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Hierarchical synopsis structures offer a viable alternative in terms of efficiency and flexibility in

relation to traditional summarization techniques such as histograms. Previous research on such

structures has mostly focused on a single model, based on the Haar wavelet decomposition. In

previous work, we have introduced a more refined, wavelet-inspired hierarchical index structure

for synopsis construction: the Haar+ tree. The chief advantages of this structure are twofold. First,

it achieves higher synopsis quality at the task of summarizing data sets with sharp discontinu-

ities than state-of-the-art histogram and Haar wavelet techniques. Second, thanks to its search

space delimitation capacity, Haar+ synopsis construction operates in time linear in the size of the

data set for any monotonic distributive error metric. Contemporaneous research has introduced

another hierarchical synopsis structure, the compact hierarchical histogram (CHH). In this arti-

cle, we elaborate on both these structures. First, we formally prove that the CHH, in its default

binary-hierarchy form, is a simplified variant of a Haar+ tree. We then focus on the summarization

problem, with both these hierarchical synopsis structures, in which an error guarantee expressed by

a maximum-error metric is required. We show that this problem is most efficiently solved through

its dual, space-minimization counterpart, which can also achieve optimal quality. In this case, there

is a benefit to be gained by specializing the algorithm for each structure; hence, our algorithm for

optimal-quality maximum-error CHH requires low polynomial time; on the other hand, optimal-

quality Haar+ synopses for maximum-error metrics are constructed in exponential time; hence,

we also develop a low-polynomial-time approximation scheme for the maximum-error Haar+ case.

Furthermore, we extend our approach for both general-error and maximum-error Haar+ synopses

to arbitrary dimensionality. In our experimental study, (i) we confirm the theoretically expected

superiority of Haar+ synopses over Haar wavelet methods in both construction time and achieved

quality for representative error metrics; (ii) we demonstrate that Haar+ synopses are also con-

structed faster than optimal plain histograms, and, moreover, achieve higher synopsis quality

with highly discontinuous data sets; such an advantage of a hierarchical synopsis structure over
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a histogram had been intuitively expressed, but never experimentally verified; and (iii) we show

that Haar+ synopsis quality supersedes that of a CHH.
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1. INTRODUCTION

The need to reduce a very large data set into a compact synopsis that captures its
basic characteristics arises frequently. Database applications that sustain in-
terest in this problem include OLAP/DSS systems [Vitter et al. 1998; Vitter and
Wang 1999], approximate query answering [Acharya et al. 1999; Poosala et al.
1999; Ioannidis and Poosala 1999; Chakrabarti et al. 2001], cost-based query
optimization [Matias et al. 1998, 2000], and time-series mining [Chakrabarti
et al. 2002]. Over the past years, two principal methods have emerged as rec-
ommendable choices for quality-aware synopsis construction: histogram-based
methods [Ioannidis and Poosala 1999; Poosala et al. 1999; Gibbons et al. 2002;
Jagadish et al. 1998; Guha et al. 2004], and methods based on a hierarchical
index structure; such a structure has traditionally been provided by the Haar
wavelet decomposition [Matias et al. 1998; Chakrabarti et al. 2001; Garofalakis
and Kumar 2005; Guha and Harb 2008]. The main objective of both approaches
is to minimize some appropriate error measure [Gibbons and Matias 1999],
given a space budget.

Still, previous research has not attempted to examine how state-of-the-art
hierarchical and histogram-based synopsis construction techniques compare to
each other. A comparison is required both in terms of time and space for synopsis
construction, and in terms of synopsis quality, depending on the characteristics
of the data at hand. Such attempts as were made in this direction carried out
uneven comparisons, by setting provably optimal methods for the one technique
against nonoptimal ones for the other [Matias et al. 1998; Guha et al. 2004], or
nonoptimal methods for both [Chakrabarti et al. 2002]. Still, Graps [1995] and
Guha et al. [2004] have provided some intuitive remarks about such a compar-
ison. From a qualitative point of view, a histogram-based synopsis is arguably
recommendable when summarizing smooth data sets without sharp disconti-
nuities or bursts [Guha et al. 2004]. On the other hand, hierarchical techniques
such as Haar wavelets are better suited for approximating datasets with such
discontinuities [Graps 1995]. This disposition is due to the fact that a B-term
histogram defines B consecutive distinct value intervals, with no restrictions
on their relative locations and sizes; on the other hand, a B-term Haar wavelet
synopsis can define B to 3B+1 distinct consecutive value intervals [Guha et al.
2004]. Nevertheless, the Haar wavelet technique delimits the allowed bucket
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boundaries to a predefined set, while the approximation values in these buckets
are constrained by their interdependence. A wavelet coefficient contributes its
value positively to the former and negatively to the latter of the two halves of
the fixed-size interval it affects, hence the resulting summarization value in a
wavelet-defined interval may be suboptimal.

Moreover, for the task of minimizing a distributive error metric in general
(as opposed to a maximum-error metric in particular), such as the average ab-
solute or relative error, both optimal histogram-based [Jagadish et al. 1998;
Guha et al. 2004] and quality-aware wavelet-based schemes1 [Garofalakis and
Kumar 2005; Muthukrishnan 2005; Guha 2008; Guha and Harb 2008] run in
time super-linear in the size of the input. The recent proposal of an alterna-
tive hierarchical summarization structure, the compact hierarchical histogram
(CHH) [Reiss et al. 2006], was accompanied by exact solutions for limited ver-
sions of the problem and by heuristics for the general, longest-prefix-match
CHH problem, but not by an algorithm providing deterministic error guaran-
tees for this general problem. This state of affairs renders previous techniques
inapplicable for the time-efficient summarization of very large data sets with a
general error guarantee, and calls for a different approach.

In Karras and Mamoulis [2007], we have introduced the Haar+ tree: a re-
fined, wavelet-inspired synopsis data structure which offsets the aforemen-
tioned deficiencies. First, it adds flexibility to the classical Haar wavelet
synopsis, while maintaining its compression advantage over a histogram;
therewith it outperforms previous techniques in approximation quality with
hard-to-summarize data sets. Second, it allows for easy delimitation of its
search space, resulting in a synopsis construction algorithm for general er-
ror metrics that operates in time linear in the size of the data. Further-
more, Muthukrishnan [2005] and Karras et al. [2007] have shown how offline
maximum-error summarization problems, whose importance has been noted by
Garofalakis and Gibbons [2004], Garofalakis and Kumar [2004], and Karras
and Mamoulis [2005], can be more efficiently solved via their dual, error-
bounded counterparts.

In this article we add to our previous work by providing a significant insight,
a major algorithmic contribution, a generalization to higher dimensionality,
and further experimentation. Our insight consists of the proof that the inde-
pendently proposed compact hierarchical histogram (CHH) [Reiss et al. 2006]
is equivalent to a simplified variant of the Haar+ structure; in consequence,
our Haar+ synopses algorithms also provide novel and generalized solutions
to the problems studied in Reiss et al. [2006]. With the benefit of hindsight,
the Haar+ structure can be seen as a merging of a classical Haar tree with
a CHH, superseding both these antecedents in terms of quality. Our algorith-
mic contribution consists of a focused application of the dual-problem-based
methodology to hierarchical synopsis construction problems. We show that this
indirect methodology can indeed provide not only benefits of efficiency and scal-
ability, but also advantages in the areas of tractability of the problem and the
accuracy of the solution, as opposed to direct solutions to the space-bounded

1The simple algorithm for Euclidean error notwithstanding [Matias et al. 1998].
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problem. Hence, we exhibit the full potential of this method. In particular, we
provide an algorithm that effectively solves the optimal longest-prefix-match
CHH partitioning problem for maximum-error metrics in low polynomial time
through this dual-problem approach, in the footsteps of Muthukrishnan [2005]
and Karras et al. [2007]. To that end, we also devise a novel solution to this dual,
error-bounded CHH partitioning problem, that is, the problem of constructing
a minimal-space CHH synopsis that satisfies a given maximum-error bound.
This solution guarantees an optimal solution to the space-bounded problem
with any maximum-error metric as the target of optimization. We apply this
approach to the general Haar+ case and observe that the worst-case complexity
of the algorithm becomes exponential in that case, due to the higher complexity
of the Haar+ structure itself in comparison to the CHH. Hence, for the sake of
completeness with regard to the Haar+ model, we also present and analyze an
efficient approximation scheme for maximum-error Haar+ synopsis construc-
tion, also following the dual-problem approach of Muthukrishnan [2005] and
[Karras et al. 2007]. All our solutions provide either optimal or approximate
error guarantees, hence gain a definite quality advantage over the heuristics in
Reiss et al. [2006]. Lastly, we generalize our Haar+ techniques to higher dimen-
sionality; thereby also show that the benefit of the indirect approach becomes
stronger as dimensionality increases.

In our experimental study, we demonstrate the superiority of Haar+ syn-
opses over other hierarchical techniques, including the recently proposed CHH,
as well as their competitiveness with optimal histograms, for certain types of
data, and we verify that Haar+ synopses are constructed in linear time. To our
knowledge, this study is the first face-to-face comparison between any pair of
the state-of-the-art techniques for nonEuclidean-error-optimal synopses with
plain histograms, Haar wavelets, and CHH; hence it supplements the studies
in the following: [Matias et al. 1998; Chakrabarti et al. 2002; Guha et al. 2004;
Garofalakis and Kumar 2005; Reiss et al. 2006; Guha and Harb 2008].

2. BACKGROUND AND RELATED WORK

Previous research has established two principal methods for the construction of
data approximations with deterministic2 quality guarantees. The former, his-
tograms, is based on the creation of buckets of contiguous values that are ap-
proximated by a single representative value. The latter utilizes an appropriate
hierarchical index structure for concise data representation. Under both ap-
proaches, given an n-size data vector D = 〈d0, d1, . . . , dn−1〉, the space-bounded
synopsis problem is to devise an approximate representation D̂ of D within
a space budget B, so that a given error metric in the approximation is mini-
mized. A normalized Minkowski-norm error metric, generally expressed in its
weighted version:

Lw
p (D̂, D) =

(∑
i

(
wi

∣∣d̂ i − di
∣∣)p

n

) 1
p

, (1)

2Approximation schemes that do not provide deterministic guarantees, such as sketches [Gilbert

et al. 2003; Cormode et al. 2006], are outside the scope of this work.
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covers most practically interesting cases of a pointwise error metric; d̂ i denotes
the reconstructed value for di and wi a related weight; in the case of relative-
error-based metrics, this weight is wi = 1

max{|di |,S} , where S > 0 is a sanity

bound that prevents small values from unnaturally dominating the error result
[Garofalakis and Gibbons 2004]. The following definition specifies a broader
class of error metrics [Garofalakis and Kumar 2005].

Definition 2.1. Consider a data vector D, an approximation thereof, D̂, and
the function of an error metric E , fE , such that fE (‖D̂ − D‖Ri ) denotes the error
in the data-value approximation over the range Ri in both D and D̂. The error
metric E is distributive if and only if there exists a two-variable cumulative
function G such that the error of any range Ri divided into two disjoint ranges
R j and Rk , Ri = R j ∪ Rk can be expressed as

fE (‖D̂ − D‖Ri ) = G
(

fE
(∥∥D̂ − D

∥∥
R j

)
, fE

(∥∥D̂ − D
∥∥

Rk

))
(2)

In addition, the error metric E is monotonic if and only if the error func-
tion fE is a nondecreasing function of each individual value’s absolute error
|d̂i − di|.

In this article we introduce techniques applicable to any monotonic dis-
tributive error metric, as well as specialized ones for the case where G is the
max function, that is, for maximum-error metrics (notationally expressed with
p = ∞ in the Minkowski-norm). For illustration, we use instances of a normal-
ized Minkowski-norm: the average absolute error L1, the root-mean-squared
(Euclidean) error L2, and the maximum absolute error L∞.

We now provide more details on state-of-the-art data reduction methods
for the space-bounded synopsis problem under monotonic distributive error
metrics.

2.1 Histogram-Based Summarization

A histogram synopsis (also called segmentation [Terzi and Tsaparas 2006], par-
titioning, or piecewise constant approximation [Chakrabarti et al. 2002]) di-
vides D into B � n disjoint intervals [bi, ei], 1 ≤ i ≤ B, called buckets or segments,
and attributes a single value vi to each of them that approximates all consecu-
tive values therein, d j , j ∈ [bi, ei]. In a dense histogram these intervals are suc-
cessive; in a sparse histogram there may be void areas between them. A single
bucket (segment) can be expressed by the triplet si = {bi, ei, vi}. 2B−1 numbers
suffice to represent a dense B-bucket histogram (since ∀i, 1 < i ≤ B, bi = ei−1+1
and the edges are fixed). For a particular target error metric, the optimal value
of vi is defined as a function3 of the data values within [bi, ei].

Initial work on histogram construction algorithms in the database litera-
ture [Ioannidis 1993; Ioannidis and Poosala 1995] focused on heuristics that
exhibited low errors in some estimation problem, such as the end-biased

3For L1 it is the median of the values in [bi , ei] [Terzi and Tsaparas 2006]; for L2, their mean

[Jagadish et al. 1998]; for L∞, the mean of the maximum and minimum value among them; while

Gupta et al. [2004] analyzes the respective relative error cases.
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[Ioannidis and Poosala 1995], MaxDiff [Poosala et al. 1996], and MHIST [Poosala
and Ioannidis 1997] heuristics; such approaches did not attempt to detect the
optimal bucket boundaries [Ioannidis 2003]. Jagadish et al. [1998] presented an
O

(
n2 B

)
dynamic-programming (DP) algorithm that calculates optimal (dense)

bucket boundaries for Euclidean (L2) error. Its basic observation is that the b-
optimal histogram for a data vector D can be recursively derived from the space
of (b−1)-optimal partitionings of all prefix vectors of D. Hence, the minimal dis-
tributive error E(i, b) of a b-bucket histogram of the prefix vector 〈d0, d1, . . . , di〉
is recursively expressed as

E(i, b) = min
1≤ j<i

{
G

(
E

(
j , b − 1

)
, E

(
j + 1, i

))}
, (3)

where G is the cumulative error function and E( j + 1, i) the optimal error in a
bucket that contains the items 〈d j+1, . . . , di〉. In fact, this problem is a special
case of the problem of approximating a curve by line segments; hence, the DP
solution of Jagadish et al. [1998] is a special case of the line-segmentation algo-
rithm of Bellman [1961]. For an arbitrary error metric, this algorithm requires
O

(
n3 B

)
time. Still, Guha et al. [2004] proposed more efficient specializations for

a variety of relative-error-based metrics. Related research paths have supplied
histogram methods that efficiently extend the basic idea to multiple dimensions
[Poosala and Ioannidis 1997; Bruno et al. 2001; Thaper et al. 2002; Muthukr-
ishnan and Strauss 2003a; Furfaro et al. 2005; Gunopulos et al. 2005], and to
workload-based [Muthukrishnan et al. 2005] and range query [Koudas et al.
2000; Gilbert et al. 2001; Guha et al. 2002; Muthukrishnan and Strauss 2003b]
optimization.

2.2 Hierarchical Summarization

An alternative stream of research proposes index structures that represent the
data in consecutive hierarchical levels of detail. This approach started with
the application of the Haar wavelet transform, which has long been used in
signal processing [Jawerth and Sweldens 1994]. Recently, Reiss et al. [2006]
have proposed a related hierarchical structure for data approximation.

2.2.1 The Haar Wavelet Hierarchy. The Haar wavelet hierarchy, based on
the transform introduced by Alfréd Haar [Haar 1910], can be visualized through
a complete binary tree, the Haar tree. This tree holds coefficients representing
D in successive layers of detail; the final tree layer holds the original data. The
coefficient in the Haar tree root node contains the overall average value, and
each other coefficient value ci contributes the value +ci to data values (leaves)
in its left subtree and −ci to those in its right subtree. Hence, each original data
value is reconstructed in terms of the coefficients in its root-to-leaf path.

A Haar wavelet synopsis of D is a vector Ẑ of B � n nonzero 〈i, ci〉 terms, such

that its inverse wavelet transform D̂ = W−1(Ẑ) approximates the data vector
D. Figure 1(b) shows a {〈0, 4〉, 〈3, −2〉 〈4, 6〉 〈5, −7〉} synopsis for the data array
of Figure 1(a) with maximum absolute error 4. This is the L∞-optimal synopsis
with B = 4.
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Fig. 1. A Haar tree and unrestricted synopsis (n = 8).

