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Abstract. Given a set ofN multi-dimensional points, we study the computation
of φ-quantiles according to a ranking functionF , which is provided by the user
at runtime. Specifically,F computes a score based on the coordinates of each
point; our objective is to report the object whose score is theφN -th smallest
in the dataset.φ-quantiles provide a succinct summary about theF -distribution
of the underlying data, which is useful for online decision support, data min-
ing, selectivity estimation, query optimization, etc. Assuming that the dataset is
indexed by a spatial access method, we propose several algorithms for retriev-
ing a quantile efficiently. Analytical and experimental results demonstrate that a
branch-and-bound method is highly effective in practice, outperforming alterna-
tive approaches by a significant factor.

1 Introduction
We study quantile computation of aderived measureover multi-dimensional data.
Specifically, given (i) a setP of N points ind-dimensional space, (ii) a continuous
functionF : Rd → R, and (iii) a valueφ ∈ [0, 1], a quantile query retrieves theφN -th
smallestF -value of the objects inP . For instance, the median corresponds to the 0.5-
quantile, whereas the maximum is the 1-quantile. Quantiles provide a succinct summary
of a data distribution, finding application in online decision support, data mining, selec-
tivity estimation, query optimization, etc.

Consider a mobile phone company that has conducted a survey on customers’ pref-
erences regarding their favorite service plans. The two dimensions in Figure 1a capture
two properties of a monthly plan (e.g., the price and amount of air-time); each white
point represents the preferences of a customer on these properties. Assume that the
company is planning to launch a new plan corresponding to the black dotq. To evaluate
the potential market popularity ofq, the manager would be interested in the distribution
of the similarity betweenq and customers’ preferences. For this purpose,F may be
defined as the Euclidean distance betweenq and a white point and quantiles for various
values ofφ could be retrieved. As another (spatial) example, assume that pointq in
Figure 1a is a pizza shop and the white points correspond to residential buildings. The
medianresidential building distance (from the pizza shop) might be useful to the shop
owner, in order to plan adequate number of staff for pizza delivery.
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The query in Figure 1a is asingle-sourcequery because the ordering of data points
depends on one source only. A more complex scenario is shown in Figure 1b, where the
white points correspond to residential areas, and the black dots represent supermarkets.
Each dashed polygon is the “influence region” [21] of a supermarket, which covers
those residential areas that find it as the nearest supermarket. A market analyst would
like to obtain the distribution of the distance from a residential area to its nearest su-
permarket, in order to decide a suitable location to open a new supermarket. A quantile
query in this case is amultiple-sourceone, because the ordering of the white points is
determined by multiple sources (the supermarkets).
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Fig. 1.Examples of quantiles based on derived Euclidean distances

Our goal is to compute a quantile by accessing only a fraction of the dataset,
without knowing the ranking functionF in advance. Previous research [1, 14, 15, 9, 8]
in the database community focused on computing/maintaining approximate quantiles,
whereas we aim at obtaining theexactresults. Furthermore, our problem is completely
different than the so-called “spatial quantiles” in computational geometry [12, 5]. For
example, aspatial centeris a locationp (not necessarily an actual point in the dataset)
such that every hyperplane containingp defines a “balanced” partitioning of the dataset
(i.e., the numbers of points in the two partitions differ by less than a threshold). Our
quantile, on the other hand, is aone-dimensionalvalue in the output domain ofF .

We develop several solutions that leverage a multi-dimensional index (e.g., R-tree)
to prune the search space, starting with a variation of the incremental nearest neighbor
(INN) algorithm [11]. This algorithm is not efficient as its cost linearly increases withφ.
We then present a faster algorithm, which iteratively approximates theF -distribution
using linear functions. Our last solution combines the branch-and-bound framework
with novel heuristics that minimize the I/O cost based on several problem characteris-
tics. We analyze the relative performance of the proposed approaches, theoretically and
experimentally. Finally, we generalize our algorithms to other variations of the problem
including progressive retrieval, batch processing, etc.

The rest of the paper is organized as follows. Section 2 reviews related work. Section
3 formally defines the problem, while Section 4 presents the details of the proposed
algorithms, and analyzes their performance. Section 5 extends our solutions to other
types of quantile retrieval. Section 6 contains an experimental evaluation, and finally,
Section 7 concludes the paper with directions for future work.



2 Related Work
We treat quantile computation of a derived measure as a spatial query. We review index-
ing and query evaluation for multidimensional data in Section 2.1. Section 2.2 surveys
existing methods for retrieving quantiles on non-indexed data.

2.1 Spatial query processing

R-trees [10] have been extensively used for indexing spatial data. Figure 2a shows a set
of points on the 2D plane, indexed by the R-tree in Figure 2b. The R-tree is balanced
and each node occupies one disk page. Each entry stores the MBR (minimum bounding
rectangle) that encloses all spatial objects in the corresponding sub-tree. Leaf nodes
store object MBRs and their record-ids in the spatial relation that stores the objects. R-
trees were originally designed for spatial range queries, but they can be used to process
more advanced spatial queries, like nearest neighbors [11], spatial joins [4], reverse
nearest neighbors [21], skyline queries [18], etc.

