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Abstract

We introduce the Haar+ tree: a refined, wavelet-inspired
data structure for synopsis construction. The advantages of
this structure are twofold: First, it achieves higher synop-
sis quality at the task of summarizing data sets with sharp
discontinuities than state-of-the-art histogram and Haar
wavelet techniques. Second, thanks to its search space de-
limitation capacity, Haar+ synopsis construction operates
in time linear to the size of the data set for any monotonic
distributive error metric. Through experimentation, we
demonstrate the superiority of Haar+ synopses over his-
togram and Haar wavelet methods in both construction time
and achieved quality for representative error metrics.

1 Introduction
The need to reduce a very large data set into a com-

pact synopsis that captures its basic characteristics arises
frequently in various database applications, like, for exam-
ple, OLAP/DSS systems [35], approximate query answer-
ing [1, 30, 22, 3], cost-based query optimization [27] and
time-series mining [4]. Over the past years, two principal
methods have emerged as recommendable choices for ef-
ficient synopsis construction: histograms [19, 21, 32, 31,
22, 30, 10, 23, 11, 15, 17, 12, 16, 34] and Haar wavelets
[27, 35, 3, 6, 7, 8, 25, 26, 29, 12, 13, 14]. The main ob-
jective of both approaches is to minimize some appropriate
error measure [9], given a space budget.

However, previous research has not attempted to exam-
ine how state-of-the-art Haar wavelet and histogram-based
synopsis construction techniques compare to each other. A
comparison is required both in terms of time and space for
synopsis construction, and in terms of synopsis quality, de-
pending on the characteristics of the data at hand. Such
attempts as were made in this direction [27, 17] carried out
uneven comparisons by setting provably optimal methods
for the one technique against non-optimal ones for the other.
∗Work supported by grant 7160/05E from Hong Kong RGC.

From a qualitative point of view, a histogram-based synop-
sis is arguably recommendable when summarizing smooth
datasets without sharp discontinuities or bursts. On the
other hand, wavelet-based techniques are more well-suited
for approximating datasets with such discontinuities. A B-
term histogram defines only B + 1 distinct value intervals,
but has total freedom on the bucket boundaries it chooses
and the value it assigns to each of them. On the other hand,
a B-term wavelet synopsis defines B + 1 to 3B + 1 distinct
value intervals, but is constrained on the boundaries and the
values assigned to each of them. In particular, a wavelet
coefficient contributes its value positively to the former and
negatively to the latter of the two halves of the fixed-size
interval that it affects; hence the resulting summarization
value in a wavelet-defined interval may be sub-optimal.

Still, at the task of minimizing a distributive error met-
ric (as opposed to a maximum error metric), such as the
average absolute or relative error, both optimal histogram-
based [23, 17] and quality-aware wavelet-based schemes
[8, 12, 29, 13, 14] run in time super-linear to the size of the
input.1 This state of affairs renders previous techniques in-
applicable for the time-efficient summarization of very large
data sets with a distributive error quality guarantee and calls
for a different approach.

In this paper, we introduce the Haar+ tree: a refined,
wavelet-inspired synopsis data structure, which alleviates
the aforementioned deficiencies. First, it adds flexibility to
the values constructed by a classical Haar wavelet synopsis,
while maintaining its compression power over a histogram;
therewith it outperforms previous techniques in the approx-
imation quality for hard-to-summarize data sets. Second,
it allows for easy delimitation of the search space, result-
ing to a synopsis construction algorithm for general error
metrics that operates in time linear to the size of the data.
We demonstrate the superiority of Haar+ over histogram
and Haar wavelet methods in both construction time and
achieved quality for representative error metrics.

1The simple wavelet synopsis algorithm for Euclidean error [33, 27]
notwithstanding.



2 Background and Related Work
Presently, the principal structures employed for quality-

aware synopsis construction are histograms and Haar
wavelets. Under both approaches, given an n-size data vec-
tor D, the problem is to devise a representation of D in
B space, so that an error measure in the produced approx-
imation D̂ is minimized. A normalized Minkowski-norm
error metric, generally expressed in its weighted version:
Lw

p (D̂,D) =
∑

i{
(wi|d̂i−di|)p

n }
1
p , covers most practically

interesting cases of a point-wise error metric; n denotes the
size of the data set, d̂i the reconstructed value for di and
wi a related weight; in the case of relative error, this weight
is defined as wi = 1

max{|di|,S} , where S > 0 is a sanity
bound that prevents small values from unnaturally dominat-
ing the error result [8]. The methods we propose in this
paper are applicable to all such metrics, and to any metric
in a wider class of monotonic distributive metrics. For il-
lustration purposes, we use three instances of a normalized
Minkowski-norm: the average absolute error L1, the sum of
squared errors L2, and the maximum absolute error L∞.

2.1 Histogram-based Data Reduction

Given a data sequence D, a histogram, also called seg-
mentation and partitioning, divides D into B � n succes-
sive disjoint intervals [bi, ei], 1 ≤ i ≤ B called buckets or
segments and attributes a single value vi to each of them that
approximates all consecutive values therein, di, i ∈ [bi, ei].
Thus, a single bucket (segment) can be expressed by the
triplet si = {bi, ei, vi}. 2B−1 numbers suffice to represent
a B-bucket histogram (since ∀r, 1 < i ≤ B, bi = ei−1 + 1
and the edges are fixed). For a particular target error metric,
the optimal value of vi is defined as a function of the data
values within [bi, ei].2

