wise todelay pruning attempts until there are high chances
for the termination condition to hold.

Let u be the largest upper bound of objects not in
Wk, when LARA enters the shrinking phase (i.e.,
u := max{γub

xv : v ∈ G}). If u < t, LARA immediately ter-
minates (Lines 25–26 of Figure 3). Every new access (e.g.,
from sourceSi) reducesγub

xv for half of the lattice nodes
(e.g., those includingSi) by ∆l = lprev

i − li, wherelprev
i is

the previous value inSi (beforeli was accessed). In addi-
tion, the new access might increaset. However, note that it

is not possible to prune all lattice nodes, whileu − ∆l > t.
Thus, after computingu for the first time, and after every
consequent access, instead of updating all upper bounds
and performing lattice operations, whileu − ∆l > t, we
setu := u − ∆l (and updatet as usual), without attempting
any actual comparisons. As soon asu − ∆l ≤ t, we begin
updating upper bounds (andu).

4.4.3 Reducing the number of accesses

At the latter stages of LARA, we can exploit Corollary 1
to avoid accessing inputs that do not contribute to the ag-
gregate score of remaining candidates. LetSi be a source
(e.g.,S1), such that (i) all objects inWk have already been
seen atSi and (ii) for all lattice nodesv that do not contain
that source (e.g.,S2, S3, S2S3) γub

xv ≤ t. Obviously, no
object in any of these nodes can end up in the top-k result.
In addition, for all objectsx in all other nodes (e.g.,S1,
S1S2, S1S3, S1S2S3), xi is already known. Thus,no more
accesses to Si are needed for computing the top-k result.

Based on this idea, LARA, while checking for the termi-
nation condition, keeps track of the pruned/empty nodes,
whose subsets are all pruned/empty (i.e., by the use of a
bitmap). In addition, it maintains a bitmapbWk

which
indicates the sources where all objects inWk have been
seen. The termination condition is checked in a level-wise
bottom-up fashion, starting from nodes with one inputSi,
then moving to nodes with two inputsSiSj , etc. At the first
level, all pruned/empty nodes which are also set inbWk

are
marked as ‘dead’. At levell a node is marked ‘dead’ only
if (i) the node is pruned/empty, (ii) its immediate subsets
are all marked ‘dead’, and (iii) the corresponding combi-
nation of bits inbWk

is set. A dead nodev needs never
been checked again in the future, since, there may be no
new objectx that can end up inv with γub

x > t. We can
‘dry up’ inputs by exploiting Corollary 1 as follows. Let
v = S1S2 . . . Si−1Si+1 . . . Sm be a lattice node that con-
tains all nodes butSi. If v is marked dead, then we know
that it is pointless to attempt any more accesses fromSi.
Si is thendried up and the total number of accesses is de-
creased.

Note that if LARA follows the same read schedule as NRA
[6], it never performs more accesses than NRA. Thus,
LARA is instance optimal [6] with respect to the number
of performed accesses. On the other hand, LARA may per-
form fewer accesses than NRA in the possible case that an
input Si has been dried up before the top-k result has been
finalized, by simply rejecting accesses toSi from the read
schedule.

In summary, LARA achieves (i) high computational effi-
ciency by attempting no pruning during the growing phase
and exploiting the lattice and several optimizations in the
shrinking phase, (ii) minimal memory requirements by ig-

noring any new object onceT ≥ t, and (iii) minimal object
accesses by ‘drying up’ inputs.

5 Variants of Top-k Search

So far we have discussed how LARA processes top-k
queries whenγ = sum. In addition, note that LARA can
terminate before the complete scores of all objects in the
top-k result are known. Finally, the algorithm does not out-
put any result until the whole top-k set is known and does
not incrementally output the results in increasing order of
their aggregate scores. In this section, we show how LARA
can be adapted for different variants and requirements of a
top-k search.