For Euclidean error (L2), the optimal Haar wavelet synopsis is conveniently
computed, consisting of the top-B normalized coefficients in the complete Haar
wavelet transform of D [Matias et al. 1998]; the normalized value of a coeffi-
cient c is |c|√

2�
, where � is the level where c resides in the Haar tree. For exam-

ple, the L2-optimal synopsis, with B = 2, for the data vector in Figure 1(a) is
{〈0, 4〉, 〈5, −7〉}. The computational convenience of the L2-synopsis methodology
has allowed for its extension to data streams of the cash register model [Gilbert
et al. 2003; Cormode et al. 2006], multiple-measure [Deligiannakis et al. 2007]
and multidimensional [Jahangiri et al. 2005] data sets, as well as to synopses
customized for a given workload [Matias and Urieli 2007], for range-sums
[Matias and Urieli 2006], or for both [Mathioudakis et al. 2006; Chen and Nucci
2007; Guha et al. 2008]. Yet this convenience does not extend to nonEuclidean
metrics. Still, recent studies have strived to construct optimal synopses for such
metrics within the Haar framework.

2.2.2 Restricted Haar Wavelet Synopses. The space-bounded Haar wavelet
synopsis problem for general error metrics was first suggested by Matias et al.
[1998]. Its first systematic treatment was supplied by Garofalakis and Gibbons
[2004], highlighting the practical importance of maximum-error metrics in par-
ticular. This treatment was based on a probabilistic model, followed by a fast
approximation scheme [Deligiannakis et al. 2005]; however, as shown in Guha
et al. [2004] and Garofalakis and Kumar [2005], it does not produce results
of high quality. Subsequently, Garofalakis and Kumar [2005] suggested a dy-
namic programming (DP) algorithm that retains the optimal coefficient sub-
set from the Haar wavelet transform of D for the target metric. Karras and
Mamoulis [2005] proposed a streaming-capable greedy counterpart to this so-
lution for maximum-error metrics. Guha [2008] reduced both the time and space
complexity of the DP scheme [Garofalakis and Kumar 2005]. Muthukrishnan
[2005] suggested that an algorithm solving the dual, error-bounded problem4

can provide a shortcut to the solution of the space-bounded problem. Still, these
solutions all tackle the problem in a restricted fashion, in which the nonzero

4That is, find a minimal-space synopsis achieving an error bound ε.
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value that a coefficient may be assigned is fixed in advance; it is either the
value provided by the Haar wavelet decomposition itself, as in the following:
[Garofalakis and Kumar 2005; Karras and Mamoulis 2005; Muthukrishnan
2005; Guha 2008], or that value normalized according to a randomized round-
ing scheme, as in Garofalakis and Gibbons [2004] and Deligiannakis et al.
[2005]. However, such values are not the optimal that could be assigned to
the selected set of nodes in the hierarchy for a nonEuclidean metric; hence, as
Guha and Harb [2008] observed, synopsis quality is confined by this restric-
tion. This observation also holds for the workload-oriented algorithms of the
following: [Mathioudakis et al. 2006; Matias and Urieli 2007; Chen and Nucci
2007; Guha et al. 2008], which also use the coefficient values provided by a Haar
wavelet transform, resulting in suboptimal solutions for nonEuclidean metrics.

2.2.3 Unrestricted Haar Wavelet Synopses. Guha and Harb [2008] dis-
cerned that the values of the B nonzero Haar wavelet synopsis terms need
not be defined by the dataset’s Haar wavelet transform; they can be set un-
restrictedly, leading to higher quality than the restricted model. For example,
the synopsis of Figure 1(b) is unrestricted, since the value assigned to c3 is not
derived from the corresponding coefficient in the complete Haar decomposition
in Figure 1(a). Guha and Harb [2008] provided a fully polynomial-time approx-
imation scheme (FPAS) for unrestricted space-bounded Haar wavelet synopses
under any Minkowski-norm error metric; this solution is a DP algorithm guided
by a two-dimensional tabulation per Haar tree node. A node ci calculates the
minimum attainable error E(i, v, b) over both every possible incoming value5 v
and every possible amount of space b allocated to the subtree rooted at ci; pos-
sible incoming values are discretized by a resolution step δ. For each E(i, v, b)
entry, both the δ-optimal assigned value z (also quantized as a multiple of δ)
and the δ-optimal distribution of b units of space among the left ciL and right
ciR branches of ci are detected. This DP recursion can be summarized by the
equation below:

E(i, v, b) = min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
0≤b′≤b

{
max

{
E(iL, v, b′),

E(iR , v, b − b′)

}}
,

min
z,0≤b′≤b−1

{
max

{
E(iL, v + z, b′),

E(iR , v − z, b − 1 − b′)

}}
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4)

Computing E(0, 0, B) determines the best B nonzero term positions in the Haar
hierarchy to retain for the synopsis and the best values to assign to each of them
for a given δ. The ranges of incoming values v and assigned values z to be tested
per node are contained by a guessed upper-bound E for the target minimized
error [Guha and Harb 2008]. The cardinality R = O( E

δ
) of the set of examined

values enters the complexity expressions.

2.2.4 Compact Hierarchical Histograms. The compact hierarchical his-
togram (CHH) [Reiss et al. 2006] is an alternative hierarchical approximation

5The incoming value of a node ci is the value constructed by the path from the root of the sparse

Haar tree up to ci . For example, the incoming value of node c7 in the tree of Figure 1(b) is c0 −c3 = 6.
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structure. A CHH defines a binary hierarchy of dyadic intervals, by default iden-
tical to that of a Haar tree; likewise, it selects a subset of nodes to represent the
approximated data set. However, the representation mechanism is different; a
data value is simply approximated by the value of its lowest nonzero ancestor
node in the CHH hierarchy. In a longest-prefix-match (LPM) CHH, each such
node should be assigned the optimal value, under the target error metric, for the
exact set of data values it approximates [Reiss et al. 2006]; this optimal value
is defined as for a histogram bucket (see Section 2.1). Remarkably, a binary
CHH is analogous to the hierarchical summarization structure independently
proposed by Agarwal et al. [2007].

Reiss et al. [2006] proposed exact solutions for limited versions of the CHH
construction problem and heuristics for the LPM CHH problem. The best-
performing CHH algorithm is a greedy heuristic that improves upon an optimal
overlapping partitioning. In such a partitioning, the value assigned to a CHH
node is the optimal value for the whole data interval under the scope of ci with
the target metric (as in a plain histogram bucket [Jagadish et al. 1998; Guha
et al. 2004; Terzi and Tsaparas 2006]), but not for the value set ci actually ap-
proximates (which depends on the other nodes with nonzero assigned values
in the subtree rooted at ci). The greedy heuristic first establishes the optimal
occupied node positions for an overlapping partitioning with the target error
metric, and then uses these positions, but adjusts the values assigned to them
so as to be optimal for the data set they actually approximate (i.e., a subset of
the whole data interval under the node’s scope).

2.3 A Space-Efficiency Technique

The state-of-the-art for both synopsis construction methods features DP algo-
rithms that tabulate over space allocations [Guha et al. 2004; Garofalakis and
Kumar 2005; Guha and Harb 2008; Reiss et al. 2006], raising high time and
space complexity demands. Guha [2008] identified space as the most signif-
icant resource for summarization and provided a paradigm that reduces the
space demands of these DP schemes in the offline case. Its main idea is to avoid
storing all tabulated results throughout the DP; part of them can be dropped
and recomputed later. In histogram construction, the tabulation on {i, b} should
progress with increasing b, 1 ≤ b ≤ B (i.e., the loop of b is the outer loop). Since
the values E(∗, b) are fully determined by E(∗, b − 1), after a b-column has been
used to calculate the (b + 1)-column, it is dropped; hence the space is O(n). The
tabulation (Eq. (3)) also detects and stores the single bucket M (i, b) in the opti-
mal b-partitioning of 〈d0, d1, . . . , di〉 that contains the middle data item �n

2
� of

D (M (i, b) exists only when i ≥ n
2
, where n is the size of D). After the optimal

error E(n, B) and middle-item bucket M = M (n, B) for the complete problem
have been found, the two O

(n
2

)
independent subproblems for the intervals on

the left and right of M are re-solved recursively. Hence, the total time for the
general-error histogram construction problem [Jagadish et al. 1998] remains

O(
∑log n

�=1 2�( n
2� )2 B) = O

(
n2 B

)
, that is, the recomputation cost is amortized.

Guha [2008] applies the same methodology to the restricted Haar wavelet
synopsis algorithm of Garofalakis and Kumar [2005]. In this case, the required
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tabulation progresses in a bottom-up fashion in the Haar tree; all table entries
on a parent node are computed from the tables of its children nodes, which
can then be dropped. Accordingly, at most log n + 1 tables need be concurrently
stored, covering one path through the Haar tree. After the solution is estab-
lished at the top level of the tree, the two half-size subproblems in the two
subtrees of c1 are re-solved [Guha 2008]. Restricted Haar wavelet synopsis
construction requires time quadratic in n, because each of n Haar tree nodes
has to consider O(2log n) = O(n) possible choices of values in its ancestor-set
[Garofalakis and Kumar 2005]. Hence, the recomputation cost is amortized in
this case as well. The same technique is applicable to the unrestricted Haar
wavelet synopsis algorithm of Guha and Harb [2008] (Eq. (4)); likewise, after
the arrays E(iL, ∗, ∗) and E(iR , ∗, ∗) have been used to calculate the entries
of E(i, ∗, ∗), they are dropped, hence at most log n + 1 arrays need be concur-
rently stored. However, as we show in Section 5.4, in this case the price for
space-efficiency is an extra log n time complexity factor due to recomputation.

3. MOTIVATIONS

In this section we outline the motivations for our research on the questions of
quality and efficiency in hierarchical synopsis construction, as well as in the
experimental arena.

3.1 Quality

The quality of approximation achieved by existing techniques is constrained by
their nature. In the case of histograms, the primary limitation is that of locality;
a bucket is supposed to approximate neighboring values, which are expected to
exhibit small variations [Guha et al. 2004]. Therefore, histograms are not good
at approximating sharp discontinuities. In contrast, hierarchical structures are
advantaged by their ability to see beyond local interrelations. Besides, a B-term
histogram approximates only B value ranges, as opposed to the Haar wavelet
which defines B to 3B + 1 value intervals, and the CHH, which defines B to
2B+1 intervals. Observably, the Haar framework can make the most economic
use of a space budget, as a retained wavelet coefficient can split a pre-existing
interval into four new ranges. This four-way split derives from the fact that a
coefficient bears on the two binary intervals that it affects two opposite-signed
contributions of equal absolute magnitude. Besides, the differential nature of
Haar wavelet coefficients is also responsible for the Parseval-based near-linear
computation of L2-optimal synopses [Jawerth and Sweldens 1994]. However,
this differential form is also a liability, as it restricts the flexibility of repre-
sentation. Still, we do not have to hold on to this restriction in cases where
the computational effectiveness that it allows for does not apply (i.e, on non-L2

metrics).

3.2 Efficiency

3.2.1 General Error Metrics. In addition to the quality consideration
above, the state-of-the-art unrestricted Haar wavelet synopsis algorithm [Guha
and Harb 2008] presents a complexity defect depending on the p parameter of

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 18, Publication date: August 2008.



Hierarchical Synopses with Optimal Error Guarantees • 18:11

the target Minkowski norm (Eq. (1)); its complexity is O(( E
δ
)2n1+ 2

p B) in time,
that is, cubic in n for the L1 metric, and O( E

δ
n

1
p B log n

B + n) in space (Table II,
Section 8.1). Chen and Nucci [2007] observed this defect, correctly characterized
the complexity as “too high for synopses used for databases,” and resorted to
studying the workload-based Haar wavelet synopsis problem, for weighted Eu-
clidean error in a restricted formulation. Nevertheless, in this workload-based
case, the restricted formulation does not provide an error guarantee with re-
spect to the optimal solution. In our opinion, this withdrawal to the restricted
model discards what is worth keeping; the unrestricted model of Guha and
Harb [2008] treats the workload-aware problem with the same effectiveness
as the regular problem, notwithstanding its complexity dependence on p. For
maximum-error metrics, the solution of Guha and Harb [2008] is already lin-
ear in n and achieves higher quality than a restricted solution. In our opinion,
we should not abandon the unrestricted model, but treat its complexity defect,
that is, render its complexity independent of p. As we will show, expanding
the Haar tree structure in a way that allows for higher accuracy of approxima-
tion also simplifies the synopsis computation process and achieves equally low
complexities for all monotonic distributive error metrics.

3.2.2 Maximum-Error Metrics. The algorithm of Guha and Harb [2008] is
linear in n for any maximum-error metric. Yet, despite the reduction by Guha
[2008], it still features a demanding two-dimensional tabulation over space
allocations and value assignments. Besides, the amortization achieved with
the paradigm of Guha [2008] holds for algorithms of time quadratic or near-
quadratic in n (e.g., those reviewed in Section 2.3 and in Muthukrishnan [2005]),
but not for algorithms of time linear or near-linear in n (e.g., the solution of Guha
and Harb [2008] for maximum-error metrics and the winner heuristic in Reiss
et al. [2006]). Applied on them, the paradigm creates a tradeoff between space-
and time-efficiency (Table III, Section 8.1), which also appears with our general-
error Haar+ synopsis construction algorithm (in Section 5.4). Muthukrishnan
[2005] and Karras et al. [2007] have shown that space-bounded hierarchical
synopsis problems for maximum-error metrics can be more efficiently solved via
their error-bounded counterparts, in which the goal is to minimize the synopsis
space subject to a maximum-error bound ε; this indirect approach lightens the
complexity burdens. Yet the importance of maximum-error metrics [Garofalakis
and Gibbons 2004; Garofalakis and Kumar 2005; Karras and Mamoulis 2005]
not only calls for a more space-efficient solution, but also for one that would
provide optimal error guarantees. As we show, this indirect method does allow
for optimal solutions. This benefit is undermined by an exponential worst-case
time complexity for Haar+ synopsis construction; still, applied on the CHH,
that is, a simplified version of the Haar+ tree, this method yields synopses with
optimal maximum-error guarantees in low polynomial time.

3.3 Experimentation

To the best of our knowledge, previous research has not attempted a face-to-face
comparison between state-of-the-art hierarchical and histogram approximation
techniques. In particular, Matias et al. [1998] compared heuristic Haar wavelet
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Fig. 2. An one-dimensional Haar+ tree.

synopsis methods (as well as theL2-optimal method) to the MaxDiff [Poosala et al.
1996] and MHIST [Poosala and Ioannidis 1997] histogram heuristics; the contem-
poraneously developed optimal-histogram algorithm of Jagadish et al. [1998]
did not make it into that study. Chakrabarti et al. [2002] compared the prun-
ing power of the APCA dimensionality-reduction technique to that of simple
Haar wavelet synopses consisting of the B highest terms, applied on similarity
search among indexed time series. Guha et al. [2004] measured the accuracy of
approximation achieved with probabilistic Haar wavelet synopses [Garofalakis
and Gibbons 2004] against that of error-optimal histograms for several relative-
error based metrics. Unluckily, the contemporaneously developed error-optimal
restricted Haar wavelet synopsis algorithm of Garofalakis and Kumar [2004]
was not available for that study. Garofalakis and Kumar [2005] showed that
the techniques of Garofalakis and Kumar [2004] outperform those of Garo-
falakis and Gibbons [2004] in terms of accuracy; yet, their relation to optimal
histograms was not inspected. Similarly, Guha and Harb [2008] demonstrated
that unrestricted Haar wavelet synopses outperform the restricted ones; how-
ever, a comparison to histogram methods was not provided. Lastly, Reiss et al.
[2006] compared the accuracy achieved with heuristic CHH techniques to the
that of L2-optimal [Jagadish et al. 1998] and end-biased [Ioannidis and Poosala
1995] histograms; other error-optimal histograms [Guha et al. 2004] and Haar
wavelet methods [Garofalakis and Kumar 2005; Guha and Harb 2008] were not
cross-examined. Hence, an investigation of the relative performance of diverse
approximation techniques, examining the intuition expressed in Graps [1995]
and Guha et al. [2004], is long due. Section 9 provides a first attempt in that
direction.

4. THE HAAR+ TREE

In this section we introduce the Haar+ tree, an enhanced and more power-
ful synopsis data structure, by dropping the restrictions of the classical Haar
model. Figure 2 depicts a simple one-dimensional Haar+ tree that may be used
for summarizing a four-element data set {d0, d1, d2, d3}. It contains a single
root coefficient node c0 that contributes its value to all approximated data, fol-
lowed by a binary tree of coefficient nodes grouped in triads, depicted as C1,
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C2, and C3. Triads substitute what are single wavelet coefficients in a classical
Haar tree. In each triad, the head coefficient, namely c1, c4, and c7, behaves
as a classical wavelet coefficient: it contributes its value positively to its left
subtree and negatively to its right subtree; the other two, left and right supple-
mentary coefficients, namely, c2 and c3 in C1, c5 and c6 in C2, and c8 and c9 in
C3, contribute their value positively in the single interval they affect. For ex-
ample, c3 contributes its value positively to d2 and d3, if such a nonzero value
is maintained in a synopsis. The parent of the node where the head coefficient
of a triad C resides is called parent node of C, and the triad where this parent
node resides parent triad of C. For example, the parent node of C2 is c2 and its
parent triad is C1; in reverse, C2 is the left child triad of C1 and C3 is its right
child triad.