The aggregate R-tree (aR-tree) [13, 17] is a variant of the R-tree where each entry
is augmented with an aggregate measure of all data objects in the sub-tree pointed by
it. The aR-tree was originally designed for the efficient evaluation of spatial aggregate
queries, where measures (e.g., sales, traffic, etc.) in a spatial region (e.g., a country,
a city center) are aggregated. In Section 4, we show how aR-trees, augmented with
COUNTmeasures, can be exploited for efficient quantile computation.

 

y

x
0

q
e1

e2

e3

p1

p2
p3

p4
p5

p6

p7

p9

p8

 

e1 e2 e3

p1 p2 p3 p4 p5 p6 p7 p8 p9

(a) Set of points (b) R-Tree structure

Fig. 2.R-Tree example

Our work is also relevant to nearest neighbor (NN) queries. A NN query asks for the
point closest to an input pointq. INN, the state-of-the-art algorithm for NN search [11],
retrieves the nearest neighbors ofq incrementallyin ascending order of their distance to
q. INN browses the R-tree and organizes the entries of the visited nodes in a min-heap
based on their distances toq. First, all root entries are enheaped. When a non-leaf entry
is dequeued, its child node is accessed and all entries in the child node are enheaped.
When a leaf entry (data object) is dequeued, it is guaranteed to be the next nearest
neighbor.

2.2 Quantile computation

The computation of a quantile is known as the selection problem in the theory com-
munity. [19] is an overview of theoretical results on the selection problem. Sorting the
elements is a straightforward solution but this requiresO(N log N) comparisons. An
early algorithm in [3] needs onlyO(N) comparisons but it may access some elements



multiple times. It was shown in [16] thatO(N
1
t ) memory is necessary and sufficient

for solving the selection problem int passes of data.
This theoretical result implies that theexactquantile (selection) problem can only

be answered in multiple passes with limited memory. Hence, the database community
attempted to computeapproximatequantiles with only one pass of the data. An element
is anε-approximateφ-quantile if its rank is within the range[(φ−ε)N, (φ+ε)N ]. [1, 14,
15, 9, 8] presented algorithms for retrieving an approximate quantile with limited mem-
ory in at most one pass of data. The best result [9] requires onlyO( 1

ε log(εN)) memory.
Recently, [6] studied computation of biased (extreme) quantiles in data streams, which
requires less space than the upper bound given by [9]. Observe that the memory required
by the above methods is at least proportional to1/ε. Thus, they are not appropriate for
computing exact quantiles (or approximate quantiles with very smallε).

In our problem setting, the ranking functionF is dynamic and only known at run-
time. Due to this dynamic nature, pre-materialized results may not be used. In addition,
we aim at utilizing existing indexes to minimize the data required to be accessed in
order to compute the quantile, whereas existing techniques [1, 14, 15, 9, 8, 6] operate
on non-indexed, one-dimensional data. Their focus is the minimization of error, given
a memory budget, where one pass over the data is essential. The problem of comput-
ing quantiles on indexed one-dimensional data (i.e., by a B+-tree) is not interesting,
since the high levels of the tree are already an equi-depth histogram that can be easily
used to derive the quantiles efficiently. On the other hand, there is no total ordering of
multi-dimensional data, thus R-trees cannot be used directly for ad-hoc spatial ranking.

A viable alternative for handling dynamic ranking functions in multidimensional
data is to maintain a random sample from the dataset and compute an approximate
quantile value from it. It is known [2] that, for any random sample of sizeO( 1

ε2 log 1
δ ),

theφ-quantile of the sample is also anε-approximate quantile of the dataset with prob-
ability at least1− δ. The number of required samples directly translates to the required
memory size. Thus, random sampling technique is inadequate for retrieving exact quan-
tiles (whereε = 0) or approximate quantiles with very smallε. In this paper, we propose
index-basedmethods for efficient computation ofexactquantiles on derived ranking
measures over multidimensional data.

3 Problem Definition

Let P be a set ofN d-dimensional points andF : Rd → R be a continuous function on
the domain ofP . The continuity property implies that points close together have similar
F values. The coordinate of a pointp along thei-th dimension is denoted byp(i). Given
a real valueφ in the range[0, 1], aφ-quantile query returns theφN -th smallestF value
among all points in the dataset. Without loss of generality, we assume thatφN is an
integer.

We assume that the dataset is indexed by aCOUNTaR-tree. Each entry in the
tree is augmented with the number of points in its subtree. The ranking functionF
is application-dependent. Moreover, we require two bounding functionsFl and Fu,
which take the MBR of a non-leaf entrye as input and return the range[Fl(e), Fu(e)]
of possibleF values for any point in it. Given an entrye of the aR-tree, the derived
range[Fl(e), Fu(e)] is used by our algorithms to determine whether the entry can be



pruned or not from search. Computation of tightFl andFu bounds is essential for good
query performance. Although our discussion assumes aR-trees, our framework is also
applicable to other hierarchical spatial indexes (where non-leaf nodes are augmented
with aggregate information [13]).

Our aim is to provide a generic framework for processing quantile queries using
aR-trees. In the following, we provide examples of four ranking functionsF . The first
two definesingle-sourcequantile queries and take one (or zero) parameter (e.g., a query
point). The last two definemultiple-sourcequantile queries with multiple parameters.