Most initial work on histogram construction algorithms
in the database literature focused on heuristics that exhib-
ited low errors in some estimation problem, such as the
MaxDiff [32] and MHIST [31] heuristics; it did not attempt
to detect the optimal bucket boundaries for the given prob-
lem [20]. The problem of computing optimal bucket bound-
aries for an error metric was first addressed within the data-
base community by Jagadish et al. [23]; the histogram con-
struction problem was then also disengaged from the spe-
cific application of approximating frequency distributions,
and posed as the general problem of defining a piecewise
constant approximation of a finite data sequence. In fact,
this is a special case of the problem of approximating a
curve by line segments; hence the dynamic programming
algorithm in [23] is a special case of the line-segmentation
algorithm introduced by the inventor of dynamic program-

2E.g. for L1 it is the median of the values in [bi, ei] [34], for L2 their
mean [23], for L∞ the mean of the maximum and minimum value among
them, while [17] analyzes the respective relative error cases.

ming [2]. Guha et al. [17] specialized this solution for the
case of the maximum-relative-error and average-relative-
error metrics (by extension, any weighted maximum-error
and average-error metrics). Later, Guha [12] introduced a
generic space-efficiency paradigm applicable on all those
histogram construction algorithms.

2.2 Haar Wavelet-based Data Reduction

Wavelet analysis is a mathematical technique for hierar-
chical function decomposition [33]. The simplest wavelet
transform, introduced by Haar [18], can be visualized
through a complete binary tree, herein called Haar tree.
This tree holds the coefficients representing the original data
in successive layers of detail; the final tree layer holds the
original data. The coefficient in the root node contains the
overall average value and each other coefficient value ci

contributes the value +ci to all data values (leaves) in its left
sub-tree and −ci to those in its right sub-tree. Hence each
original data value is reconstructed by adding/subtracting
the coefficients in the path towards its position.

A Haar wavelet synopsis is a Haar wavelet vector z of
B non-zero terms, such that its inverse wavelet transform
d̂ = W−1 (z) approximates a data vector d, with B � n.
For the Euclidean error metric, the optimal Haar wavelet
synopsis consists of the top-B normalized coefficients of
the original data vector’s Haar wavelet transform [33]. This
computational convenience has allowed for the extension
of the Euclidean error minimization methodology into data
streams of the cash register model [5], multiple-measure [6]
and multi-dimensional [24] data sets, and workload-aware
optimization based on a weighted version of the Haar ba-
sis [26]. Unfortunately, this convenience does not extend
to non-Euclidean distributive (decomposable) error metrics.
Still, recent studies have strived to construct algorithms
that provide optimal synopses for such metrics within the
Haar framework. The first systematic endeavor was made
by Garofalakis and Gibbons with a randomized rounding
scheme [7]. However, as shown in [17], the quality of
this scheme’s results is not high in practice. Subsequently,
Garofalakis and Kumar [8] developed a dynamic program-
ming (DP) algorithm that detects the optimal B-term sub-
set of a dataset’s Haar wavelet transform to retain, for any
distributive error metric. A dependable greedy counterpart
to this solution for maximum-error metrics, applicable on
time-series data streams, was proposed in [25]. Both the
time and space complexities of the DP scheme [8] were re-
duced in [12]. Later, Guha and Harb [13, 14] discerned
that the values of the B non-zero wavelet terms need not
be obtained from the dataset’s Haar wavelet transform; they
can be set unrestrictedly, leading to higher quality than the
restricted model. [13, 14] provided a fully polynomial-
time approximation scheme (FPAS) for unrestricted Haar
wavelet synopses under any Minkowski-norm error metric.



2.3 Motivation

We observe that the quality of approximation achieved
by existing techniques is constrained by their nature. In the
case of histograms, the primary limitation is that of local-
ity; a bucket is supposed to approximate neighboring val-
ues, which are expected to exhibit small variations. There-
fore, histograms are not good at approximating sharp dis-
continuities. In addition, a B-sized histogram approximates
only B + 1 value ranges, as opposed to the Haar wavelet
which can define up to 3B + 1 value intervals. Regard-
ing the Haar framework, any retained wavelet coefficient is
supposed to bear on the two binary intervals that it affects
two opposite-signed contributions of equal absolute magni-
tude. While this is the very property of the decomposition
that allows for a near-linear computation of the Euclidean-
error-optimal synopsis, it is not obligatory to maintain this
restriction when the computational effectiveness that it al-
lows does not apply any more. As we will show in the next
sections, dropping this restriction not only increases the ac-
curacy of approximation, but also simplifies the synopsis
computation process, rendering the time complexity inde-
pendent of the target error metric.

3 The Haar+ Tree

In this section we introduce the Haar+ tree, an enhanced
and more powerful synopsis data structure, by dropping
the restrictions of the classical Haar model. Figure 1 de-
picts a simple one-dimensional Haar+ tree structure that
may be used for summarization of a four-element data set
{d0, d1, d2, d3}. The structure contains a single root co-
efficient node c0 that contributes its value to all approxi-
mated data values. This root is followed by a binary tree
of coefficient nodes grouped in triads, depicted as C1, C2

and C3. Every triad of coefficients substitutes what is a
single wavelet coefficient in a classical Haar tree structure.
In each such triad, the head coefficient, namely coefficients
c1, c4 and c7, behaves as a classical wavelet coefficient in
reconstruction: it contributes its value positively to its left
sub-tree and the same value negatively to its right sub-tree.
However, the other two, left and right supplementary coef-
ficients, namely c2 and c3 in group C1, c5 and c6 in group
C2, and c8 and c9 in group C3, contribute their value posi-
tively in the single subinterval that they affect. For example,
coefficient c3 contributes its value positively to data values
d2 and d3, if such a non-zero value is maintained in a syn-
opsis. The parent of the node where the head coefficient of
a triad C resides is called parent node of C, while the triad
where this parent node resides is called parent triad of C.
For example, the parent node of triad C2 is c2 and its parent
triad is C1.

