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Abstract. Creating a new product which dominates all its competitors is one of the main ob-
jectives in marketing. Nevertheless, this might not be feasible since in practice the development
process is confined by some constraints, e.g., limited funding or low target selling price. We mod-
el these constraints by a constraint function which determines the feasible characteristics of a new
product. Given such a budget, our task is to decide the best possible features of the new product
that maximize its profitability. In general, a product is marketable if it dominates a large set of
existing products, while it is not dominated by many. Based on this, we define dominance rela-
tionship analysis (DRA) and use it to measure the profitability of the new product. The decision
problem is then modeled as a budget constrained optimization query (BOQ). Computing BOQ is
challenging due to the exponential increase of the search space with dimensionality. We propose a
divide-and-conquer based framework which outperforms a baseline approach in terms of not only
execution time but also space complexity. Based on the proposed framework, we further study an
approximation solution which provides a good tradeoff between computation cost and quality of
result.
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1. Introduction

Given a set of existing products O in the market and a development budget B, our task
is to decide the best possible features of a new product that maximize its profitability

Received Apr 27, 2012
Revised May 15, 2013
Accepted Aug 24, 2013



2 S. Ge et al

and fit the budget B. For example, consider the development of a new laptop comput-
er by a manufacturer. Typically, performance and weight are two primary features that
customers care when choosing a laptop. Assuming that the selling price is constrained,
the manufacturer may find it hard to create a new laptop that maximizes the quality of
both features at the same time. A feasible solution may either have to sacrifice perfor-
mance (e.g., using a low-end processor) or to reduce weight (e.g., replacing a 6-cells by
a 4-cells battery), in order to fit the target price.

Web advertising is another example. A provider wants to create a new advertise-
ment package that fits the typical service price and also make the package attractive
to the potential customers. A customer may consider the following features for her ad:
the position of the ad in the web page and the length of display time. An ad is more
expensive if it is displayed at a good position for a long time. Assuming that the service
provider has a targeted service price, our task is to create a new package that dominates
most existing products in the market. Once again, the problem is to find the optimal
feature values, constrained by a budget (the service price).

Motivated by these examples, we study an optimization query, called budget con-
strained optimization query (BOQ) in this paper, defined as Problem 1 below. Typically,
manufacturers do not have infinite development funding and must consider different
trade-offs and constraints when they do research and development for their products.
Given a set of products O in the market and a budget B, the goal of BOQ is to identi-
fy the features of a new product x such that x fits the budget B and its profitability is
maximized.

Problem 1 (Budget Constrained Optimization). Given a budgetB, a constraint func-
tion C(x), and an objective function f(x), create a new product x such that C(x) ≤ B
and the objective function f(x) is maximized.

Constraint function C(x). We consider constraint functions C(x), which monotoni-
cally change with the values of the features (i.e., dimensions) of x. This implies that for
C(x) to remain constant, if a feature value increases, there should be another feature of
decreasing value. The weights of different features in the function could differ and the
function is not necessarily a linear combination of the features. In this work, C(x) is
modeled by a set of monotone functions 1, which are highly flexible and widely used in
many works.

C(x) is a generalized concept and is defined by domain experts in general. For in-
stance, the value of an NBA player can be calculated by the approximate value function
(AV function) given in (Oliver, 2010). The AV function is monotonic to the players’
performance, increasing with all positive factors (points, rebounds, etc.) and decreasing
with all negative factors (field goals missed, turnovers, etc.). The AV function is an ex-
ample of a constraint function in a real application that measures the value of objects
based on their capabilities.

We use NBA player statistics to demonstrate the relationship between players capac-
ities (profitability) and salaries (cost). We plot the average points and assists of guard
players in 2007-2008, in data collected from (NBA Basketball Statistics, 2009). These
two are the main features that characterize the capabilities of a guard. We also use salary
information from (Pro Basketball in USAToday, 2009), to illustrate the top 80 paid guard
players in Figure 1. Each player is displayed as a point on the points-assists plane, while
different colors and markers are used to distinguish players with different salary scales.

1 C(x) can be a piecewise function. The solution of piecewise constraint functions is discussed in Ap-
pendix B.
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Fig. 1. Average points and assists performance of the top paid guard players in NBA

The figure shows the general trend that, the higher the salary, the better the capabil-
ities. This coincides with our intuition that if our budget is large, our space of choice
becomes larger, and thus we can find better players. Also notice that, for the same salary
level, there are tradeoffs between the two capability values, which prevent us from max-
imizing both two values at the same time under a budget constraint.

Objective function f(x). f(x) is the second and equally important component of BO-
Q, used to measure the quality of a product based on the concept of dominance, as
shown in Definition 1.

Definition 1 (Dominance). A product x is definitely better than (dominates,≺) another
product x′ if and only if every feature of x is not worse than the corresponding feature
of x′ and there is at least one feature where x is strictly better.

In general, a product is marketable if it dominates a large set of existing products
and it is not dominated by many. (Li, Ooi, Tung and Wang, 2006; Zhu, Li, Tung and
Wang, 2012) was the first work to propose a definition for profitability based on dom-
inance relationship analysis (DRA), where DRA is a well accepted model in multidi-
mensional analysis. (Li, Tung, Jin and Ester, 2007; Papadopoulos, Lyritsis, Nanopoulos
and Manolopoulos, 2007; Yang, Wang and Kitsuregawa, 2007; Yang, Li and Kitsure-
gawa, 2008). In this work, the objective function f(x) is defined as follows:

f(x) = (1 + β)dc+(x)− (1− β)dc−(x) (1)

In Eq. 1, dc+(x) is the number of objects being dominated by x, dc−(x) is the number
of objects dominating x, and β is a weighting parameter adjusting the relative weights
between dc+(x) and dc−(x), which is set to 0 by default, giving an equal weighting
to both sides. Actually, as we can see later, β can take any value in the range [−1, 1]
without affecting the correctness of our algorithms. A large value of f(x) implies a
product x, which is better than a large set of competitors while being worse to only
few of them. If there was no budget constraint, we could develop a product with the
best possible values in all features, which would dominate all products in the market,
while being dominated by none of them; thus, the optimization problem is meaningless
without the constraint C(x) ≤ B.

In the rest of the paper, we make the convention that smaller feature values are bet-
ter. To be consistent with this assumption, we also assume that the constraint function
is antimonotonic to the feature values; that is, if x[i] ≤ y[i] in every dimension i, then
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Table 1. The features and price of six laptop models

Laptop model CPU (rank) Weight Price

o1 Samsung SF410-A01 i3-380M (303) 4.82 lbs $499.99

o2 HP 630 LV970UT P6200 (446) 5.5 lbs $349.99

o3 HP Mini 5103 N455 (1036) 2.64 lbs $719.99

o4 Lenovo G770 i5-2410M (201) 6.61 lbs $629.99

o5 Samsung NP900X3A i5-2467M (280) 2.88 lbs $1,599.99

o6 Sony VPC-SA2HGX i7-2620M (141) 3.7 lbs $1,869.99

C(x) ≥ C(y). Table 1 lists six laptop models and two features of them: CPU rank2

and weight. In addition, their selling prices3 are shown. Figure 2 plots the notebooks as
points in the two-dimensional CPU-weight space. Typically, a laptop with higher price
has better specifications (i.e., better performance and lighter weight). o6 is a highly-
rated laptop based on our objective function f(x), since it dominates 3 other models
(i.e., o1, o2, and o4) but is not dominated by any. Nevertheless, o6 has the highest cost
C(x) (i.e., highest selling price) among all these models. When designing new model-
s, manufacturers are constrained by cost. For example, the feasible laptops that can be
designed, given a target selling price B=$1,000, could be modeled by the points above
the curve C(x) = B in Figure 2(a). Given the set of existing notebooks O, constraint
function C(x), and a development budget B=$1,000, as shown in the figure, our task
is to determine the best possible features of the new product x such that C(x) ≤ B
and f(x) = dc+(x) − dc−(x) is maximized (assuming smaller values in each dimen-
sion are better). Given three candidates x1, x2, and x3, their profitabilities calculated
by f(x) are 3, 2, and 2 respectively; thus, x1 is the best over these candidates. In Fig-
ure 2(b), we show 11 feasible profitable regions, shaded in gray, on top of the budget
plane C(x) = B. These regions are defined by the points on the line C(x) = B, where
the line intersects the hyperplanes orthogonal to existing products (indicated by black
dots). After the partitioning, all points within each region have identical profitabili-
ties, while satisfying the objective function. For each region, we can easily measure the
profitability by counting the products it dominates / it is dominated by. For example, the
region with the highest profitability is r9; ∀x ∈ r9, f(x) = 3 (e.g., f(x1) = 3).

In general, it is more desirable to identify the most profitable regions (as in Fig-
ure 2(b)), instead of simply comparing some random candidate products (as in Fig-
ure 2(a)). First, this offers flexibility to the developer to choose from a range of possible
feature value combinations that fall in the most profitable regions. Second, she might
minimize the production cost (while maximizing the profit) by choosing the point x in
the most profitable regions, which has the lowest C(x) value (i.e., the upper right corner
of r9 in our example). Therefore, we define a generalization of BOQ (GenBOQ), which
returns a set of regions that share the best profitability instead of a single object in BOQ.