5.1 Exact scores

LARA terminates as soon ast ≥ γub
x ,∀x /∈ Wk, even when

the exact aggregate score is not known for all objects in
Wk. Some applications, however, may require the exact
scores of all objects in the top-k result. LARA can be easily
adapted to address this requirement, at the probable expense
of performing additional accesses. LARA-EX operates ex-
actly like the original algorithm, but after the top-k result
has been finalized, it continues to perform accesses to the
inputs, where eachx ∈ Wk has not been seen yet, until the
exact scores of all objects have been computed. Another
difference between LARA-EX and the basic algorithm is
that after entering the shrinking phase, the lattice is not di-
rectly constructed, but we continue to access objects (disre-
garding those that were not seen in the growing phase), until
Wk contains only objects that have been seen at all inputs.
Only then the lattice is constructed and pruning begins.

5.2 On-line and incremental search

Some applications requireon-line generation of the top-k
result; as soon as an object is guaranteed to be in the top-k
result, it is immediately output. We propose an adaptation
of LARA, denoted by LARA-OL, that serves this purpose.
In the growing phase, LARA-OL, maintains, apart from
Wk, the objecth with the highestγlb. As long asγlb

h < T ,
we know thath is not guaranteed to be better than all unseen
objects (due to Claim 1). Whenγlb

h ≥ T , LARA-OL con-
structs the lattice and compares upper bounds withγlb

h , until
γlb

h ≥ γub
xv ,∀v ∈ G. When this condition becomes true,h

is immediately output, since we can be certain that it is part
of the top-k result. At this point, we decrementk := k − 1
and compute the newh. If γlb

h < T , the algorithm again en-
ters the phase of accessing objects and updatingWk andh,
until γlb

h ≥ T ; then the lattice is re-constructed and upper-
bound comparisons begin. A subtle matter to note is that
Wk is maintained during the whole process for the purpose
of comparingt with T . As soon ast ≥ T , never-seen ob-
jects can be ignored.

LARA-OL can be easily converted to LARA-IN; an algo-
rithm that outputs the objects with the highest scorein-
crementally, without a constraintk. LARA-IN does not
maintainWk, but only the objecth with the highest score
in the worst case (i.e., with the highestγlb). As long as
γlb

h < T we simply access objects and maintainh. When
γlb

h ≥ T , the lattice is constructed and maintained, until
γlb

h ≥ γub
xv ,∀v ∈ G; h is then output as the next object.

Note that since LARA-IN is incremental, no object is ever
pruned; LARA-IN outputsall objects in decreasing order of
their aggregate score. Thus, all new objects are considered
for inclusion in the lattice. Afterh has been output the new
h is computed and ifγlb

h < T the algorithm again enters
the phase of merely accessing objects and updatingh, until
γlb

h ≥ T ; then the lattice is updated and reused.

LARA-IN can be implemented as a (binary or multiway)
top-k operator in a complex query processing plan that
may also involve other operators (i.e., like the NRA-RJ
operator proposed in [9]). For demand-driven retrieval,
a GetNext() function accesses object scores from the in-
put sources (which may be tuples also containing other at-
tributes) and producesh when it is guaranteed to have the
highest aggregate score. After producingh, the LARA-IN
operator maintains its state, from which it continues at the
next call ofGetNext().

5.3 Top-k join queries

The top-k query we have seen so far is a special case of top-
k join queries [12, 10, 11], where the results of joins are
to be output in order of an aggregate score on their various
components. Consider, for example, the following top-k
query expressed in SQL:

SELECT R.id, S.id, T.id
FROM R, S, T
WHERE R.a = S.a
AND S.b = T.b

ORDER BY R.score + S.score + T.score
STOP AFTER k;

The top-k query we have examined is a special case, where
id = a = b, tuple ids are unique, allR, S, T have the
same collection of tupleids, and tuples from each rela-
tion are ranked based on their scores. [12, 10] propose al-
gorithms for solving generic top-k joins. Here, we discuss
how LARA can be converted to LARA-J, a top-k join op-
erator that incrementally outputs join results based on their
aggregate scores. Instead of maintaining a single hash table
with all objects seen so far, LARA-J materializes the lat-
tice and stores for each combination of sources, tuple com-
binations that partially satisfy the join (e.g., tuples from R
that match with tuples fromS are stored in nodeR ◦ S of
the lattice). For each lattice node, the combination with the
highestγub is maintained as usual. LARA-J does not keep a
Wk, but combinations in the top lattice node (e.g.,R◦S◦T)

are organized in a priority queue based on their aggregate
score. These are output incrementally, as soon as they are
known to have greatest score than allγub in the rest of lat-
tice nodes. When a new tuple is read (e.g., fromR), it is
immediately joined with combinations in the lattice nodes
that do not include its source, but include sources joined
with it (e.g., nodesS andS ◦ T, but notT). The new tuple
is accommodated in the corresponding lattice node and join
results are immediately added to the corresponding nodes.
Combinations in each lattice node are indexed in order to
facilitate efficient probing (e.g., using hash tables).