An optimal synopsis of space budget B for a given error
metric E places B non-zero coefficient values at any posi-

+
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Figure 1. One-Dimensional Haar+ Tree

tions in the Haar+ tree so that E is minimized. For example,
for the four-element data set {5, 3, 12, 4} the 2-term Haar+

synopsis that minimizes the sum of absolute errors L1, the
sum of squared errors L2, and the maximum absolute error
L∞, consists of the coefficients {c0 = 4, c8 = 8}. The
resulting estimated data set is {4, 4, 12, 4} with absolute er-
ror values {1, 1, 0, 0}, hence, using non-normalized values,
L1 = 2, L2 =

√
2 and L∞ = 1. The optimal 2-term

restricted Haar synopsis for all three considered metrics is
{c0 = 6, c7 = 4}, producing the errors {1, 3, 2, 2} with
L1 = 8, L2 = 3

√
2, L∞ = 3; by default, this is also the

L2-optimal 2-term unrestricted Haar synopsis. On the other
hand, the optimal 2-term unrestricted Haar synopsis for
both other considered metrics is {c0 = 5.5, c7 = 4}, with
L1 = 8 and L∞ = 2.5. Likewise, the L2- and L∞-optimal
2-bucket histogram for the same data set approximates it as
{4, 4, 8, 8} with L2 =

√
34 and L∞ = 4. An L1-optimal

2-bucket histogram is {5, 5, 5, 4} with L1 = 9. The ob-
served difference of approximation quality between Haar+

synopses and other techniques can be generalized to any
gap using multiplication and to any data set size. This sim-
ple example demonstrates that both the classical Haar syn-
opsis model and piecewise-constant histogram techniques
may not achieve high accuracy of approximation in rela-
tion to the Haar+ structure. This observation illustrates the
powerfulness and versatility of the Haar+ tree at producing
synopses of high quality under diverse error metrics. We
emphasize the following points:

• The classical Haar structure is a special case of the
generalized Haar+ structure. It follows that a Haar+

synopsis is always at least as good as the equivalent
Haar-wavelet synopsis.

• The storage of coefficient indexes in a Haar+ synopsis
does not impose a storage burden compared to a clas-
sical Haar wavelet synopsis or a histogram. A Haar+

triad index corresponds to a classical Haar coefficient
index. Hence, a convenient storage scheme is to keep
the retained coefficient values in three distinct groups,
one for each coefficient type (head, left, and right sup-
plementary), each with its triad index value. A syn-
opsis of n data items requires at most n distinct triad



index values in each tree, hence dlog ne bits per in-
dex. The same applies to the indexes in a classical
Haar wavelet synopsis and the bucket boundaries in a
histogram.

3.1 Basic Properties

A Haar+ tree is a sparse vector H of N = 3 × 2d − 2
elements (coefficients) {c0, c1, . . . , c3×(2d−1)}, arranged in
a tree, that represents a data vector D of 2d elements
{d0, d1, . . . , d2d−1}. The data items reside on the leaf
nodes of the tree. In the following, we use the notation
a = P(b) to denote that coefficient a resides on the parent
node of coefficient b in the tree, a ∈ Rleaves(b) to denote
that data item (leaf) a lies in the right sub-tree of node b, and
a ∈ path(b) to denote that node a lies on the path from the
root of the tree to leaf node b. The tree structure is arranged
so that:

c0 = P(c1).
i− 1 mod 3 = 0 ⇒ ci = P(ci+1) ∧ ci = P(ci+2).
i− 2 mod 3 = 0 ⇒ ci = P(c2i).
i mod 3 = 0 ⇒ ci = P(c2i+1).

A data item dj of the represented data vector D has a
parent node ci in the tree, such that i = (j + N) \ 2. This
data item is constructed as dj =

∑
i∈path(j) δijci, where

δij =
{
−1,(i− 1 mod 3 = 0) ∧ (dj ∈ Rleaves(ci))
+1, otherwise

We introduce some convenient notation for the dis-
cussion that follows. The state of a given triad
(ci, ci+1, ci+2) is a four-element vector [v, a, b, c], where
v =

∑
k∈path(i) δkick is the reconstructed value from the

root of the tree up to the node where ci resides, hencefor-
ward called incoming value at ci, and a, b, c are the values
at ci, ci+1 and ci+2 respectively. We say that this state pro-
duces the contribution vector [v+a+b, v−a+c], meaning
that v + a + b is the incoming value at node c2i+2 (child
of ci+1) and v − a + c is the incoming value at node c2i+5

(child of ci+2). ‖H‖ denotes the number of non-zero val-
ues in a Haar+ tree H. The following theorem shows the
redundancy of a dense Haar+ tree representation.

Theorem 1 Let H be an arbitrary Haar+ tree that pro-
duces the data vector D, in which at least one triad contains
more than one non-zero value. Then D can be represented
by an at least equally sparse Haar+ tree H′, such that every
triad C ∈ H′ contains at most one non-zero value and
‖H′‖ ≤ ‖H‖.

Proof. Consider any triad C in H that contains more than
one non-zero values. Let the state of C be C = [v, a, b, c].
This can be equivalently expressed as C = [v, 0, b+a, c−a],

since both these states produce the same contribution vec-
tor [v + b + a, v + c − a]. Hence, any assignment of more
than one non-zero values in a given triad C can be reduced
to the assignment of two non-zero values, one on each sup-
plementary coefficient, bringing C to the state [v, 0, q, r],
which produces the contribution vector [v + q, v + r]. How-
ever, this contribution vector is also produced by a triad in
the state [v + q+r

2 , q−r
2 , 0, 0]. Hence a triad with two non-

zero coefficients in the state [v, 0, q, r] can be reduced to
a triad with one non-zero coefficient only by changing its
incoming value from v to v + q+r

2 , as follows:

1. If the parent node of C is the root node, then we need
to add the value q+r

2 to the root coefficient.