An optimal synopsis of space budget B for a given error metric E places
B nonzero coefficient values at any positions in the Haar+ tree so that E is
minimized. For example, for the four-element data set {5, 3, 12, 4} a 2-term
Haar+ synopsis that minimizes the un-weighted pointwise errors L1, L2, and
L∞ consists of the coefficients {c0 = 4, c8 = 8}. The resulting approximation

is {4, 4, 12, 4} with absolute error values {1, 1, 0, 0}, hence L1 = 0.5, L2 =
√

2
2

and L∞ = 1. The optimal 2-term restricted Haar synopsis for all three consid-
ered metrics is {c0 = 6, c7 = 4}, producing the errors {1, 3, 2, 2} with L1 = 2,
L2 = 3

√
2

2
, L∞ = 3; by default, this is also the L2-optimal 2-term unrestricted

Haar synopsis. On the other hand, the optimal 2-term unrestricted Haar syn-
opsis for L1 and L∞ is {c0 = 5.5, c7 = 4}, with L1 = 2 and L∞ = 2.5. Likewise,
the L2- and L∞-optimal 2-bucket histogram for the same data set approxi-

mates it as {4, 4, 8, 8} with absolute error values {1, 1, 4, 4}, hence L2 =
√

34
2

and L∞ = 4. An L1-optimal 2-bucket histogram is {5, 5, 5, 4} with L1 = 2.25.
This simple example demonstrates that both the classical Haar synopsis model
and piecewise-constant histogram techniques may not achieve as high accu-
racy of approximation as the Haar+ structure. We emphasize the following
points:

—The classical Haar structure is a special case of the generalized Haar+ struc-
ture. Hence, a Haar+ synopsis is always at least as good as the equivalent
Haar-wavelet synopsis.

—The storage of coefficient indexes in a Haar+ synopsis does not impose a
storage burden compared to a classical Haar wavelet synopsis or a histogram.
A Haar+ triad index corresponds to a classical Haar coefficient index. Hence, a
convenient storage scheme is to keep the retained coefficients in three distinct
groups, one for each type (head, left, and right supplementary), each with its
triad index value. A synopsis of n data items requires at most n distinct triad
index values, hence �log n� bits per index, as with the indexes in a classical
Haar wavelet synopsis and the bucket boundaries in a histogram.

4.1 Basic Properties

A Haar+ tree is a sparse vector H of n = 3 × 2d − 2 coefficients {c0, c1, . . . ,
c3×(2d −1)}, arranged in a tree, that represents a data vector D of 2d elements
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{d0, d1, . . . , d2d −1}. The data items reside on the leaf nodes of the tree. We
use the notation a = P(b) to denote that coefficient a resides on the parent
node of coefficient b, a ∈ Rleaves(b) to denote that data item (leaf) a lies in
the right subtree of node b, and a ∈ path(b) to denote that node a lies on the
path from the root of the tree to leaf node b. The tree structure is arranged so
that

c0 = P(c1).

i − 1 mod 3 = 0 ⇒ ci = P(ci+1) ∧ ci = P(ci+2).

i − 2 mod 3 = 0 ⇒ ci = P(c2i).

i mod 3 = 0 ⇒ ci = P(c2i+1).

A data item dj of the represented data vector D has a parent node ci, such that
i = ( j + N ) \ 2. This data item is constructed as d j = ∑

i∈path( j ) δi j ci, where

δi j =
{−1,

(
i − 1 mod 3 = 0

) ∧ (
d j ∈ Rleaves(ci)

)
+1, otherwise

We introduce some convenient notation for the discussion that follows. The
state of a given triad (ci, ci+1, ci+2) is a four-element vector [v, a, b, c], where
v = ∑

k∈path(i) δkick is the reconstructed value from the root of the tree up to
the node where ci resides, henceforward called incoming value at ci, and a, b, c
are the values at ci, ci+1 and ci+2 respectively. We say that this state produces
the contribution vector [v+a+b, v−a+c], meaning that v+a+b is the incoming
value at node c2i+2 (child of ci+1) and v − a + c is the incoming value at node
c2i+5 (child of ci+2). ‖H‖ denotes the number of nonzero values in a Haar+ tree
H.

The following lemma shows that a nonzero head coefficient does not need to
inhabit a triad with at least one nonzero supplementary coefficient.

LEMMA 4.1. A triad C of a Haar+ tree representation H does not need to
contain both a nonzero head coefficient and a nonzero supplementary coefficient.

PROOF. The case where C contains three nonzero coefficients can be directly
reduced to a more sparse variant with only two nonzero supplementary co-
efficients. C = [v, p, q, r] is equivalent to C = [v, 0, q + p, r − p]; a nonzero
head coefficient is redundant in this case. The case that C contains exactly two
nonzero values being a head and a supplementary coefficient can be treated
similarly, with the number of nonzero values unchanged. In effect, a nonzero
head coefficient only need be used as a triad’s single nonzero term.

Figure 3 depicts an adjustment of C = [v, p, q, 0] to C = [v, 0, p+q, −p] as in
Lemma 4.1.

The following theorem expands on the result of Lemma 4.1.

THEOREM 4.2. Let H be an arbitrary Haar+ tree producing the data vector
D, in which at least one triad contains more than one nonzero values. Then D
can be represented by an at least equally sparse Haar+ tree H′, such that every
triad C ∈ H′ contains at most one nonzero value and ‖H′‖ ≤ ‖H‖.
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Fig. 3. Adjustment of triad as in Lemma 4.1.

Fig. 4. Basic transformation of triad in Theorem 4.2.

PROOF. By Lemma 4.1, any assignment of more than one nonzero value
in a triad C can be reduced to the assignment of two nonzero values, one on
each supplementary coefficient; hence C is brought to the state [v, 0, q, r] and
produces the contribution vector [v + q, v + r]. Yet this contribution vector is
also produced by a triad in the state [v + q+r

2
, q−r

2
, 0, 0]. Hence, a triad of more

than one nonzero coefficients is reducible to a triad of one nonzero coefficient
by changing its incoming value from v to v + q+r

2
, as follows:

(1) If the parent of C is the root node, then we add the value q+r
2

to the root
coefficient.

(2) If the parent of C is a triad Q , then we add the value q+r
2

to the parent node
of C in Q . If this addition results in more than one nonzero value in Q , then
we proceed to reduce Q to a triad with one nonzero value only, as above.

This process leads from any given triad upwards in the tree, hence it terminates
in all cases once the root node is reached. Moreover, each step in this process
may decrease, but not increase, the amount of nonzero values in the tree as a
whole. Hence, it follows that any Haar+ tree H can be reduced to an at least
equally sparse Haar+ tree H′, such that every triad C ∈ H′ contains at most
one nonzero value and ‖H′‖ ≤ ‖H‖.

Figure 4 depicts the basic transformation of a triad with two nonzero sup-
plementary coefficients q, r to one with only one nonzero head coefficient.

Although three coefficients need never be chosen in the same triad, it is
still advisable to maintain the structure in this form. The assignment of two
opposite-signed nonzero values such that cl = −cr is also reduced to the assign-
ment of a single nonzero value ch = cl ; this characteristic is an advantage of the
classic Haar tree that the Haar+ tree maintains. Based on its triad structure,
the Haar+ tree allows for refined, high-quality summarization.

The following corollary follows from Theorem 4.2.

ACM Transactions on Database Systems, Vol. 33, No. 3, Article 18, Publication date: August 2008.



18:16 • P. Karras and N. Mamoulis

Fig. 5. A CHH and its equivalent Haar+ tree.

Fig. 6. A Haar+ tree and its equivalent CHH.

COROLLARY 4.3. The optimal B-term Haar+ tree representation H of a data
vector D that minimizes a given error measure E can be expressed as a Haar+

tree with at most one nonzero value in each triad.

4.2 Equivalence of a Compact Hierarchical Histogram to a Simplified Haar+ Tree

In this section we show the equivalence of a CHH to a simplified Haar+ tree.

THEOREM 4.4. Any B-nonzero-term binary CHH [Reiss et al. 2006] can be
represented as a Haar+ tree of B nonzero supplementary (or root) coefficients.
In reverse, any Haar+ tree of B nonzero terms which are all supplementary (or
root) coefficients can be represented as a B-term binary CHH.

PROOF. Let C be a B-term binary CHH. For each nonzero term node ci,
let vi be the value of its lowest nonzero ancestor node. Then, a Haar+ tree H
in which the supplementary coefficient corresponding to the position of each
nonzero term ci is assigned the value ci − vi produces the same representation
as C. In reverse, let H be a Haar+ tree with exactly B nonzero supplementary
coefficients. Let vi be the incoming value to the node of a nonzero term ci. Then,
a CHH C in which the node corresponding to the position of each nonzero term
ci is assigned the value ci + vi produces the same representation as H.

Figures 5 and 6 depict the transformation from a CHH to a Haar+ tree and
vice versa. By Theorem 4.4, the CHH synopsis problem is reduced to the Haar+

synopsis problem. The Haar+ tree can also achieve higher accuracy than a
CHH, thanks to its inclusion of classical wavelet (head) coefficients. In addition,
the hierarchical structure recently proposed by Agarwal et al. [2007] is also
equivalent to a Haar+ tree of only supplementary coefficients. In this case the
relationship is straightforward; the nodes in Agarwal et al. [2007] combine their
contributions additively, exactly like Haar+ supplementary coefficients.
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With the benefit of hindsight, a Haar+ tree can be seen as the merger of
a CHH and a Haar tree; it retains the compression advantage of a Haar tree
over a histogram, adding more flexibility to it. Furthermore, it achieves more
succinct representations than a CHH, as the use of a head coefficient adds two
distinct constant-value intervals in its approximation.

In Reiss et al. [2006], CHH techniques are tested on approximating Internet
traffic data, in comparison to L2-optimal [Jagadish et al. 1998] and end-biased
[Ioannidis and Poosala 1995] histograms. The authors emphasize that the CHH
structure can be useful in a broad range of applications. In fact, as has been
expressed intuitively in Graps [1995] and Guha et al. [2004], and we verify
in Section 9, hierarchical synopsis structures perform better than histograms
when approximating more discontinuous data sets; Internet traffic data is a
particular instance of such data. Besides, Reiss et al. [2006] proposed an exten-
sion of CHH techniques on predefined hierarchies beyond the default binary
one; the same extension applies straightforwardly to the Haar+ tree, since, as
Reiss et al. [2006] show, any arbitrary hierarchy can be expressed as a binary
one, and, in effect, such a binary hierarchy can incorporate Haar+ tree head
and supplementary coefficients. Still, predefined hierarchies impose an arbi-
trary constraint. In Karras and Mamoulis [2008] we examine the problem of
detecting the most appropriate hierarchical pattern for the problem at hand.

5. HIERARCHICAL SYNOPSES FOR GENERAL DISTRIBUTIVE
ERROR METRICS

We now construct a DP approximation scheme for the optimal hierarchical
synopsis representation of a data vector D, employing Corollary 4.3. As we
discussed, the CHH construction problem can be treated as a special case of
the Haar+ synopsis construction problem. The simplification of the structure
from a Haar+ tree to a CHH does not yield a complexity advantage, while
compromising synopsis quality; hence, our methodology is developed for the
general, Haar+ case. The space-bounded problem that we address is defined
as follows:

Problem 5.1. Given a data vector D and a monotonic distributive error metric
E , construct a B-nonzero-term Haar+ representation H of D that produces an

approximation D̂ of minimal error fE (‖D − D̂‖).

In order to solve this problem, we have to determine the optimal positions
and values of the B nonzero terms we can keep. Since each triad Ci needs to
contain at most one nonzero value, four options are available: either no value is
kept, or a value is kept at one of the three positions in the triad. We formalize
our solution in the following section.

5.1 Formalizing the Solution

Let Q(i, v, b) express the optimal choice to be made on triad Ci with incoming
value v and allocated space b to be used by Ci and its descendants. We can
establish the solution in a bottom-up process, calculating Q(i, v, b) on each triad
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Table I. Notation

Symbol Meaning

D Summarized data vector

H Optimized Haar+ representation of D
Ci Triad in H
v Incoming value to Ci
zh Value assigned to head coefficient of Ci
zl (zr ) Value assigned to left (right) supplementary coefficient of Ci
z0 Value assigned to root coefficient of H
mi (Mi) Minimum (maximum) data value under scope of Ci
ml (mr ) Minimum data value in left (right) sub-tree of Ci
Ml (Mr ) Maximum data value in left (right) sub-tree of Ci
m (M ) Global minimum (maximum) in D
Di Domain of allocated space values b at Ci

for each possible v and b. Let �i denote the layer of triads in which Ci resides,
counting from the bottom; then at most 2�i − 1 nonzero values can be used by
triad Ci and its descendants; hence the domain of b is Di = {0, 1, . . . , min{B, 2�i −
1}}. In order to delimit the domain of v, we quantize it into multiples of a
resolution step δ. But we still need to set lower and upper bounds for this
domain. Fortunately, the Haar+ structure allows us to do so tightly. In the
following discussion, we use the notation in Table I. We start out with the
following proposition.

PROPOSITION 5.2. For incoming value v at Ci, there exist reconstructed values
d̂k and d̂l such that d̂k ≤ v and d̂l ≥ v.

PROOF. At Ci there exists a reconstruction path in which v is not increased,
as well as one in which it is not decreased, obtained if we choose the appropri-
ate direction in case Ci holds a nonzero head coefficient or the all-null direction
otherwise. The same applies at every subsequent layer. Hence, there exist re-
constructed values d̂ k and d̂ l such that v ∈ [d̂ k , d̂ l ].

Proposition 5.2 finds application in the following.

PROPOSITION 5.3. If Ci has a nonzero head coefficient zh, then the incoming
value v at Ci lies in (mi, Mi). Symbolically, zh �= 0 ⇒ v ∈ (mi, Mi). In reverse,
v /∈ (mi, Mi) ⇒ zh = 0.

PROOF. Assume that v /∈ (mi, Mi) and zh �= 0. Then, by Corollary 4.3, both
supplementary coefficients are zero, hence Ci produces the contribution vector
[v + zh, v − zh]. Without loss of generality, assume that v ≥ Mi and zh > 0.
Then the incoming value v − zh to the right subtree of Ci may lead to a good
approximation of the values therein by decreasing v. Nevertheless, the incoming
value v+zh to the left subtree does not gain in approximation by increasing v, as
v is larger than the maximum value Mi to be approximated, and, by Proposition
5.2, there exists a reconstructed value d̂ l ≥ v. Hence, the error metric E , being
monotonic, is not increased by setting zh = 0 and assigning the value zr = −zh
to the right supplementary coefficient of Ci alone. Similar reasoning applies to
other cases. Thus the assignment of a nonzero value zh to the head coefficient
of Ci is unnecessary when v /∈ (mi, Mi).
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We proceed to delimit the values that may be assigned thus after we introduce
the following proposition, which follows from Proposition 5.3.

PROPOSITION 5.4. An incoming value v < mi (v > Mi) at Ci cannot result
in better approximation quality, by any monotonic error metric, than a value v′

such that v < v′ ≤ mi (v > v′ ≥ Mi), with the number of nonzero terms in the
subtree of Ci being equal.

PROOF. Assume v < mi. By Proposition 5.3, the first nonzero coefficient
encountered on any subsequent reconstruction path can be a supplementary
coefficient without affecting the quality of approximation. Still, a supplemen-
tary coefficient acting on v′ can produce the same outcome as when acting on
v, rendering the solution equivalent on those paths. On the other hand, in sub-
sequent reconstruction paths where a nonzero coefficient is not encountered,
v′ has a default quality advantage over v, since it has a smaller absolute dif-
ference from every data value under the scope of Ci. Hence, for any monotonic
error metric, incoming value v′ leads to at least as good an approximation of all
data values under the scope of Ci as v, where v < v′ ≤ mi. Analogous reasoning
applies to the case the v > Mi.

We now delimit the assigned value of a head coefficient with the following
theorem.

THEOREM 5.5. Let mi be the minimum and Mi the maximum individual
data value under the scope of triad Ci and v ∈ (mi, Mi) be the incoming value
at Ci in H. If a nonzero value zh is assigned to the head coefficient in Ci, then
|zh| ≤ max{Mi − v, v − mi}.

