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Recent research studied the problem of publishing microdata without revealing sensitive infor-
mation, leading to the privacy-preserving paradigms of k-anonymity and �-diversity. k-anonymity
protects against the identification of an individual’s record. �-diversity, in addition, safeguards
against the association of an individual with specific sensitive information. However, existing ap-
proaches suffer from at least one of the following drawbacks: (i) �-diversification is solved by tech-
niques developed for the simpler k-anonymization problem, causing unnecessary information loss.
(ii) The anonymization process is inefficient in terms of computational and I/O cost. (iii) Previous
research focused exclusively on the privacy-constrained problem and ignored the equally important
accuracy-constrained (or dual) anonymization problem.

In this article, we propose a framework for efficient anonymization of microdata that addresses
these deficiencies. First, we focus on one-dimensional (i.e., single-attribute) quasi-identifiers, and
study the properties of optimal solutions under the k-anonymity and �-diversity models for the
privacy-constrained (i.e., direct) and the accuracy-constrained (i.e., dual) anonymization problems.
Guided by these properties, we develop efficient heuristics to solve the one-dimensional problems
in linear time. Finally, we generalize our solutions to multidimensional quasi-identifiers using
space-mapping techniques. Extensive experimental evaluation shows that our techniques clearly
outperform the existing approaches in terms of execution time and information loss.
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1. INTRODUCTION

Organizations, such as hospitals, need to release microdata (e.g., medical
records) for research and other public benefit purposes. However, sensitive
personal information (e.g., medical condition of a specific person) may be re-
vealed in this process. Conventionally, identifying attributes such as name or
social security number are not disclosed, in order to protect privacy. Still, re-
cent research [Froomkin 2000; Sweeney 2002] has demonstrated that this is
not sufficient, due to the existence of quasi-identifiers in the released micro-
data. Quasi-identifiers are sets of attributes (e.g., 〈ZIP, Gender, DateOfBirth〉)
which can be joined with information obtained from diverse sources (e.g.,
public voting registration data) in order to reveal the identity of individual
records.

To address this threat, Samarati [2001] and Sweeney [2002] proposed the
k-anonymity model: For every record in a released table there should be at
least k − 1 other records identical to it along a set of quasi-identifying at-
tributes. Records with identical quasi-identifier values constitute an equiva-
lence class. k-anonymity is commonly achieved either by generalization (e.g.,
show only the area code instead of the exact phone number) or suppression
(i.e., hide some values of the quasi-identifier), both of which inevitably lead to
information loss. Still, the data should remain as accurate as possible in order
to be useful in practice. Hence a trade-off between privacy and information loss
emerges.

Recently, the concept of �-diversity [Machanavajjhala et al. 2006] was in-
troduced to address the limitations of k-anonymity. The latter may disclose
sensitive information when there are many identical Sensitive Attribute (SA)
values within an equivalence class1 (e.g., all persons suffer from the same dis-
ease). �-diversity prevents uniformity and background knowledge attacks by
ensuring that at least � SA values are well represented in each equivalence
class (e.g., the probability to associate a tuple with an SA value is bounded
by 1/� [Xiao and Tao 2006a]). Machanavajjhala et al. [2006] suggest that any
k-anonymization algorithm can be adapted to achieve �-diversity. However, the
following example demonstrates that such an approach may yield excessive in-
formation loss.

Consider the privacy-constrained anonymization problem for the microdata
in Figure 1(a), where the combination of 〈Age, Weight〉 is the quasi-identifier and
Disease is the sensitive attribute. Let the required privacy constraint, within
the k-anonymity model, be k = 4. The current state-of-the-art k-anonymization

1k-anonymity remains a useful concept, suitable for cases where the sensitive attribute is implicit
or omitted (e.g., a database containing information about convicted persons, regardless of specific
crimes).
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Fig. 1. k-anonymization example (k = 4).

algorithm (i.e., Mondrian [LeFevre et al. 2006a]) sorts the data points along
each dimension (i.e., Age and Weight), and partitions across the dimension with
the widest normalized range of values. In our example, the normalized ranges
for both dimensions are the same. Mondrian selects the first one (i.e., Age) and
splits it into segments 35−55 and 60−70 (see Figure 1(b)). Further partitioning
is not possible because any split would result in groups with less than 4 records.
We propose a different approach. First, we map the multidimensional quasi-
identifier to a 1D value. In this example we use an 8 × 8 Hilbert space filling
curve (see Section 6 for details); other mappings are also possible. The resulting
sorted 1D values are shown in Figure 1(a) (column 1D). Next, we partition the
1D space. We prove that the optimal 1D partitions are nonoverlapping and
contain between k and 2k − 1 records. We obtain 3 groups which correspond
to 1D ranges [22..31], [33..42], and [55..63]. The resulting 2D partitions are
enclosed by three rectangles in Figure 1(b). In this example, our method causes
less information loss because the extents of the obtained groups are smaller
than in the case of Mondrian. For instance, consider the query “Find how many
persons are in the age segment 35−45 and weight interval 50−60”: The correct
answer is 3. Assuming that records are uniformly distributed within each group,
our method returns the answer 4 × 9/12 = 3 (there are 4 records in Group1,
9 data space cells that match the query, and a total of 12 cells in Group1). On
the other hand, the answer obtained with Mondrian is 6 × 9/40 = 1.35 (from
the group situated to the left of the dotted line). Clearly, our k-anonymization
algorithm is more accurate.