Problem 2 (General BOQ). Given a budget B, a constraint function C(x), and an ob-
jective function f(x), a general BOQ returns a set of regions R such that C(x) ≤ B
and the objective function f(x) is maximized, ∀x ∈ R.

2 based on http://www.cpubenchmark.net/cpu list.php (Nov 2011)
3 collected from http://www.compusa.com (Nov 2011)
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Fig. 2. Examples of BOQ

The big challenge of the query is the huge solution search space. Instead of veri-
fying infinite potential products on the continuous budget plane, a possible (baseline)
approach is to generate compact regions by drawing orthogonal hyperplanes from each
existing object (as shown in Figure 2(b)). However, as we show in the following lem-
ma, the number of compact regions is O(d · nd−1), in a d-dimensional problem with n
existing products.

Lemma 1 (Number of compact regions). The number of compact regions that can be
generated in a d-dimensional problem with n objects is O(d · nd−1).

Proof. Suppose there are n discrete objects in d dimensional space, the entire space can
be split by these n objects into O(nd) regions (i.e., MBRs). The problem is now to find
how many these O(nd) regions intersect the budget plane BP , in the worst case. The
largest BP can be constructed by d orthogonal hyperplanes, each of which is orthogonal
to one axis i and its i-th feature value is set to the minimum value. The intersection point
of all hyperplanes is the minimum corner in the entire space. Therefore, each hyperplane
intersects O(nd−1) regions and we have d hyperplanes; the total number of compact
regions is O(d · nd−1).

To address this space growth challenge, we develop an efficient divide-and-conquer
framework that partitions the space recursively. Our approach greatly outperforms the
baseline method in terms of response time. In addition, we reduce the memory require-
ments from O(d · nd−1) to O(θd−1), where θ is a constant that expresses a tradeoff
between computational cost and space.

Furthermore, we study an approximation solution of GenBOQ (ApprGenBOQ) which
returns only one feasible region rappr such that the profitability of rappr is bounded by
a tolerance T from the optimal. ApprGenBOQ can find a result efficiently without sac-
rificing much precision (which is controlled by T ). Formally, we define ApprGenBOQ
as follows.

Problem 3 (Approximation of GenBOQ). (APPRGENBOQ) Consider a budget B, a
constraint functionC(x), and an objective function f(x). LetR be the (optimal) regions
returned by GenBOQ. ApprGenBOQ returns any region rappr such that, ∀x ∈ R,∀y ∈
rappr, we have |f(x)− f(y)| ≤ T where T is a given quality tolerance bound.

The rest of the paper is organized as follows. Section 2 presents related work. Pre-
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liminary concepts and properties are introduced in Section 3. In Sections 4 and 5 we
present our solution and Section 6 evaluates it. The paper is concluded in Section 7.

2. Related Work

In this section, we discuss work related to multidimensional data analysis based on dom-
inance relationships between objects, skyline queries, which again use the definition of
object dominance to search the multi-dimensional space, and additional related queries.

2.1. Dominance Relationship Analysis

Ref. (Li et al., 2006) was the first paper for business analysis from a microeconomic per-
spective using the concept of dominance. The authors proposed a data cube model (DA-
DA), to summarize all the domination relationships between objects in all dimensions,
in a bottom-up fashion. In DADA, the space is divided intoDom1×Dom2×. . .×Domd

cells, where Domi is the number of discrete values stored in dimension i. The objects
inside the same cell have identical domination relationship which can be used to save
the computation complexity. Furthermore, the authors proposed a D*-tree to group all
neighboring cells with the same domination count to support more efficient searching.
To address the microeconomic problems, they proposed three queries, including Linear
Optimization Query (LOQ), Subspace Analysis Query (SAQ) and Comparative Domi-
nant Query (CDQ), which can be computed efficiently using the DADA model.

The definition of our GenBOQ is similar to LOQ proposed in (Li et al., 2006; Zhu
et al., 2012). However, our problem has two main differences: (i) Our GenBOQ sup-
ports any combination of monotone functions while LOQ merely models the budget
constraint as a single linear function. (ii) DADA can only return a set of cells that max-
imize the objective function instead of compact regions as proposed in our work. We
demonstrate difference (ii) using Figure 3(a). Suppose that there are three objects in the
two dimensional space and DADA regularly divides the space into 4 cells. The domi-
nation scores f(x) are shown in the left bottom of the cells. DADA will return cell 0
(equiv. to r2) for LOQ since the cell has the maximum domination score in all four pos-
sible cells. Nevertheless, r2 is not the best region since its domination score f(r2) is -1,
which is worse than f(r1) and f(r3). Note that if the features values are discrete, DADA
can return the correct result for LOQ. However, the computation becomes prohibitive if
the domain of discrete values is large.

Yang et al. in (Yang et al., 2008) and (Yang et al., 2007) study some extension-
s of DRA. In (Yang et al., 2007), a special data cube called ParCube that support-
s dominance relationships analysis on partially ordered dimensions is proposed. They
proposed algorithms for updating their index structure and return the exact objects dom-
inated rather than just their total number (as in (Li et al., 2006; Zhu et al., 2012)). Ref.
(Yang et al., 2008) relaxes the dominance relationship and compresses the index with
such dominance relationships encoded; in addition, it proposes some efficient strategies
to support querying on relaxed dominant relationships. However, all these methods are
built on the data cube concept and none of them can compute the exact result of our
optimization problem.

Domination game analysis for microeconomic data mining is studied in (Zhang,
Lakshmanan and Tung, 2009). Given a set of customers and a set of manufacturers,
each manufacturer creates only one product to the market for fairness. The task of the
domination game is to find a configuration of the products that achieves stable expected
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Fig. 3. Comparison of GenBOQ with other queries.

market shares for all products. A product is said to dominate a customer if all its features
can satisfy the requirements of the customer. The expected market share of a product is
measured by the expected number of buyers in the customers, all of which are equal-
ly likely to buy any product dominating them. A depth-first and a breadth-first search
strategy are proposed along with a set of pruning techniques for the search space. The
techniques proposed in (Zhang, Lakshmanan and Tung, 2009) cannot be used for our
problem, because they find a configuration rather than a set of regions that maximize an
objective function.

2.2. Skyline Queries

There is plenty of work on skyline evaluation (e.g., (Börzsönyi, Kossmann and Stock-
er, 2001; Tan, Eng and Ooi, 2001; Kossmann, Ramsak and Rost, 2002; Chomicki, God-
frey, Gryz and Liang, 2003; Papadias, Tao, Fu and Seeger, 2005; Zhang, Mamoulis and
Cheung, 2009)). The concept of skyline is based on the dominance relationship and
originated from maximal vector problem (Kung, Luccio and Preparata, 1975).

The objective of skyline queries is to find the objects that are not dominated by
others. They were first introduced in a database context in (Börzsönyi et al., 2001). In
(Börzsönyi et al., 2001), approaches using block nested loops (BNL) and divide-and-
conquer (D&C) were proposed for skyline computation. Other well known methods
include the bitmap method (Tan et al., 2001), sort-first-skyline (SFS) (Chomicki et al.,
2003), and branch and bound skyline (BBS) (Papadias et al., 2005). BBS (Papadias
et al., 2005) is an incremental skyline algorithm that accesses a minimal number of
nodes from an R-tree (Beckmann, Kriegel, Schneider and Seeger, 1990) that index-
es the data. An object-based space partitioning method that provides efficient skyline
computation in high dimensional spaces was proposed in (Zhang, Mamoulis and Che-
ung, 2009).

The top-k dominating query, studied in (Yiu and Mamoulis, 2009) returns k data
objects that dominate the largest number of objects in the dataset. The main differences
to our work are that this method searches in the much smaller search space of the data
objects to find the best one and we consider both dominating and dominated objects.
In fact, no skyline method can be adjusted to solve our problem. This is because our
query aims at finding compact regions instead of existing objects, and these regions are
much more (O(d · nd−1) according to Lemma 1) than the original n objects. Also the
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final best compact regions are not necessarily defined by skyline points. For example, in
Figure 3(b), the gray area denotes the best feasible region r. As we can see, r cannot be
constructed even if we know all skyline points. Obviously, the skyline operator cannot
be used to solve our GenBOQ problem.

2.3. Related Queries

A variant of the top-k dominating queries (Yiu and Mamoulis, 2009), which returns
the k most demanding products instead of the top-k dominating products, is recently
studied in (Lin, Koh and Chen, 2012). The demanding score of a product is defined as
the expected number of customers who are willing to buy this product. This problem
is shown to be NP-hard when the product feature dimensionality becomes 3 or higher.
The authors propose an upper bound pruning algorithm for exact solution as well as a
greedy approximation method, which were shown to have comparable performance.

Miah et al. (Miah, Das, Hristidis and Mannila, 2008) studied an optimization prob-
lem that selects a subset of attributes of a product t such that t’s shortened version max-
imizes t’s visibility compared to other products to potential customers. This problem is
NP-hard; several exact and approximate algorithms are proposed. This problem has a
different definition compared to our problem, but shares the intuition that manufacturers
want to cut down a development cost.