Distance ranking Each object in a dataset is associated with a rank based on its dis-
tance from a reference query pointq. For an MBRe, we haveFl(e) = mindist(q, e)
andFu(e) = maxdist(q, e); the minimum and maximum distances [11], respectively,
between any point ine andq.

Linear ranking A linear function combines coordinate values of a point into a single
score. Such a function is the generalization of theSUMfunction used in top-k queries
[7]. Given d weightsw1, w2, · · · , wd, the ranking functionF is defined asF (p) =∑

i∈[1,d] wi · p(i). For an MBRe, we haveFl(e) =
∑

i∈[1,d] wi · e`(i) andFu(e) =∑
i∈[1,d] wi · ea(i), wheree`(i) andea(i) are the lower and upper bounds of the extent

of e on thei-th dimension.

Nearest-site distance ranking This scenario is a generalization of simple distance
ranking. We consider the ranking of objects based on their distances from their nearest
query point in a given set. Given query points (sites)q1, q2, · · · , qm, the ranking func-
tion F is defined asF (p) = mini∈[1,m] dist(qi, p), wheredist denotes the distance
function (e.g., Euclidean distance). We haveFl(e) = mini∈[1,m] mindist(qi, e) and
Fu(e) = mini∈[1,m] maxdist(qi, e), for an MBRe. We assume that the numberm of
query points is small enough to fit in memory. For example, the data points represent
users and the query points represent facilities (e.g., restaurants in the town).

Furthest-site distance ranking Unlike the previous example, we consider the rank-
ing of objects based on their distances from their furthest query point in a given set.
For instance, a small group of people (modeled as query points) decide to meet at the
same restaurant. The maximum distance of the restaurant from the group reflects their
meeting time. Given query points (sites)q1, q2, · · · , qm, the ranking functionF is de-
fined asF (p) = maxi∈[1,m] dist(qi, p), wheredist denotes the distance function (e.g.
Euclidean distance). For an MBRe, we haveFl(e) = maxi∈[1,m] mindist(qi, e) and
Fu(e) = maxi∈[1,m] maxdist(qi, e). As in the previous example, we assume that the
numberm of query points is small enough to fit in memory.

4 Quantile Computation Algorithms

In this section, we propose three quantile computation algorithms that apply on an aR-
tree. The first method is a simple extension of a nearest neighbor search technique. The
second solution is based on iterative approximation. Section 4.3 discusses an optimized
branch-and-bound method for computing quantiles. Finally, a qualitative cost analysis
of the algorithms is presented in Section 4.4.



4.1 Incremental search

The incrementalquantile computation algorithm (INC) is a generalization of the in-
cremental nearest neighbor (INN) algorithm [11]. It simply retrieves the point with the
next lowestF value until theφN -th object is found. A pseudocode for INC is shown
in Figure 3. The algorithm employs a min-heapH for organizing the entriese to be
visited in ascending order of theirFl(e) value. A countercnt (initially 0) keeps track of
the number of points seen so far. First, all entries of the root node are enheaped. When
an entrye′ is deheaped, we check whether it is a non-leaf entry. If so, its child node is
accessed and all entries in the node are enheaped. Otherwise (e′ is a leaf entry),e′ is
guaranteed to have the next lowestF value, and the countercnt is incremented by 1.
The algorithm terminates when the counter reachesφN .

Algorithm INC (R-treeR, FunctionF , Valueφ)
1 cnt:=0;
2 H:=∅;
3 for eachentrye ∈ R.root
4 Enheap(H, 〈e, Fl(e)〉);
5 while (H 6= ∅)
6 e′:=Deheap(H);
7 if (e′ is a non-leaf entry)then
8 read the noden pointed bye′;
9 for eachentrye ∈ n
10 Enheap(H, 〈e, Fl(e)〉);
11 else
12 cnt:=cnt + 1;
13 if (cnt = φN ) then
14 return F (e′);

Fig. 3.The incremental search algorithm (INC)

Observe that the cost of INC is sensitive toφ. For large values ofφ, many objects
are accessed before the algorithm terminates. Next, we will present other quantile algo-
rithms, which use the aggregate values stored at the high levels of the aR-tree and their
performance is less sensitive to the valueφ.

4.2 Iterative approximation

The motivation behind our second algorithm is to search the quantiles that correspond
to someF values and progressively refine an approximation for the desiredφ-quantile.
Figure 4a illustrates an example distribution ofφ as a function ofF values. Clearly, we
do not know every value on this graph a priori as the ranking functionF is only known at
runtime. Suppose we want to find the 0.25-quantile (i.e.φ = 0.25). We initially obtain
lower (Fl(R)) and upper bounds (Fu(R)) for the potential values ofF without any
cost, according to the MBR of the aR-treeR. In the figure,Fl(R) corresponds to point
a andFu(R) to pointb. We reduce the computation of the 0.25-quantile to a numerical
problem and applythe interpolation method[20] for solving it. The main idea is to
approximate the distribution function as a straight line anditeratively“probe” for exact
quantile values corresponding to the expected values based on the approximation, until
the error is small enough for theF value to correspond to an exact quantile.