The advantages of our approach are even more prominent with the
�-diversification problem. This problem is more difficult because, in order to
cover a variety of SA values, the optimal 1D partitioning may have to include
overlapping ranges. For example, if �=3, group 2 in Figure 2(a) contains tuples
{30, 35, 56}, whereas the third group contains tuples {33, 40, 42}. Nevertheless,
we prove that there exist optimal partitionings consisting of only consecutive
ranges with respect to each individual value of the sensitive attribute. Based on
this property, we develop a heuristic which essentially groups together records
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Fig. 2. �-diversification example (� = 3).

that are close to each other in the 1D space, but have different sensitive attribute
values. The four resulting groups2 are shown in Figure 2(b). From the result we
can infer, for instance, that no person younger than 55 suffers from Alzheimer’s.
On the other hand, if we use Mondrian, we cannot partition the space at all be-
cause any possible disjoint partitioning would violate the �-diversity property.
For example, if the Age axis was split into segments 35 − 55 and 60 − 70 (i.e.,
as in the k-anonymity case), then gastritis would appear in the left-side par-
tition with probability 3/6, which is larger than the allowed 1/� = 1/3. Since
Mondrian includes all tuples in the same partition, young or old persons are as-
cribed the same probability to suffer from Alzheimer’s. Obviously the resulting
information loss is unacceptable.

The previous example demonstrates that existing techniques for the privacy-
constrained k-anonymization problem, such as Mondrian, are not appropriate
for the �-diversification problem. In Section 2 we also explain that Anatomy
[Xiao and Tao 2006a], which is an �-diversity-specific method, exhibits high
information loss, despite relaxing the privacy requirements (i.e., it publishes
the exact quasi-identifier). Moreover, while our techniques resemble clustering,
our experiments show that existing clustering-based anonymization techniques
(e.g., Xu et al. [2006]) are worse in terms of information loss and considerably
slower.

So far, research efforts focused on the privacy-constrained anonymization
problem, which minimizes information loss for a given value of k or �; we call
this the direct anonymization problem. However, the resulting information loss
may be high, rendering the published data useless for specific applications.
In practice, the data recipient may require certain bounds on the amount of
information loss. For instance, it is well known that the occurrence of certain
diseases is highly correlated to age (e.g., Alzheimer’s can only occur in elderly
patients). To ensure that anonymized hospital records make practical sense,

2Note that although groups may overlap in their quasi-identifier extents, each record belongs to
exactly one group.
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Fig. 3. Iterative privacy-constrained solution for the accuracy-constrained (i.e., dual) problem.

a medical researcher may require that no anonymized group should span a
range on attribute Age larger than 10 years. Motivated by such scenarios, we
introduce the accuracy-constrained or dual anonymization problem. Let E be
the maximum acceptable amount of information loss (the metric is formally
defined in Section 2). The accuracy-constrained anonymization problem finds
the maximum degree of privacy (i.e., k or �) that can be achieved such that
information loss does not exceed E. Subsequently, the data publisher can assess
whether the attainable privacy under this constraint is satisfactory, and can
decide whether it makes sense to publish the data at all. To the best of our
knowledge, the dual problem has not been addressed previously, despite its
important practical applications.

A possible solution for the dual problem is to use an existing method for
privacy-constrained anonymization, as shown in Figure 3 (we consider the
�-diversity case). The algorithm, called Iterative Privacy-Constrained Solution
for the Dual problem (IPCSD), performs a binary search to find the maximum
value of � for which the information loss does not exceed E. The �min value of
1 (line 1) corresponds to no privacy, whereas �max is the maximum achievable
privacy, and is a characteristic of the dataset. As we will formally discuss in
Section 2.3, �max is equal to the total number of records divided by the number
of occurrences of the SA value with the highest frequency. The algorithm stops
when the search interval for the � value is reduced below a certain thresh-
old Thr. IPCSD is a generic solution that can be used in conjunction with any
privacy-constrained �-diversification method, such as our proposed 1D method
described earlier, or Mondrian. The invocation of a particular method is done
in line 4 of the pseudocode.

Because it is not specifically tailored for the dual problem, IPCSD can yield
unsatisfactory results. Consider the example of Figure 4 and assume the E
bound requires that the span of each group along any of the quasi-identifier
attributes does not exceed 15. IPCSD, used in conjunction with Mondrian, will
give the result in Figure 4(a), with a maximum achievable privacy metric of
� = 4/3 (� is the inverse of the maximum association probability between a
record and an SA value, which is 3/4 for group 2). It is easy to see that all
splits, except that between Weight values 55 and 60, leave on one side of the
split only records with the same SA value, hence association probability is
100% (no privacy). The solution depicted in the example is the only one where
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Fig. 4. Accuracy-constrained �-diversification example.

Mondrian offers some amount of privacy. As we will show in our experimental
evaluation, IPCSD used in conjunction with our direct 1D method suffers from
similar drawbacks.