2. If the parent triad of C is another triad Q, then we need
to add the value q+r

2 to the supplementary coefficient
in Q which is the parent node of C. If this addition
results in more than one non-zero values in Q, then we
proceed to reduce Q to a triad with one non-zero value
only, as above.

This process leads from any given triad upwards in the
tree, hence it terminates in all cases once the root node is
reached. Moreover, each step in this process may decrease,
but not increase, the amount of non-zero values in the tree
as a whole. Hence, it follows that any Haar+ tree H can
be reduced to an at least equally sparse Haar+ tree H′, such
that every triad C ∈ H′ contains at most one non-zero value
and ‖H′‖ ≤ ‖H‖.

Figure 2 depicts the basic transformation of a triad with
two non-zero supplementary coefficients q, r to one with
only one non-zero head coefficient.

-+ cici+1 ci+2
+ +

C

-+ cici+1 ci+2
+ +

C 2
rqv +

+v

rq
0

qv + rv + rv +qv +

0 0
2
rq −

Figure 2. Basic transformation of triad

The following corollary follows from Theorem 1.
Corollary 1 The optimal B-term Haar+ tree representa-
tion H of a data vector D that minimizes a given error mea-
sure E can be expressed as a Haar+ tree with at most one
non-zero value in each triad.

Based on Corollary 1, we proceed to construct a dynamic
programming approximation scheme for the optimal Haar+

tree representation of a data vector D.

4 Haar+ Synopses for Distributive Error
Metrics

Before we proceed, we provide the following definition.
Definition 1 Consider a data vector D, an approxima-

tion thereof D̂, and the function of an error metric E , fE ,



such that fE(‖D̂ − D‖Ri) denotes the error in the data-
value approximation over the range Ri in both D and D̂.
The error metric E is distributive if and only if there exists a
two-variable function G, such that the error of any range Ri

divided into two disjoint ranges Rj and Rk, Ri = Rj ∪Rk

can be expressed as:

fE(‖D̂−D‖Ri
) = G

(
fE(‖D̂−D‖Rj

), fE(‖D̂−D‖Rk
)
)

In addition, the error metric E is monotonic if and only if
the error function fE is a non-decreasing function of each
individual value’s absolute error |d̂i − di|.

We now define the error minimization problem:
Problem Given a data vector D and a monotonic

distributive error metric E , construct a B-non-zero-term
Haar+ tree representation H of D that produces a approxi-
mation D̂ of minimal error fE(‖D− D̂‖).

In order to solve this problem, we have to determine the
optimal positions and values of the B non-zero terms we
can keep. Since each triad Ci needs to contain at most one
non-zero value, four options are available: either no value
is kept, or a value is kept at one of the three positions in the
triad. We formalize our solution in the following section.

4.1 Formalizing the Solution

Let Q(i, v, b) express the optimal choice to be made on
triad Ci with incoming value v and allocated space b to be
used by the triad and its descendants. We can establish the
solution in a bottom-up process, by calculating Q(i, v, b)
on each triad, for each possible incoming value v and each
allocated space b. Let li denote the layer of triads in which
Ci resides, counting from the bottom; then at most 2li − 1
non-zero values can be used by triad Ci and its descendants;
therefore the domain of b is Di = {0, 1, . . . ,min{B, 2li −
1}}. In order to delimit the domain of v, we quantize it into
multiples of a resolution step δ. Furthermore, we need to
set lower and upper bounds for this domain. For a maximum
error metric, we can calculate a crude upper bound for the
optimal error and contain the domain of v with it, based
on the fact that each individual data value cannot exceed
it. On the other hand, for general, monotonic distributive
error metrics, a different approach is called for. Fortunately,
the Haar+ structure allows us to delimit the domain of the
values we have to search for. In the following discussion,
we use the notations described in Table 1. We build the
delimitation starting out from the following proposition.
Proposition 1 For incoming value v at Ci, there exist re-
constructed values d̂k and d̂l such that d̂k ≤ v and d̂l ≥ v.

Proposition 1 finds application in the following.
Proposition 2 If Ci has a non-zero head coefficient zh,
then the incoming value v at Ci lies in (mi,Mi). Sym-
bolically, zh 6= 0 ⇒ v ∈ (mi,Mi). In reverse, v /∈
(mi,Mi) ⇒ zh = 0.

symbol meaning
D Summarized data vector
H Optimized Haar+ representation of D
Ci Triad in H
v Incoming value to Ci

zh Value assigned to head coefficient of Ci

zl (zr) Value assigned to left (right) supplementary coeff. of Ci

z0 Value assigned to root coefficient of H
mi (Mi) Minimum (maximum) data value under scope of Ci

ml (mr) Minimum data value in left (right) sub-tree of Ci

Ml (Mr) Maximum data value in left (right) sub-tree of Ci

m (M ) Global minimum (maximum) in D

Table 1. Notation Used

Proof. Assume that v /∈ (mi,Mi) and zh 6= 0. Then,
according to Corollary 1, both supplementary coefficients
are zero, hence Ci produces the contribution vector [v +
zh, v− zh]. Without loss of generality, assume that v ≥ Mi

and zh > 0. Then the incoming value v − zh to the right
sub-tree of Ci may lead to a good approximation of the val-
ues therein by decreasing v. However, the incoming value
v + zh to the left sub-tree of Ci does not gain in approx-
imation quality by increasing v, since v is already larger
than the maximum value Mi to be approximated, and, ac-
cording to Proposition 1, there exists a reconstructed value
d̂l ≥ v. Hence the error metric E , being monotonic, is
not increased by setting zh = 0 and assigning the non-zero
value zr = −zh to the right supplementary coefficient of Ci

alone. Similar reasoning applies to the other cases. Hence
the assignment of a non-zero value zh to the head coefficient
of Ci is unnecessary when v /∈ (mi,Mi).