5.4 Other aggregate functions

We now discuss how LARA (and NRA top-k methods in
general) can be adapted to solve top-k queries with aggre-
gate functions other thansum and combinations of them. A
trivial function ismax; a top-k max query can be processed
by accessing at mostk objects from each input, which guar-
antees that thek objects with the maximum score inany
input are found.

5.4.1 Themin aggregate function

A function which requires special attention ismin; a top-k
min query asks for thek objects with the highestminimum
score at all inputs. Without loss of generality, let us assume
that the minimum possible score at each input is0. In that
case,γlb

x is 0 for all objects which have not been seen at all
inputs. As a result, the growing phase terminates whenk
objects have been seen at all inputs. When this happens, the
score of the last object inWk is at least the smallest score
seen in any input (i.e.,t ≥ T). Thus, whenγ = min, only
exact (not partial) scores can be output.

In the shrinking phase, accessing objects from anySi where
li ≤ t is of no use, since no object which has not been seen
there can end up in the top-k result. When LARA enters the
shrinking phase, it immediately prunes all lattice nodes (and
their objects) that do not include any of these streams and
‘dries up’ the streams. These operations are encompassed
by the optimization of Section 4.4.3.

We can further improve the efficiency of LARA by delaying
the beginning of the shrinking phase as follows. Instead of
accessing the inputs in a round-robin fashion, we always ex-
pand the input with the largestli. By doing so, the number
of objects withγub greater thant, when the shrinking phase
begins, will be minimized, since their maximum potential
scores in the inputs where they have not been seen will not
be much greater thant.

5.4.2 Weighted and complex aggregates

So far, we have discussed top-k queries for which all com-
ponents have equal weights. In practice, the user may assign

weights of importance to each input of the aggregate func-
tion. For example, assuming thatm = 3, a weighted sum
function could be defined asγx = 0.5x1 + 0.3x2 + 0.2x3,
indicating that the importance ofS1 (50%) is greater than
the importances ofS2 (30%) andS3 (20%) in the merged
scores. Similarly, weight coefficients can be combined with
other aggregate functions, likemin. LARA can be directly
applied for weighted functions. A simple optimization is to
access inputs of higher weight with higher probability, as
they contribute more to the aggregate function. In this way,
objects which have not been seen in the sources of higher
weights will be pruned earlier, resulting at an early termina-
tion of the algorithm.

In general, an aggregate function can be defined by a regu-
lar expression involving nested (potentially weighted)sum,
min, max subexpressions. An example of such a function
is γ = min{x1,sum{0.5x2, 0.5x3}}. An interesting is-
sue is whether we can extend top-k algorithms to process
such complex functions. A plausible solution is to use bi-
nary, incremental top-k operators in a query evaluation tree,
as suggested in [12, 9, 10, 11]. Another possibility is to
process all inputs simultaneously by a single application of
a top-k algorithm. In this case, lower and upper bounds
are defined for an object by applying the complex aggre-
gate function using the values seen so far and the minimum
and maximum values at the inputs, where the object has not
been seen. LARA can directly be applied for such complex
aggregate functions.

6 Experimental Evaluation

In this section, we experimentally evaluate the effective-
ness of LARA, by comparing it with previous NRA algo-
rithms. For each top-k variant, (i.e., classic top-k search,
exact scores, incremental search, etc.), a version of LARA
is compared with a version of NRA known to perform best
for that variant. All algorithms were implemented in C++
and experiments were run on a Pentium 4 2.26GHz PC with
512 MB of RAM.