In general, IPCSD (in conjunction with any privacy-constrained method) fails
to find a good solution because it imposes the privacy bound on all groups and
locally minimizes their extents. This approach is not useful for the accuracy-
constrained problem, where we would prefer to preserve large extents (as long
as the E bound is satisfied) and locally maximize privacy. Furthermore, the
binary search process employed by IPCSD is based on the assumption that in-
formation loss increases with �; this assumption holds in theory, and would be
realized by an optimal privacy-constrained �-diversification algorithm. Never-
theless, existing techniques are not optimal, hence do not guarantee this mono-
tonicity. Therefore, IPCSD may yield low privacy if the search finds a local
maximum of � under constraint E, instead of a global one. Finally, the iterative
search process may result in a large computational overhead in practice.3

Motivated by these limitations, we propose an efficient, specialized algorithm
to solve the accuracy-constrained problem. We map the multidimensional dual
problem to 1D and study the properties of an optimal 1D solution. Based on
these properties we develop a heuristic that, for an information loss bound
E, achieves considerably better privacy than IPCSD. On the same example,
our method produces the solution of Figure 4(b). The obtained � value is 3/2,
corresponding to a probability of association between a record and an SA value
of 2/3 = 66% (because there are at most two records with the same SA value
in each group of three records).

1.1 Contributions

We present a framework for solving efficiently the privacy-constrained (i.e., di-
rect) and accuracy-constrained (i.e., dual) anonymization problems, by mapping

3An attempt to overcome the lack of monotonicity using global optimization techniques (e.g., sim-
ulated annealing) would incur even larger overhead, and still not guarantee finding the global
maximum privacy.
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the multidimensional quasi-identifiers to 1D space.4 Specifically:

(i) For k-anonymization, we develop an optimal algorithm for the direct prob-
lem with 1D quasi-identifiers, which has running time linear in the size of
the dataset.

(ii) For the more complex direct �-diversification problem, we study theoret-
ically the properties of possible optimal 1D solutions. Guided by these
properties, we propose an efficient heuristic algorithm with linear-time
complexity in the data size.

(iii) We study the accuracy-constrained problem in the context of the �-diversity
paradigm. We derive a polynomial-time optimal solution in the 1D space,
and propose an efficient 1D heuristic which runs linearly in the data size.
Our work is the first to address the dual anonymization problem.

(iv) We generalize our algorithms to multidimensional quasi-identifiers,5 by
mapping them to 1D space. Given a sorted input, the I/O cost is very low,
since our algorithms scan the data only once. As case studies, we consider
mappings based on the Hilbert space filling curve and iDistance [Zhang
et al. 2005].

(v) The experimental results show that our algorithms consistently outper-
form existing generalization methods by a wide margin, in terms of both
information loss and running time.

The rest of this article is organized as follows: Section 2 contains essen-
tial definitions and surveys the related work. Section 3 and Section 4 present
our solutions for the 1D privacy-constrained problem under the k-anonymity
and �-diversity paradigms, respectively. Section 5 addresses the 1D accuracy-
constrained problem. Section 6 extends our algorithms to the general case of
multidimensional quasi-identifiers. Section 7 presents the experimental eval-
uation and Section 8 concludes the article.

2. BACKGROUND AND RELATED WORK

This section introduces the data model and terminology used in the article, and
presents the related work. For the ease of reference, Table I summarizes the
notations used throughout the work.

Definition 1 (Quasi-Identifier). Given a database table T (A1, A2, . . . , An),
a quasi-identifier attribute set QT = {A1, A2, . . . , Ad } ⊆ {A1, A2, . . . , An} is a
set of attributes that can be joined with external information in order to reveal
the personal identity of individual records [Samarati 2001; Sweeney 2002].

A set of tuples that are indistinguishable in the projection of T on QT
is called an equivalence class or, alternatively, an anonymized group. Two

4This work is an extended version of Ghinita et al. [2007]. Additional contributions include the novel
accuracy-constrained (i.e., dual) anonymization problem (Section 2.5), an optimal solution as well
as an heuristic for the dual problem (Section 5), and the corresponding experimental evaluation
(Section 7.3). We also added an optimal algorithm for �-diversification (Section 4.2).
5We emphasize that our optimal solutions apply for 1D quasi-identifiers only; in the multidimen-
sional space, we propose heuristic solutions.
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Table I. Summary of Notations

Symbol Description
k Degree of Anonymity
� Degree of Diversity
E Accuracy Bound
G k-anonymous/�-diverse group

QT quasi-identifier
NCP(G) Normalized Certainty Penalty of group G

P Partitioning of data into groups
GCP(P) Global Certainty Penalty of Partitioning P
IL1 Average-Extent Information Loss Metric
IL∞ Maximum-Extent Information Loss Metric
PM Privacy Metric
m Cardinality of sensitive attribute domain
N Dataset Cardinality

D1, . . . , Dm Data domains based on SA value
Gq sub-set of G in domain Dq , 1 ≤ q ≤ m
ri record with index i in the data sequence

bi , ei begin and end records of group Gi

bi, ei begin and end boundaries of group Gi

enditem(a) end item of boundary a
I E
ri

E-extent interval ending at ri

commonly employed techniques to create anonymized groups are generalization
and suppression6 [Sweeney 2002]. Generalization defines equivalence classes
for tuples as multidimensional ranges in the QT space, and replaces their ac-
tual QT values with a representative value of the whole range of the class (e.g.,
replaces the city with the state). Generalization ranges are usually specified
by a generalization hierarchy, or taxonomy tree (e.g., city→state→country).
Suppression excludes some QT attributes or entire records (known as outliers)
from the microdata.