PROOF. Since zh �= 0, Ci advances the contribution vector [v + zh, v − zh] to
its two subtrees. Without loss of generality, assume that zh > 0 and v + zh >

Mi, v − zh < mi. Then, by Proposition 5.4, the approximation quality on both
subtrees can be bettered by decreasing zh so that at least one of the produced
values v + zh, v − zh reaches the extremum Mi or mi, respectively. Similar
reasoning applies when zh < 0. Hence, under any monotonic error metric, zh
should place at least one of v + zh, v − zh inside the interval [mi, Mi]:

mi ≤ v + zh ≤ Mi ∨ mi ≤ v − zh ≤ Mi ⇔
mi − v ≤ zh ≤ Mi − v ∨ v − Mi ≤ zh ≤ v − mi ⇔
zh ∈ [

min {v − Mi, mi − v} , max {Mi − v, v − mi}
] ⇔

|zh| ≤ max {Mi − v, v − mi}
Reasoning analogous to that of Theorem 5.5 leads to the following theorem.

THEOREM 5.6. Let ml (mr) be the minimum and Ml (Mr) the maximum in-
dividual data value under the scope of the left (right) subtree of triad Ci. If a
nonzero value zl (zr) is assigned to the left (right) supplementary coefficient in
Ci, then zl ∈ [ml −v, Ml −v] (zr ∈ [mr −v, Mr −v]). Likewise, if a nonzero value
z0 is assigned to the root coefficient, then z0 ∈ [m, M ], where m (M) is the global
minimum (maximum) in D.
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We now proceed to delimit the candidate incoming values for the rest of the
triads in terms of these global extrema.

THEOREM 5.7. The incoming value v to Ci in H lies within the interval (m −
�, M + �), where � = M − m.

PROOF. For an incoming value derived from an ancestor nonzero supple-
mentary coefficient, or from the root coefficient, the proof follows directly from
Theorem 5.6. We examine incoming values derived from an ancestor nonzero
head coefficient. Consider a nonzero head coefficient zh encountered at a triad
Ck . Then, by Proposition 5.3, the incoming value v at Ck lies within the interval
(m, M ). Besides, according to Theorem 5.5, |zh| ≤ max{M − v, v − m}. Joining
the delimitations of v and zh we get v ± zh ∈ (2m − M , 2M − m). Hence, in both
cases, the produced incoming value lies in (m − �, M + �).

The intuition behind Theorem 5.7 is that, in the worst case, a nonzero head
coefficient covers the difference M − m in one direction and replicates it in the
other. In conclusion, the range of potential incoming values has width 3�. Let
S denote the set of such values in (2m − M , 2M − m) that are multiples of the
resolution step δ. Then |S| ≤ � 3�

δ
� + 1 = O(�

δ
).6 Furthermore, let Sv

i,H ⊂ R,
Sv

i,L ⊂ R, Sv
i,R ⊂ R denote the set of potential values assigned to the head,

left and right supplementary coefficient of triad Ci that are multiples of δ, for
incoming value v. By Theorems 5.5 and 5.6, the cardinality of these sets is also
O(�

δ
).

5.2 Deriving the Answer

The derivation of the optimal error result and the respective B-nonzero-term
Haar+ tree representation H of D does not pose a novel algorithmic problem. As
in previous synopsis construction algorithms [Jagadish et al. 1998; Deligian-
nakis et al. 2007; Garofalakis and Gibbons 2004; Guha et al. 2004; Garofalakis
and Kumar 2005; Guha and Harb 2008; Muthukrishnan 2005], a DP solution
can be applied. In particular, our algorithm draws from the unrestricted Haar
wavelet synopsis construction algorithm of Guha and Harb [2008]. We compute
the Q(i, v, b) function with a dynamic programming recursive scheme; however,
further elaboration is required at the decision-making process in each triad,
due to the multiplicity of options. We also employ the generic space-efficiency
paradigm of Guha [2008], and analyze the emerging tradeoff between time- and
space-efficiency.

In a nutshell, the method works in a bottom-up left-to-right scan over the
Haar+ tree. At each visited triad Ci it calculates an array A from the precalcu-
lated arrays L and R of its children triads Cil , Cir . The entry A[v, b] corresponds
to Q(i, v, b) for the pair of incoming value v and space b allocated to the sub-
tree rooted at Ci; it contains: (i) the δ-optimal value zh, zl , or zr to assign to a
coefficient in Ci, if any; (ii) the amount of space bL out of b to allocate to the left
branch; and (iii) the minimum error E(i, v, b) thus achieved. The size of A is

6The inequality ≤ accommodates for the variation in the number of integers in a fixed interval.
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|Si| · |Di|. A recursive procedure MinError emerges, which computes E(i, v, b) as

E(0, 0, B) = min
z∈S0

0,H

{E(1, z, B − (z �= 0))}

E(i, v, b) = min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
zh∈Sv

i,H ,b′∈Di

{
E(il , v + zh, b′)+
E(ir , v − zh, b − b′ − (zh �= 0))

}

min
zl ∈Sv

i,L ,b′∈Di

{
E(il , v + zl , b′)+
E(ir , v, b − b′ − (zl �= 0))

}

min
zr∈Sv

i,R ,b′∈Di

{
E(il , v, b′)+
E(ir , v + zr , b − b′ − (zr �= 0))

}

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5)

Addition is used for the sake of simplicity; any distributive error function G
can be applied. The latter equation computes the least of three minima, one
for each coefficient in Ci. Each of these is the least achievable error, in the
subtree rooted at Ci, among all allowed combinations of a value assigned to the
examined coefficient7 and a distribution of the available space to the branches
of that subtree. For the economy of presentation the −1 term, which decreases
the space allocated to the right branch in case a nonzero value is assigned,
is uniformly expressed by the boolean integer (zx �= 0). The computed error
value is assigned to A[v, b].e, while A[v, b].zh, A[v, b].zl , or A[v, b].zr stores the
coefficient that minimizes the expression above. For a last-level node, there is
no need to scan through the sets of allowed assigned values; the optimal value
to assign to each coefficient is directly determined by the incoming value and
the data values below.

Following the generic space-efficiency paradigm of Guha [2008], for a data set
of size n, the maximum number of arrays that need to be concurrently stored is
log n+1: one array per internal triad layer plus the currently used triplet. This
maximum is necessitated when the right-bound postorder recursion reaches
the rightmost triad. Hence an algorithm that derives the minimum error result
without constructing the synopsis itself is defined.

Complexity Analysis The result arrays L, R on triad Ci hold one entry for
each possible incoming value in |S|, hence their size is O(�

δ
min{B, 2�i − 1});

besides, at each triad Ci and for each [v, b] pair, checking all pairs of an as-
signed value in |Sv

i,H |, |Sv
i,L|, or |Sv

i,R | and an amount of space in Di takes

O(�
δ

min{B, 2�i − 1}) time. Hence, the worst-case running time of MinError is

O((�
δ

)2
∑n

i=1 min{B, 2�i −1}2) = O((�
δ

)2nB). Under the assumption that �
δ

(that
is, the largest input value) is polynomially-bounded in n, this algorithm pro-
vides a fully-polynomial-time approximation scheme. For the special case of
a maximum-error metric, the B factor becomes log2 B, thanks to the applica-
tion of binary search for search through space allocations; this method is used
in the following: [Garofalakis and Kumar 2005; Guha 2008; Guha and Harb
2008]. Since at most log n + 1 arrays need to be concurrently stored, the space

complexity8 is O(�
δ

∑log n+1

�=1 min{B, 2�i − 1}) = O(�
δ

B log n
B ).

7The head coefficient is examined only when v ∈ (mi , Mi).
8A 1+ log n

B factor is simplified to log n
B under the assumption that B < n

2
. In applications where a

distinction between total space and working space complexity is meaningful, as in Garofalakis and
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5.3 Approximation Guarantee

For a resolution step δ, the following theorem provides a guarantee of approx-
imation in relation to the optimal solution in R for normalized Minkowski-
distance error metrics.

THEOREM 5.8. If a data set D of size n is optimally summarized in B terms
by a Haar+ representation H∗ in R, and by the representation Hδ in the domain
of multiples of δ, with the normalized Minkowski-distance Lp error as target,
achieving error values E∗ and Eδ, respectively, then Eδ ≤ E∗ + δ

2
min{B, log n}.

PROOF. Let D∗ be the approximation of D produced by H∗, Ĥδ the rep-
resentation of D derived after rounding all coefficients in H∗ to the nearest
multiple of δ, E ′

δ its Lp error, and D̂ the approximation it produces. Since
Hδ is the Lp-optimal δ-step representation, it follows that Eδ ≤ E ′

δ. Still, by

the triangle inequality, E ′
δ ≤ E∗ + Lp(D∗, D̂). Each reconstructed data value

is the sum of at most min{B, log n} terms (at most one per triad layer) and

each coefficient in Ĥδ has been rounded from its value in H∗ by at most
δ
2
, hence L∞(D∗, D̂) ≤ δ

2
min{B, log n}. From the definition of the normalized

Minkowski-norm it follows that Lp(D∗, D̂) ≤ L∞(D∗, D̂). Putting it all together,
Eδ ≤ E∗ + δ

2
min{B, log n}.

5.4 Constructing the Synopsis

The construction of the actual synopsis after the optimal error result has been
established presents us with a time-space tradeoff. We present both variants.

5.4.1 The Space-Efficient Solution. After we have determined the solu-
tion at the topmost level we can call a process that reenters the problem in
the two branches of C1 and recomputes the respective solutions for its descen-
dants, recursively. Then the total runtime is the sum of the basic runtime for
all re-entered subproblems. Setting � as the Haar+ tree layer, this sum becomes

O((�
δ

)2 B
∑log n

�=0 2� n
2� ) = O((�

δ
)2nB log n), specialized as O((�

δ
)2n log n log2 B) for

a maximum-error metric. Hence, the price for space-efficiency is an extra log n
time complexity factor due to recomputation. On the other hand, the space be-
comes O(�

δ
B log n

B + n), where n stands for the necessary storage of the data
set.

5.4.2 The Time-Efficient Solution. Alternatively, we may maintain all com-
puted solutions throughout the computation, keeping the time at O((�

δ
)2nB).

As far as the space is concerned, we can follow two different approaches:

—We may keep all DP arrays in memory. The size of the array at triad
layer �i is O(�

δ
min{B, 2�i }). The summation over the second factor gives∑

i min{B, 2�i } = ∑
� 2log n−� min{B, 2�} = n log B. Hence the space complexity

in this case is O(�
δ

n log B).

Kumar [2005], we need only keep three arrays in the main memory at any time, hence the working

space complexity is O( �
δ

B).
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—As suggested by Guha and Harb [2008] for unrestricted Haar synopses, we
may append a list of all retained coefficients in the corresponding solution to
each entry A[v, b] of a DP array at triad Ci. Again, at most log n + 1 arrays
are stored concurrently. The size of a solution maintained with each array
entry at layer �i is at most min{B, 2�i }, hence the space for an array at layer
�i is O(�

δ
(min{B, 2�i })2). The squared factor, summed over all layers, gives

B2 log n
B , hence the space complexity becomes O(�

δ
B2 log n

B ).

The two space complexity expressions are equal when n log B = B2 log n
B ⇔

B = √
n. If B � √

n, then it is preferable to append the solutions. On the
other hand, if B � √

n, then it is advantageous to maintain all E(i, ∗, ∗) arrays
per se in memory. Values of B both higher and lower than

√
n are likely to

occur in practice, hence the preferable method depends on the application at
hand. This time-efficient solution enables the operation of the algorithm in
one pass over the data. As Table III in Section 8.1 shows, a similar tradeoff
analysis applies to the unrestricted Haar synopsis algorithms of Guha and Harb
[2008] (Section 2.2.3) and to the winner greedy heuristic of Reiss et al. [2006]
(Section 2.2.4).

6. HIERARCHICAL SYNOPSES FOR MAXIMUM-ERROR METRICS

The problem of minimizing a maximum-error metric, such as L∞ and its
weighted variants (including maximum relative error), has a special practi-
cal interest, since such metrics provide intuitive deterministic error guarantees
for independent approximate values [Garofalakis and Kumar 2004; Karras and
Mamoulis 2005; Muthukrishnan 2005]. Moreover, with this problem we can fol-
low a more time- and space-efficient approach; we exploit the solution to the
dual, error-bounded synopsis problem in order to solve its space-bounded coun-
terpart. Such an approach was first suggested by Muthukrishnan [2005] in the
context of restricted Haar synopses and applied in other contexts by Karras
et al. [2007]; our targeting of error-bounded synopsis problems is akin to the
methodology for explanation of change in hierarchical summaries suggested
by Agarwal et al. [2007]. The dual-problem approach employed not only de-
livers a crucial complexity advantage in relation to the FPAS of Section 5 for
maximum-error minimization, but also, as we show in this article, allows for
optimal solutions to space-bounded synopsis problems.

6.1 An Optimal Solution to the Error-Bounded CHH Problem

The computation of an optimal solution was not considered in the case of
the space-bounded Haar+ synopsis problem for distributive error metrics
(Section 5); in that case, the problem of calculating the optimal value to
assign on a coefficient per se cannot be easily isolated from the decisions
made on other parts of the hierarchy; hence that problem, as are related
hierarchical synopsis problems [Guha and Harb 2008; Reiss et al. 2006], is
judged to be computationally hard. Hence, Guha and Harb [2008] resorted to
an approximation scheme, while Reiss et al. [2006] developed heuristics for
CHH construction. Still, error-bounded hierarchical synopsis problems with
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a maximum-error bound allow us to attempt an optimal solution. Moreover,
contrary to the case of the space-bounded problem for general distributive
error metrics (Section 5), for this problem there is a significant complexity
advantage to be gained by specializing our solution for the special variant of
a Haar+ tree, the CHH [Reiss et al. 2006] (see Sections 2.2.4 and 4.2). Hence,
in this section we devise an algorithm that detects an optimal solution to the
error-bounded CHH problem. As we show, such an optimal solution can be
extracted in low polynomial time. The problem under consideration is defined
in a strong version as follows:

Problem 6.1. Given a data vector D and an error bound ε for a (weighted)
maximum-error metric Lw

∞, construct a CHH H that produces an approxima-

tion D̂ of D, such that Lw
∞(‖D − D̂‖) ≤ ε and the number of occupied nodes B∗ in

H is minimized. Furthermore, of all B∗-term CHH representations satisfying
ε, select one of minimal actual error ε∗ ≤ ε.

We call this version of the problem strong due to the secondary optimization
requirement to choose an error-optimal representation among those that satisfy
the given error bound in the minimum space.

When solving the space-bounded problem, we were interested in tabulating
error values E(i, v, b) on each triad Ci as a function of incoming value v and
allocated space b. The allocated space parameter does not exist for the error-
bounded problem, while the maximum-error bound ε is a universal parameter
that applies on each individual estimated data value di; hence, it does not need
to enter the recurrence. Thus, we are now interested in the behavior of an
S(i, v) function: the minimum space budget needed by a CHH node ci and its
descendants in order to satisfy the Lw

∞-error bound ε with incoming value v at
ci.

For a given i, S(i, v) is defined for every v ∈ R and takes values in N. The
value range of S(i, v) is delimited as follows.

THEOREM 6.2. Let s∗
i ∈ N be the minimum value of S(i, v) on a CHH node ci,

v ∈ R. Then, ∀v, S(i, v) ∈ {s∗
i , s∗

i + 1}.
PROOF. Let ṽ be an incoming value with which the minimum of S(i, v) is

obtained: ∀v, S(i, v) ≥ S(i, ṽ) = s∗
i . For that value ci is unoccupied; if it were

occupied by a nonzero value z∗, then this value z∗ itself as incoming value would
allow for an equivalent CHH of reduced space. Thus, for any other incoming
value v′, we may assign the value ṽ itself to ci so as to produce the same incoming
value for its descendants; the rest of the solution is maintained as with incoming
value ṽ. The assignment to ci increases the number of nonzero terms in ci and
its descendants by 1. In effect, ∀v, S(i, v) ∈ {s∗

i , s∗
i + 1}.

Theorem 6.2 implies that all possible incoming values v ∈ R to a node ci can
be grouped in two sets: (i) the set of values with which the optimal, minimum
space S(i, v) = s∗

i is achieved, and (ii) the rest, for which S(i, v) = s∗
i + 1. Each

of these sets can be expressed as a union of intervals of R. We now look at the
computation of S(i, v) more closely.
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Fig. 7. Two cases in which S(i, v) = 1 in a next-to-bottom-level CHH node ci .