Continuing with the example, we first connect pointsa andb by a straight line, and
take theF -coordinateλ1 of the intersection (see Figure 4a) between the line and a hor-
izontal line atφ = 0.25 (i.e.,λ1 is our estimate of the 0.25-quantile). Then, we compute
the pointc on theactualφ-F curve whoseF -coordinate isλ1 (computation ofc will be
explained shortly). Since theφ-coordinate ofc is smaller than 0.25 (i.e.,λ1 underesti-
matesthe 0.25-quantile), we (i) obtain theF -coordinateλ2 of the intersection between
the horizontal lineφ = 0.25 and the line connectingc, b, and (ii) retrieve the pointd
(Figure 4b) on the actual curve withλ2 as theF -coordinate. Asλ2 overestimatesthe
0.25-quantile (theφ-coordinate ofd is greater than 0.25), we perform another iteration
by connectingc andd, which leads toe in Figure 4c. Since theφ-coordinate ofe equals
0.25, the algorithm terminates.
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Fig. 4. Iterative approximation example

We now discuss how to use the aR-tree in order to find a point that corresponds
to a valueλ for F . This is done using the RANGECOUNT function shown in Figure
5, which counts the number of data points withF values not greater thanλ, while
traversing the tree. The function is first invoked at the root node of an aR-tree. For an
intermediate entrye, if Fu(e) ≤ λ, then all the points under the subtree fall in the range
and the counter is incremented byCOUNT(e), the number of points under the subtree
of e. note thatCOUNT(e) can directly be retrieved from the tree node containinge.
Otherwise (Fu(e) > λ), if e is a non-leaf entry andFl(e) ≤ λ, then it is possible that
some points undere lie in the query range. Thus, the function is called recursively to
compute the remaining count of data points within the range.

Algorithm RANGE COUNT(aR-tree noden, FunctionF , Valueλ)
1 cnt:=0;
2 for eachentrye ∈ n
3 if (Fu(e) ≤ λ) then
4 cnt:=cnt+COUNT(e);
5 else if(Fl(e) ≤ λ ∧ e is a non-leaf entry)then
6 read the noden′ pointed bye;
7 cnt:=cnt+RANGE COUNT(n′, F, λ);
8 return cnt;

Fig. 5.Counting points in a generalized range

Figure 6 shows the pseudocode of the iterative approximation algorithm (APX).
First, the boundsλl andλu of theF -range that includes theφ-quantile are initialized



to Fl(R) andFu(R), respectively. In addition, valuescntl andcntu (conservative ap-
proximations of quantiles at the end-points of the range) are initialized to 0 andN
respectively. At Line 4, we link points(λl, cntl) and(λu, cntu) on theφ-F curve (like
the one of Figure 4) by a straight line, and use the line to estimate a valueλ for theφ-
quantile. Function RANGECOUNT is then used to compute the numbercnt of points
whoseF value is at mostλ. After that, Lines 6–9 update the coordinates for the next
iteration. The loop iterates until the countcnt converges toφN .

Algorithm Iterative Approximation (aR-treeR, FunctionF , Valueφ)
1 (λl, cntl):=(Fl(R), 0); // conservative lower end
2 (λu, cntu):=(Fu(R), N); // conservative upper end
3 do
4 λ:=λl + λu−λl

cntu−cntl
· (φN − cntl); // linear approximation of quantile value

5 cnt:=RANGE COUNT(R.root, F , λ); // actual rank for the estimated value
6 if (cnt > φN )
7 (λu, cntu):=(λ, cnt);
8 else
9 (λl, cntl):=(λ, cnt);
10 while (cnt 6= φN);
11 return λ;

Fig. 6.The iterative approximation algorithm (APX)

4.3 Branch-and-bound quantile retrieval

Although the iterative approximation algorithm is less sensitive toφ, it is not very
efficient as it needs to access the aR-tree multiple times. We now present a branch-
and-bound algorithm for computing quantiles. Before we describe the algorithm, we
introduce some notations and pruning rules employed by it.

Definition 1. LetS be a set of aR-tree entries. For anye ∈ S, ωl(e, S) denotes the max-
imum possible number of objects whoseF value is at mostFu(e) andωu(e, S) denotes
the maximum possible number of objects whoseF value is at leastFl(e). Formally:

ωl(e, S) =
∑

e′∈S,Fl(e′)≤Fu(e)

COUNT(e′) (1)

ωu(e, S) =
∑

e′∈S,Fu(e′)≥Fl(e)

COUNT(e′) (2)

Measuresωl(e, S) andωu(e, S) form the basis of pruning rules for aR-tree entries
during branch-and-bound traversal for quantile computation. When the context is clear,
we sometimes drop the symbolS and simply useωl(e) andωu(e). To illustrate the use
of these measures, consider Figure 7, showing theF range intervals of four aR-tree
entriesS = {e1, . . . , e4}. Let φ = 0.5 andN = 50. Note thatωl(e2) = 10 + 10 =
20 < φN , which means that all objectsp in the subtree ofe2 have ranks lower than the
quantile. Thus, we can safely prunee2 and avoid accessing its subtree during quantile
computation. On the other hand, we cannot prune entrye1, sinceωl(e1) = 10 + 10 +
15 = 35 ≥ φN . Symmetrically, by computing whetherωu(ei) < (1 − φ)N + 1, we
can determine if an entry can be pruned due to the lower ranking bound of objects in it.
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Fig. 7.Pruning example