In (Wu, Xin, Mei and Han, 2009; Peng, Wong and Wan, 2012), the authors studied
a problem that finds a subset of object o’s features so that o is ranked highly in the
found subspace. They call this promotion analysis through ranking; this is a challenging
problem due to the explosion of the search space and the high aggregation cost. They
proposed a PromoRank framework, and an efficient algorithm using subspace pruning,
object pruning, and promotion cube. Since the aim is to find the promotive subspace
for some specified objects, this framework cannot suggest possible values for newly
developed products. Also, it does not consider budget constraints.

Wu et al. (Wu, Sun, Li and Han, 2010) study the search of the top-k most interesting
regions for object promotion; an object is worth to be promoted in a specific feature
region if it is highly ranked in that region. This work shares the same intuition with ours
that discovering specific feature regions is important in marketing promotion. Howev-
er, the solution of (Wu et al., 2010) is inapplicable to our problem as it applies on a
different problem definition; in addition, it only discovers the specific feature regions
approximately.

Creating competitive products from a pool of possible dimensional values is studied
in (Wan, Wong, Ilyas, Özsu and Peng, 2009). The objective is to find a set of newly
created objects according to some generating rules, which cannot be dominated by any
existing products in the market. Instead of generating and checking all possible new ob-
jects, (Wan et al., 2009) uses group partitioning with partial pruning so that only a small
subset of the new possible objects are considered. The idea of finding good possibilities
for new product is basically the same with ours. However, we can suggest regions for
new products even without knowing how these new products can be generated. Also, as
opposed to (Wan et al., 2009), we consider budget constraints.

Wan et al. (Wan, Wong and Peng, 2011) suggest the identification of top-k profitable
products from a set of new products Pnew. For each product, all the features other than
price are known. The problem is to assign appropriate prices to k products from Pnew
such that these products are not dominated by other existing products in the market. This
problem is shown to be NP-hard when there are 2 or more dimensions in the feature
space and can be approximately solved by greedy methods. We share the same intuition
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as this work, which also creates new products that maximize an objective confined by
constraints. Their objective is to create k new skyline products, while our objective is to
find candidate products having the best domination score. Their constraint is the set of
possible new products, while our constraint is a value of function C(x).

Zhang et al. (Zhang, Jia and Jin, 2011) investigate a problem to identify promotional
subspace in multi-dimensional databases. Other than the data cube techniques used in
(Wu et al., 2009; Peng et al., 2012; Zhu et al., 2012), their solution exhaustively searches
the promotional subspace combinations (i.e., dimension combinations) and terminate a
search branch when it hits the early stop criterion. Their objective is quite different from
ours as their solution reports a promotional subspace instead of a profitable region in
this work.

A recent work (Lu and Jensen, 2012) studies a top-k product upgrading problem:
the objective is to upgrade k existing products to be competitive in the market by the
most economical way. A product is competitive if it is a skyline product in the current
market. Accordingly, to make an existing product competitive, we can upgrade some of
its features such that it is no longer dominated by any other products. The upgrading
cost function in this work shares the same intuition with our constraint function C(x).

2.4. Budget Optimization in Other Contexts

There are budget optimization problem in different contexts. (Zhou, Chakrabarty and
Lukose, 2008) considers a budget-constrained bidding optimization problem for spon-
sored search auctions, and models it as an online multiple-choice knapsack problem.
For a time period t ∈ [1, T ], if the profits and weights are (v(t), w(t)), and we want to
maximize

∑
v(t) satisfying budget constraint

∑
w(t) ≤ B. Suppose L ≤ v(t)

w(t) ≤ U ,
the authors propose both deterministic and randomized algorithm with competitive ra-
tio ln(U/L) + 1 and a (ln(U/L) + 2) algorithm for multiple-choice knapsack problem.
Their strategy can be summarized in one sentence: at any time t, if the fraction of budget
spent is z(t), bid V/Φ(z(t)), where V is the expected value-per-click of the keyword,
and Φ(t) is a continuous function of z which can be determined. Since we share no
common aspect with this problem, such simple bidding strategy cannot help us to find
the best place in feature space to maximize our dominance based profit function.

(Feng, Song, Zheng and Xia, 2003) studies a problem of scheduling dependent tasks
in grid computing, given deadline and budget constraint. The authors model and solve
their problem using binary integer programming. Since our target function is based on
dominance count, which is discrete and cannot be captured by a simple set of equa-
tions or inequalities, we cannot use their binary integer programming techniques in our
problem.

(Pujowidianto, Lee, Chen and Yap, 2009) investigates a problem of finding the best
designs. The designs are evaluated by some measures which can be estimated by a serie
of stochastic experiments. The aim of the problem is to maximize the probability of
selecting the best design while obeying a computing budget. In our problem, we do not
have stochastic experiments and our budget is an area constraint instead of a simple
amount limit. As a result, we are not able to adopt any techniques from aforementioned
papers.

In our problem, the budget constraint is nowhere same with the budget constraint in
operations research. Typical budget constraint in operations research problem is a sim-
ple value threshold, defining the maximal total amount that we can spend. However, our
budget constraint represents a continuous range, limiting the area that we can achieve
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in the original product feature space. Since our problem shows no resemblance with
previous budget constrained problem in operations research, we are not able to adapt
their algorithms to our problem.

3. Preliminaries

In this section, we define concepts and present properties that are used in our solutions.
We assume a dataset O of n data objects O = {o1, o2, . . . , on} in a d dimension-
al space. Each object oi = (oi[1], . . . , oi[d]) models the feature vector of an existing
product in the market. We assume that for each feature, smaller values indicate better
quality. Table 2 summarizes the notations that will be used throughout the paper. Given
a constraint function C and a development budget B, we define the budget plane as
follows.

Definition 2 (Budget plane). The budget plane BP is a d− 1 dimensional surface, on
which all points have the same development budgetB. Formally, BP is the area defined
by C(x) = B.

Definition 3 (Positive/Negative object set). Set O+ (O−) denotes the objects x in O
for which C(x) < B (C(x) ≥ B).

The objects are classified into two categories, positive object set O+ and negative
object set O−, based on Definition 3. Broadly speaking, an object is in O+ if it can
add to the profitability of the new product. For instance, O+ = {o1, o2, o3, o4} and
O− = {o5, o6} in Figure 2(a).

Definition 4 (Dominance set). D+(x) denotes the set of objects inO+ which are dom-
inated by object x. Similarly, D−(x) denotes the set of objects in O− dominating x.

After classifying the objects, we can define the set of objects that dominate or are
dominated by a given object x in Definition 4. In Section 1, we defined dc+(x) (dc−(x))
as the number of objects that are dominated by (dominate) x. We have dc+(x) =
|D+(x)| and dc−(x) = |D−(x)|.

A minimum bounding rectangle (MBR) is used to approximate a region on the
budget plane BP as shown in Figure 4. For instance, Figure 4(a) shows 11 MBRs
M := {m1, ...,m11} shaded in gray. These 11 MBRs cover the entire budget plane
of the example in Figure 2. Moreover, in this example, these 11 MBRs are the finest
MBRs, according to Definition 5 below.

Definition 5 (Finest MBR). An MBR m is finest if and only if every object inside it
shares the same profitability: f(x) = f(x′), ∀x, x′ ∈ m.

We can split each MBR (finest or not), into two regions, using BP . One of them,
called the feasible region contains the points that satisfy the budget constraint. For ex-
ample, r9 in Figure 2(b) is the feasible region for MBR m9 in Figure 4(a).

Definition 6 (Feasible MBR region). The feasible region of MBRm, denoted byR(m)
consists of all points x in m for which C(x) ≤ B.

In general, we can find a set of MBRs which cover the entire budget plane, e.g.,
the lightgray MBRs {ma,mb,mc} in Figure 4(a). However, one or more MBRs may
not be finest, which means that the points in them do not share the same profitability.
For instance, the right-top corner ml

b of MBR mb, which is the point in it with the
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Table 2. Summary of Notations

Symbol Meaning

B the development budget

C(x) the constraint function

f(x) the objective function

β weighting parameter for f(x)

BP budget plane which is defined byC(x) = B

O the set of objects

oi an object inO

n, |O| the number of objects

O+(O−) objects x ∈ O where C(x) < B (C(x) ≥
B)

D+(x) (D−(x)) objects in O+ (O−) that are dominated by
(dominate) x

D∆+(x)
(D∆−(x))

objects in O+ (O−) that are strictly domi-
nated by (strictly dominate) x

dc+(x)
(dc−(x))

|D+(x)| (|D−(x)|)

dc∆+(x)
(dc∆−(x))

|D∆+(x)| (|D∆−(x)|)

m,M an MBR m and the set of MBRsM

R(m) feasible region of an MBR m

ml, mu right-top and left-bottom corner of MBR m

f l(m), fu(m) tight lower and upper profitability bound of
m

m.bl, m.bu lower and upper profitability bound of m

T quality tolerance bound

γ pruning bound for MBR refinement

η pruning bound for approximated MBR re-
finement

largest coordinates in all dimensions, is the lowest profitable point in mb. The left-
bottom corner mu

b is the highest profitable point. Thus, for an MBR m, we can simply
bound the profitability of any point in m by [f(ml), f(mu)], which is the bounds of
area inside the MBR.