At the bottom CHH level, the values of S(i, v) are directly computed from the
affected data. Each data item di with associated error weight wi defines a toler-
ance interval [di − ε

wi
, di + ε

wi
]; approximation values within this interval satisfy

the error bound ε at di. A CHH node at the next-to-bottom level approximates
two data values, which define two tolerance intervals, say [a, b] for the left-
branch value and [c, d ] for the right-branch one. If [a, b] ∩ [c, d ] �= ∅, then the
minimum value of S(i, v) is 0, for v ∈ [a, b]∩ [c, d ]; in this case, by Theorem 6.2,
the worst-case value of S(i, v) is 1, obtained for v /∈ [a, b]∩ [c, d ], as this value is
corrected to optimal by a single nonzero value at ci. Otherwise, the minimum
of S(i, v) is 1, obtained when v ∈ [a, b] ∪ [c, d ], since a single nonzero value in
the appropriate branch node suffices to satisfy the error bound ε; in that case,
by Theorem 6.2, the worst-case value of S(i, v) is 2, for v /∈ [a, b] ∪ [c, d ].

Figure 7 presents the two cases in which S(i, v) = 1 at a next-to-bottom-level
node ci with incoming value v; the left side of the figure depicts the former case
(one of two variants), where a single nonzero coefficient at one of the children
of ci suffices to satisfy the error bound ε on both approximated data values at
the branches of ci; the right side shows the latter case, where a single nonzero
coefficient assigned to ci itself suffices for that purpose; in the former case,
[a, b] ∩ [c, d ] = ∅ and v ∈ [a, b] ∪ [c, d ]; in the latter case, [a, b] ∩ [c, d ] �= ∅ and
v /∈ [a, b] ∩ [c, d ].

Putting it all together, S(i, v) at a next-to-bottom-level CHH node ci is defined
as

S(i, v) =

⎧⎪⎪⎨
⎪⎪⎩

0, [a, b] ∩ [c, d ] �= ∅ ∧ v ∈ [a, b] ∩ [c, d ]

1, ∨ [a, b] ∩ [c, d ] �= ∅ ∧ v /∈ [a, b] ∩ [c, d ]
[a, b] ∩ [c, d ] = ∅ ∧ v ∈ [a, b] ∪ [c, d ]

2, [a, b] ∩ [c, d ] = ∅ ∧ v /∈ [a, b] ∪ [c, d ]

(6)

According to Eq. (6), in order to represent the full value range of S(i, v) at a
next-to-bottom-level CHH node ci, we only need to store the set Pi such that v ∈
Pi ⇔ S(i, v) = s∗

i , where s∗
i is the minimum value of S(i, v) at ci. If [a, b]∩[c, d ] �=

∅, then Pi = [a, b]∩ [c, d ], otherwise Pi = [a, b]∪ [c, d ], hence Pi is a union of at
most two distinct v-value intervals. For v /∈ Pi, it is inferred that S(i, v) = s∗

i +1.
At subsequent CHH levels the computation proceeds recursively. S(i, v) at a

node ci is defined from its values in the children nodes of ci. Let ciL be the left
child of ci and ciR be its right child. The function S, applied on ciL for any incom-
ing value v ∈ R, assumes a minimum value s∗

iL
∈ N|∀vR, S(iL, v) ≥ s∗

iL
. Similarly,

applied on ciR , S assumes the minimum value s∗
iR

∈ N|∀vR, S(iR , v) ≥ s∗
iR

. Then,
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according to Theorem 6.2, S(iL, v) ∈ {s∗
iL

, s∗
iL

+ 1} and S(iR , v) ∈ {s∗
iR

, s∗
iR

+ 1}.
We assume that the computation of S(iL, v) (S(iR , v)) has recursively returned a
union of l (m) v-value intervals in which S(iL, v) (S(iR , v)) achieves its minimum
value s∗

iL
(s∗

iR
); the assumption is valid in the next-to-bottom-level case.

Let Li = ⋃l
j=1 Li (Ri = ⋃m

j=1 Ri) be the union of intervals returned for
S(iL, v) (S(iR , v)), i.e. v ∈ Li ⇔ S(iL, v) = s∗

iL
(v ∈ Ri ⇔ S(iR , v) = s∗

iR
). By

analogy to the bottom-level case, if Li ∩ Ri �= ∅, then the minimum value of
S(i, v) is s∗

i = s∗
iL

+ s∗
iR

, obtained for v ∈ Li ∩ R; such an incoming value is itself
an optimal incoming value for both subtrees of ci. Otherwise, if Li ∩Ri = ∅, then
the minimum value of S(i, v) is s∗

i = s∗
iL

+ s∗
iR

+ 1, obtained for v ∈ Li ∪ Ri; such
values of v are optimal for one subtree of ci and suboptimal (i.e., according to
Theorem 6.2, requiring one space unit more than the minimum) for the other.
In every case, according to Theorem 6.2, S(i, v) obtains only two values over
all the domain v. Hence, if Li ∩ Ri �= ∅, then S(i, v) ∈ {s∗

iL
+ s∗

iR
, s∗

iL
+ s∗

iR
+ 1},

otherwise, if Li ∩ Ri = ∅, then S(i, v) ∈ {s∗
iL

+ s∗
iR

+ 1, s∗
iL

+ s∗
iR

+ 2}.
Putting it all together, S(i, v) is expressed as

S(i, v) =

⎧⎪⎪⎨
⎪⎪⎩

s∗
iL

+ s∗
iR

, Li ∩ Ri �= ∅ ∧ v ∈ Li ∩ Ri

s∗
iL

+ s∗
iR

+ 1, ∨ Li ∩ Ri �= ∅ ∧ v /∈ Li ∩ Ri
Li ∩ Ri = ∅ ∧ v ∈ Li ∪ Ri

s∗
iL

+ s∗
iR

+ 2, Li ∩ Ri = ∅ ∧ v /∈ Li ∪ Ri

(7)

Equation (7) defines S(i, v) recursively throughout a CHH. Again, in order
to represent the full value range of S(i, v), we only need to store the set Pi such
that v ∈ Pi ⇔ S(i, v) = s∗

i . If L∩Ri �= ∅, then Pi = Li∩Ri, otherwise Pi = Li∪Ri.
For v /∈ Pi, it is inferred that S(i, v) = s∗

i + 1. This representation of the value
range of S(i, v) verifies the inductive step of our approach; we assumed that the
value ranges of S(iL, v) and S(iR , v) were thusly represented at two children
nodes, and we have shown that S(i, v) is then thusly represented at the parent
node; the assumption holds at the bottom CHH level; hence, this representation
is inductively propagated through the CHH in a bottom-up fashion with our
recursive scheme.

The set Pi is appropriately stored as a union of subintervals; each of these
subintervals has the form [m, M ]; in the general case, [m, M ] arises from the
intersection of tolerance intervals of the form [di − ε

wi
, di + ε

wi
], in which a certain

pair of data items d j , dk define the limits m, M . For the sake of solving the strong
version of the problem, each subinterval [m, M ] is stored along with appropriate
accompanying information. This track-keeping information includes:

(1) The data items dm, dM defining the subinterval’s limits m, M ; in case more
than one unequal data item defines the same limit (as a variation in their
associated weights may allow for), then the one most distant from this limit,
hence of smallest weight, is the critical one (since the error of the data
item of larger weight is more rapidly decreased as the approximation value
moves away from the limit); in the case of maximum absolute error, dm, dM
are the minimum and maximum values among the data whose tolerance
intervals intersection has produced [m, M ] (i.e., the data under the scope
of ci that can be approximated by a value in [m, M ]).
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(2) The optimal incoming/assigned value to ci, v∗ ∈ [m, M ], that is, the value
that minimizes the employed maximum-error metric in the data approxi-
mation; for maximum absolute error, v∗ = dm+dM

2
; in general, for a weighted

maximum-error metric, v∗ = wmdm+wM dM
wm+wM

, where wm (wM ) is the weight as-

sociated with dm (dM ); in the case of maximum relative error with a sanity
bound S, v∗ is calculated according to the case analysis of Guha et al. [2004].

(3) The optimum error e∗ achieved by v∗.

The root case S(0, 0) of the CHH recurrence is defined like the regular recur-
sive case (a CHH has no special root coefficient as a Haar+ tree does). Hence,
the call of S(0, 0) derives the minimum-space solution. In addition, thanks to
the track-keeping of minimum actual errors, it returns the minimum error that
can be achieved by a CHH of that minimum space, in a secondary optimization.
In order to retrieve this optimal CHH, we only need to trace backwards through
the choices made at each node after the solution at the top of the CHH has been
established; when a nonzero value z has to be assigned to a node ci, the error-
minimizing value v∗ is chosen. Furthermore, we may follow the space-efficiency
paradigm suggested by Guha [2008]; after the solution is established at the root
node, we solve the two half-size problems at the two subtrees of the root and
recursively recompute the respective solutions, by the same strategy. This ap-
proach stores at most the value-range, assigned-value and error information
on only log n + 1 CHH nodes concurrently (one at each level on a root to leaf
path, plus one for the last node’s sibling).

Complexity Analysis. The space required to store the set (union of intervals)
Pi representing the value range of S(i, v) for a node ci grows with the CHH
level in which ci resides. In a next-to-bottom-level node ci, two (2) distinct value
intervals need to be stored in the worst case, one for each approximated data
value. In the worst case, a parent node ci at the next level above receives a union
of two intervals from both its children nodes ciL and ciR as the sets of incoming
values Li, Ri that achieve the minimum space. Hence, in the worst case, four
(4) intervals need to be stored in order to represent the value range of S(i, v)
at ci. Inductively, it follows that a node ci at level �i of the CHH, counting from
the bottom, requires O(2�i ) space in order to store the union of intervals Pi that
represents the value range of S(i, v) at ci. Unions of intervals are kept in sorted
order from the bottom level onwards; thus, union and intersection operations
are conducted in a merging fashion in linear time. Thus, a node ci at level �i
requires O(2�i ) time to compute its sorted union of intervals. At most log n + 1
value range arrays need to be concurrently stored, hence the space complexity

is O(
∑log n

�=0 2�) = O(n). Similarly, level � contains n
2�+1 nodes, hence the total time

complexity is O(
∑log n

�=0 2� n
2�+1 ) = O(n log n).

In conclusion, our algorithm for the Lw
∞-bounded longest-prefix-match CHH

problem achieves the optimal-space solution, and also secondarily minimizes
the actual error within that space, in low polynomial time.

6.1.1 Testing Error Optimality. Even though our algorithm minimizes the
actual Lw

∞-error ε̄ within the space B̄ required to satisfy the given error bound
ε, it is still useful, for our purposes, to determine whether the derived Lw

∞-error
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value ε̄ is also optimal for other space budgets B > B̄, as it may be. The following
lemma assists to that end.

LEMMA 6.3. Let H be the B̄-term CHH synopsis of D for the Lw
∞-error bound

ε returned by our scheme, ε̄ ≤ ε be the minimized actual Lw
∞-error of H, and ε∗ be

the minimum Lw
∞-error of a CHH synopsis of D in B > B̄ buckets. Moreover, let

H̃ be the B̃-term CHH synopsis of D returned by a variant of our scheme in which
the condition to be satisfied on each approximated value di is Lw

∞(|d̂ i − di|) < ε̄,
that is, error values less than but not equal to ε̄ are allowed (< instead of ≤),
hence the calculated value intervals are open instead of closed. Then ε̄ = ε∗ if
and only if B̃ > B.

PROOF. By definition, ε̄ is the least error that can be achieved in B̄ space,
while B̃ is the least space required to achieve error less than ε̄. If it were B̃ ≤ B̄,
then error less than ε̄ would be achievable in B̄ space; hence, by reduction ad
absurdum, it must be B̃ > B̄. If B̃ > B, then any CHH synopsis of D with Lw

∞-
error less than ε̄ requires more than B buckets, hence ε̄ is equal to the B-optimal
error ε∗ and H is also the optimal CHH synopsis in B space (in fact, the optimal
synopsis for all space budgets from B̄ to B̃ − 1). Formally, B̃ > B ⇒ ε̄ = ε∗. In
reverse, assume that ε̄ is in fact equal to the B-optimal error ε∗; then it cannot
be B̃ ≤ B, as then an error value less than the assumed B-optimal would indeed
be achievable in B space units, contradicting our assumption; hence B̃ > B.
Formally, ε̄ = ε∗ ⇒ B̃ > B. In conclusion, ε̄ = ε∗ ⇔ B̃ > B̄.

In the next section, we show how our solution to the error-bounded prob-
lem can provide a beneficial shortcut towards solving the dual, space-bounded
problem that we are interested in.

6.2 Solving the Space-Bounded CHH Problem

Our longest-prefix-match CHH construction algorithm for maximum-error met-
rics invokes the solution to the error-bounded problem; that is, it computes
S(0, 0) for a given error bound ε by binary search in the domain of ε. In contrast
to the heuristics of Reiss et al. [2006], this method eschews both a tabulation
with respect to space b as well as a tabulation of lowest occupied ancestor nodes.
Hence, it gains in terms of both space- and time-efficiency (see Table III, Sec-
tion 8.1, which follows). Most significantly, it achieves the optimal solution to
the space-bounded longest-prefix-match CHH problem for any maximum-error
metric.

The seed value of the fluctuating error bound ε for the target maximum-
error metric Lw

∞ is obtained as the Lw
∞-error corresponding to a synopsis of

the B largest Haar wavelet decomposition coefficients by absolute value, easily
computed in O

(
n log B

)
time. For the sake of structure consistency, we could

use the nonoverlapping CHH partitioning heuristic of Reiss et al. [2006]; still,
its O

(
nB log B

)
time complexity may supersede the O

(
n log n

)
time complexity

of our algorithm for the error-bounded problem itself, and hence undermine
the overall complexity of our approach. On the other hand, the simple Haar
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Fig. 8. Indirect CHH synopsis construction.

wavelet heuristic provides a reasonable seed for the error bound in practice
without a time complexity overhead. This seed is not provably an upper bound
for the error of the optimal CHH for the target maximum-error metric. Still,
given the poor performance of this heuristic for maximum-error metrics (suffi-
ciently documented in Garofalakis and Gibbons [2004], Garofalakis and Kumar
[2005] and Karras and Mamoulis [2005]), it is quite larger in practice; should
an exceptional case occur, the binary search accommodates it by doubling the
tested error bound value. After the seed error bound is calculated, the solution
to the strong error-bounded problem is repetitively invoked by binary search on
the error bound ε. This solution minimizes the error within the optimal space;
hence, the binary search is bound to yield the optimal error when it converges to
the space budget B. However, a space budget less than B may also achieve the
B-optimal error. Therefore, in order to ascertain the convergence of the search,
our procedure performs an optimality test, as defined in Section 6.1.1, for each
examined error bound ε that requires less than B space with actual minimized
error ε̄ within that space; that is, it computes the value of S(0, 0), for which the

condition to be satisfied is not Lw
∞(‖D − D̂‖) ≤ ε̄, but Lw

∞(‖D − D̂‖) < ε̄. If this
variant requires more than B space, then the search can safely terminate; oth-
erwise, it proceeds. Hence, the search terminates when the guessed error bound
reaches a value that requires a synopsis of B̄ ≤ B space with actual error ε̄,
while the optimality test indicates than any error bound ε < ε̄ requires B̃ > B
space. Moreover, during the binary search iterations, whenever the tested error
bound ε is decreased, the actual error ε̄ derived for the previous bound is taken
into account for determining the new bound. Figure 8 shows a pseudocode for
this IndirectCHH algorithm.

Complexity Analysis. The binary search process IndirectCHH adds an O(log E
r )

factor to the time complexity, where E is the seed of the search, bounded by the
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largest input value, and r > 0, the precision by which the given machine rep-
resents real numbers. After the binary search has converged, a space-efficient
synopsis construction process is called, analogous to that of Section 5.4.1; it
reenters the problem with the final error bound in the two branches of c1 and
recomputes the respective solutions recursively thereafter. Given that the basic
time complexity of the error-bounded solution is O(n log n), this space-efficient

synopsis construction process with subproblem reentry takes O(
∑log n

�=0 2�� n
2� ) =

O(n log2 n) time. In effect, the total time complexity for computing a B-term
longest-prefix-match CHH that minimizes Lw

∞ is O(n log n(log E
r + log n)). The

former log term in the parenthesis expresses the cost of the binary search;
the latter expresses the cost of constructing the final B-term CHH in a space-
efficient manner after the optimal error value E

r has been established. This
complexity absorbs the O(n log B) term for determining the seed of the search.
Under the assumption that the log E

r factor (i.e., the largest input value) does
not grow with n, this runtime is lower than the O(nB log n log B) runtime of
the winner greedy heuristic in Reiss et al. [2006]. Besides, the space require-
ment of O(n) is lower than the O(B log2 n + n) space of that heuristic. Table III
(Section 8.1) presents the respective complexities of the more demanding k-
holes heuristic of Reiss et al. [2006] as well. In conclusion, IndirectCHH achieves
a low-polynomial-time optimal solution to the space-bounded longest-prefix-
match CHH partitioning problem for maximum-error metrics; hence, the dif-
ficulty of choosing an optimal longest-prefix-match partitioning function, cor-
rectly identified in Reiss et al. [2006], can indeed be overcome in the case of
maximum-error metrics.