The algorithm We can now describe in detail our branch-and-bound (BAB) quantile
computation algorithm (shown in Figure 8). We initialize two variablescurl andcuru,
which capture the number of objects guaranteed to be before and after theφ-quantile,
respectively. The root of the aR-tree is visited and all entries there are inserted into
setS. Lines 6–8 attempt to prune entries, all objects under which have rankings lower
thanφN . For this, we examine the entries ordered by their upper ranking boundFu(e).
Lemma 1 (trivially proven) states the pruning condition. Lemma 2 suggests thatωl

values of entries can be incrementally computed. We can prune all entriese satisfying
Fu(e) ≤ Fu(e∗l ) wheree∗l is the entry with the greatestFu value satisfying the pruning
condition. Lines 12–14 perform symmetric pruning; entries are examined in descending
order of their lower bounds in order to eliminate those for which all indexed objects have
rankings higher thanφN . Finally, in Lines 18–21, a heuristic is used to choose a (non-
leaf) entryec fromS, visit the corresponding node, and updateS with its entries. Details
on how to prioritize the entries will be discussed shortly. The algorithm terminates when
the requested quantile is found (Line 10 or 16).

Lemma 1. Pruning condition. Among the objects that were pruned, letcurl (curu)
be the number of objects withF values smaller (greater) than the quantile object. An
aR-tree entrye can be pruned ifcurl +ωl(e) < φN or curu +ωu(e) < N(1−φ)+ 1.

Lemma 2. Efficient computation.Letl1, l2, · · · , l|S| (u1, u2, · · · , u|S|) be aR-tree en-
tries in a setS such thatFu(li) ≤ Fu(li+1) (Fl(ui) ≥ Fl(ui+1)). We have
ωl(li+1, S) = ωl(li, S) +

∑
e∈S,Fu(li)<Fl(e)≤Fu(li+1)

COUNT(e) and
ωu(ui+1, S) = ωu(ui, S) +

∑
e∈S,Fl(ui)>Fu(e)≥Fl(ui+1)

COUNT(e).

Management ofS We propose to use two main-memory B+-trees (Tl andTu) for
indexing the entries inS; one based on theirFl values and another based on theirFu

values. Insertion (deletion) of an entry takesO(log|S|) time in both trees. The rationale
of using the above data structure is that it supports efficient pruning of entries. Lemma 2
suggests thatωl (ωu) values of entries can be incrementally computed. Now, we discuss
how to prune entries with rankings guaranteed to be lower thanφN . First, we get the
entry with lowestFu value fromTu and then compute itsωl value (by accessing entries
in Tl in ascending order). Next, we get the entry with the next lowestFu value fromTu

and compute itsωl value (by accessing entries inTl in ascending order, starting from
the last accessed location). The above process repeats until the current entry inTu does
not satisfy the pruning condition in Lemma 1. Notice that entries (inTl andTu) are
accessed sequentially through sibling links in B+-tree leaf nodes. Lete∗l be the entry
with the greatestFu value satisfying the pruning condition. Then, we remove all leaf
entriese in Tu satisfyingFu(e) ≤ Fu(e∗l ) and delete their corresponding entries in
Tl. A symmetric procedure is applied to prune entries with rankings guaranteed to be
greater thanφN .



Algorithm BaB Quantile(aR-treeR, FunctionF , Valueφ)
1 curl:=0; curu:=0;
2 S:=∅;
3 for eachentrye ∈ R.root
4 S:=S ∪ {e};
5 while (true)
6 e∗l := entry inS with the greatestFu value satisfyingcurl + ωl(e

∗
l ) < φN ;

7 for eachentrye ∈ S satisfyingFu(e) ≤ Fu(e∗l ) // pruning entries on the lower side
8 S:=S − {e}; curl:=curl+COUNT(e);
9 el := entry inS with the minimumFu value;
10 if (curl = φN − 1 ∧ ωl(el) = 1 ∧ el is a leaf entry)then
11 return F (el);
12 e∗u := entry inS with the leastFl value satisfyingcuru + ωu(e∗u) < N(1− φ) + 1 ;
13 for eachentrye ∈ S satisfyingFl(e) ≥ Fl(e

∗
u) // pruning entries on the upper side

14 S:=S − {e}; curu:=curu+COUNT(e);
15 eu := entry inS with the maximumFl value;
16 if (curu = N(1− φ) ∧ ωu(eu) = 1 ∧ eu is a leaf entry)then
17 return F (eu);
18 if (φ ≤ 0.5) // heuristic for picking the next non-leaf entry to expand
19 setec as the non-leaf entry, overlappingel’s F -interval, with the maximum count inS;
20 else
21 setec as the non-leaf entry, overlappingeu’s F -interval, with the maximum count inS;
22 S:=S − {ec};
23 access noden′ pointed byec;
24 for eachentrye ∈ n′

25 S:=S ∪ {e};

Fig. 8.The branch-and-bound quantile computation algorithm (BAB)