We proceed to delimit the values that may be thus as-
signed, after we introduce the following proposition which
follows from Proposition 2.
Proposition 3 An incoming value v < mi (v > Mi) at Ci

cannot result into better approximation quality, according
to any monotonic error metric, than a value v′ such that
v < v′ ≤ mi (v > v′ ≥ Mi), for any synopsis with the
same number of non-zero terms in the sub-tree rooted at Ci.
Proof. Assume v < mi. According to Proposition 2, the
first non-zero coefficient encountered on any subsequent re-
construction path can be a supplementary coefficient with-
out affecting the quality of approximation. However, a sup-
plementary coefficient acting on v′ can produce the same
outcome as when acting on v, rendering the solution equiva-
lent on those paths. On the other hand, in subsequent recon-
struction paths where a non-zero coefficient is not encoun-
tered, v′ has a default quality advantage over v, since it has
smaller absolute difference from every data value under the
scope of Ci. Hence, for any monotonic error metric, incom-
ing value v′ leads to at least as good approximation of all
data values under the scope of Ci as v, where v < v′ ≤ mi.
Analogous reasoning applies to the case the v > Mi.

We are now ready to delimit the assigned value of a head
coefficient with the following theorem.



Theorem 2 Let mi be the minimum and Mi the maxi-
mum individual data value under the scope of triad Ci and
v ∈ (mi,Mi) be the incoming value at Ci in H. If a non-
zero value zh is assigned to the head coefficient in Ci, then
|zh| ≤ max{Mi − v, v −mi}
Proof. Since zh 6= 0, Ci advances the contribution vector
[v + zh, v − zh] towards its two sub-trees. Without loss of
generality, assume that zh > 0 and v + zh > Mi, v − zh <
mi. Then, according to Proposition 3, the approximation
quality on both sub-trees can be bettered by decreasing zh

so that at least one of the two produced incoming values
v+zh, v−zh reaches the extremum Mi or mi, respectively.
Similar reasoning applies when zh < 0. Hence, under any
monotonic error metric, the value of zh should place at least
one of the two produced incoming values v + zh, v − zh

inside the interval [mi,Mi]:

mi ≤ v + zh ≤ Mi ∨mi ≤ v − zh ≤ Mi ⇔
mi − v ≤ zh ≤ Mi − v ∨ v −Mi ≤ zh ≤ v −mi ⇔

zh ∈ [min{v −Mi,mi − v},max{Mi − v, v −mi}] ⇔
|zh| ≤ max{Mi − v, v −mi}

Reasoning analogous to that of Theorem 2 leads to the
following theorem.
Theorem 3 Let ml (mr) be the minimum and Ml (Mr) the
maximum individual data value under the scope of the left
(right) sub-tree of triad Ci. If a non-zero value zl (zr) is
assigned to the left (right) supplementary coefficient in Ci,
then zl ∈ [ml−v,Ml−v] (zr ∈ [mr−v,Mr−v]). Likewise,
if a non-zero value z0 is assigned to the root coefficient,
then z0 ∈ [m,M ], where m (M ) is the global minimum
(maximum) in D.

We now proceed to delimit the candidate incoming val-
ues for the rest of the triads in terms of these global extrema.
Theorem 4 The incoming value v to Ci in H lies within the
interval (m−∆,M + ∆), where ∆ = M −m.
Proof. For an incoming value derived from an ancestor
non-zero supplementary coefficient, or from the root co-
efficient, the proof follows directly from Theorem 3. We
examine incoming values derived from an ancestor non-
zero head coefficient. Consider a non-zero head coefficient
zh encountered at a triad Ck. Then, according to Propo-
sition 2, the incoming value v at Ck lies within the in-
terval (m,M). Besides, according to Theorem 2, |zh| ≤
max{M − v, v−m}. Joining the delimitations of v and zh

we get v±zh ∈ (2m−M, 2M −m). Hence, in both cases,
the produced incoming value lies in (m−∆,M + ∆).

The intuition behind Theorem 4 is that, in the worst case,
a non-zero head coefficient covers the difference M − m
between the two extrema in one direction and replicates this
difference in the other. In conclusion, the range of potential

incoming values has width 3∆. Let S denote the set of
such values in (2m − M, 2M − m) that are multiples of
the resolution step δ. Then |S| ≤ b 3∆

δ c + 1 = O(∆
δ ). 3

Furthermore, let Sv
i,H ⊂ <, Sv

i,L ⊂ <, Sv
i,R ⊂ < denote the

set of potential assigned values at the head, left and right
supplementary coefficient of triad Ci that are multiples of δ,
for a given incoming value v. Then, according to Theorems
2 and 3, the cardinality of these sets is also O(∆

δ ).

4.2 Deriving the Answer

The derivation of the optimal error result and the re-
spective B-non-zero-term Haar+ tree representation H of D
does not pose a novel algorithmic problem. As in previous
synopsis construction algorithms [23, 6, 7, 17, 8, 13, 29], a
dynamic programming solution can be applied. In particu-
lar, our algorithm draws from the unrestricted Haar wavelet
synopsis construction algorithm of [13]. We compute the
fundamental Q(i, v, b) function with a dynamic program-
ming recursive scheme; however, further elaboration is re-
quired at the decision-making process in each triad, due to
the multiplicity of options. We also employ the generic
space-efficiency paradigm of [12], and analyze the emerg-
ing trade-off between time- and space-efficiency.