6.3 The Question of Convergence

We now study the question of the convergence of our algorithm to the optimal
error result in more detail. This question is most interesting for error functions
whose values may require higher precision than that by which the given data
themselves are expressed. For a maximum-error function such as the maximum
absolute errorL∞, the optimal error result has itself no more precision than that
by which the input data themselves are expressed; it can in fact be expressed
as the semi-difference of two such data values. Still, this is not the case for
other maximum-error functions; for example, an optimal maximum relative
error result may be a recurring number (such as 2

3
= 0.6̄10 = 0.1̄02, a recurring

number in both decimal and binary). Hence, a question of whether our indirect
approach will actually converge to the optimal error result emerges.

We first emphasize that, even if our indirect approach had to calculate the
error result based on binary division operations themselves, this requirement
would not render the error result less exact than that of a (hypothetical) exact
algorithm that would compute it directly. That is, such a hypothetical algorithm
would itself compute the optimal error with a precision of r, as allowed by the
given machine. Our binary-search-based method would also converge to the
optimal result with as much precision as the given machine allows. Hence the
indirect approach affords the same precision as an exact solution on the same
finite-precision machine.
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Still, as we discussed, the convergence of our indirect approach to the optimal
error value is not expected to be achieved through the binary division opera-
tions themselves, but even more robustly, thanks to the secondary optimization,
which calculates the actual minimum error value ε̄ of a minimum-space syn-
opsis for an error bound ε. In effect, the binary search terminates as soon as it
reaches a tested error bound ε that requires the same amount of space B̄ ≤ B
as the actual optimal error ε∗ within space B; we use this formulation in order
to allow for the possibility that the B-optimal error is also achieved in less than
B space units. In other words, the binary search does not have to converge to
the exact error value ε∗ itself, but to any value within the appropriate interval.

Formally, let f : R+ → N be the function that returns the minimum space
B = f (ε) ∈ N needed to satisfy the error bound ε ∈ R+, according to a given
maximum-error metric, in a given summarization problem. Then f is a non-
increasing, piecewise-constant function of ε, mapping half-closed intervals of
the form [εB

min, ε<B
min) to natural numbers B, such that εB

min is the minimum error
that can be achieved in B space units and ε<B

min the minimum error achievable in
less than B space units; equivalently, B is the minimum space needed to satisfy
an error bound ε if and only if ε ∈ [εB

min, ε<B
min). We call the interval [εB

min, ε<B
min)

the error interval of B. The following theorem proves the convergence of our
algorithm without regard to the precision of the machine it runs on.

THEOREM 6.4. Let B∗ ≤ B be the minimum space in which the same mini-
mum error ε∗ as in the given space budget B can be achieved in a given summa-
rization problem. Then IndirectCHH converges to the optimal error result for that
problem in O(log E

rB∗ ) iterations, where E is the seed error value of the binary
search and rB∗ = ε<B∗

min − εB∗
min is the size of the error interval of B∗.

PROOF. The binary search need only reach any value of the error bound ε

in the error interval of B∗. As soon as such a value of ε is reached, the actual
minimum error ε∗ in space B∗ is calculated, and the optimality test is positive,
since, by definition, error bounds less than ε∗ cannot be satisfied within the
given space budget B; hence the algorithm terminates. In effect, the binary
search does not need proceed to precision higher than that defined by the size
rB∗ of the error interval of B∗; ergo, IndirectCHH converges to the optimal error
result in O(log E

rB∗ ) iterations.

Figure 9 depicts a graphic representation of the intervals defined by function
f and the state of affairs before the algorithm’s termination.

In conclusion, IndirectCHH converges to the optimal error result with as much
precision as the given machine allows, and would still robustly converge to it
even on an ideal machine that allowed for infinite decimal-point (or binary-
point) precision.

6.4 An Approximate Solution to the Error-Bounded Haar+ Problem

The methodology of Section 6.1 can be applied to the error-bounded synopsis
problem in the general Haar+ case as well. However, due to the expectations
raised by head coefficients, the number of distinct value intervals that needs to
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Fig. 9. Function f mapping error intervals to space budgets, and terminating the state of

affairs.

be stored per triad grows super-exponentially with the Haar+ tree level, ergo
exponentially with the data set size. Hence, the worst-case complexity of this
solution, presented in the Electronic Appendix that is accessible in the ACM
Digital Library, is O

(
3n

)
. The exponentially increasing number of intervals

this algorithm stores may be scaled down by overlaps among such intervals in
practice; still the scalability of this algorithm cannot be guaranteed. Therefore,
in this section we present a fully polynomial-time approximation scheme
(FPAS) for the error-bounded Haar+ synopsis problem, along the lines of
the approximation methodology applied in Section 5 for its space-bounded
counterpart. This solution allows for more efficient synopsis construction for
maximum-error metrics than the general-error algorithm of Section 5. We
start out by defining a strong version of the error-bounded problem:

Problem 6.5. Given a data vector D and an error bound ε for a (weighted)
maximum-error metric Lw

∞, construct a Haar+ representation H of D that

produces an approximation D̂, such that Lw
∞(‖D − D̂‖) ≤ ε and the number

of occupied nodes B∗ in H is minimized. Furthermore, of all B∗-nonzero-term
Haar+ representations satisfying ε, select the one with the minimal actual error
ε∗ ≤ ε.

This problem can be solved by a dynamic-programming recurrence analogous
to the one introduced for the general space-bounded problem in Section 5.2.

In order to construct our solution, we need to systematically explore the
space of possible retained coefficients and values assigned to them. In order to
delimit the computational cost, we again quantize the (real-valued) domains of
possible incoming values v and, for each v, possible values assigned to the head
and left/right supplementary coefficients, zh, zl , zr (see Table I), into multiples
of a small resolution step δ. Based on this quantization, our algorithm considers
all possible values of v and zh, zl , zr , for a triad Ci. In a bottom-up process, it
determines the optimal value to assign to Ci for v. The next section outlines
some lemmas that establish upper and lower bounds for these domains.
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6.4.1 Delimiting the Value Domains

LEMMA 6.6. Let mi be the minimum and Mi the maximum individual data
values under the scope of triad Ci and v ∈ Si be a possible incoming value at Ci
for which the maximum error bound ε is satisfied, and ε̄ = ε

min j∈I {|wj |} , where I
is the interval under the scope of Ci; then v ∈ [mi − ε̄, Mi + ε̄].

PROOF. A root-to-leaf path in the Haar+ tree reconstructs a data value it
leads to, while the value v is reconstructed from the root up to triad Ci. According
to Theorem 4.2, at most one coefficient per triad needs be occupied. We will show
that there exists a path from Ci to a leaf in which v is not increased (decreased).
We analyze the cases as follows:

(1) A triad with a nonzero head coefficient, hence zero-valued supplementary
coefficients, decreases its incoming value in one direction and increases it
in another. Hence there exists a direction in which the incoming value is
not increased (decreased).

(2) A triad with a zero head coefficient has at least one zero supplementary
coefficient and leaves the incoming value unchanged in the corresponding
direction, hence there exists a direction in which the incoming value is not
increased (decreased).

Hence, there exist reconstructed values d̂ j , d̂ k , such that d̂ k ≤ v ≤ d̂ j .
However, all reconstructed values should lie within the range defined by the
extrema under the scope of Ci, extended by the error tolerance ε̄, that is, d̂ j ≤
Mi + ε̄ and d̂ k ≥ mi − ε̄, thus v ∈ [mi − ε̄, Mi + ε̄].

Lemma 6.6 implies that the set Si ⊂ R of potential incoming values at triad
Ci consists of the multiples of δ in the interval [mi − ε̄, Mi + ε̄]; thus, |Si| ≤
� Mi−mi+2ε̄

δ
� + 1 = O(�

δ
), where � = M − m (see Table I). We now demarcate the

values assigned to the head coefficient.

LEMMA 6.7. Let v ∈ Si ⊂ R be a possible incoming value at Ci and zh ∈ Sv
i,H ⊂

R be a value that can be assigned to the head coefficient of Ci for incoming value
v, satisfying the individual-data error bound ε; then |zh| ≤ min{Mi + ε̄ − v, v −
(mi − ε̄)}.

Lemma 6.7 implies that the finite set of possible assigned values we have
to examine for the head coefficient at Ci is Sv

i,H , where |Sv
i,H | = O(�

δ
). The set

Sv
i,L (Sv

i,R) of possible values assigned to the left (right) supplementary coeffi-
cients of triad Ci can be delimited in a similar fashion. We devise our dynamic
programming solution based on this delimitation of the search space.

6.4.2 Deriving the Answer. Let S(i, v) be the minimum space that should
be allocated to triad Ci and its descendants in the Haar+ tree in order for the
given error bound ε to be satisfied with incoming value v at Ci. As in Section
5, the solution is derived with a bottom-up dynamic programming recursive
scheme. However, now the tabulation is simpler; no distributions of allocated
space need to be examined, we only tabulate over bucket values. This conve-
nience renders both the time and, most significantly, the space complexity of
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this algorithm lower than the one of Section 5.2. The solution is established af-
ter S(0, 0) is computed. Again, at each visited triad Ci the algorithm calculates
an array A from the precalculated arrays L and R of its children triads CiL ,
CiR . An entry A[v] now contains: (i) the δ-optimal value z to assign to one of the
coefficients in Ci (possibly none); (ii) the minimum space required; and (iii) the
actual minimized error thus obtained (needed to solve the strong version of the
problem). A MinSpace procedure computes S(i, v) recursively:

S(0, 0) = min
z∈S0

0,H

{S(1, z) + (z �= 0)}

S(i, v) = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
zh∈Sv

i,H

{S (il , v + zh) + S (ir , v − zh) + (zh �= 0)}
min

zl ∈Sv
i,L

{S (il , v + zl ) + S (ir , v) + (zl �= 0)}
min

zr∈Sv
i,R

{S (il , v) + S (ir , v + zr ) + (zr �= 0)}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8)

The above recurrence follows the same pattern as that for the tabulation of
error in Section 5.2, and also observes the redundancy property proved in The-
orem 4.2. It differs in the absence of a b parameter and in the inclusion of the
boolean terms denoting the space occupied by nonzero coefficients. Moreover,
additional care is taken in the recursion in order to select the error-optimal
among all solutions minimizing the space requirement; that is, out of all solu-
tions (that is, value assignments) that achieve the optimal space result, the one
(or one of those) that also minimizes the error achieved thereby is selected as
the optimal assignment; hence the strong version of the problem is solved. A
recursive procedure that derives the δ-optimal space result, and the secondary
δ-optimal error within that space, without constructing the synopsis itself is
defined.

Complexity Analysis. The array A computed by MinSpace on a triad Ci holds
|Si| entries, one for each possible incoming value, hence its size is O(�

δ
); and at

each triad Ci and for each v ∈ Si, the loop through all possible assigned values
needs O(�

δ
) time. In conclusion, the time complexity of MinSpace is O((�

δ
)2n).

And, since at most log n + 1 arrays need to be concurrently stored, the space
complexity is O(�

δ
log n + n), where n stands for the storage of the data.

6.5 Solving the Space-Bounded Haar+ Problem

Our Haar+ synopsis algorithm for maximum-error metrics invokes the MinSpace
module by binary search in the domain of error. This method avoids a tabulation
with respect to space b, hence it pays in terms of both space- and time-efficiency.
As in Section 6.2, the seed value of the fluctuating error bound ε for the target
maximum-error metric Lw

∞ is obtained as the Lw
∞-error corresponding to the

synopsis of B largest Haar decomposition coefficients by absolute value, easily
computed in O(n log B) time. Thereafter, the MinSpace procedure is repeatedly
invoked with binary search on the error bound value ε. Again, our solution to the
strong error-bounded problem minimizes the error within the δ-optimal space;
hence, this binary search procedure is bound to yield the δ-optimal error when it
converges to the space budget B. However, a space budget less than B may also
achieve the B-optimal error. Therefore, in order to ensure the convergence of
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the search, our procedure also performs an optimality test, analogous to that of
Section 6.1.1, for each examined error bound ε that requires less than B space; if
this test is positive, then the search can safely terminate; otherwise, it proceeds.
The search terminates when the guessed error bound reaches a value that either
requires a synopsis of exactly B space, or requires a synopsis of B̄ < B space and
actual error ε̄, while the optimality test indicates than any error bound ε < ε̄

requires B̃ > B space. When the tested bound ε is decreased, the minimum error
derived for the previous bound is taken into account for determining the new
bound. As per the convergence of the algorithm, the discussion of Section 6.3
applies. This IndirectHaar+ algorithm is analogous to the IndirectCHH algorithm
of Section 6.2 (Figure 8).

Complexity Analysis. As in Section 6.2, the binary search process IndirectHaar+

adds an O(log E
r ) factor to the time complexity, where E is the seed of the

search, bounded by the largest input value, and r > 0 the resolution with
which the given machine represents real numbers. After the binary search has
converged, a space-efficient synopsis construction process is called, analogous
to that of Section 5.4.1; it reenters the problem with the final error bound in
the two branches of C1 and recomputes the respective solutions recursively
thereafter. Setting � as the Haar+ tree level, the construction time becomes

O((�
δ

)2
∑log n

�=0 2� n
2� ) = O((�

δ
)2n log n). In effect, the total time complexity for com-

puting a B-term Haar+ synopsis that minimizes Lw
∞ is O((�

δ
)2n(log E

r + log n)).
The former log term expresses the cost of the binary search, while the latter one
expresses the cost of constructing the final B-term synopsis in a space-efficient
manner after the optimal error value ε∗ has been established. This complexity
absorbs the O(n log B) term for determining the seed of the search. Under the
assumption that the log E

r factor (i.e., the largest input value) does not grow

with n, this runtime is decisively lower than the O((�
δ

)2n log n log2 B) runtime
of the general-case space-efficient (Direct) algorithm applied on a maximum-
error metric (Section 5.4.1). Moreover, unless9 n � Blog B, it is lower than its
O((�

δ
)2n log2 B) basic runtime too. The space requirement of O(�

δ
log n + n) is

lower than the O(�
δ

B log n
B + n) space of the space-efficient Direct algorithm.

In conclusion, IndirectHaar+ has better asymptotic behavior than its Direct coun-
terpart in both time and space, while its complexities are independent of the B
parameter.

7. MULTIDIMENSIONAL EXTENSION

The efficient handling of multidimensional data is a major challenge for data
summarization algorithms. Moreover, hierarchical summarization techniques
have an innate advantage over histograms in this area; that is, the construc-
tion of an optimal histogram of arbitrary nonoverlapping rectangular buckets
in more than one dimension is an NP-hard problem [Muthukrishnan et al.
1999]. Algorithms constructing multidimensional histograms are either heuris-
tics [Muralikrishna and DeWitt 1988; Poosala and Ioannidis 1997; Aboulnaga
and Chaudhuri 1999; Bruno et al. 2001; Deshpande et al. 2001; Thaper et al.

9The constraint is verified for reasonable B
n ratios; e.g. for B = 16, Blog B = 65536.
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2002; Srivastava et al. 2006] or provide solutions with approximation guar-
antees for limited forms of the problem, in which the arbitrariness of bucket
sizes and positions in constrained [Khanna et al. 1997; Muthukrishnan and
Suel 2005; Furfaro et al. 2005]. On the other hand, hierarchical structures and
their accompanying algorithms are more conveniently extended to multiple
dimensions, as they are based on a fixed, nonarbitrary hierarchy. Thus, past
hierarchical summarization techniques [Chakrabarti et al. 2001; Muthukrish-
nan and Strauss 2003b; Garofalakis and Gibbons 2004; Garofalakis and Kumar
2005; Guha and Harb 2008; Reiss et al. 2006] have been extended to the multi-
dimensional case. In this section, we propose a multidimensional extension of
the Haar+ tree.