Order of visited nodes We now elaborate on which non-leaf entry should be selected
for further expansion (Lines 18–21 in Figure 8); the order of visited aR-tree nodes af-
fects the cost of the algorithm. Before reaching Line 18, entriesel and eu have the
minimum value ofωl(el) andωu(eu) respectively. Intuitively, we should attempt re-
ducing the valueωl(el) (or ωu(eu)) so that entryel (or eu) can be pruned. For entry
el, valueωl(el) is determined by the count of other entries whoseF -interval intersects
that of the entryel. Thus, it suffices to identify the non-leaf entry that contributes the
most toωl(el) (maximum non-leaf component). Lemma 3 guarantees that such a non-
leaf component always exists. Similarly, we can also compute the maximum non-leaf
component ofωu(eu). The question now is whether the removal of the maximum non-
leaf component ofωl(el) or that ofωu(eu) leads to lower overall I/O cost. Note that
the algorithm terminates when the quantile result is found from either the lower side or
the upper side. Hence, it is not necessary to expand non-leaf entries from both lower
and upper sides. Based on this observation, a good heuristic is to select the maximum
non-leaf component ofωl(el) whenφ ≤ 0.5, and that ofωu(eu), otherwise, in order to
reach the requested quantile as fast as possible.

Lemma 3. Non-leaf component.Letel (eu) be the entry inS with the smallestωl (ωu)
value. There exists a non-leaf entry among all entriese′ ∈ S satisfyingFl(e′) ≤ Fu(el).
Also, there exists a non-leaf entry among all entriese′ ∈ S satisfyingFu(e′) ≥ Fl(eu).



Proof. We will prove the first statement; the proof for the second is symmetric. Con-
sider two cases for the entryel. If el is a non-leaf entry, then the statement is trivially
true. If el is a leaf entry (i.e. a data point), then we haveωl(el) > 1 as it is not pruned
before. As there are no other leaf entries withF value smaller thanel, there must exist
a non-leaf entry inS whose interval ofF values intersects that ofel.

4.4 Qualitative Cost Analysis

This section analyzes qualitatively the performance of the proposed algorithms. Our
analysis considers only the number of (distinct) leaf nodes accessed by the algorithms,
as the total cost is dominated by leaf node accesses (and a large enough memory
buffer will absorb the effect of accessing nodes multiple times by the RANGECOUNT
queries of APX).
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Fig. 9.Analysis example

As discussed in Section 3, we assume thatF is a continuous function. Figure 9a
shows a set of five exemplarycontourson the data domain. Each of them connects the
set of locations having the sameF value in the data domain. The continuity property of
the ranking function implies that contours close together have similarF values. In our
example, inner contours have lowerF values than outer ones. LetF ∗ be theF value
of the quantile corresponding to thetarget contourin bold. Note that the union of all
contours withF values at mostF ∗ encloseφN data points. Figure 9b magnifies the
region around the target contour. Observe that any algorithm that computes the quantile
correctly must access the area enclosed by dotted curves which contain all leaf nodes
(rectangles) intersecting the target contour.

We now examine thesearch regionof the proposed algorithms. The branch-and-
bound quantile algorithm (BAB) accesses the nodes intersecting the target contour,
pruning at the same time a significant fraction of nodes which do not intersect the target
contour. On the other hand, the incremental search algorithm (INC) accesses all nodes
intersecting contours withF values smaller than or equal toF ∗. Clearly, INC is much
more expensive than BAB. The iterative approximation algorithm (APX) employs an
efficient range count algorithm so it only visits the nodes intersecting the target contour
and a few other contours (due to multiple trials). Thus, APX is not as effective as BAB
as APX accesses more space (i.e., more contours). Summarizing, BAB is expected to
outperform both INC and APX in terms of I/O. Another observation is that different
quantiles require different cost. This is obvious for INC. For APX and BAB, it is more



expensive to compute the median than extreme quantiles because more nodes intersect
the target contour of the median than that of extreme quantiles.

5 Variants of Quantile Queries and Problem Settings
In this section, we discuss variants of quantile query evaluation and cases where aR-
trees may not be available. Section 5.1 discusses how the proposed algorithms can be
adapted for approximate quantile queries. Section 5.2 examines efficient computation of
batchquantile queries. Finally, Section 5.3 investigates quantile computation for cases
where the data are indexed by simple (i.e., not aggregate) R-trees or when only spatial
histograms are available.

5.1 Approximate and progressive quantile computation

An ε-approximate quantile query returns an element from the dataset with a rank in
the interval[(φ − ε)N, (φ + ε)N ], whereN is the data size,φ andε are real values in
the range[0, 1]. The goal is to retrieve an accurate enough estimation, at low cost. For
INC, the termination condition at Line 13 of the algorithm in Figure 3 is modified to
cnt = (φ − ε)N . The approximate version of the APX algorithm terminates as soon
as RANGECOUNT returns a number within[(φ − ε)N, (φ + ε)N ]. Specifically, the
condition at Line 10 of Figure 6 is changed to|cnt− φN | > εN . For BAB (see Figure
8), we need to change the termination conditions at Lines 10 and 16, such that the
algorithm stops when there exists a leaf entry inS (a set of temporary entries to be
processed) whose range of possible ranks is enclosed by[(φ − ε)N, (φ + ε)N ]. Thus,
we replace the condition of Line 10 by “curl +1 ≥ (φ− ε)N ∧ curl +ωl(el) ≤ (φ+
ε)N ∧ el is a leaf entry”. The first condition ensures that all elements with ranks lower
than(φ− ε)N have been pruned, while the second condition ensures that the maximum
possible rank ofel does not exceed(φ + ε)N . Similarly, we replace the condition at
Line 16 by “N − curu ≤ (φ + ε)N ∧ N + 1− (curu + ωu(eu)) ≥ (φ− ε)N ∧ eu

is a leaf entry”.
All three quantile algorithms can be adapted to generate progressively more refined

estimates before the exact result is found. The progressive versions of the algorithms
are identical to the methods described in Section 4, with only one difference. When the
termination condition is checked, we compute and output the minimum value ofε (if
any) for terminating, had the algorithm been approximate.