The privacy-preserving transformation of the microdata is referred to as
recoding. Two models exist: In global recoding, a particular detailed value must
be mapped to the same generalized value in all records. Local recoding, on the
other hand, allows the same detailed value to be mapped to different generalized
values in each equivalence class. Local recoding is more flexible and has the
potential to achieve lower information loss [LeFevre et al. 2006a]. The recoding
process can also be classified into single-dimensional, where the mapping is
performed for each attribute individually, and multidimensional, which maps
the Cartesian product of multiple attributes. Multidimensional mappings are
more accurate; nevertheless initial research focused on single-dimensional ones
due to simplicity. In this article, we develop local recoding, multidimensional
transformations.

All privacy-preserving transformations cause information loss, which must
be minimized in order to maintain the ability to extract meaningful information
from the published data. Next we discuss suitable information loss metrics.

6Permutation is another alternative. We review permutation-based methods for �-diversity in
Section 2.3.
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2.1 Information Loss Metrics

A variety of information loss metrics have been proposed. The Classification
Metric (CM) [Iyengar 2002] is suitable when the purpose of the anonymized
data is to train a classifier. Each record is assigned a class label, and informa-
tion loss is computed based on the adherence of a tuple to the majority class of
its group. However, it is not clear how CM can be extended to support general
purpose applications. The Discernibility Metric (DM) [Bayardo and Agrawal
2005], on the other hand, measures the cardinality of the equivalence class.
Although classes with few records are desirable, DM does not capture the dis-
tribution of records in the QT space. More accurate are the Generalized Loss
Metric [Iyengar 2002] and the similar Normalized Certainty Penalty (NCP) [Xu
et al. 2006]. The latter factors in the extent of each class in the QT space. For
numerical attributes the NCP of an equivalence class G is defined as

NCPANum(G) =
maxG

ANum
− minG

ANum

maxANum − minANum

,

where the numerator and denominator represent the ranges of attribute ANum
for the class G and the entire attribute domain, respectively. In the case of
categorical attributes, where no total order or distance function exists, NCP is
defined with respect to the taxonomy tree of the attribute. We have

NCPACat(G) =
{

0, card(u) = 1
card(u)/|ACat|, otherwise

,

where u is the lowest common ancestor of all ACat values included in G, card(u)
is the number of leaves (i.e., attribute values) in the subtree of u, and |ACat|
is the total number of distinct ACat values. The NCP of class G over all quasi-
identifier attributes is

NCP(G) =
d∑

i=1

wi · NCPAi (G), (1)

where d is the number of attributes in QT (i.e., the dimensionality). Ai is either
a numerical or categorical attribute and has a weight wi, where

∑
wi = 1.

NCP measures information loss for a single equivalence class. Xu et al. [2006]
characterize the information loss of an entire partitioning by summing the NCP
over all tuples in each group. For the sake of comparison with previous work,
we adopt a normalized formulation of the aggregate version of NCP, called the
Global Certainty Penalty (GCP). Let partitioning P be the set of all equivalence
classes in the released anonymized table. The GCP for P is defined as

GCP(P) =

∑
G∈P

|G| · NCP(G)

d · N
, (2)

where N denotes the number of records in the original table (i.e., microdata), |G|
is the cardinality of group G, and d is the dimensionality of QT . The advantage
of this formulation is its ability to measure information loss among tables with
varying cardinality and dimensionality. Furthermore, GCP is between 0 and
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1, where 0 signifies no information loss (i.e., the original microdata) and 1
corresponds to total information loss (i.e., there is only one equivalence class
covering all records in the table).

Furthermore, in addition to adopting GCP, we introduce a broader class of
information loss metrics expressed as Minkowski-norms on group extents. In
particular, we focus on the average-extent metric

IL1(P) = avgG∈P
(
maxG

QT
− minG

QT

)
(3)

and the maximum-extent metric

IL∞(P) = maxG∈P
(
maxG

QT
− minG

QT

)
. (4)

To facilitate presentation, we refer to these metrics using the unified notation
IL. Both metrics, as well as GCP, have the following property.

Definition 2 (Superadditivity). Given an equivalence class G and two sub-
sets G1 and G2 such that G = G1 ∪ G2 and G1 ∩ G2 = ∅, an information loss
metric IL is called superadditive if IL(P) ≥ IL((P�{G}) ∪ {G1} ∪ {G2}).

In other words, a superadditive information loss metric has the property
that applying additional group divisions will never degrade the quality of the
partitioning [Muthukrishnan and Suel 2005].

We develop our theoretical results mainly on top of the IL metrics. Some of
our optimal solutions hold for the GCP metric as well, whereas others can be
extended as heuristics that work with GCP and yield low information loss in
practice.

2.2 Privacy-Constrained k-Anonymization

Definition 3 (k-Anonymity). A database table T with a quasi-identifier at-
tribute set QT conforms to the k-anonymity property, if and only if each unique
tuple in the projection of T on QT occurs at least k times [Samarati 2001;
Sweeney 2002].

An optimal solution to the k-anonymization problem should minimize infor-
mation loss. Formally, we have the next problem.

Problem 1 (Privacy-Constrained k-Anonymization). Given a table T , a
quasi-identifier set QT , and a privacy bound expressed as the degree of anony-
mity k, determine a partitioning P of T such that each partition G ∈ P has at
least k records, and IL(P) is minimized.