6.1 Description of datasets

For the experiments, we used both synthetically generated
and real data. All generated object scores range from0 to 1.
We produced three types of synthetic datasets to model dif-
ferent input scenarios, using the same methodology as [1].
In datasets of type UI the object scores are random num-
bers uniformly and independently generated for the differ-
ent sources. CO contains datasets where object scores are
correlated. In other words, the scorexi of an objectx in
sourceSi is very close toxj in all other sourcesSj 6= Si

with high probability. An real dataset example that falls
in this class is a set of movies with their scores according
to different criteria (actors performance, costumes design,

visual effects, etc.). A good movie is likely to have high
scores in all criteria, whereas a B-movie is likely to per-
form averagely or bad in all of them. To generate an ob-
ject x, first, a numberµx from 0 to 1 is selected using a
Gaussian distribution centered at0.5. x’s atomic scores are
then generated by a Gaussian distribution centered atµx.
Finally, AC contains datasets where object scores areanti-
correlated. In this case, objects that are good in one dimen-
sion are bad in one or all other dimensions. For instance, a
good hotel in terms of quality (e.g., 5-star) is usually a bad
one in terms of price (e.g., very expensive) and vice versa.
To generate an objectx, first, we pick a numberµx from
0 to 1, like we did for CO datasets. This time, however,
we use a very small variance, so thatµx for differentx are
very close to0.5 and to each other. The atomic scores ofx
are then generated uniformly and normalized to sum up to
µx. In this way, the aggregate scores of all objects are quite
similar, but their individual scores vary significantly.

We used two real datasets from the UCI KDD Archive3. FC
contains a set of 581,012 objects, corresponding to30×30-
meter forest land cells. Each object is described by various
variables, such as horizontal and vertical distance to hydrol-
ogy, distance to roadways, and distance to fire points. As-
suming that the values of these attributes are obtained from
different sources, we simulate top-k queries that combine
them in an aggregate score (e.g., find thek cells with the
smallest aggregate distance to hydrology, roadways, and fire
points). The second dataset we used is CE, which contains
unweighted Public Use Microdata Series (PUMS) census
data from the Los Angeles and Long Beach areas for the
years 1970, 1980, and 1990. Each object in CE is a person
(or household) characterized by attributes such as age, rent,
wages, number of working hours last week, and number of
working weeks last year. Using combinations of these at-
tributes, we can define aggregate ranking functions, like,
e.g., life quality. The cardinality of CE is 84,443.

6.2 Experimental comparison

In the first set of experiments, we compare LARA with the
NRA algorithm of [6] for top-k queries withγ = sum, in
terms of object accesses and computational cost. We imple-
mented both algorithms so that they check the termination
condition after every access. In this way, the number of
accesses is minimized, since every access in the shrinking
phase can potentially terminate search.

Figures 5a–5c compare the efficiency (in CPU time) of the
two methods on uniform data (UI), for a range of parameter
values. The default values for the parameters aren = 50K,
m = 3, andk = 20. In each experiment, we fix two pa-
rameters to their default values and vary the value of the
third one. In all experimental instances, LARA is about 2

3http://kdd.ics.uci.edu

 1

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

tim
e

(m
se

c)

of objects (x1000)

NRA
LARA

 10

 100

 1000

 10000

 100000

 1e+006

 3 4 5 6 7

tim
e

(m
se

c)

of sources

NRA
LARA

 1

 10

 100

 1000

 10000

 100000

 20 40 60 80 100 120 140 160 180 200

tim
e

(m
se

c)

k

NRA
LARA

(a) UI, m = 3, k = 20 (b) UI, n = 50K, k = 20 (c) UI, m = 3, n = 50K

 0

 10000

 20000

 30000

 40000

 10 20 30 40 50 60 70 80 90 100

ac
ce

ss
es

of objects (x1000)

NRA
LARA

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80 90 100

tim
e

(m
se

c)

of objects (x1000)

NRA
LARA

 10

 100

 1000

 10000

 100000

 1e+006

 10 20 30 40 50 60 70 80 90 100

tim
e

(m
se

c)

of objects (x1000)

NRA
LARA

(d) UI, m = 3, k = 20 (e) CO,m = 3, k = 20 (f) AC, m = 3, k = 20

Figure 5. Top- k queries on synthetic data (γ =sum)

orders of magnitude faster than NRA. First, as explained in
Section 4, LARA does not attempt checking for termina-
tion during the growing phase. Second, the shrinking phase
of LARA is much more efficient than that of NRA, since
at each access only a few updates are performed and the
number of comparisons is O(2m), as opposed to O(n) re-
quired by NRA. This explains the increase of performance
gap with the increase ofn. On the other hand, the differ-
ence is insensitive tom andk, as shown in Figure 5b and
Figure 5c.