In a nutshell, the method works in a bottom-up left-to-
right scan over the Haar+ tree. At each visited triad Ci it
calculates an array A from the pre-calculated arrays L and
R of its children triads Cil

, Cir
. The entry A[v, b] corre-

sponds to Q(i, v, b), for the pair of incoming value v and
space b allocated to the sub-tree rooted at Ci. Such an entry
contains: (i) the δ-optimal value zh, zl, or zr to assign at one
of the coefficients in Ci, if any; (ii) the amount of space bL

out of b to allocate to the left branch; and (iii) the minimum
error E(i, v, b) thus achieved. The size of A is |Si| · |Di|. A
recursive procedure MinError emerges, in which the value
of E(i, v, b) is computed as:

E(0, 0, B) = min
z∈S0

0,H

{E(1, z, B − (z 6= 0))}

E(i, v, b) =

min



min
zh∈Sv

i,H ,b′∈Di

{
E (il, v + zh, b′) +
E (ir, v − zh, b− b′ − (zh 6= 0))

min
zl∈Sv

i,L,b′∈Di

{
E (il, v + zl, b

′))+
E (ir, v, b− b′ − (zl 6= 0))

min
zr∈Sv

i,R,b′∈Di

{
E (il, v, b′))+
E (ir, v + zr, b− b′ − (zr 6= 0))

Addition is used for the sake of simplicity; any distrib-
utive error function G can be applied. The latter equation
computes the least of three minima, one for each coefficient
in Ci. Each of those is the least achievable error, in the sub-
tree rooted at Ci, among all allowed combinations of a value

3The inequality ≤ accommodates for the variation in the number of
integers in a fixed interval.



assigned to the examined coefficient 4 and a distribution of
the available space to the branches of that sub-tree. For the
economy of presentation the −1 term, which decreases the
space assigned to the right branch in case a non-zero value
is assigned, is uniformly expressed by the boolean integer
(zx 6= 0). The computed error value is assigned to A[v, b].e,
while the values of A[v, b].zh, A[v, b].zl, A[v, b].zr are the
coefficient triple (at most one non-zero) that minimizes the
expression above. For a last level node, there is no need to
scan through the sets of allowed assigned values; the opti-
mal value to assign to each coefficient is directly determined
by the incoming value and the data values below.

Following the generic space-efficiency paradigm of [12],
for a data set of size n, the maximum number of arrays that
need to be concurrently stored is log n+1: one array per in-
ternal triad layer plus the currently used triplet. This maxi-
mum is necessitated when the right-bound post-order recur-
sion reaches the right-most triad. Hence an algorithm that
derives the minimum error result without constructing the
synopsis itself is defined.

Complexity Analysis The result arrays L, R on each
node i hold one entry for each possible incoming value
in |S|, hence their size is O(∆

δ min{B, 2li − 1}); be-
sides, at each triad Ci and for each [v, b] pair, checking
all pairs of an assigned value in |Sv

i,H |, |Sv
i,L|, or |Sv

i,R|
and an amount of space in Di takes O(∆

δ min{B, 2li − 1})
time. Hence, the worst-case running time of MinError is
O

(
(∆

δ )2
∑n

i=1 min{B, 2li − 1}2
)

= O
(
(∆

δ )2nB
)
. For

the special case of a maximum-error metric, the B factor
becomes log2 B, thanks to the application of binary search
in the procedure that searches through value assignments;
this method is used in [8, 12, 13, 14]. Besides, since at
most log n + 1 arrays need to be concurrently stored, the
space complexity is O

(
∆
δ

∑log n+1
l=1 min{B, 2li − 1}

)
=

O
(

∆
δ B log n

B

)
. 5

For a resolution step δ, the following theorem provides a
guarantee of approximation in relation to the optimal solu-
tion in < for normalized Minkowski-distance error metrics.

Theorem 5 Consider a data set D of size n optimally sum-
marized in B terms by a Haar+ representation H∗ in < and
by the representation Hδ in the domain of multiples of δ,
with the normalized Minkowski-distance Lp error as tar-
get, deriving the error values E∗ and Eδ , respectively. Then
Eδ ≤ E∗ + δ

2 min{B, log n}.

Proof. Let D∗ denote the approximation of D produced by
H∗; let Ĥδ be the representation of D derived after round-

4The head coefficient is examined only when v ∈ (mi, Mi).
5A 1 + log n

B
factor is simplified to log n

B
under the assumption that

B < n
2

. Besides, in applications where a distinction between total space
and working space complexity is meaningful, as in [8], we need only keep
three arrays in the main memory at any time, hence the working space
complexity is O

�
∆
δ

B
�

.

ing all coefficients in H∗ to the nearest multiple of δ, E ′δ
be its Lp error and D̂ the approximation it produces. Since
Hδ is the Lp-optimal δ-step representation, it follows that
Eδ ≤ E ′δ . However, according to the triangle inequality,
E ′δ ≤ E∗ + Lp(D∗, D̂). Each approximated data value
is the sum of at most min{B, log n} coefficients (at most
one per Haar+ triad layer) and each coefficient in Ĥδ has
been rounded from its value in H∗ by at most δ

2 , hence
L∞(D∗, D̂) ≤ δ

2 min{B, log n}. From the definition of
the normalized Minkowski-distance norm it follows that
Lp(D∗, D̂) ≤ L∞(D∗, D̂). Putting it all together, we get
Eδ ≤ E∗ + δ

2 min{B, log n}.