Meyerson and Williams [2004] proved that optimal k-anonymization for mul-
tidimensional quasi-identifiers is N P -hard under the suppression model. They
proposed an approximate algorithm that minimizes the number of suppressed
values; the approximation bound is O(k ·log k). Aggarwal et al. [2005] improved
this bound to O(k), whereas Park and Shim [2007] proposed an algorithm that
achieves an O(log k)-approximation bound, but runs in time exponential to k.
The work in Byun et al. [2007] proves that k-anonymization is NP-hard under
the generalization model as well (an information loss metric similar to GCP is
used), by showing that suppression is a special case of generalization. Several
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generalization approaches limit the search space by considering only global re-
coding. Bayardo and Agrawal [2005] proposed an optimal algorithm for single-
dimensional global recoding with respect to the CM and DM metrics. Incognito
[LeFevre et al. 2005] takes a dynamic programming approach, and finds an
optimal solution for any metric by considering all possible generalizations, but
only for global, single-dimensional recoding.

To address the inflexibility of single-dimensional recoding, Mondrian
[LeFevre et al. 2006a] employs multidimensional global recoding, which
achieves finer granularity. Mondrian partitions the space recursively across
the dimension with the widest normalized range of values. Mondrian can also
support a limited version of local recoding: If many points fall on the boundary of
two anonymized groups, they may be divided between the two groups. Because
Mondrian uses space partitioning, the data points within a group are not neces-
sarily close to each other in the QT space (e.g., points 22 and 55 in Figure 1(b)),
causing high information loss. In Iwuchukwu and Naughton [2007], data
records are bulk-loaded into a R+-tree index, and each resulting leaf node cor-
responds to an anonymized group. Similar to Mondrian, this technique employs
multidimensional global recoding (since R+-tree leaf nodes do not overlap).

Most existing multidimensional local recoding methods are based on cluster-
ing. In Aggarwal et al. [2006] k-anonymization is treated as a special clustering
problem, called r-cellular clustering. A constant factor approximation of the
optimal solution is proposed, but the bound only holds for the Euclidean dis-
tance metric. Furthermore, the computation and I/O cost are high in practice.
Xu et al. [2006] propose agglomerative and divisive recursive clustering algo-
rithms, which attempt to minimize the NCP metric. The latter (called TopDown
in the following) is the best of the two. TopDown performs a two-step clustering:
First, all records are in one cluster which is recursively divided as long as there
are at least 2k records in each cluster. In the second step, the clusters with
less than k members are either grouped together, or they borrow records from
clusters with more than k records. The complexity of TopDown is O(N 2). In our
experiments, we show that TopDown is inefficient in terms of information loss
and computational cost. Independently of our work, Wong et al. [2006] proposed
a solution to privacy-constrained k-anonymization based on dimensionality re-
duction, similar to the one we introduce in Section 3. However, their work deals
only with k-anonymity. Moreover, the cost is quadratic to the database size,
whereas our solution has linear complexity.

2.3 Privacy-Constrained �-Diversification

A database table T with a quasi-identifier attribute set QT and a Sensitive
Attribute SA conforms to the �-diversity property if and only if each equivalence
class in T with respect to QT has at least � well-represented values of the
sensitive attribute. Machanavajjhala et al. [2006] proposed two interpretations
of “well-represented values”: entropy �-diversity and recursive (c,�)-diversity.
The former yields tighter privacy constraints, but is too restrictive for practical
purposes. The latter is a more relaxed condition: an equivalence class G is
�-diverse if f1 < c( f� + f�+1 + ..+ fm), where c is a constant, fi is the number of
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occurrences of the ith most frequent value of SA in G, and m is the number of
distinct values in SA. In order for an �-diverse partitioning to exist, the original
table T must itself satisfy the aforesaid condition, referred to as the Eligibility
Condition (EG).

In practice, the privacy threat to a certain database record is expressed as the
probability of associating an anonymized record with a certain value s ∈ S A;
we denote this breach probability by Pbr . Given an equivalence class G,

Pbr = occG
max/|G|, (5)

where occG
max is the maximum number of occurrences over all SA values in G.

Since Pbr is directly relevant to the privacy of records, it is desirable to have
an �-diversity formulation that can be linked to Pbr . We therefore adopt the
following definition from Xiao and Tao [2006a].

Definition 4 (�-Diversity). An equivalence class G has the �-diversity prop-
erty, if the probability of associating a record in G with any particular sensitive
attribute value7 is at most 1/�.

The privacy-constrained or direct �-diversification problem is formally de-
fined as:

Problem 2 (Privacy-Constrained �-Diversification). Given a table T , a
quasi-identifier QT , a sensitive attribute SA, and a privacy bound expressed
as the degree of diversity �, determine a partitioning P of T such that
each equivalence class G ∈ P satisfies the �-diversity property and IL(P) is
minimized.

Machanavajjhala et al. [2006] implement �-diversity on top of Incog-
nito and suggest that any k-anonymization technique can be adapted for
�-diversification. However, as we demonstrated in the example of Figure 2,
k-anonymity techniques may result in unacceptable information loss, due to
the requirement of diverse SA values. Anatomy [Xiao and Tao 2006a] is an
�-diversity-specific method. It hashes records into buckets according to the SA
value, and builds partitions by randomly selecting � records from distinct buck-
ets; the complexity is O(|T |). Anatomy has two drawbacks: (i) it releases the
exact quasi-identifiers of records. While this does not violate the �-diversity
requirement, it confirms that a particular individual is included in the data.
Consider, for instance, a dataset containing quasi-identifiers of convicted per-
sons and their crime. Although Anatomy hides the exact crime, an attacker can
still conclude that a specific person has been convicted. Therefore, Anatomy is
not suitable for applications that require protection against record linkage. (ii)
anatomy does not consider the extent of each partition in the QT space, hence
information loss may be high. Consider the medical dataset in Figure 5(a), with
quasi-identifier Age and sensitive attribute Disease. Note that, in the original
data only patients more than 80 years old can suffer from Alzheimer’s. Assume
� = 2: Anatomy may randomly choose to group together records 1 with 3 and

7Under this definition, the eligibility condition requires that at most |T |/� tuples in the original
table T have the same SA value.
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Fig. 5. Privacy-constrained �-diversification example. In the microdata only patients over 80 years
old can suffer from Alzheimer’s.