LARA outperforms NRA in terms of the number of object
accesses, as well, but the difference is marginal. Indica-
tively, Figure 5d shows the number of object accesses on
uniform data by both methods as a function ofn. LARA’s
optimization described in Section 4.4.3 saves 1%–5% of
NRA’s accesses, because of ‘dried up’ streams towards the
end of the algorithm. The difference in accesses is similar
when other parameters change (i.e.,m andk). As we will
see later, LARA may accesses significantly fewer objects
than NRA in top-k queries on real data, where the distribu-
tion of scores in different inputs varies significantly.

The performance gap between NRA and LARA is similar
for correlated and anticorrelated data (Figures 5e and 5f).
As expected, the cost of both methods is relatively low for
correlated data, however, NRA becomes significantly more
expensive than LARA for largen, since more operations
(O(n)) are required by NRA, asn increases in both growing
and shrinking phases. For AC, the cost is high (extreme for

NRA), because many accesses are required until the top-k
result is finalized. The shrinking phase delays and a lot of
unnecessary bookkeeping is performed by NRA. Valuen
has a smoother effect on LARA, which manages to retrieve
the result very fast compared to NRA.

In the next experiment, we compare LARA and NRA for
top-k queries on real data. From the FC dataset we extracted
four rankings of the objects according to their horizontal
distance to hydrology (hh), vertical distance to hydrology
(vh), horizontal distance to roadways (hr), and horizontal
distance to fire points (hf). The distances in each ranking
were normalized from0 to 1 and reversed (by subtracting
them from1) in order for1 to indicate high preference and
0 low preference. For different combinations of these rank-
ings, we applied a top-20 query and compared the perfor-
mances of LARA and NRA. Figure 6 summarizes the re-
sults. NRA performs 8% to 65% more accesses than LARA
(see Figure 6a). This is attributed to the distribution of the
scores which is irregular in some sources (e.g.,vh); these
sources are ‘dried up’ during the shrinking phase of LARA,
when the remaining scores there cease to be relevant to the
top-k result. On the other hand, NRA accesses objects in
a round-robin fashion, without pruning any input, until the
top-k result is finalized. Figure 6b shows that LARA is 3 to
4 orders of magnitute faster than NRA for the tested queries.
Next to each time measurement, we also include in paren-
theses the time spent by each algorithm untilt ≥ T for the
first time. The numbers show that LARA is significantly
faster than NRA not only because it avoids expensive book-

attributes of FC NRA LARA

{hh, hr, hf} 110529 102168
{hh, vh, hr} 358611 217054
{hh, vh, hf} 536097 393915

{hh, hr, hf, vh} 501231 315042
(a) number of accesses

attributes of FC NRA LARA

{hh, hr, hf} 517 (377) 0.25 (0.15)
{hh, vh, hr} 1047 (471) 0.5 (0.18)
{hh, vh, hf} 1614 (703) 0.8 (0.3)

{hh, hr, hf, vh} 3415 (1412) 1.06 (0.48)
(b) time in seconds

Figure 6. Forest coverage (γ =sum, k = 20)

attributes of CE NRA LARA

{r, wh, wy, w} 171187 161880
{a, wh, wy, w} 186694 185962
{w, wh, wy} 128390 107258

{a, r, wh, wy, w} 238182 237176
(a) number of accesses

attributes of CE NRA LARA

{r, wh, wy, w} 300 (227) 0.4 (0.25)
{a, wh, wy, w} 299 (228) 0.4 (0.25)
{w, wh, wy} 224(122) 0.25 (0.18)

{a, r, wh, wy, w} 432 (276) 0.56 (0.32)
(b) time in seconds

Figure 7. Census data (γ =sum, k = 20)

keeping and checking during the growing phase (t < T),
but also because it minimizes the operations and compar-
isons at the shrinking phase (t ≥ T).