In order to get the tightest upper and lower bounds, we refine the profitability bound
for a MBR by disregarding boundary cases. We note that the lower-left corner mu

c of
MBR mc dominates (i.e., determines the profitability) all objects on the projected or-
thogonal line/hyperplane from mu

c . However, we do not consider the boundary cases
(e.g., o1) in fu(mc) since o1 is not dominated by any objects inside mc. More specif-
ically, when calculating the profitability bound for a given MBR m, we consider only



12 S. Ge et al

mb

ma

weight

pe
rf

or
m

an
ce

m1
m2
m3

m4 m5

m6

m7 m8

m9 m10

m11

mc

o4

o1

o2

o3

o5

o6
mu

b

mu
c

ml
b

ml
c

(a) 2D MBRs (b) 3D MBRs

Fig. 4. Example of MBRs

strictly dominated objects in the upper bound, making the bound tighter. The strict dom-
inance relationship is defined in Definition 7.

Definition 7 (Strict dominance set). D∆+(x) denotes the set of objects inO+ that are
strictly dominated by object x. Object x strictly dominates x′ if and only if every feature
of x is strictly better than the corresponding feature of x′. Similarly, D∆−(x) denotes
the set of objects in O− strictly dominating x.

A tight upper profitability bound fu(m) for MBRm is computed by ignoring points
that are not strictly dominated by the upper bound corner mu. Similarly, a tight lower
bound f l(m) is computed by counting those objects that strictly dominate ml. These
bounds are derived from Eq. 1 (i.e., the definition of profitability).

fu(m) := (1 + β)dc∆+(mu)− (1− β)dc−(mu) (2)

f l(m) := (1 + β)dc+(ml)− (1− β)dc∆−(ml) (3)

dc∆+(mu) (dc∆−(ml)) is the number of objects in D∆+(mu) (D∆−(ml) ). For in-
stance, [f l(mc), f

u(mc)] = [1, 2] is the tightest profitable bound of mc, and objects o2

and o4 are in D∆+(mu
c ). Finally, we can determine whether an MBR is finest, using the

following property.

Property 1. MBR m is finest if and only if fu(m) = f l(m).

The number of finest MBRs that cover the entire budget plane BP isO(d·nd−1), for
n d-dimensional objects, as we show in Lemma 1. Figure 4(b) shows a 3D example. The
entire BP is covered by 7 finest MBRs even though there is only one object, shown as a
black point, in the domain space. In summary, finding the set of finest MBRs covering
the entire BP is a hard problem.

4. Evaluation of GenBOQ

In this section we provide a comprehensive study on the evaluation of GenBOQ. First,
we discuss the MBR refinement algorithm, which serves as a baseline approach for
our problem. Then, we outline a divide-and-conquer approach paired with some opti-
mization techniques. In addition, we describe two alternative approaches, including a
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best-first search method with limited applicability and a hybrid approach that combines
divide-and-conquer with best-first search. Finally, we analyze the complexity of MBR
refinement algorithm and D&C framework.

4.1. MBR Refinement Algorithm

As discussed, every object inside the same finest MBR shares the same profitability. As-
suming that we have a budget plane BP and a set of finest MBRs, the result of GenBOQ
is the feasible region of one or more of these MBRs. For example in Figure 4(a), m9 is
the finest MBR having the maximum profitability and the feasible region of m9 (shown
as r9 in Figure 2(b)) is the result of the query.

Therefore, our problem is reduced to finding the set of finest MBRs with maximum
profitability. We propose an algorithm which refines the bounds of MBRs iteratively by
accessing the objects. We use m.bl (m.bu) to denote the general lower (upper) prof-
itability bound (not necessarily tight) of MBR m. At each step, one or more MBRs
m are refined into a set of smaller MBRs; the smaller MBRs have tighter profitability
bounds. This process is demonstrated in Figure 5. Assuming that we only know how
many objects are above/below the budget plane BP , but not their locations, we can first
define an MBRmU which covers the entire BP , as shown in Figure 5(a). The profitable
bound for mU is [f l(mU ), fu(mU )] = [−2, 4], since there are 2 objects below BP and
4 above it. This bound implies that there could be points on BP with profitability as low
as −2 and as high as 4. Assume that we select object o1 to refine mU . Using o1, mU is
split into three MBRs {m1,m2,m3} based on where the (d − 1)-dimensional orthog-
onal hyperplanes, which pass through o1, intersect BP .Shrinking the end-points of the
new MBRs to tightly enclose the part of BP they intersect is described in Appendix A.
After the refinement process, from mU ’s bounds, we can derive loose bounds for the
three new MBRs as [−2, 3], [−1, 4], and [−2, 3], respectively.4 The upper bounds of m1

and m3 are derived by subtracting 1 from mU ’s upper bound since m1 and m3 do not
dominate the current object o1; on the other hand, the lower bound of m2 is increased
by 1, sincem2 dominates o1. We will removemU from our candidate list and only keep
m1, m2 and m3. Next if we select o6 as the next object to be processed, m2 is further
split by o6 into three MBRs {m2a,m2b,m2c} and their bounds become [0, 4], [−1, 3],
and [0, 4], respectively. The upper bound of m2b is 3 because it is dominated by o6.
Besides generating these new MBRs, we also need to update the bounds of m1 and m3

to [−1, 3] and [−1, 3] since they are not dominated by o6.
Note that a drawn hyperplane is not necessarily relevant to any MBR it intersect-

s. Definition 8 formally shows whether a hyperplane is relevant to an existing MBR.
Broadly speaking, a hyperplane drawn from object o is relevant to an MBR m if the
profitability of m is affected by o; i.e., o dominates some o′ ∈ m or o is dominated
by some o′ ∈ m. For instance, in Figure 6, o’s hyperplane perpendicular to the y-axis
intersects m1 and m2. However, it is only relevant to m1, since o is dominated by some
o′ ∈ m1 but o and m2 are incomparable.

Definition 8 (Relevant hyperplane). A hyperplane from an object o is relevant to an
MBR m if and only if 1) the hyperplane intersects m and 2) there is at least one point
o′ in m, such that o′ dominates o if o ∈ O+ or o′ is dominated by o if o ∈ O−.

4 Tight bounds cannot be derived unless we know the locations of the remaining objects. This algorithm
refines MBRs by accessing the objects one-by-one; tight bounds for all finest MBRs will be established
eventually after having accessed all objects.
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Algorithm 1 MBR Refinement Algorithm
algorithm refine(MBR setM, Budget Plane BP , Object set O)

1: for all object o ∈ O do
2: M:=split(M, o, BP) . split the MBRs inM using o
3: for all MBR m ∈M do
4: remove m and goto line 3 if m.bu < γ
5: update [m.bl,m.bu] based on o
6: set γ := m.bl if γ < m.bl

7: M:=maximizeMBR(M)

Lemma 2 (Pruning). An MBRm cannot contain a region which is part of the GenBO-
Q solution, if m.bu < γ, where γ = maxm∈Mm.bl andM is the set of all candidate
regions.

Proof. Assume that there is a region r in m, which is part of the GenBOQ solution
and m.bu < γ. This means that r has higher or equal profitability than γ. Nevertheless,
r ∈ m and fu(r) must be smaller than or equal to m.bu. It contradicts our assumption,
so r does not exist.

Algorithm 1 is a pseudocode of the MBR refinement algorithm. We start by initializ-
ing the result of GenBOQ asM = {mU}, wheremU is the MBR of the entire space. At
every loop, we select an object o fromO and split the current set of MBRsM according
to the projected lines (orthogonal hyperplanes) from o (only relevant MBRs according
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to Definition 8 are split). Then, we update the profitability bound [m.bl,m.bu] for every
MBR m ∈ M according to the location of o. During the process, we keep track of the
highest lower bound γ among all MBRs inM and use it to prune MBRs m for which
the upper bound is smaller than γ, based on Lemma 2.

Postprocessing. Recall that during MBR refinement, the newly created MBRs are
shrunk as described in Appendix A. After Algorithm 1 terminates, the MBRs which
are part of the solution are not essentially the largest possible. In a postprocessing step
(Line 7 in Algorithm 1, maximizeMBR(M)), we enlarge the MBRs (and the feasi-
ble regions inside them) such that no point in space having the maximum profitability
is missed in the result. The enlargement process is related to the relevance concept of
Definition 8. Since the profitability of an MBR is only affected by relevant hyperplanes,
the boundaries of the MBR which are not bounded by relevant hyperplanes are enlarged
until the closest relevant hyperplane is met. The enlargement process does not affect
correctness since profitability of enlarged MBRs does not change.