2 with 4, resulting in the anatomized table of Figure 5(b). The published data
suggests that Alzheimer’s is equally probable for young and old persons alike:
for instance, the average age for Alzheimer’s patients that can be inferred from
the anatomized data is 54. In contrast, our approach obtains the generalized
table in Figure 5(c), and implies that Alzheimer’s is only possible for elderly
patients (the average age in the group that includes Alzheimer’s is 73).

2.4 Other Privacy-Constrained Anonymization Approaches

Like Anatomy, the work of Zhang et al. [2007] publishes the exact QT . It fo-
cuses on SAs with numerical values and deals with situations where these
values are similar; its drawbacks are analogous to Anatomy’s. Another recent
work [Li et al. 2007] proposes a new privacy paradigm called t-closeness, which
dictates that the table-wise distribution of SA values should be reproduced
within each anonymized group. No specific technique is proposed; instead, it
is suggested to modify existing k-anonymization techniques. However, this is
expected to face the same drawbacks as the application of k-anonymization
techniques to �-diversification. Xiao and Tao [2007] propose m-invariance, a
privacy paradigm that addresses correlation attacks among multiple versions
of data released at different timestamps. Yet another model is described in
Xiao and Tao [2006b], where each record in the table has an individual privacy
constraint. However, in order to enforce privacy, SA values must also be gener-
alized. Kifer and Gehrke [2006] propose a method for publishing anonymized
marginals, in addition to microdata. Marginals are summaries of the original
table that may improve accuracy. Anonymizing the marginals is orthogonal to
anonymizing the microdata.

2.5 Accuracy-Constrained Problems

Previous research has focused exclusively on the privacy-constrained problem.
In this section we introduce the accuracy-constrained anonymization problem
in the context of both k-anonymity and the �-diversity paradigms. Accuracy-
constrained anonymization maximizes privacy for a given bound E of accept-
able information loss per group.

The privacy metric PM of an entire partitioning P is as good as the lowest
privacy achieved by any group in P. In the context of k-anonymity, the privacy
metric of group G is defined as group cardinality |G|. On the other hand, in the
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context of �-diversity, the privacy metric of group G is defined as 1/Pbr , where
Pbr (Eq. (5)) is the probability of associating an individual with a specific SA
value. Formally,

PMdiv(P) = min
G∈P

PMdiv(G) = min
G∈P

|G|
occG

max
. (6)

The accuracy-constrained problem is defined next.

Problem 3 (Accuracy-Constrained Problem). Given a table T , a quasi-
identifier QT , a privacy metric PM, and an information loss bound E, de-
termine a partitioning P of T such that every group satisfies the bound E and
PM(P) is maximized.

Note that the nature of the dual problem dictates the enforcement of the ac-
curacy bound for maximum-loss-per-group metrics, such as IL∞, or maximum
NCP over all groups.

3. OPTIMAL 1D PRIVACY-CONSTRAINED K -ANONYMIZATION

In this section we present an optimal solution to the direct k-anonymization
problem for 1D quasi-identifiers. Although the problem is NP-hard in the gen-
eral case [Byun et al. 2007], we show that the complexity is linear in the size
of the input for 1D quasi-identifiers. In Section 6 we will use the 1D solution as
an heuristic in multiple dimensions.

Let R = {ri}1≤i≤N be the set of records in table T , where N = |T |. R is
a totally ordered set according to the 1D quasi-identifier QT . Our goal is to
compute a partitioning of R that minimizes IL and satisfies the k-anonymity
property.

An algorithm that computes the 1D optimal k-anonymous partitioning of
R needs only to consider groups with records that are consecutive in the QT
space. This results immediately from the fact that if two groups with at least k
records each overlap, we can swap records between them such that the number
of records in each group remains the same and the overlap is eliminated, with-
out increasing IL. Thus, the optimal k-anonymization solution that we propose
holds for any superadditive information loss metric.

LEMMA 1. Let P be the optimal k-anonymous partitioning of a set R accord-
ing to IL. Then P does not contain groups of more than 2k − 1 records.

PROOF. Assume that a group G in P contains more than 2k − 1 records. We
split G into two groups G1 and G2 of at least k records each, such that G = G1 ∪
G2, G1 ∩G2 = ∅. Since IL is superadditive, IL(P) ≥ IL((P�{G})∪{G1}∪{G2});
hence information loss cannot increase. Therefore the optimal partitioning does
not need to contain groups of cardinality larger than 2k − 1.

For the sake of showing a specific metric calculation, we present our solution
in the context of GCP. The privacy-constrained 1D k-anonymization problem
can be solved with dynamic programming as follows: Let Opt(i) be the informa-
tion loss of the optimal partitioning achieved for the prefix subset of the first i
records of R; and OptI ([b, e]) = (e − b+ 1) · NCP({rb, . . . , re}) be the information
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Fig. 6. Optimal 1D privacy-constrained k-anonymization example, k = 3.