Figure 7 shows similar findings for top-20 queries on the
CE dataset, for combinations ofr (rent),a (age),wh (work-
ing hours per week),wy (working weeks per year), andw
(wages) census data attributes. This time, the performance
gap in accesses is not large, however, the improvement of
LARA over NRA in terms of computations is huge. The
efficiency of NRA can be improved ifWk andu are not up-
dated/computed after every access, but every multiple ac-
cesses from each source. However, this increases the num-
ber of accesses. In addition, even when many (e.g., tens
of) objects are accessed before checking for termination,
LARA is still more than an order of magnitude faster than
NRA. In summary, LARA minimizes the CPU cost of top-k
queries, while keeping the number of accesses minimal.

In the next set of experiments we compare versions of
LARA for variants of top-k processing with past NRA im-
plementations for these variants. We first compare LARA-
EX with SC [8] for exact top-k processing. In all tested
cases with synthetic and real data, LARA-EX and SC have
similar performances to LARA and NRA, respectively. In-
dicatively, here we show the performance as a function of
n, for m = 3, k = 20 on uniform datasets (Figure 8a).

Comparing with Figure 5a, observe that the performance of
LARA-EX is very similar to that of LARA; when the top-k
result is guaranteed to have been found, a few (or no) ob-
jects miss some score fromWk, so only a few (or no) extra
accesses are required. SC is 5%-25% faster than NRA, be-
cause it avoids the maintenance ofWk; however, SC is still
very expensive compared to LARA-EX.

We also implemented LARA-IN and NRA-RJ [9] and com-
pared the two incremental algorithms. Note that LARA-IN
and NRA-RJ do not prune any object, as all of them are
incrementally output. In addition, the optimization of Sec-
tion 4.4.3 is not applicable for LARA, since no stream can
be pruned in incremental processing. Thus, the two algo-
rithms perform exactly the same number of accesses (as-
suming that they follow identical access schedules).4 Fig-
ure 8b shows their performances for uniform data as a func-
tion of the number of results. LARA-IN produces results
at significantly higher speed compared to NRA-RJ, thus
our algorithm is appropriate for top-k processing over fast
streams. Results on other distributions and real data are sim-
ilar and they are omitted due to space constraints.

Next, we compare the top-k join version of LARA (i.e.,
LARA-J) with a tree of binary HRJN operators [10]. We
joined three relationsR, S, andT, of the same schema: (id,
score, j). j is the attribute with respect to which the re-
lations are joined (i.e.,R.j = S.j = T.j in a join result)
and the results are ranked bysum{R.score, S.score,
T.score}. The selectivity of the join is 0.2% (we also ex-
perimented with different join selectivities and derived sim-
ilar results). The three relations are ranked byscore and
their tuples are retrieved incrementally. For HRJN, we used
the evaluation plan (R ⋊⋉ S) ⋊⋉ T (other plans have simi-
lar performance). Figure 8c plots the number of tuples ac-
cessed by LARA-J and HRJN until they output the same
number of results. This reflects theoutput rate of the ap-
proaches (i.e., how many results they can produce after a
specific number of accesses). Observe that LARA-J pro-
duces results much earlier than HRJN. The space used by
the two methods to accommodate intermediate results (not
shown in the graph) is roughly proportional to the number of
accesses. Both methods are computationally efficient (200
results are output in just78 msec by LARA-J and94 msec
by the plan of HRJN operators). HRJN’s efficiency is due
to the computationally cheap threshold bound it uses; how-
ever, more accesses are required to compute the same re-
sult as LARA-J. This experiment not only demonstrates the
applicability of LARA to top-k join queries but also indi-
cates that multiway top-k operators can be more effective
(in terms of accesses) than trees of binary join operators.

4We used a multiway implementation of NRA-RJ, instead of a tree of
binary NRA-RJ operators. A binary operator tree form > 2 incurs many
more object accesses, as discussed in [9].