7.1 The Multidimensional Haar Transform

The one-dimensional definition of the Haar wavelet transform has been ex-
tended to multidimensional data arrays by two distinct methods, namely the
standard multidimensional Haar wavelet transform, used in Vitter and Wang
[1999], and the nonstandard one, used in Chakrabarti et al. [2001]. The stan-
dard method is based on iterative applications of the one-dimensional trans-
form; the Haar wavelet coefficients extracted by the application of the decom-
position along the rows of one dimension in one step are themselves treated
as data and decomposed along another dimension in its next step [Vitter and
Wang 1999]. In contrast, the nonstandard method operates directly in the mul-
tidimensional domain and constructs a decomposition in one pass [Chakrabarti
et al. 2001; Garofalakis and Gibbons 2004]. Moreover, thanks to its regularity,
the nonstandard Haar transform allows for concise representation of sign in-
formation [Chakrabarti et al. 2001]. Thus, past Haar wavelet-based synopsis
construction schemes have opted for the nonstandard method [Garofalakis and
Gibbons 2004; Garofalakis and Kumar 2005; Guha and Harb 2008]. A further
argument in favor of the nonstandard method is that it preserves the ratio-
nale for the use of the Haar wavelet transform in the first place; namely, that
a large number of the coefficients (that is, differences) extracted from neigh-
boring (average) values, are likely to be small in magnitude, hence incur small
error when truncated [Matias et al. 1998]. This state of affairs is preserved in
the nonstandard method, which operates on data values and their averages in
successive layers of detail; in contrast, the standard method operates on the
data differences themselves from its second step onwards.

The basic step of the nonstandard Haar transform in the two-dimensional
case is shown in Figure 10. In this case, a two-dimensional array of four values
{a, b, c, d } is decomposed to their average V = a+b+c+d

4
and three decomposition

coefficients, A = a+b−c−d
4

, B = a−b−c+d
4

, C = a−b+c−d
4

. The original data can be
reconstructed in terms of the average and these coefficients by addition and
subtraction: a = V + A + B + C, b = V + A − B − C, c = V − A − B + C, d =
V − A+ B − C. The figure depicts, along arrows, the set of the three operations
that have be performed between the incoming value V to a decomposition node
and the three stored coefficients in that node, A, B, C respectively, in order to
reconstruct the original data values.
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Fig. 10. Two-dimensional nonstandard Haar wavelet decomposition.

The full nonstandard Haar decomposition of a (two-dimensional) 2m × 2m

data array A is computed by recursively applying the basic decomposition step
throughout the array at successive levels of resolution. The overall average
results derived from quadruplets of values at one level are collected in the
same quadrant of the transform array; the process is recursively reapplied on
this quadrant in the next resolution level, where the collected averages play
the role of data values. The same process is extended to higher dimensionality.
One way of conceptualizing the d -dimensional nonstandard Haar transform
is to think of a 2d hyper-box being shifted across the data array, performing
averaging and differencing, and distributing the results to appropriate hyper-
quadrants in the transform array [Chakrabarti et al. 2001]. In the next section,
we proceed to develop a multidimensional definition of the Haar+ tree, inspired
by the nonstandard multidimensional Haar transform.

7.2 The Multidimensional Haar+ Tree

Figure 11 depicts a two-dimensional Haar+ tree that can be used to summarize
a 16-element 4 × 4 two-dimensional data set. A Haar+ tree node now has four
(in general, 2d for d dimensions) children nodes and contains three (in general,
2d − 1) head coefficients a, b, c, as well as four (in general, 2d ) supplementary
coefficients q, r, s, t. These are combined by addition and subtraction in order to
create the four (in general, 2d ) outgoing values of that node, one towards each
child node. Each child node summarizes a different region of the data array,
called its support region. A node’s head coefficients play the role of regular Haar
wavelet transform coefficients, and all share the same support region; each of
the four supplementary coefficients is an additional term on one of the four
outgoing values, and shares the same support region as the main coefficients
of its child node.

In the two-dimensional case, the state of a given node is an eight-element (in
general, 2d+1-element) vector [v, a, b, c, q, r, s, t] containing the incoming value
v to that node and the coefficient values a, b, c, q, r, s, t in it. A state of a node C
creates the four-element (2d -element) outgoing vector [v+q+a+b+c, v+r+a−b−c,
v+s−a −b+c, v+ t −a +b−c]. Then the redundancy theorem about Haar+-
based data representations can be extended to the two-dimensional case as
follows.
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Fig. 11. A two-dimensional Haar+ tree.

THEOREM 7.1. Any two-dimensional Haar+ tree H, in which at least one node
contains more than three nonzero coefficients, is equivalent to a Haar+ tree H′

such that every node C ∈ H′ contains at most three nonzero coefficients, and
‖H′‖ ≤ ‖H‖.

PROOF. Let Ci be a node in H that contains more than three nonzero coeffi-
cients and finds itself in the state [v, a, b, c, k, l , m, n]. This state is equivalent to
the state [v, 1, 1, 1, k+a+b+c, l+a−b−c, m−a−b+c, n−a+b−c], as both create the same
outgoing vector [v+k+a+b+c, v+l+a−b−c, v+m−a−b+c, v+n−a+b−c]. Hence, an assign-
ment of more than three nonzero values in a node Ci is reducible to the assign-
ment of exactly four nonzero values, one on each supplementary coefficient. In
effect, Ci assumes the state [v, 0, 0, 0, q, r, s, t], where q �=0, r �=0, s �=0, t �=0, cre-
ating the outgoing vector [v+q, v+r, v+s, v+t]. However, the same outgoing vector
is created by a node in the state [v+ q+r+s+t

4
, q+r−s−t

4
, q−r−s+t

4
, q−r+s−t

4
, 0, 0, 0, 0].

In conclusion, a node Ci in the state [v, 0, 0, 0, q, r, s, t], where q �=0, r �=0, s �=0,
t �= 0, can be reduced to a node with exactly three nonzero (head) coefficients
by modifying its incoming value from v to v+ q+r+s+t

4
. Such a modification can

be carried out by adding q+r+s+t
4

to the value z of the coefficient at the parent
node of Ci. If this addition brings about more than three nonzero coefficients
in Cj , we reduce Cj to three nonzero values likewise. The process leads from
any given node upwards, terminating at the root. Each step may decrease, but
not increase, the amount of nonzero coefficients in the tree. In effect, any two-
dimensional Haar+ tree H is reducible to a Haar+ tree H′ such that every node
C∈H′ contains at most three nonzero coefficients, and ‖H′‖ ≤ ‖H‖.

Theorem 7.1 leads to the generalized form of Corollary 4.3:

COROLLARY 7.2. A B-term d-dimensional Haar+ tree H that approximates a
data array D while minimizing an error metric E does not need to contain more
than 2d − 1 nonzero coefficients per node.

A d -dimensional Haar+ tree representing a data array of n = md values has
height log2d md = log m and contains O(( m

2
)d ) nodes. We now extend our value

delimitation to the multidimensional case.
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7.3 Multidimensional Value Delimitation

Lemma 5.2 is straightforwardly extended to the multidimensional case, thanks
to Theorem 7.1. The outgoing values of a node cannot all be greater than, nor
all less than, the incoming value v to that node. Either the incoming value will
equal at least one of the outgoing values, or it will be decreased in at least one
outgoing value and increased in at least another one. Furthermore, we postulate
the multidimensional version of Proposition 5.3; that is, if the incoming value
v at a node Ci is v /∈ (

mi, Mi
)
, then all main coefficients in Ci are set to zero.

We introduce this postulate in order to contain the value search space, and
hence the complexity of our synopsis construction algorithm. In fact, we can also
follow an approach with which we can strictly prove the exact multidimensional
equivalent of Proposition 5.3; that is, nonzero head coefficients are unnecessary
when v /∈ (

mi, Mi
)
. Such an approach would require the incorporation of further

supplementary coefficients in the structure—one for every group of child nodes
that a head coefficient affects with the same sign; thus, in the two-dimensional
case, this approach would require six more supplementary coefficients. Such
an overloading of the structure would incur extra computational cost for the
sake of marginal approximation benefits. Thus we have chosen to maintain the
simplicity the structure. The following theorem constrains the incoming values
to all nodes in H in terms of the global extrema m and M .

THEOREM 7.3. The incoming value v to a triad Ci in H satisfies the inequality
2d m − (2d −1)M < v < 2d M − (2d −1)m.

PROOF. Let v be an incoming value to a node Ci, coming from an ancestor
triplet Ck of Ci, such that the incoming value v′ to Ck itself is v′ ∈ (m, M ). In
the worst case, each of the 2d − 1 head coefficients in Ck will assume a value
of magnitude |v′ − M | (|v′ − m|), with appropriate signs, in order to produce
2d − 1 outgoing values of the extreme value M (m), respectively. For each of
these 2d − 1 outgoing values, an even number of coefficients cancel each other
out, hence the odd one out affects v′ in each case. Let v be the remaining 2d th
outgoing value, that is, the single one in which all coefficients contribute with
the same sign, hence v = 2d v′ − (2d −1)M (2d v′ − (2d −1)m). Still, v′ ∈ (m, M ),
hence v ∈ (2d m − (2d −1)M , 2d M − (2d −1)m).

Theorem 7.3 is the general form of Theorem 5.7. In effect, the difference of
the largest from the smallest possible incoming value is (2d+1 −1)�, where � =
M−m. Hence, in the d -dimensional case, |S| ≤ (2d+1−1)��

δ
�+1 = O(2d �

δ
). On the

other hand, the cardinality of the sets containing the potential assigned values
at the head and supplementary coefficients of a triad Ci that are multiples of δ

is O(�
δ

).

7.4 Multidimensional Algorithms

The one-dimensional algorithm of Section 5.2 can be extended to the multidi-
mensional case. At each node Ci, it needs to consider O(2d �

δ
) incoming values;

for each of those, it has to check O((�
δ

)2d −1) combinations of value assignments
on 2d −1 main coefficients using the 2d arrays returned from its children. For
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each tabulated value of available space b at node Ci with incoming value v, the
algorithm needs to determine the optimal distribution of these b space units
among the 2d −1 main coefficients on Ci, its 2d supplementary coefficients, and
its 2d children nodes. We can treat each supplementary coefficient as a member
of the subtree at its child node. Hence, for each combination of values assigned
to the main coefficients in Ci and amount of allocated space b at a child Ck of
Ci rooted on supplementary coefficient ce, we have to examine two cases: either
b space is given to Ck and its subtree with incoming value v, or b − 1 space is
given to Ck , with a nonzero value z assigned to ce and modifying v accordingly.
The δ-optimal value of z does not need to be separately computed for each v.
Instead, it is computed only once for each b; thereafter, it is simply adjusted
according to the given v, so as to produce the required best incoming value to
Ck for the given value of b. The search for the optimal distribution of space b
can be efficiently performed by ordering the children of Ci in a binary tree of
2d − 1 subnodes and executing binary search on them, as in Garofalakis and
Gibbons [2004], Garofalakis and Kumar [2005], and Guha and Harb [2008].
This process takes O(log min{B, 2d�i }) time per entry per subnode per com-
bined value assignment, where �i is the Haar+ tree layer of node Ci. Hence, the
solution takes O(22d (�

δ
)2d

nB) time; only arrays of children nodes in a single
root-to-bottom path need to be concurrently stored, hence, as there are at most

2d children per node, the space is O( 22d

d
�
δ

B log n
B ).

If the target error metric is a maximum error metric, we can do better. As
in Section 6.4, we employ the algorithm that solves the complementary, error-
bounded problem. We thus gain two advantages. First, we eschew the tabu-
lation of space. Second, the cardinality of the set of possible incoming values
is only |S| = O(�

δ
); this is due to the fact that, according to Lemma 5.2, no

incoming value can become too distant from the extrema of the data set with-
out producing a reconstructed value violating the maximum-error bound the
algorithm operates on. The key operation is now a tabulation only for allowed
incoming values at each node Ci. The algorithm determines the δ-optimal as-
signed value for all 2d−1 head coefficients residing on node Ci for each entry in
this tabulation. We have to consider O(�

δ
) incoming values at node Ci, and, for

each of those, O((�
δ

)2d −1) combinations of value assignments on the 2d −1 head
coefficients in Ci, scanning through the 2d arrays returned from the children
nodes. Since there are O(( m

2
)d ) nodes in the tree, the basic runtime becomes

O(2d (�
δ

)2d
( m

2
)d ) = O((�

δ
)2d

n), and the space is O(2d �
δ

log m) = O( 2d

d
�
δ

log n). The
tradeoff between time- and space-efficiency is treated as in the one-dimensional
case. Using this algorithm in a binary-search iteration, we can solve the
space-bounded problem in O((�

δ
)2d

n(log E
r + log n)) time and O( 2d

d
�
δ

log n)
space.

8. THEORETICAL COMPARISON OF SYNOPSIS CONSTRUCTION
TECHNIQUES

We now examine how the synopsis construction algorithms we have introduced
and the structures they employ relate to other summarization techniques.
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Table II. Summary of Results for One-Dimensional Synopsis Construction: L1 metric.

Reference Time Space Synopsis Model

[Jagadish et al. 1998] O(n3 B) O(nB) Histogram

[Guha et al. 2004; Guha 2008] O(n2(B + log n)) O(n) Histogram

[Garofalakis and Kumar 2004] O(n2 B2) O(n2 B) Restricted Haar

[Guha 2008] O(n2 log B) O(n) Restricted Haar

[Guha and Harb 2008] O
((

E
δ

)2
n3 B

)
O

(
E
δ

nB log n
B + n

)
Unrestricted Haar

[Reiss et al. 2006] O(nk+1 B2 log n) O(nk B log2 n) CHH (k-holes)

[Reiss et al. 2006] O(nB2 log n) O(nB log n)
CHH (Greedy)

(time efficient)

[Reiss et al. 2006] O(nB2 log2 n) O(B log2 n + n)
CHH (Greedy)

(space efficient)

This work O
((

�
δ

)2
nB

)
O

(
�
δ

B log n
B + n

)
Haar+

8.1 Complexity Comparison

The time complexity of the state-of-the art, in terms of quality, space-bounded
histogram, Haar wavelet synopsis, and CHH construction algorithms reviewed
in Section 2 remains in all cases super-linear in the size of the data set for
generic distributive error metrics (although linear or near-linear time versions
exist for Euclidean and maximum-error metrics). Table II summarizes this
complexity terrain, under the demanding L1 metric, and contrasts it to the
methods we have introduced; Table III provides a general comparative overview
of complexity results for maximum-error metrics (e.g.,L∞); n is the data set size,
B the space bound, q a probability quantization parameter, δ the resolution
step, E an upper bound for the target normalized Minkowski-norm error, � the
difference of the minimum from the maximum value in the data set, and r the
machine’s resolution. The fractions with denominator δ express the cardinality
of the examined set of incoming or assigned values for their respective models.
In Guha and Harb [2008], this set is bounded by an upper bound Ē for the
nonnormalized L1 error, that is, the sum of absolute errors; yet this aggregate
error measure grows at least linearly in the size of the summarized data set
n, since Ē = nE , where E is the �(1) normalized L1 error, that is, the average
absolute error. Arguably, the � parameter, depending on the single maximum
value in the data set, is rather comparable to the average absolute error E than
to the sum of absolute errors Ē . Thus, the question of the dependence of � on
the data set size n is comparable to the question of the dependence of E on it;
the dependence of the sum of absolute errors Ē on n is a much clearer matter, as
the sum Ē grows with every additional data value. Hence, for the sake of clarity
and comparability, we use the normalized error E in our complexity expressions.
Space complexity expressions for Guha and Harb [2008] and Reiss et al. [2006]
also take into account their use of the space-efficiency technique of Guha [2008]
and the resultant tradeoff, where it applies.

8.2 Structural Genealogy

Figure 12 depicts a genealogy of structures and techniques for synopsis con-
struction. An arrow in the figure denotes that the destination structure contains
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Table III. Summary of Results for One-Dimensional Synopsis Construction: maximum-error

metrics.