4.2. Divide-and-Conquer

The MBR refinement algorithm becomes expensive in high dimensional problems, due
to its exponential space complexity (see Lemma 1). Our second approach is based on a
divide-and-conquer (D&C) framework, which recursively decomposes the problem into
smaller ones, until they become simple enough to be solved directly. Our approach is
based on the observation that an object only affects the refinement of MBRs which in-
tersect it in at least one dimension (e.g., in Figure 7(a), o3 does not affect the refinement
of m2). Given an MBR m, Definition 9 defines the areas which influence its refinement
as strips. Figure 7(a) shows two MBRs m1 and m2. The x-strip of m2 is illustrated by
the vertical lines that go through m2 and the y-strip of m2 is shown by the horizontal
lines.

Definition 9 (Strip of an MBR). A k-strip of an MBRm is a hyper-rectangle, for which
the lower and upper bounds in dimension k are derived from m; in other dimensions,
the strip covers the entire space.

At every round, D&C takes as input an MBRm and finds the strip s ofm containing
the largest number of objects. Let k be the dimension of this strip, D&C takes the median
object in the k-strip. If the median object is not relevant to m (see Definition 8), then
next/previous objects to the median are accessed until a relevant object is found. Next,
a hyperplane is drawn from the relevant object along dimension k which splits m into
two MBRs. The effect is that the k-strips of the new MBRs will contain fewer objects
compared to the k-strip of m. Starting from a single MBR mU , Figure 7(a) shows how
we can derive two new partitions, m1 and m2, by splitting the y-strip of mU , using o5

(the median in the y dimension). Figure 7(b) shows howm2 is split into MBRsm2a and
m2b based on o2 (i.e., the median x-value in the x-strip of m2).

Algorithm 2 includes the details of the D&C algorithm. Before running the algo-
rithm, we sort all objects at each dimension and keep d sorted lists SL. Sorted list SLk
facilitates allocation of the objects in the k-strip of an MBR efficiently, by just defining
split boundaries on SLk. In addition, sorting helps to find the median points efficiently.
Starting from m = mU , in the first call, the algorithm first selects the median object o
from the strip si of m that has the maximum number of objects. Next, function planes-
plit splitsm using the orthogonal hyperplane that passes through o, defined by all points
having the same value as o in dimension i. This is similar to the split function in Al-
gorithm 1. The only difference is that function planesplit only projects one orthogonal
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Algorithm 2 Divide and Conquer Algorithm
prerequisite
for every dimension i, objects are sorted and stored in sorted list SLi
algorithm DC(partition m, Budget Plane BP)

1: select a strip si of m such that si has the maximum number of objects
2: select the median object o from si using SLi
3: M′:=planesplit({m}, o, i, BP)
4: for all m′ ∈M′ do
5: update the bound of m′ and prune m′ if it violates Lemma 2
6: if the total number of objects in m′’s strips < threshold θ then
7: refine({m′}, BP , {all relevant objects in the strips})
8: else
9: DC(m′, BP)

hyperplane instead of all hyperplanes as in function split. For instance, o5 projects one
line to BP parallel to the x-axis but no line parallel to the y-axis in Figure 7(a).

For each of the two new MBRs m′ created by planesplit, we update the tight prof-
itability bound of m′ by scanning all objects in the strips of m′. We decide to switch
to the MBR refinement algorithm on a partition m′, if the total number of objects in all
strips of m′ is smaller than a given threshold θ. Otherwise, m′ is further split by calling
Algorithm 2 recursively. In this case, the refinement algorithm only accesses objects
within the strips of m′ in order to refine it to finest MBRs. Therefore, the space com-
plexity of calling this method for m′ is only bounded by the number of finest MBRs in
m′.

4.3. Optimizing Divide-and-Conquer

During D&C, a d-dimensional MBR is split into at most two MBRs by a (d − 1) di-
mensional orthogonal hyperplane. At each recursion, there are at most two calls. Thus,
D&C is a depth-first search algorithm with low space complexity. On the other hand,
the resulting MBRs only have disjoint strips in one dimension in the worst case. Con-
sider the 3D example of Figure 8(a). Two MBRs,m1 andm2, are created by the vertical
hyperplane from the median object o1 of mU in the y dimension. Note that m1 and m2
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share a border area (instead of a single point in the 2D example of Figure 7(a)) in the x
and z dimensions. Therefore, after the split, in the worst case, all objects in all dimen-
sions but y may fall into both MBRs’ strips. Assuming that we have n objects in mU ,
the total number objects in m1’s (m2’s) strips is up to n/2 + (d− 1)n=(d− 0.5)n. This
means that, in the worst case, the input fed to the D&C subproblems may be reduced
very slowly (from dn to (d− 0.5)n at each recurrence).

Avoiding the Worst Case. In order to avoid the worst case discussed above, we can
adapt D&C to split the current MBR m into 2d new MBRs, such that for every dimen-
sion k, if the k-strip of m has n objects, the k-strip of each new MBR m′ will have
n/2 objects. This is possible if, for every dimension k, we select the median object in
the k-strip of m and form a point pm having as coordinates these median values. The
space is then split by drawing k hyperplanes perpendicular to each dimension k, passing
through pm. Figure 8(b) shows a 3D example, where the three median objects ox, oy ,
and oz all dimensions are used to form pm, which then splits the MBR into 8 new ones,
each having n/2 objects in each of its strips.

Optimization I - Optimizing Split Selection. Although the above 2d-partitioning s-
trategy avoids the worst case, it is a pessimistic approach that will not take advantage of
potential best cases. Note that the best case of the simple D&C algorithm creates only
two recurrence calls, each having only O(d · n/2) input size (i.e., all objects are parti-
tioned equally at each dimension by one planesplit). As we show in the Section 4.5, the
time complexity of such a best case is only O(d ·n log(d ·n)). Therefore, if a planesplit
partitions a MBR into two MBRs, such that their k-strips in all dimensions have small
overlap, we perform this binary split at the D&C call; otherwise, we perform a 2d-split
using pm. In the example of Figure 8(a), to assess the quality of the y-planespit based
on o1, we compute the number of objects co-existing in the x-strips of m1 and m2 and
sum it to the corresponding overlap in the z-strip. Dividing this number by the sum of
objects in the x- and z-strips of the original MBR m, gives us an overlap ratio for the
y-planespit. If this ratio is smaller than a parameter ρ, then we choose to perform the
y-planesplit over the 2d-split.

This version of D&C (shown as Algorithm 3) avoids the worst case, while selective-
ly choosing binary splits if they are favorable. For each dimension k, we find the median
point of k-strip, update pm and keep track in kbest the dimension for which the binary
split results in the minimum overlap ratio. Computing the overlap ratio is done very
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Algorithm 3 Optimized Divide and Conquer Algorithm
algorithm DC(partition m, Budget Plane BP)

1: for every dimension k do
2: select the median object ok from k-strip of m and update pm
3: M′:=planesplit({m}, ok, k, BP)
4: if overlap ratio of split is better than previous splits then
5: obest:=ok; kbest:=k
6: if overlap ratio of obest < ρ then
7: M′:=planesplit({m}, obest, kbest, BP)
8: else
9: M′:=split({m}, pm, BP)

10: Run lines 4 to 9 in Algorithm 2

o1

o2

o3

m

y-strip(m)

Fig. 9. Example of relevant objects in a strip

efficiently by performing binary search on the corresponding sorted lists SL to identify
the index of the first and last object at each dimension for the strips of m1 and m2. If
the best overlap ratio is smaller than a given threshold ρ, we perform the corresponding
planesplit, otherwise we do a 2d split based on pm.

Optimization II - Removing Irrelevant Objects. Note that there could be some irrel-
evant objects inside the strips of an MBR. For instance, there are 3 objects inside the
y-strip of MBRm in Figure 9. Objects o1 and o2 are irrelevant tom since the profitabil-
ity of m is not affected by them (see Definition 8). Thus, only objects in the shaded area
of y-strip(m) (e.g., o3) are considered in the split process of m.

In the second optimization of D&C, instead of being modeled by the boundaries
of a hyper-rectangle, each strip of an MBR m keeps an explicit set of object IDs if
these objects are relevant to m and they are inside the strip. For each D&C call of an
MBR m (at Line 9 in Algorithm 2), m collects all relevant objects from its parent for
each strip. With this modification, all irrelevant objects are removed from subsequent
refinements ofm and the performance improves significantly. Each new D&C call keeps
at most (d − 0.5)n IDs and during the algorithm we may store up to O(dnh) IDs,
where h is the depth level of the D&C process. Thus, the space complexity becomes
O(max{dnh, θd−1}).

Additional Optimizations. Two more optimizations are included in our D&C imple-
mentation. First, we observe that Lemma 2 is more effective if a better γ is found early.
Based on this observation, at each D&C call, the generated MBRs are processed in
descending order of their lower bounds mi.b

l. Second, if there are K objects in the
datasets having the same feature values, then these K objects can be grouped into one
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artificial object with capacity K. The lower and upper bounds are updated according to
the capacities of objects throughout the D&C computation. This technique is effective
for real data with low-cardinality domains, as shown in the experimental section.

4.4. Hybrid Approach

D&C reduces the space complexity by dividing the search space recursively, in a depth-
first search fashion. In this section, we explore the application of a best-first refinement
(BFR) algorithm and a hybrid solution that combines BFR and D&C.