Fig. 7. Optimal 1D privacy-constrained k-anonymization.

loss of the group containing all records in the interval {rb, . . . , re}. Then

Opt(i) = min
i−2k< j≤i−k

(Opt( j ) + OptI ([ j + 1, i])).

This recursive scheme selects the best out of all suffixes of R to create the
last group. Figure 6 shows an example of determining Opt(i), with k = 3. Ev-
ery group should contain between k and 2k − 1 records, therefore there are
three candidate groups ending at i, of cardinalities 3, 4, and 5, respectively.
Furthermore, the last record j of the previous group must be in the interval
[i − 2k + 1, i − k], namely [i − 5, i − 3].

Figure 7 shows the pseudocode of the algorithm. For the first group in R,
namely k ≤ i ≤ 2k − 1, the value of Opt(i) is determined directly, and is equal
to the NCP of the first i records times i. Then, the computation proceeds with
increasing i, 2k ≤ i ≤ N . The optimal solution for all j -prefixes of R, where
j < i, has been computed in advance. In addition to the best Opt value at
record i, the algorithm needs to maintain the particular j value for which
Opt(i) was obtained, in order to reconstruct the solution after the tabulation is
completed. The auxiliary table prev serves this purpose (line 7). The algorithm
generates an optimal partitioningP, and the information loss of the partitioning
is GCP(P) = Opt(N )/N .

Complexity analysis. The algorithm ranges through O(k) values of j for O(N )
values of i. Since OptI ([ j + 1, i]) can be computed in O(1) (using the distance
between the group’s first and last records), the time complexity is O(k · N ). The
dynamic programming arrays Opt and prev both have N entries; however, we

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 9, Publication date: June 2009.



9:16 • G. Ghinita et al.

only need to access a constant fraction O(k) of the arrays at any time, yielding
a constant space complexity O(k). After the computation ends, we must scan
the prev array (lines 9-11) one more time to output the solution. The overall
I/O overhead is linear to N .

4. 1D PRIVACY-CONSTRAINED �-DIVERSIfiCATION

In this section we study the privacy-constrained �-diversification problem for
1D quasi-identifiers. In contrast to k-anonymity, optimal solutions within the
�-diversity model cannot be computed efficiently even in the 1D case. The inef-
ficiency arises from the fact that the optimal partitioning may have to contain
overlapping groups; therefore, numerous possible combinations must be exam-
ined. In this section, we study the properties of an optimal solution. Guided
by these properties, we first develop a polynomial-time algorithm that finds
the optimal solution. However, since the cost of the algorithm may be too high
in practice, we also propose an efficient linear-time (in the size of the input)
heuristic algorithm.

Our theoretical analysis holds for the IL information loss metrics in Eqs. (3)
and (4). In Section 6, we discuss how our optimal solution can be extended as a
heuristic for multidimensional quasi-identifiers with the GCP metric.

4.1 Properties of the Optimal Solution

Let R = {ri}1≤i≤N be the set of records in the original table, and S the projection
of R on the sensitive attribute (S A). Denote by ri.Q the 1D QT value of ri and
by ri.S the SA value of record ri. Let m = |S|, that is, there are m distinct values
of SA. For a pair of records ri, r j we denote |ri − r j | = |ri.Q − r j .Q |.

LEMMA 2. Let P be an optimal �-diverse partitioning of R according to the
information loss metric IL. Then P does not need to contain groups of more than
2� − 1 records.

PROOF. Assume there is a group G in the optimal solution such that |G| ≥ 2�.
Express the cardinality of G as |G| = c·�+r, where c is an integer, c ≥ 2, 0 ≤ r <

�. Since G is �-diverse, according to Definition 4 every SA value in G can occur
at most c times. There are at most � values in G with c occurrences. We remove
from G the � records with the most frequent SA values in G, and create group G ′.
By construction, G ′ is �-diverse. Let G ′′ = G�G ′. Any sensitive attribute value
in G ′′ can occur at most c−1 times and |G ′′| = (c−1)�+r. Hence, G ′′ is �-diverse.
Furthermore, since IL is superadditive, IL(P) ≥ IL((P�{G}) ∪ {G ′} ∪ {G ′′}).
Splitting G ′′ recursively, we obtain a partitioning with equal or lower informa-
tion loss compared to P, and cardinality of each group between � and 2�−1.

COROLLARY 1 (VALUE SINGULARITY PROPERTY). In an optimal �-diverse parti-
tioning P, every group G ∈ P contains at most one occurrence for any SA value
sj ∈ S.

PROOF. Assume an optimal solution P and G ∈ P such that sj appears
twice in G. Since |G| ≤ 2� − 1, it results that G is not �-diverse, namely, a
contradiction.
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Fig. 8. Sensitive value domains.

Since there are only m distinct SA values, we conclude that |G| ≤ min(2� −
1, m).

R is a totally ordered set according to QT , and each record in R belongs
to exactly one �-diverse group. According to this order, we refer to the first
and last record in group Gi as the begin (i.e., bi) and, respectively, the end
(i.e., ei) record of Gi. We refer to bi and ei as border elements. In the optimal
solution, there exists a total order of both begin and end records of the set of
groups. However, unlike the case of k-anonymity, a group need not contain only
consecutive records.