Reference Time Space Synopsis Model

[Jagadish et al. 1998] O(n3 B) O(nB) Histogram

[Guha et al. 2004] O(nB log2 n) O(nB) Histogram (time efficient)

[Guha et al. 2004; Guha 2008] O(nB log3 n) O(n) Histogram (space efficient)

[Garofalakis and Gibbons 2004] O(nq2 B log(qB)) O(n + qB log2 n) Probabilistic Restricted Haar

[Garofalakis and Kumar 2004] O(n2 B log B) O(n2 B) Optimal Restricted Haar

[Karras and Mamoulis 2005] O(n log3 n) O(n log n) Greedy Restricted Haar

[Guha 2008] O(n2) O(n) Optimal Restricted Haar

[Muthukrishnan 2005] O
(

n2 log
E
r

log n

)
O(n) Optimal Restricted Haar

[Guha and Harb 2008] O
((

E
δ

)2

n log n log2 B
)

O
(
E
δ

B log n
B + n

) Unrestricted Haar

(space efficient)

[Guha and Harb 2008] O
((

E
δ

)2

n log2 B
)

O

(
E
δ

min

{
B2 log n

B ,

n log B

})
Unrestricted Haar

(time efficient)

[Reiss et al. 2006] O(nk+1 B log B log n) O(nk B log2 n) CHH (k-holes)

[Reiss et al. 2006] O(nB log n log B) O(nB log n) CHH (time efficient)

[Reiss et al. 2006] O(nB log2 n log B) O(B log2 n + n) CHH (space efficient)

This work O
((

�
δ

)2

n
(

log E
r + log n

))
O

(
�
δ

log n + n
)

Haar+

This work O(n log n(log E
r + log n)) O(n) CHH (optimal)

Fig. 12. Genealogy of synopsis structures.

the structure of origin: any representation that can be achieved with the latter
can also be achieved with the former. Hence, a restricted Haar wavelet synopsis
[Garofalakis and Kumar 2005] is a special case of an unrestricted one [Guha
and Harb 2008]; in its turn, a unrestricted Haar wavelet synopsis is a special
case of a Haar+ representation. Besides a CHH [Reiss et al. 2006] is a special
case of a Haar+ representation as well. The plain histogram [Jagadish et al.
1998; Guha et al. 2004] is unrelated to these hierarchical structures. We infer
that the approximation quality achieved with Haar+ is bound to be at least as
good as that achieved with a Haar wavelet or a CHH, subject to a sufficiently
small value of the resolution step δ, that is, the granularity of examined bucket
values. In the next section we verify this relationship experimentally. Greatest
experimental interest resides in the quality comparison of Haar+ synopses to
histograms, since these two structures are independent.
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8.3 Methodological Evolution

Apart from the distinctions defined by the genealogy of structures, synopsis
techniques are distinguished by their key methodology. The models for plain
histograms [Jagadish et al. 1998; Guha et al. 2004; Guha 2008], restricted Haar
wavelets [Garofalakis and Kumar 2005; Muthukrishnan 2005; Guha 2008], and
CHH [Reiss et al. 2006] calculate the values to use in the synopsis per se. As
we mentioned in Section 6.2, Reiss et al. [2006] correctly observed that this
calculation for an optimal LPM CHH is computationally hard in the general-
error case, due to the interdependence between nodes in the hierarchy, and
resorted to heuristic CHH construction techniques for that problem. Besides,
both hierarchical synopsis models employing the exact-value-calculation ap-
proach [Garofalakis and Kumar 2005; Reiss et al. 2006] are based on a dynamic-
programming bookkeeping of choices made at ancestor nodes; the restricted
Haar wavelet synopsis algorithm in Garofalakis and Kumar [2005] tabulates a
node’s all possible subsets of occupied (nonzero) ancestors; likewise, the longest-
prefix-match CHH heuristics in Reiss et al. [2006] tabulate the choice of a node’s
lowest occupied ancestor. As a node in the hierarchy has O

(
log n

)
ancestors,

this bookkeeping raises a quadratic time complexity factor in the algorithm of
Garofalakis and Kumar [2005] and an n log n factor in the winning heuristic of
Reiss et al. [2006].

In contrast, the unrestricted Haar [Guha and Harb 2008] (Section 2.2.3) and
Haar+ methods (Section 5) avoid both these computational obstacles by exam-
ining (and tabulating) a quantized set of possible incoming and assigned node
values. Thus, they eschew the need for bookkeeping choices made on ancestor
nodes; they provably approximate the optimal solution by a small margin of
error; and they also achieve a storage advantage, as no exact values need be
stored, but only integer factors of the chosen resolution δ. Such an approxima-
tion scheme with tabulation of incoming values could be applied for general-
error longest-prefix-match CHH computation as well, with increased quality
and approximation guarantees. The result would be tantamount to a Haar+

algorithm, bar the head coefficients.

9. EXPERIMENTAL COMPARISON OF SYNOPSIS DATA STRUCTURES

In this section we present our experimental results pertaining to the runtime
for, and the approximation quality achieved with, Haar+ synopses. We compare
the results to those achieved with alternative synopsis construction techniques.
Specifically, we have performed a comparison of the following algorithms:

—HIST The optimal histogram construction algorithm of Jagadish et al. [1998],
and Guha et al. [2004]. This algorithm provides an upper bound to the quality
of any approximate histogram construction technique [Ioannidis and Poosala
1995; Poosala et al. 1996; Poosala and Ioannidis 1997; Chakrabarti et al. 2002;
Gibbons et al. 2002; Gilbert et al. 2002; Guha et al. 2006; Terzi and Tsaparas
2006; Buragohain et al. 2007].

—R-Haar The optimal restricted Haar wavelet synopsis algorithm of
Garofalakis and Kumar [2005] and Guha [2008].
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—U-Haar The approximation scheme for unrestricted Haar synopses of Guha
and Harb [2008], in which the examined values are bounded by an upper
bound for the final non-normalized Minkowski-norm error. It first calculates,
in O

(
n log B

)
time, the targeted non-normalized error metric value Ē for the

synopsis consisting of the B largest Haar terms of D by absolute value; it

then employs it for bounding the search space. In terms of growth, Ē = n
1
p E =

�(n
1
p ), where E is the �(1) normalized Minkowski-norm error.

—CHH The winner greedy heuristic for a compact hierarchical histogram
[Reiss et al. 2006]. As explained in Section 2.2.4, this heuristic initially com-
putes an overlapping partitioning in which the value assigned value to a node
is optimal for the data interval under the node’s scope with the target metric.
We have observed that a quality improvement can occur with several met-
rics if the median values in those intervals (which are actually L1-optimal
[Terzi and Tsaparas 2006]) are used instead. This observation is intuitive:
the use of medians guides the algorithm more robustly towards the occupa-
tion of good positions; values do not matter in this stage; only the selection
of node positions counts. The L∞-optimal mean of extremes and L2-optimal
mean value are unnaturally affected by outlier values in a data interval,
which should not be grouped in the same bucket at all. We call this version
of the algorithm Enhanced CHH to distinguish it from the regular version
of Reiss et al. [2006]. We include these CHH algorithms in our experimental
study for the sake of completeness; in fact, as we have discussed, the Haar+

tree is bound to outperform them for sufficiently small resolution δ. To our
knowledge, this is the first experimental comparison of CHH techniques with
optimal plain histograms for non-L2 error metrics [Guha et al. 2004] and
other hierarchical synopsis techniques; hence it supplements the study in
Reiss et al. [2006].

—Haar+ The Haar+ synopsis algorithms presented in Sections 5 and 6.4.

All algorithms were implemented using the g++ 3.4.3 compiler, while the
experiments were run on a 4 CPU Opteron 2.2 GHz machine with 4 GB of main
memory running Solaris.

Description of Data In order to assess the quality achieved with diverse sum-
marization techniques in several real-world environments, we have used two
real-life data sets with hard to approximate bursts and discontinuities, as well
as another real-world data set with continuity features; we have also employed
a larger real-life data set for our runtime assessment. The first data set (FR),
discussed in McLeod [1994], is a sequence of the mean monthly flows for the
Fraser River at Hope, B.C.10 The flows present periodic autoregression features,
while they average at 2709 (standard deviation: 2123) and feature discontinu-
ities (min value: 482, max value: 10800). We have used a 512-value prefix of the
FR data set. The second data set (FC) is extracted from a relation of 581,012
tuples describing the forest cover type for 30 x 30 meter cells, obtained from US
Forest Service. FC contains the frequencies of the distinct values of attribute
aspect in the relation. The frequencies average at 1613 (standard deviation:

10Available at http://lib.stat.cmu.edu/datasets/fraser-river
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730) and feature spikes of large values (min value: 499, max value: 6308). We
have used a 256-value prefix of the FC data set. The third data set (DJIA) is
the Dow-Jones Industrial Average (DJIA) data set available at StatLib11 that
contains closing values of the Dow-Jones Industrial Average index from 1900
to 1993. Negative values were removed. We used a 512-value subset of closing
values from April 14th, 1948 to February 8th, 1950. The closing values average
at 182 (standard deviation: 8.73) and exhibit both continuities and hierarchi-
cal patterns (min value: 161.6, max value: 205.03). Our last dataset (TM) is a
sequence of 178,080 sea surface temperature measures extracted from drifting
buoys positioned throughout the equatorial Pacific. The average value in TM
is 26.75 and the set has a small standard deviation (1.91). FC and TM were
downloaded from the UCI KDD Archive.12

9.1 Running Time

In this experiment we evaluate the runtime performance of the four synopsis
construction algorithms with approximation guarantees at the task of mini-
mizing a distributive error metric. In particular, we tried all algorithms on
different-sized prefixes of the TM data set with the computationally challeng-
ing average absolute error L1 (equivalently, the sum of absolute errors) as the
target metric. In order to facilitate our measurements, we opted for a large con-
stant resolution value δ = 1 with both the U-Haar and Haar+ algorithms. For
all four algorithms, we measured the time required to derive the error result in
two different settings: One in which the space budget B grows along with the
data set size n, such that B = n

64
, and one in which B remains at the constant

value B = 32 while n grows. Figure 13 plots the results for both settings on log-
arithmic axes. As expected, the Haar+ algorithm presents the most affordable
runtime growth of all. The advantage is particularly striking at the constant
B setting, where it is the only algorithm that behaves linearly. When B grows
with n it exhibits quadratic behavior, paralleled by R-Haar, which it exceeds in
synopsis quality. On the other hand, the growth of HIST is cubic when B grows
with n and quadratic for constant B. Finally, the nature of U-Haar is that of
a fourth-power growth when B grows with n and cubic for constant B. It is so
because its runtime depends quadratically to the search space bound, which
grows linearly in n.

9.2 Synopsis Quality with Nonsmooth Data

We present quality results for two representative error metrics at the oppo-
site ends of the Minkowski spectrum: the maximum absolute error L∞ and
the average absolute error L1, on the FR and FC data sets. Results with other
metrics, such as L2, were similar. In order to render the histogram-based sum-
marization directly comparable to the binary-interval-based CHH and Haar
wavelet-derived techniques, we have used a 512-value prefix of the FR data set
and a 256-value prefix of the FC data set.

11Available at http://lib.stat.cmu.edu/datasets/djdc0093
12Available at http://kdd.ics.uci.edu/
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Fig. 13. Runtime comparison: L1 metric.
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Fig. 14. Quality comparison: L∞ metric.

9.2.1 Maximum Absolute Error. In this experiment we evaluated the ac-
curacy achieved with the maximum absolute error metric L∞ on the the FR
and FC data sets. Figure 14 shows the results; the resolution value has been
set at δ = 50 for the FR and δ = 10 for the FC data set with both the U-Haar
and Haar+ techniques. Haar+ achieves the highest quality for both data sets.
The performance of the other methods varies with the data set; U-Haar does
well with FR for small space budgets, but not as well with FC; HIST outper-
forms R-Haar with FR but not with FC. Our Enhanced CHH algorithm could
outperform the regular CHH; with FC, it outperforms HIST too; however, its
performance is not as stable with FR.

9.2.2 Average Error. In our next experiment we evaluated the accuracy
achieved with the average error metric L1 on the the FR and FC data sets.
Figure 15 shows the results; again, the resolution value has been set at δ = 50
for the FR synopses and δ = 10 for the FC data set with both U-Haar and
Haar+. U-Haar is outperformed by HIST with both data sets, while it needed
an inconveniently long time, in particular for summarizing the larger FR data
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Fig. 15. Quality comparison: L1 metric.

set, due to its high time complexity for this error metric. CHH fared better with
this metric, but was also outperformed by HIST. In this experiment there is
no Enhanced CHH technique, as the regular one uses the median values in
an interval by default. Still, with the FR data set, the accuracy achieved with
the CHH technique deteriorates as B grows, eventually becoming lower than
both Haar+ and HIST. However, the Haar+ technique outperforms HIST for
this error metric too, achieving the highest quality for both data sets in this
experiment also. R-Haar does not achieve high quality with this error metric
either.

9.3 Synopsis Quality with Smooth Data

Now we turn our attention to the DJIA data set, which does not present as sharp
discontinuities as those we have examined heretofore. In order to enhance the
readability of our figures, we do not present the results for R-Haar and U-
Haar; the superiority of the Haar+ tree over them has already been decisively
demonstrated in both theory and practice.

9.3.1 Maximum Absolute Error. We first assess the quality of approxima-
tion with the maximum absolute error metric L∞, shown in Figure 16(a); the
resolution value was set at δ = 0.5 for the Haar+ approximation scheme. In-
terestingly, none of the hierarchical techniques can match the optimal plain
histogram for this error metric with this data set. The performance of both
CHH techniques in relation to Haar+ is the expected one, while Enhanced CHH
presents a slight advantage over the regular version of the algorithm.

9.3.2 Average Error. Figure 16(b) shows the results with the average error
metric L1; resolution values were again set at δ = 0.5. The disadvantage of the
examined hierarchical techniques in relation to the optimal plain histogram is
repeated with this error metric. Haar+ outperforms CHH, but none of them can
reach the quality of the optimal histogram.
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9.3.3 RMS Error. In our last experiment we assess the performance on
the DJIA data set with the root-mean-squared (Euclidean) error L2. Figure
17 shows the results; the granularity of values with Haar+ was again set at
δ = 0.5. The plain histogram fares best, as in the other cases with this data set.
The quality difference is more accentuated in this case, due to the nature of the
error metric. The Haar+ technique does better than the CHH heuristics, but
cannot reach the histogram quality in this experiment either. Our Enhanced
CHH algorithm exhibits a slight quality increase in relation to the regular CHH
technique.

10. DISCUSSION

Our results on the superior quality of Haar+ synopses in relation to classi-
cal Haar and CHH techniques were expected. A Haar+ synopsis is always at
least as good as the equivalent Haar and CHH synopsis. Nevertheless, we have
demonstrated that Haar+ can also achieve higher accuracy than an optimal
histogram. On the other hand, we have witnessed that histograms can do bet-
ter than hierarchical synopses at approximating those tested data sets that do
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not feature sharp discontinuities. These results verify what had hitherto been
expressed intuitively [Graps 1995; Guha et al. 2004]. In fact, the intuition of
Graps [1995] that wavelet-based techniques are well-suited for approximating
sharp discontinuities is consistently verified in relation to a histogram only by
the Haar+ technique; previous wavelet-based and CHH schemes do not exhibit
the same advantage in relation to an optimal histogram. Moreover, as we saw
in the previous section, histograms tend to have an advantage in relation to
the unrestricted Haar method when the target error metric is the average er-
ror, which introduces a smoothing factor as well. These findings are interesting
in themselves, since, as we discussed in Section 3.3, a comparison between the
provably optimal quality achieved with each of these two synopsis paradigms
was missing in previous research.

11. CONCLUSIONS

In this article we have elaborated on hierarchical synopsis structures. We have
introduced the Haar+ tree: a novel, refined synopsis data structure, inspired
from Haar wavelet techniques, eschewing their deficiencies and enhancing
on their advantages. We have shown that this structure supersedes previ-
ous hierarchical summarization techniques, such as classical Haar wavelet
synopses and the recently proposed compact hierarchical histogram (CHH).
In the first, to our knowledge, face-to-face comparison between state-of-the-
art hierarchical and (nonEuclidean) histogram summarization techniques, we
have demonstrated that Haar+ synopses of data sets with sharp discontinu-
ities can achieve higher quality than optimal histograms under representative
error metrics. Furthermore, thanks to the capacity of the Haar+ structure to
delimit the search space, Haar+ synopses are constructed in time linear in
the size of the data for any monotonic distributive error metric. To the best
of our knowledge, this is the first synopsis construction technique that can
achieve higher quality than an optimal histogram for an additive error met-
ric in time linear in the size of the input. And Haar+ synopsis construction
can be performed in one pass. In addition, we devised a specialized method
for the case that a maximum-error guarantee is required, based on the solu-
tion to the dual, error-bounded synopsis problem. We have shown that this
methodology effectively solves the longest-prefix-match CHH problem in low
polynomial time; consequently, we have shown that this problem is not as com-
putationally hard as previously thought. Moreover, we developed a highly effi-
cient approximation scheme for maximum-error Haar+ synopses by the same
methodology. In conclusion, our solutions provide a mostly recommendable op-
tion for the high quality and time-efficient summarization of very large discon-
tinuous data sets with any distributive or maximum target error metric. Our
techniques have been shown to work well for absolute-error-based error func-
tions. However, a major open problem in the area, also noted by Garofalakis and
Gibbons [2004] and Garofalakis and Kumar [2005], is the design of summariza-
tion models well-suited for the task of minimizing relative-error-based metrics
in data approximation. In the future, we intend to turn our attention to this
problem.
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