BFR is motivated by the observation that it is not necessary to refine the MBRs in a
depth-first fashion. After refining a MBR m using one planesplit of the D&C method,
the upper bounds of the resulting MBRs may be significantly smaller than that of m.
In this case, it might be more promising to switch to the refinement of another MBR
from those computed so far, which has higher upper bound than the new MBRs. BFR
follows such a best-first strategy for refining the MBRs. First, BFR pushes MBR mU

that covers the entire space into a heap H, which organizes the MBRs in descending
order to their upper bounds. At each iteration, the MBR with the highest upper bound
is deheaped, we split it using a D&C hyperplane, and the resulting MBRs are pushed
back on the heap if they are not finest. The profitability of the best finest MBR found is
used as a termination bound γ; the algorithm terminates when the next deheaped MBR
has an upper bound which is lower than γ.

Algorithm 4 Best First Refinement Algorithm
algorithm BFR(partition m, Budget Plane BP)

1: push an MBR mU that covers the entire space into a heapH
2: whileH is not empty do
3: m := H.pop()
4: run lines 1 to 9 in Algorithm 3
5: push all MBRs inM toH
6: break the loop if the top MBR inH violates Lemma 2

The pseudo code of BFR is shown in Algorithm 4. BFR always chooses the currently
best MBR to refine. However, this approach becomes very expensive or infeasible if H
grows beyond the memory limits (recall that the number of possible MBRs could be as
high as O(d · nd−1)).

To alleviate the high memory consumption of BFR, we propose a hybrid method
that combines the advantages of BFR and D&C. A variable ω is used to control the
memory usage of BFR. BFR is initiated and used while |H| ≤ ω. As soon as |H| ≥ ω,
the MBRs are accessed according to their order in H, and D&C is executed for each of
them to derive the finite MBRs included in them with their profitabilities. We update γ
and continue executing D&C for next MBR in H as long as the next MBR in H has an
upper bound not smaller than γ. As we show experimentally, with a careful selection of
parameter (ω), this hybrid solution can outperform D&C.

4.5. Complexity analysis

MBR Refinement Algorithm. At each step, the algorithm reads an object o and refines
one or more MBRs (e.g., m2 in Figure 5(b)). In addition, it updates the profitability
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bounds of one or more MBRs (e.g., m1 and m3). Therefore, at each step we may have
to update or refine all existing MBRs. In the worst case, the algorithm terminates after
generating all O(d · nd−1) finest MBRs, for a problem with n d-dimensional objects.
The overall worst-case complexity is O(n ·d ·nd−1) = O(d ·nd). The space complexity
of the algorithm is O(d · nd−1), as all MBRs have to be maintained and compared with
the current point at each step.

Divide-and-Conquer. First, we analyze the computational complexity of the 2d par-
titioning heuristic of D&C, which as explained has the best worst-case cost. Suppose
that we have n objects, finding the median object o from each strip takes O(log n) time,
since the objects are stored in the strip in sorted (passed from the previous D&C cal-
l). The most expensive step is to scan all strips of the divided MBR m and update the
bound of each new MBR. Thus we scanO(d ·n) objects in total in the d strips, and each
object is used to update the bounds of the new 2d − 1 partitions (note that one of the
2d partitions is guaranteed not to intersect BP , therefore it is pruned). Thus, the total
time of a D&C call is O((2d − 1) · d · n) and each recursive call has O(d · n/2) input
size. Note that the input size of a D&C call is d · n instead of n since an MBR has d
strips in total. By setting N = d · n, the cost of D&C can be described by the following
recurrence.

T (N) = (2d − 1)T (N/2) +O((2d − 1)N) (4)

According to the Master Theorem (Cormen, Leiserson, Rivest and Stein, 2009), the
bound of the recurrence function is Θ(N log(2d−1)) = Θ((d · n)log(2d−1)). In addition,
the space complexity is reduced from O(d · nd−1) to O(max{2d log d · n, |R|, θd−1}),
where log d · n is the depth of the execution stack keeping 2d MBRs at each level, R
is the maximum size of the candidate result set of the query, and θ is the bound used
to switch to the MBR refinement process. In summary, the worst-case time complexity
is higher than that of the MBR refinement algorithm. However, this algorithm is more
efficient in practice, due to its limited space requirements.

We now analyze the best case of the algorithm. This happens when, at every call,
the input MBR m is partitioned by a planesplit equally into two MBRs, each having
the input size of m divided by 2. Therefore, the cost of D&C in the best case can be
described by the following recurrence.

T (N) = 2T (N/2) +O(2N) (5)

By applying Master Theorem (Cormen et al., 2009), the bound of the recurrence is
Θ(N logN) = Θ((d · n) log(d · n)). As discussed in Section 4.3, the optimized D&C
method would prefer good binary splits to 2d splits if they result in good partitions.

5. Approximation of GenBOQ

Based on our D&C framework, we propose a method which returns an approximate
GenBOQ result with a quality guarantee. Instead of computing all feasible regions in
GenBOQ, our approximation solution (ApprGenBOQ) returns only one feasible region
rappr such that the profitability of rappr is bounded by a tolerance T from the optimal.
In other words, the MBR returned by the approximate method does not have to be finest
due to the tolerance bound T . Thus, an MBR is a potential result only if the gap between
its upper and lower profitability bounds is smaller than T . Formally:
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Definition 10 (Qualified MBR). An MBR m is a potential result of ApprGenBOQ if
m.bu −m.bl ≤ T .

In the D&C framework, we iteratively split an MBR if the number of objects in the
MBR’s strips is larger than a threshold θ. Otherwise, we refine the MBR by Algorithm 1.
For the approximation solution, if an MBR is qualified, it is not necessary to split/refine
it further. However, a qualified MBR is not necessary a result of ApprGenBOQ. We use
Definition 11 to compare two qualified MBRs and eventually find a qualified MBR that
is a result.

Definition 11 (Comparison of qualified MBRs). We say qualified MBR m1 is better
than qualified MBR m2 if and only if m1.b

u > m2.b
u.

In Lemma 3, we show that the best among all qualified MBRs (according to Defini-
tion 11) must be a result of ApprGenBOQ. Note that we return only one qualified MBR
in ApprGenBOQ. Therefore, if the upper bound of a new created MBR m′ is not larger
than the maximum upper bound η of the qualified regions found so far, then m′ can be
pruned safely. In summary, once we compute a qualified MBR, the MBR is either kept
as a result candidate or pruned by η.

Lemma 3 (Correctness of approximation). A qualified MBR m is a result of Ap-
prGenBOQ if m.bu ≥ η, where η = maxm∈Mqual

m.bu and Mqual is the set of
qualified MBRs.

Proof. Suppose that the maximum profitability is p. So our task is to prove that p ∈
[m.bl,m.bu].

–If p < m.bl, then there must exist a profitability p′ = f(x) better than p, where
x ∈ m. This contradicts the assumption that p is the maximum profitability.

–If p > m.bu, then we must have another MBR m′ where p ∈ [m′.bl,m′.bu], which
means m.bu < p ≤ m′.bu, so m should be pruned according to Definition 11. This
contradicts the fact that m is the last result candidate.

According to the problem definition, we return only one qualified MBR in ApprGen-
BOQ. Therefore, if the upper bound (as well as the lower bound) of new created MBR
m′ is worse than the maximum upper bound of all qualified regions seen so far, then
m′ can be pruned safely since m′ is not better than the current candidate according to
Definition 11. In summary, once we compute a qualified MBR, the MBR is either kept
as a result candidate or pruned by the lemma.

Algorithm 5 (extended from Algorithm 3) is a pseudocode of our approximation
solution. For each newly created MBR m′, we first test whether m′ can be pruned or
not (Line 4). If m′ is not pruned and m′ is a qualified MBR, then m′ is set as the result
candidate. If m′ is not a qualified MBR, m′ is either refined or split by corresponding
processes. Note that, during the MBR refinement process, we stop refining MBRs once
they become qualified. Accordingly, function refineAppr in Line 8 is used to represent
the modified version of Algorithm 1. After the refinement process, we may update the
result candidate from the newly qualified MBRs (Line 9).

Note that our approximation solution is directly applicable to the hybrid approach.
The extension is trivial so that we omit the details for the conciseness of the manuscript.
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Algorithm 5 Divide and Conquer Approximation Algorithm
algorithm DCAppr(partition m, Budget Plane BP , tolerance T )

1: Run lines 1 to 9 in Algorithm 3
2: for all m′ ∈M′ do
3: update the bound of m′
4: prune m′ if it violates Lemma 2 or m′.bu < η
5: if m′.bu −m′.bl ≤ T then
6: set m′ as the result candidate
7: else if the total number of objects in m′’s strips < threshold θ then
8: refineAppr({m′}, BP , {all relevant objects in the strips})
9: update result candidate

10: else
11: DCAppr(m′, BP , T )
12: return result candidate

6. Experimental Evaluation

We empirically evaluate the performance of the proposed algorithms: the MBR refine-
ment algorithm (MBR) (Section 4.1), divide-and-conquer (D&C) (Section 4.2), the hy-
brid approach (Section 4.4), and the approximation method (Section 5).