5.2 Batch quantile queries

A batch quantile query retrieves a set of quantilesφ1, φ2, · · · , φm from the database,
whereφ1 < φ2 < · · · < φm and eachφi is a real value in the range[0, 1]. Batch
quantiles offer a sketch of the underlyingF value distribution. A naive solution would
process individual quantile queries separately. We aim at reducing the total cost by
exploiting intermediate results from previous computation.

INC can directly be applied for a batch query. During search, an element is reported
if its rank is exactlyφiN for somei ∈ m. The algorithm terminates until theφmN -th
element is found. For APX, the first quantile (i.e.φ1) is computed as usual. In addi-
tion, we maintain a setC for storing computed intermediate coordinates(λ, cnt) (see
Figure 6). These coordinates can be exploited to reduce the initial search space of the
algorithm and improve the overall performance. Before computing the second quantile



(i.e.φ2), the initial pair(λl, cntl) is replaced by the pair inS with the maximum count
not greater thanφ2N . Similarly, the pair(λu, cntu) is replaced by the pair inS with the
minimum count not smaller thanφ2N . Similarly, intermediate coordinates computed in
this round are added toC for reducing the search space of the next quantile.

We can also define an efficient version of BAB for batch quantile queries. We com-
pute the quantiles in ascending order of theirφ values. During the computation of the
first quantile (i.e.φ1), any entry pruned on the upper side (i.e. at Lines 12–14 of Figure
8) is added to another setS′. After the first quantile is computed, we need not start the
computation of the second quantile (i.e.φ2) from scratch. We simply reuse the content
of S in the last computation. Moreover, temporarily pruned entries inS′ are moved
back toS. Finally, we initializecuru to 0, reuse the previous value ofcurl, and begin
the algorithm at Line 5 in Figure 8. The same procedure is repeated for subsequent
quantiles. In this way, no tree nodes are accessed more than once.

5.3 Quantile computation without aR-trees

R-trees are commonly used for indexing spatial data in GIS or as multi-attribute indexes
in DBMS, in general. On the other hand, aR-trees are not as popular, as they are mainly
used for aggregate queries. For the case where only an R-tree is available on a spatial
dataset (not an aR-tree), we can still apply the BAB algorithm. For each non-leaf entry,
we compute theexpectedthe number of objects (i.e., the aggregate value) and use this
value instead of the actual count. A rough estimate can be derived from the level of the
entry in the tree and the average R-tree node occupancy (which is a commonly main-
tained statistic). Naturally, BAB will not compute exact quantiles in this case, but values
which are hopefully close to the exact result. In Section 6, we experimentally evaluate
the accuracy of BAB on R-trees, by comparing its results with the exact quantiles.

In some streaming applications (e.g., traffic monitoring, mobile services), spatial
data could not be indexed effectively due to high update rates and/or constrained stor-
age space. In such cases, a common approach is to maintain spatial histograms [22]
for approximate query processing. A spatial histogram consists of a set of entries, each
associated with a MBR and the number of points inside it. We can derive an approxi-
mate quantile from such histograms, by applying a single pass of the BAB algorithm
to prune histogram entriese that definitely do not containing the quantile. Based on the
remaining (non-pruned) entries, we then compute the approximation and its respective
errorε (in terms of rank).

6 Experimental Evaluation

In this section, we evaluate the proposed algorithms using synthetic and real datasets.
Uniform synthetic datasets were generated by assigning random numbers to dimen-
sional values of objects independently. The default cardinality and dimensionality of a
synthetic dataset areN = 200K andd = 2. We also used real 2D spatial datasets from
Tiger/Line1, LA (131K points) and TS (194K points). Attribute values of all datasets
are normalized to the range[0, 10000]. Each dataset is indexed by aCOUNTaR-tree
[17] with disk page size of 1K bytes.

1 www.census.gov/geo/www/tiger/



Unless otherwise stated, the default searched quantile isφ = 0.5 (i.e., median)
and the ranking functionF is defined as the Euclidean distance from a given query
point, which follows the distribution of the dataset. All algorithms (INC for incremental
search, APX for iterative approximation, BAB for branch-and-bound quantile) were
implemented in C++. We also experimented with BAB-, a computationally cheaper
variant of BAB that attempts pruning using only entries with upper bounds smaller
than the quantile (i.e. Lines 12–17 in Figure 8 are not executed). All experiments were
performed on a Pentium IV 2.3GHz PC with 512MB memory. The I/O cost corresponds
to the number of aR-tree nodes accessed. A memory buffer of size 5% the number of
aR-tree nodes is used by APX to avoid excessive number of page faults at repetitive
RANGE COUNT queries. For each experimental instance, the query cost is averaged
over 100 queries with the same properties.