4.3 Constructing the Synopsis

The construction of the actual synopsis after that optimal
error result has been established presents us with a time-
space trade-off. We present both variants.

4.3.1 The Space-Efficient Solution

After we have determined the solution at the topmost level
we can call a process that reenters the problem in the two
branches of C1 and recomputes the respective solutions for
its descendants, recursively. Then the total running time is
the sum of the basic running time for all re-entered sub-
problems. Setting l as the Haar tree level, this sum becomes
O

(
(∆

δ )2B
∑log n

l=0 2l n
2l

)
= O

(
(∆

δ )2nB log n
)
. On the

other hand, the space becomes O
(

∆
δ B log n

B + n
)
, where

n stands for the necessary storage of the data set.

4.3.2 The Time-Efficient Solution

Alternatively, we may maintain all computed solu-
tions throughout the computation, keeping the time at
O

(
(∆

δ )2nB
)
. As far as the space is concerned, we can

follow two different approaches:

• We may keep all DP arrays in memory. The size
of the array at triad layer li is O

(
∆
δ min{B, 2li}

)
.

The second factor sums up to
∑

i min{B, 2li} =∑
l 2

log n−l min{B, 2l} = n log B. Hence the space
complexity in this case is O

(
∆
δ n log B

)
.

• As suggested in [14] for the Haar synopsis problem,
we may attach a list with all retained coefficient val-
ues in the corresponding solution to each entry A[v]
of a DP array at triad Ci. Again, at most log n + 1
arrays are concurrently stored. An array at level li
maintains lists of size at most min{B, 2li} attached
on its entries, hence requires O

(
∆
δ (min{B, 2li})2

)
space. The squared factor, summed over all levels,
gives B2 log n

B , hence the space complexity in this
case becomes O

(
∆
δ B2 log n

B

)
.

The two space complexity expressions are equalized
when n log B = B2 log(n/B) ⇔ B =

√
n. For B <

√
n,



one should opt for annexing the solutions. On the other
hand, for B >

√
n, storing the DP arrays per se is favor-

able. The latter case is likely to apply in practice, especially
for large values of n. This time-efficient solution enables
the operation of the algorithm in one pass over the data.

4.4 Theoretical Comparison to Other Synopsis Con-
struction Algorithms

The time complexity of the histogram and wavelet syn-
opsis construction algorithms reviewed in Section 2 remains
in all cases super-linear to the size of the data set, for
generic distributive error metrics (although linear or near-
linear time versions exist for Euclidean and maximum-error
metrics). Table 2 summarizes this complexity terrain, under
the L1 metric, for the state-of-the art, in terms of quality,
histogram and Haar wavelet techniques, as well as for the
Haar+ method that we introduce; n is the data set size, B
the space bound, δ the resolution step, M the maximum
absolute value in the data set, E an upper bound for the op-
timal L1 error, and ∆ the difference of the minimum from
the maximum value in the data set. The fractions nM

δ , nE
δ

and ∆
δ express the cardinality of the examined set of in-

coming or assigned values for the unrestricted Haar wavelet
and Haar+ models, respectively. This set is bounded by an
upper bound for the non-normalized L1 error in [14]; this
error measure grows with the size of the summarized data
set n, since it is equal to nE , where E is the O(1) normal-
ized L1 error. As seen in the table, while previous quality-
aware techniques are burdened by time complexity at least
quadratic to n for this metric, the Haar+ structure allows for
synopsis construction in time linear to n. This Haar+ com-
plexity holds for any monotonic distributive error metric.
Moreover, Haar+ achieves by theory at least as high (in prac-
tice higher) synopsis quality as Haar wavelet techniques,
and outperforms histogram techniques too at the task of ap-
proximating data sets with sharp discontinuities. We now
demonstrate these advantages in practice.

Technique Time Complexity (L1) Reference
Histograms O(n2(B + log n)) [23, 17]

Restricted Haar O(n2 log B) [8, 12]
Unrestricted Haar O((M

δ )2n3B) [13]
Unrestricted Haar O((Eδ )2n3B) [14]

Haar+ O((∆
δ )2nB) This work

Table 2. Summary of results for quality-aware
synopsis construction (L1 metric)

5 Experimental Comparison of Synopsis
Data Structures

In this section we present our experimental results per-
taining to the runtime for, and the approximation quality
achieved with, Haar+ synopses. We compare the results to

those achieved with alternative synopsis construction tech-
niques. Specifically, we have performed comparison with
the following algorithms:

• HIST The optimal histogram construction algorithm
of [23, 17]. This algorithm provides an upper bound to
the quality of any approximate histogram construction
technique [11, 16, 34].

• R-Haar The optimal restricted Haar wavelet synopsis
algorithm of [8, 12].

• U-Haar The approximation scheme for unrestricted
Haar wavelet synopses of [13, 14]. Our implementa-
tion of this scheme follows the model of [14], where
the examined values are bounded by an upper bound
for the final non-normalized Minkowski-norm error. It
first calculates, in O(n log B) time, the targeted non-
normalized error metric value Ê for the synopsis con-
sisting of the B largest Haar terms of D by absolute
value; then it employs it for bounding the search space.
In terms of growth, Ê = n

1
p E = O(n

1
p ), where E is

the O(1) normalized Minkowski-norm error.

• Haar+ The Haar+ synopsis algorithm presented in Sec-
tion 4.

All algorithms were implemented using the g++ 3.4.3
compiler, while the experiments were run on a 4 CPU
Opteron 2.2GHz machine with 4GB of main memory run-
ning Solaris.