Three types of synthetic datasets, independent (IND), correlated (COR), and anti-
correlated (ANT), are generated according to the methodology in (Börzsönyi et al.,
2001). In IND datasets, the feature values are generated uniformly and independent-
ly. COR datasets contain objects whose values are correlated in all dimensions. ANT
datasets contain objects whose values are good in one dimension and tend to be poor
in other dimensions. In addition, we generate cluster (CLU) datasets by randomly s-
electing ξ independent objects, and treat them as cluster centers. Each cluster object
is generated by a Gaussian distribution with mean at the selected cluster center and
standard deviation 5% of each dimension domain range. We set ξ to 10 by default.
The above four types of data are common benchmarks for skyline queries (Börzsönyi
et al., 2001; Zhang, Mamoulis and Cheung, 2009). Our dataspace contains d dimen-
sions (in the range from 2 to 5). Additionally, we experiment with two real datasets,
Household (Household dataset, 2008) and NBA (NBA Basketball Statistics, 2009).

By default, we use one type of constraint function, C(x) = 1
Π1≤i≤d(x[i]) , which

gives equal weights to all dimensions, in order not to bias any attribute. In general, the
constraint function is designed by a domain expert. In addition, we also evaluate an
alternative function, composed by a set of linear functions.

All methods were implemented in C++ and the experiments were performed on an
Intel Core2Duo 2.66GHz CPU machine with 4 GBytes memory, running on Ubuntu
9.04. Table 3 shows the ranges of the investigated parameters, and their default values
(in bold). In each experiment, we vary a single parameter, while setting the others to
their default values. For each method, we measure the total execution time, including
any preprocessing costs, and the peak memory usage. As we will show shortly, after
tuning of parameters θ (refinement threshold) and ρ (overlap ratio), they are set to their
best values (10 and 0.7, respectively), throughout all remaining experiments.

Parameter Tuning. We first study the effect of the various tuning parameters on the
algorithms. We investigate the effect of θ (Section 4.2) and the overlap ratio ρ (Section
4.3). Figure 10(a) shows the effect of θ on the cost of the D&C algorithm on the default
IND dataset. For very small values of θ, the refinement process becomes very fast;
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Table 3. Range of parameter values

Parameter Values

|O| (in thousand) 10, 25, 50, 100, 200

Dimensionality d 2, 3, 4, 5, 6

Data distribution IND, ANT, COR, CLU

Overlap ratio ρ 0, 0.05, 0.1, ..., 0.7, ..., 0.95, 1

Refinement threshold θ 2, 5, 10, 20, 40, 80

Maximum heap size ω 0, 2, 5, 10, 20, ..., 5120, ..., 81920, 163840

Number of clusters ξ 10, 50, 100, 200,..., 1600

Constraint function C(o)
(a) 1

Π1≤i≤d(o[i])

(b) max


1

α·o[1]+
∑

1≤i≤d,i6=1 o[i]

...
1

α·o[d]+
∑

1≤i≤d,i6=d o[i]

Development budgetB 2, 5, 10, 100, 1000, 10000, 100000

α 0.1, 0.2, 0.4, 0.8, 1.6, 3.2

Quality T/|O| 0.01%, 0.05%, 0.1%, 0.5%, 1%, 2%, 5%

Discrete values (DADA) 5, 7, 10, 12, 15, 17, 20

however, there are also more D&C recurrence calls. For very large θ, the execution
time is high due to the expensive refinement process. Also, the memory usage becomes
higher; the peak number of MBRs created by the refinement process at θ = 100 is
21541 while it is only 35 and 169 at θ = 10 and θ = 20 respectively. The best overall
value in terms of response time is in between 5 to 20, so we choose θ = 10 as the default
value in order to reduce the number of D&C recurrence calls.

Next, we test the effect of the overlap ratio ρ on the D&C algorithm. As Figure 10(b)
shows, the cost trend of D&C agrees with our discussion in Section 4.3. D&C becomes
more expensive when we only use 2d splits (ρ = 0) since it does not take advantage of
possible best cases. Its execution time is 15% higher than our default ratio ρ = 0.7.

We also study the effect of the maximum heap size ω on the hybrid solution. Figures
10(c) and 10(d) show the response time and memory usage of different data distributions
as a function of ω. For ω = 0, hybrid becomes plain D&C; on the other hand, as
ω increases, hybrid becomes more like BFR. COR and CLU datasets favor the BFR
approach since the data are more skewed and a good γ can be computed early. For
IND and ANT datasets it is more difficult to find a good ω value, since the points on
the budget plane have similar profitabilities and a good bound to prune large MBRs is
hard to find. For all data distributions, the memory usage increases with ω. We set ω to
5120 since it gives the minimum value for all data distributions, regardless of the large
memory consumption compared to plain D&C method.

Effectiveness of Optimizations. Next, we evaluate the effectiveness of the optimiza-
tions proposed in Section 4.3 within the D&C algorithm. The fully optimized algorithm
(D&C) is compared against D&C-NoWorst (the divide-and-conquer algorithm with all
2d splits, described in Section 4.3 Avoiding the Worst Case) and D&C-OptSplit (the
basic divide-and-conquer algorithm with optimized split selection, described in Sec-
tion 4.3 Optimizing Split Selection).
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Fig. 10. Sensitivity experiments, IND

Figure 11 plots the response time and memory usage of the three D&C versions
as a function of the dimensionality d, after setting all other parameters to their default
values. The response time increases exponentially in all methods, but fully optimized
D&C is less sensitive to dimensionality than the other methods. It is 5.94 and 5.7 times
faster than D&C-NoWorst and D&C-OptSplit for d = 6, while consuming at most 1.85
times more memory. Note that D&C-NoWorst and D&C-OptSplit are faster than the
D&C at d = 2, since the computation in this case is very fast and the optimization for
irrelevant objects pruning comes with a significant cost factor.

Scalability experiments. Next, we compare the proposed solutions (D&C and hybrid)
to the naive method (MBR). Two versions of the hybrid method are evaluated. In HY-
BRID, ω is set to 5120 based on our tuning. HYBRID-Max is used to test BFR when ω
is set to a large number (ω = 163, 840).

Because the memory usage of the baseline method MBR grows exponentially with
the dimensionality, we only test it on a small dataset with |O| ranging from 125 to
2000, for d = 4. As shown in Figure 12, the cost of MBR grows very fast. When
|O| = 2000, the space requirements of MBR exceed the available memory. The cost of
the other methods grows exponentially, as well, but at a much lower pace than the naive
approach. Their memory usage increases at even lower pace. This demonstrates that our
approaches are a substantial contribution, since this is a very expensive problem even
for small datasets.
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In the remaining experiments, we exclude the baseline method (MBR), due to its
high cost. Figure 13(a) shows the response time of the remaining methods as a function
of the number of objects on anti-correlated data. HYBRID is 14.9% (19.9%) faster than
D&C (HYBRID-Max) at |O| = 200K. However, HYBRID consumes more memory
than D&C (at least 5.7 times) due to the heap structure. More precisely, it consumes
72.24 MB (142.75 MB) for |O| = 100K (|O| = 200K), while D&C consumes on-
ly 12.54 MB (25.05 MB). HYBRID-Max is not only slower but also consumes more
memory (633.64 MB at |O| = 200K) than the others. The memory usage of all meth-
ods increases linearly with |O|, as shown in Figure 13(b).

Figures 13(c) and 13(d) show the response time and memory usage of the methods
on different data distributions. HYBRID is the best method in terms of response time in
all four data distributions IND, ANT, COR, and CLU. D&C is nearly as good as (only
4% slower) HYBRID on IND data while consuming 5.63 times less memory. Note
that all methods perform better on skewed data, since a good γ can be found early. In
summary, HYBRID provides the best query response time to GenBOQ in all datasets;
however, it consumes more memory than D&C and the optimal ω value is difficult to
set for different data distributions. Therefore, we recommend the use of D&C, since it
does not depend on hard-to-set parameters, it has low memory consumption, and it is
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Fig. 13. Scalability experiments

not a lot worse than the best tuned hybrid algorithm. In our evaluation, all methods have
similar performances which the response time generally increases with the number of
clusters ξ.

Data distribution. We also evaluated our methods for different numbers of clusters C
on CLU data. Figure 14 demonstrates the response time and memory usage of all meth-
ods as a function of C. All three methods have similar performances which the response
time generally increases with the number of clusters. HYBRID is the best method ex-
cept at C = 1600 since the ω value of HYBRID is no longer optimized. The memory
usage of all methods becomes stable when ξ ≥ 200 since the data become uniformly
distributed. The memory usage of D&C is not sensitive to ξ since the most memory
consuming procedure, MBR refinement, is well controlled by the system parameter θ.

Constraint functions C. We study the performance of the methods for different con-
straint functions C. The constraint function can be either a single monotonic function
or a set of monotonic functions.

Figure 15(a) plots the response time of the solutions with respect to the budget B
of a type-a function (C(o) = 1

Π1≤i≤d(o[i]) = B) on correlated datasets (COR). For very
small or very large values of B, the problem becomes easier on COR datasets since the
budget plane BP is close to left-bottom or right-top corner of the space. Hybrid methods
outperform D&C on COR datasets.