6.1 Experimental Results

Figure 10 shows the cost of the algorithms on real datasets LA and TS, as a function
of φ. The results verify the analysis in Section 4.4 that APX and BAB have higher cost
in computing the median than in calculating extreme quantiles (withφ close to 0 or
1). The cost of INC grows linearly withφ. APX is more efficient because it is based
on RANGECOUNT functions which can be answered effectively by the aR-tree. BAB
incurs the lowest I/O overhead, indicating that the branch-and-bound approach only
needs to explore a small fraction of the index. However, the CPU cost of BAB is slightly
higher than APX because BAB requires considerable time computing theω values of
the intermediate entries. In practice, the I/O cost dominates, and thus BAB is by far the
most efficient method.
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Fig. 10.Cost as a function ofφ



Next, we study the effect of database sizeN (Figure 11). As expected, BAB has the
lowest I/O cost and outperforms the other two algorithms. BAB- has little I/O overhead
over BAB, although BAB- misses opportunities for pruning entries with rankings higher
than the quantile. In addition, BAB- has the lowest CPU cost among all algorithms. The
numbers over the instances of INC and BAB are the maximum memory requirements
of the algorithms (for storing the heap and setS) as a percentage of aR-tree size. Note
that they are very low and decrease withN .
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Figure 12 shows the cost of the algorithms on uniform data as a function of dimen-
sionalityd (together with the maximum memory requirements of INC and BAB). BAB
remains the least expensive algorithm in terms of I/O. APX has the highest I/O cost at
d = 4 because RANGECOUNT becomes less efficient at higher dimensionality. On
the other hand, the CPU costs of BAB and BAB- increase significantly with dimension-
ality. As d increases, theF -intervals of the entries become wider and intersect many
F -intervals of other entries. INC and APX do not spend time on pruning entries so they
incur high I/O cost. On the other hand, BAB eliminates disqualified entries carefully
at the expense of higher CPU cost. Note that memory requirements of the algorithms
remain within acceptable bounds, even atd = 4.
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We also compared the efficiency of our algorithms in retrieving approximate quan-
tiles. Recall that anε-approximate quantile has a rank within[(φ − ε)N, (φ + ε)N ],
whereN is the data size. Figure 13 compares the algorithms for various values ofε.
As expected, all costs decrease with the increase ofε, however, not at the same rate.



The cost of BAB decreases by 95% whenε changes from 0.0001 to 0.1, while the cor-
responding rates for APX and INC are 40% and 20%, respectively. This implies that
BAB is not only the best algorithm for exact quantiles, but also has the highest perfor-
mance savings for approximate computation.
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Figure 14 shows the progressiveness of the algorithms for a typical quantile query.
As more disk page are accessed, all the algorithms continuously refine their intermedi-
ate results with decreasing errorε. The values atε = 0 corresponds to the case when the
exact answer is found. BAB is the most progressive algorithm, followed by APX and
then INC. Thus, BAB provides informative results to users, very early and way before
it converges to the exact result.
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We also investigated the cost of extracting quantiles based on nearest-site distance
ranking; a problem discussed in Section 3. Given a setQ = {q1, q2, . . . , qm} of query
points (sites), the ranking of a data pointp is defined byF (p) = mini∈[1,m] dist(qi, p),
wheredist denotes the Euclidean distance between two points. In the experiment, query
points follow the distribution of data points. Figure 15 shows the cost of the algorithms
as a function of the number of query points|Q|. As |Q| increases,F -intervals of more
entries overlap and the costs of all algorithms increase. The cost of BAB increases sub-
linearly with |Q| and the algorithm outperforms its competitors by far.
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Finally, we study the accuracy of the BAB algorithm on regular R-trees (i.e., not
aR-trees), where the count of each entry is estimated from its level, as discussed in
Section 5.3. Figure 16 shows the observed error of BAB as a function ofφ, on both
real datasets LA and TS, indicating the difference of ranks (as a fraction ofN ) between
the result and the actual quantile. Our solution produces fairly accurate results for real
datasets indexed by regular R-trees. The maximum observed errors for LA and TS are
just 0.07 and 0.05, respectively. The error is maximized at the median but it becomes
negligible for extreme quantiles. As discussed, the I/O cost of BAB is maximized at
φ = 0.5. Higher I/O cost leads to higher error because counts of more entries need to
be estimated.
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7 Conclusion

We identified the problem of computing dynamically derived quantiles in multidimen-
sional datasets. We proposed three quantile algorithms (INC, APX, and BAB) which
operate on aggregate R-trees. Also, we analyzed their performance qualitatively and
suggested solutions for handling variants of quantile queries. INC is very expensive for
high values ofφ (i.e., quantile value). Although the cost of APX is relatively insensitive
to φ, the algorithm accesses the aR-tree multiple times. BAB is the best algorithm as it
traverses the tree carefully, pruning unnecessary nodes, and minimizing I/O cost.



In this paper we assume relatively low dimensionality, where aR-trees are effec-
tive. For high-dimensional spaces, however, the efficiency of aR-tree (as well as other
space-partitioning access methods) drops significantly, in which case the algorithms
may require accessing the entire dataset. Quantile computation in these environments
is an interesting topic for future work.
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