Description of Data We have focused on two real-life
data sets with hard to approximate bursts and discontinuities
for our quality assessment, as well as an easier to approx-
imate larger real life data set for our runtime assessment.
The first data set (FR), discussed in [28], is a sequence of
the mean monthly flows for the Fraser River at Hope, B.C.6

The flows present periodic autoregression features, while
they average at 2709 (standard deviation: 2123) and feature
discontinuities (min value: 482, max value: 10800). The
second data set (FC) is extracted from a relation of 581,012
tuples describing the forest cover type for 30 x 30 meter
cells, obtained from US Forest Service. FC contains the
frequencies of the distinct values of attribute aspect in
the relation. The frequencies average at 1613 (standard de-
viation: 730) and feature spikes of large values (min value:
499, max value: 6308). The third dataset (TM) is a se-
quence of 178,080 sea surface temperature measures ex-
tracted from drifting buoys positioned throughout the equa-
torial Pacific. The average value in TM is 26.75 and the
set has a small standard deviation (1.91). Both FC and TM
were downloaded from the UCI KDD Archive 7.

6Available at http://lib.stat.cmu.edu/datasets/fraser-river
7Available at http://kdd.ics.uci.edu/



5.1 Running Time

In this experiment we evaluate the run-time performance
of the four synopsis construction algorithms at the task of
minimizing a distributive error metric. In particular, we
tried all algorithms on different-sized prefixes of the TM
data set with the computationally challenging average ab-
solute error L1 (equivalently, the sum of absolute errors) as
the target metric. In order to facilitate our measurements we
opted for a large constant resolution value δ = 1 with both
the U-Haar and Haar+ algorithms. For all four algorithms,
we measured the time required to derive the error result in
two different settings: One in which the space budget B
grows along with the data set size n, such that B = n

64 , and
one in which B remains at the constant value B = 32 while
n grows. Figure 3 plots the results for both settings on log-
arithmic axes. As expected, the Haar+ algorithm presents
the most affordable runtime growth of all. The advantage is
particularly striking at the constant B setting, where it is the
only algorithm that behaves linearly. When B grows with n
it exhibits quadratic behavior, paralleled by R-Haar, whom
it exceeds in synopsis quality. On the other hand, the growth
of HIST is cubic when B grows with n and quadratic for
constant B. Finally, the nature of U-Haar is that of a fourth-
power growth when B grows with n and cubic for constant
B. It is so because its runtime depends quadratically to the
search space bound, which grows linearly with n.
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Figure 3. Runtime comparison: L1

5.2 Synopsis Quality

We present quality results for two representative error
metrics at the opposite ends of the Minkowski spectrum:
the maximum absolute error L∞ and the average absolute
error L1, on the the FR and FC data sets. Results with other
metrics, such as L2, were similar. Figure 4 shows the error
results for the L∞ metric, in which the resolution value has
been set at δ = 50 for the FR and δ = 10 for the FC data set
with both U-Haar and Haar+. The Haar+ technique achieves
the highest quality for both data sets. U-Haar and HIST
outbalance each other for the second best quality, while R-
Haar does not achieve high accuracy due to its restricted
nature. In order to render the histogram-based summariza-
tion directly comparable to the binary-interval-based Haar
wavelet-derived techniques in our experiments with the L1
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Figure 4. Quality comparison: L∞

metric, we have used a 512-value prefix of the FR data set
and a 256-value prefix of the FC data set. Figure 5 shows
the error results, in which, again, the resolution value has
been set at δ = 50 for the FR synopses and δ = 10 for
the FC data set with both U-Haar and Haar+. U-Haar is
outperformed by HIST with both datasets, while it needed
inconveniently long time, in particular for summarizing the
larger FR data set, due to its high time complexity for this
error metric. However, the Haar+ technique outperforms
HIST for this error metric too, achieving the highest quality
for both data sets also in this experiment. Finally, R-Haar
does not achieve high quality with this error metric either.
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Figure 5. Quality comparison: L1

6 Discussion
Our results on the superior quality of Haar+ synopses

in relation to classical Haar techniques were expected. A
Haar+ synopsis is always at least as good as the equivalent
Haar synopsis. Still, we have demonstrated that Haar+ can
achieve higher accuracy than an optimal histogram too. On
the other hand, we have witnessed that histograms can do
better than wavelet-derived schemes at approximating data
sets without sharp discontinuities. Moreover, as we saw in
the previous section, they are advantaged in relation to the
unrestricted Haar method when the target error metric is the
average error, which introduces a smoothing factor as well.
These findings have interest of their own, as a comparison
between the provably optimal quality achieved with each of
these two models was missing in previous research.8

8Such comparisons had been made only before optimal-quality meth-
ods were available for both models [27, 17].



7 Conclusions
In this paper we have introduced the Haar+ tree: a novel,

refined synopsis data structure, inspired from Haar wavelet
techniques, eschewing their deficiencies and enhancing on
their advantages. We have demonstrated that Haar+ syn-
opses of data sets with sharp discontinuities achieve higher
quality than optimal histogram and Haar wavelet schemes
under representative error metrics. Moreover, thanks to the
capacity of the Haar+ structure to delimit the search space,
Haar+ synopses are constructed in time linear to the size of
the data for any monotonic distributive error metric. To the
best of our knowledge, this is the first synopsis construction
technique that can achieve higher quality than an optimal
histogram for an additive error metric in time linear to the
size of the input. Besides, Haar+ synopsis construction can
be performed in one pass. In conclusion, the Haar+ structure
provides a mostly recommendable option for the high qual-
ity and time-efficient summarization of very large discon-
tinuous data sets with any distributive target error metric. In
the future, we plan to examine how the Haar+ technique can
be extended to multi-dimensional data.
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