We also evaluated the performance of type-b constraint functions (a set of linear
functions) defined in Table 3 on IND datasets. For each linear function lfi, we set all
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coefficients to 1 except i-th coefficient; the i-th coefficient is set to α. Besides, we set
B = 1 in order to avoid negative profitability results such that the size of positive object
set O+ is larger than negative object set O− on these two datasets. As Figure 15(b)
shows, the problem is easier to solve at α = 0.1 and α = 3.2, for the same reason as
in small and large values of B in type-a constraint functions. Like in type-a functions,
hybrid methods outperform D&C on independent datasets.

Real data. NBA contains 12,278 statistics from regular seasons during 1973-2008,
each of which corresponds to the statistics of an NBA player’s performance in 6 aspects
(minutes played, points, rebounds, assists, steals, and blocks). Household consists of
3.6M records during 2003-2006, each representing the percentage of an American fam-
ily’s annual expenses on 4 types of expenditures (electricity, water, gas, and property
insurance). In the following experiments, we exclude HYBRID-Max due to its bad per-
formance in terms of response time and memory usage. To avoid negative profitability
results, we set the development budget B to 1M.

Figure 16(a) shows the response time of three methods (MBR, D&C, and HYBRID)
as a function of dimensionality. The response time of all methods increases exponen-
tially to the dimensionality. D&C and HYBRID have similar response time due to small
data size. Again, MBR exceeds the available memory when d ≥ 3, so it is only included
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Fig. 16. Results with Real Datasets

for d = 2; in this case MBR is 2 orders of magnitude slower than our proposed methods.
The memory consumption for NBA data is illustrated in Figure 16(b). From the figure
we can see that, even for the only available d = 2 case, MBR consumes more memory
than D&C and HYBRID. As dimensionality d increases, the memory consumption of
D&C and HYBRID increases exponentionally, where D&C is consistenly better than
HYBRID, consuming less memory than HYBRID with a ratio up to one magintude
when d = 6.

Figure 16(c) compares the response time of D&C and HYBRID with their vari-
ants D&C\CAP and HYBRID\CAP that exclude the capacity optimization described
in Section 4.3. We divided Household into four datasets with 516K, 514K, 1.25M, and
1.35M records from years 2003, 2004, 2005, and 2006 respectively. The feature val-
ues in Household are discrete, so there are some tuples having the same feature values
in all dimensions; in this case the objects are grouped to a single capacitated object.
The number of discrete objects are 242K, 250K, 520K, and 542K, respectively in the
four years. The fully optimized methods are significantly faster than the methods that
do not apply capacity optimization. HYBRID is faster than D&C in all tests since the
Household dataset is highly clustered; this is also the reason why all methods perform
better on the Household dataset than the synthetic datasets. Figure 16(d) demonstrates
the effectiveness of our capacity optimization, which saves the memory usage by at least
14.4% as compared to the version without this optimization.

Approximation. We use the ratio of tolerance bound T divided by the number of
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objects |O| to represent the quality of an approximation result. We first evaluate the
response time of our approximation approach as a function of quality, showing the
response time of D&C as a baseline. Figure 17(a) shows that the response time of
D&C-Appr decreases dramatically with the increase of T . At the default quality set-
ting (T/|O| = 1%), D&C-Appr is 4.5 times faster than D&C, showing that D&C-Appr
finds a result efficiently without sacrificing much precision. Figure 17(b) tests the s-
calability of D&C-Appr, showing the response time of four methods (D&C and three
quality settings of D&C-Appr) as a function of the number of objects. All D&C-Appr
methods are consistently faster than D&C. Moreover, D&C-Appr with T/|O| = 1% is
4.86 times faster than D&C for |O| = 200K. Thus, the performance gain of D&C-Appr
is not affected by the problem size.

DADA. Finally, we test the efficiency of our approach against DADA (Li et al., 2006;
Zhu et al., 2012). We generate datasets, where the feature values of objects are dis-
crete for every dimension, so that both LOQ in DADA and GenBOQ return the same
result. For each dataset, we construct the D*-tree index for LOQ. In Figure 18(a) and
Figure 18(b), we show the response time of LOQ (excluding the time to construct the
D*-tree) and our D&C approach. D&C outperforms DADA by 1 to 3 orders of mag-
nitudes, and this superiority increases when we increase the number of discrete values
or the dimensionality. This demonstrates why our method is more general than DADA,
since it can be applied to continuous or discrete feature spaces of large cardinalities.

7. Conclusion

In this paper we studied a new optimization problem; given a set of existing products in
the market, modeled by their feature values, we seek for the features to give to a new
product such that its profitability is maximized. Profitability is modeled by the num-
ber of products which dominate and are dominated by the new product. We constrain
the search space by a budget, which is monotone to the feature values. The solution
of the problem then becomes a set of continuous regions in the feature space, which
can be accurately expressed by minimum bounding rectangles (MBRs). We proposed
and compared three methods for this problem. The first is a baseline MBR refinement
approach, which iteratively processes the existing products and refines regions in space
enclosing feasible feature vectors with the same profitability bounds. This method has
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time and space complexity exponential to dimensionality. The second method applies
depth-first search, refining regions in a divide-and-conquer (D&C) manner and has low
space requirements. The third method is a hybrid method that applies best-first search
in the D&C framework. Our experiments show that the last two methods scale much
better than the baseline approach in practice, while having low memory requirements.
Given the inherently high cost of the problem, we proposed an approximation method
based on the D&C strategy. The experiments show that this method can find a result
of 1% or less relative difference to the optimal much faster than exact approach. In the
future, we plan to study the parallelism of GenBOQ to further reduce the computational
cost; the D&C framework supports such a design. In addition, we will consider an ex-
tension of GenBOQ, which creates multiple products using a total development budget;
maximizing total profitability in this case is very challenging.
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A. Compact MBR Computation

Given an MBR m, a budget plane BP , and an orthogonal hyperplane, we can partition
m into (at most) two compact MBRs as shown in Figure 8(a). In this section, we show
how we can compute the boundaries of these new MBRs in O(d2) time. For the sake
of presentation, we assume that the hyperplane splits m into exactly two MBRs m1 and
m2. Assume thatm is split by hyperplane x[j] = v (i.e., parallel to dimension j at value
v). Let ml[i] (mu[i]) be the lower (upper) bound of m in dimension i. Then, two loose
MBRs, whose union equals m can be defined by the following equations.

ml
1 := ml mu

1 [i] :=

{
mu[i] if i 6= j

v if i = j
(6)

ml
2[i] :=

{
ml[i] if i 6= j

v if i = j
mu

2 := mu (7)
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m1

m2

m

mu1

ml1

HP

ml1

0.5

(1,1)

fC=1/xy
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Fig. 19. Compact MBR Computation
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Fig. 20. An example of piecewise functions

Note that the values of mu
1 and ml

2 are the tightest values already; in addition, ml
1[j]

and mu
2 [j] are also tightest. However, we can tighten the values (ml

1 and mu
2 ) in other

dimensions, so that m1 and m2 tightly enclose BP using the following method. To find
the maximum bound within an MBR in dimension i, we need to set the minimum values
in all other dimensions and solve C(x) = B. For example, ml

1[i] can be computed by
solving the equation C(x) = B, by setting x[j] = mu

1 [j],∀j 6= i.
For instance, in Figure 19, assume that we want to partition m using hyperplane

y= 0.5. Initially, m is split into two MBRs m1 = {mu
1 ,m

l
1} = {[0.1, 0.5], [1, 1]} and

m2 = {mu
2 ,m

l
2} = {[0.1, 0.1], [1, 0.5]}. Then, if C = 1

xy and B = 0.1, we tighten
ml

1[0] by solving ml
1[0] ·mu

1 [1] = B, which gives ml
1[0] = 0.1/0.5 = 0.2. Therefore,

the tightmost bound of m1 becomes {[0.1, 0.5], [0.2, 1]}. In general, d − 1 boundaries
can be tightened for each new MBR and each tighening requires O(d) computations, so
the overall cost for tightening an MBR is O(d2).

B. Solution of piecewise constraint functions

Even though our work does not address all non-monotonic constraint functions, our
proposed techniques are able to compute GenBOQ if the constraint function C(x) is
a piecewise function which is composed of a set of finite monotonic functions. For
instance,

C(x) =

{
1/x 0.5 < x ≤ 1
1− 1/x 0 ≤ x ≤ 0.5

(8)

The complete piecewise function may be non-monotonic. Figure 20 illustrates a
non-monotonic piecewise function that composes of three finite monotonic functions.
In case of such a function, we can partition the domain area into 9 sub-areas. To compute
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the result of GenBOQ, we first identify the relevant sub-areas of each finite monoton-
ic function. For instance, the relevant areas of the red function are 2, 3, 4, 5, 6, 7, and
8 since there is no profitable region of the red function dominating or dominated by
areas 1 and 9. Accordingly, we apply our algorithms to compute the GenBOQ result
of the red constraint function using the data in the relevant areas. The final result can
be straightforwardly produced by combining the result of each piecewise monotonic
function.
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