 1

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90 100

tim
e

(m
se

c)

of objects (x1000)

SC
LARA-EX

 1

 10

 100

 1000

 10000

 100000

 20 40 60 80 100 120 140 160 180 200

tim
e

(m
se

c)

k

NRA-RJ
LARA-IN

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 20 40 60 80 100 120 140 160 180 200

ac
ce

ss
es

k

HRJN
LARA-J

(a) exact scores (UI,m = 3, k = 20) (b) incremental top-k (UI, n = 50K, m = 3) (c) top-k joins, (UI,n = 50K, m = 3)

Figure 8. Variants of top- k search (γ =sum)

attributes of FC NRA LARA LARA-OPT

{hh, hr, hf} 56582 56582 54356
{hh, vh, hr} 100579 100579 100579
{hh, vh, hf} 113663 113663 86023

{hh, hr, hf, vh} 240196 240196 210315
(a) number of accesses

attributes of FC NRA LARA LARA-OPT

{hh, hr, hf} 112 (92) 0.22 (0.16) 0.22 (0.16)
{hh, vh, hr} 189 (152) 0.36 (0.29) 0.36 (0.29)
{hh, vh, hf} 211 (179) 0.47 (32) 0.39 (0.3)

{hh, hr, hf, vh} 654 (412) 1.1 (0.72) 1.1 (0.72)
(b) time in seconds

Figure 9. Forest coverage (γ =min, k = 20)

Finally, we compare LARA with NRA for top-k min
queries. For the NRA implementation, we used the op-
timization discussed in Section 5.4.1, where sources with
li ≤ t are immediately pruned. We implemented two ver-
sions of LARA; one that uses that optimization and another
(LARA-OPT) that expands the input with the largestli. Fig-
ure 9 compares the three algorithms on the FC dataset. Note
that LARA-OPT may incur fewer object accesses compared
to LARA and NRA, due to the more optimized scan of
the inputs. On the other hand, LARA-OPT is not always
faster than LARA, because it has the additional complexity
of maintaining the input with the largestli.

7 Conclusions

In this paper we proposed a new algorithm for processing
top-k queries by sequentially accessing sources of ranked
atomic object scores. LARA is based on some core ob-
servations about the behavior of all “no-random-accesses”
(NRA) algorithms. The main advantage of LARA com-
pared to previous NRA implementations is its high effi-
ciency at no cost of redundant object accesses. LARA em-
ploys a lattice to facilitate efficient computation of the re-
sult and easy detection and pruning of sources that do not
contribute to the result. Experimental comparison with pre-
vious NRA implementations, show that LARA is orders of

magnitude faster. In addition, LARA incurs fewer object
accesses; the savings are marginal for synthetic data, but
can be significant for real data. Finally, LARA has minimal
memory requirements, since no unseen objects in the grow-
ing phase are considered in the shrinking phase. We have
also shown how LARA can be adapted for several top-k
variants (exact scores, on-line and incremental search, top-
k joins, other aggregate functions, weighted search, etc.) In
the future we plan to optimize LARA for top-k variants, es-
pecially for complex aggregate functions and top-k joins.

References

[1] S. Börzs̈onyi, D. Kossmann, and K. Stocker. The skyline operator.
In ICDE, 2001.

[2] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over
web-accessible databases. InICDE, 2002.

[3] K. C.-C. Chang and S.-W. Hwang. Minimal probing: Supporting ex-
pensive predicates for top-k queries. InSIGMOD Conference, 2002.

[4] R. Fagin. Combining fuzzy information from multiple systems. J.
Computer System Sci., 58(1):83–99, 1999.

[5] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search
and classification via rank aggregation. InSIGMOD Conference,
2003.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. InPODS, 2001.

[7] U. Güntzer, W.-T. Balke, and W. Kießling. Optimizing multi-feature
queries in image databases. InVLDB Conference, 2000.

[8] U. Güntzer, W.-T. Balke, and W. Kießling. Towards efficient multi-
feature queries in heterogeneous environments. InIEEE Int’l Conf.
on Information Technology (ITCC), 2001.

[9] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Joining rankedinputs
in practice. InVLDB Conference, 2002.

[10] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join
queries in relational databases. InVLDB Conference, 2003.

[11] I. F. Ilyas, R. Shah, W. G. Aref, J. S. Vitter, and A. K. Elmagarmid.
Rank-aware query optimization. InSIGMOD Conference, 2004.

[12] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter. Sup-
porting incremental join queries on ranked inputs. InVLDB Confer-
ence, 2001.

[13] S. Nepal and M. V. Ramakrishna. Query processing issues in image
(multimedia) databases. InICDE, 1999.

[14] M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation
with probabilistic guarantees. InVLDB Conference, 2004.