Let domain Dq = {ri ∈ R|ri.S = sq}, 1 ≤ q ≤ m, that is, Dq contains all
tuples whose SA value is sq . Figure 8 depicts the domains Dq for a 3-diverse
partitioning of R, where m = 4. Note that the total order in the quasi-identifier
space induces a total order for each of the domains Dq .

The following lemma shows that the order of groups in each value domain
Dq is the same.

LEMMA 3 (GROUP ORDER PROPERTY). There exists an optimal �-diverse parti-
tioning P of R, producing |P| groups G1, G2, . . . G|P|, such that the order of sets
{Gq

1, Gq
2, . . . , Gq

|P|}, defined for the groups in P as they appear along each domain
Dq, Gi = ∪qGq

i , 1 ≤ i ≤ |P|, is consistent across all domains Dq, 1 ≤ q ≤ m
(except for the fact that some groups may not be represented in each domain).

PROOF. Assume an optimal solution in which there exist records ri ∈ Gq
i

and r j ∈ Gq
j such that ri.Q < r j .Q , and records ti ∈ G p

i and t j ∈ G p
j such that

t j .Q < ti.Q . Then, for all possible relative orderings in the 1D QT , |ri −t j |+|r j −
ti| ≤ |ri − ti|+ |r j − t j |. Let G ′

i = Gi�{ti}∪{t j } and G ′
j = G j �{t j }∪{ti}. It results

that IL1(G ′
i) + IL1(G ′

j ) ≤ IL1(Gi) + IL1(G j ), that is, IL1(P) cannot increase
by exchanging t j and ti (a similar reasoning applies to the IL∞ metric). Since ti
and t j have the same SA value, the �-diversity of the partitioning is not affected
by the exchange. The same reasoning can be applied for all remaining pairs of
records that violate a given order. It follows that the order of the partitions in
the newly constructed optimal partitioning is consistent across all domains Dq ,
1 ≤ q ≤ m.

We write Gi ≺ G j to denote that Gi precedes G j in the partial order defined
over optimal partitioning P. As a consequence of Lemma 3, in order to find an
optimal solution, we can build groups by assigning records from each domain in
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Fig. 9. Group order violation.

Fig. 10. Border order is violated, although group order is satisfied.

order. This prunes significantly the search space of the solution. Figure 9 shows
an example where the group order property is violated. Let G1 = {r1, r3, r5} and
G2 = {r2, r4, r6}. G1 precedes G2 in the D3 domain, while the opposite occurs
for D2. However, the optimal solution is G ′

1 = {r1, r2, r4}, G ′
2 = {r3, r5, r6}, and

G ′
1 ≺ G ′

2.
The following lemma states that the group ordering extends to the begin and

end records of groups.

LEMMA 4 (BORDER ORDER PROPERTY). There exists an optimal �-diverse par-
titioning P of R, producing |P| groups G1, G2, . . . G|P| with begin records
b1, b2, . . . , b|P| and end records e1, e2, . . . , e|P|, such that the begin and end sets
obey the same order as the groups {G1, G2, . . . , G|P|} they belong to, that is, if
Gi ≺ G j , then bi.Q < bj .Q and ei.Q < e j .Q.

PROOF. The proof is similar to that of Lemma 3.

Lemma 4 further reduces the search space by limiting the choices of records
for the currently built group based on the begin and end records of the previously
built group. Figure 10 shows an example where the border order property is
violated (although the group order property is satisfied). Let G1 = {r1, r2, r6}
and G2 = {r3, r4, r5}. b1 (i.e., r1) precedes b2 (i.e., r3), but e1 (i.e., r6) succeeds
e2 (i.e., r5). The solution is not optimal; in the optimal case, G ′

1 = {r1, r2, r3},
G ′

2 = {r4, r5, r6}, b′
1 < b′

2, and e′
1 < e′

2.

LEMMA 5 (COVER PROPERTY). There exists an optimal �-diverse partitioning
P of R with the following property: ∀Gi, G j ∈ P such that Gi ≺ G j , and �Gk :

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 9, Publication date: June 2009.



A Framework for Efficient Data Anonymization • 9:19

Fig. 11. Cover property violation.

Gi ≺ Gk ≺ G j , if there exists a pair of records r ∈ Gi, t ∈ G j , such that r.Q >

t.Q, then there is either a record r ′ ∈ G j of the same sensitive value as r (where,
according to Lemma 3, r ′.Q > r.Q) or a record t ′ ∈ Gi of the same sensitive
value as t (where, according to Lemma 3, t ′.Q < t.Q), or both.

PROOF. Assume there are records r ∈ Gi, t ∈ G j such that r.Q > t.Q , and
there is neither r ′ ∈ G j with the same SA value as r, nor t ′ ∈ Gi with the
same SA value as t. Then we can swap r and t between Gi and G j without
compromising �-diversity. Furthermore, since bi.Q ≤ bj .Q ≤ t.Q ≤ r.Q ≤
ei.Q ≤ e j .Q , it follows that the swap does not increase the information loss.
Hence, we obtain an optimal solution where the condition specified in the lemma
is satisfied.

The intuition behind the cover property is that if record r can be added to
any of two groups G1 and G2, then it should be added to the group that is closer
to r in the QT space. Figure 11 shows an example where the cover property is
violated: Consider partially completed groups G1 = {r1, r3} and G2 = {r5, r6}. If
r2 is assigned to G2 and r4 to G1, the cover property does not hold; in an optimal
solution, r4 must belong to G2 and r2 to G1.

Definition 5 (Group Boundaries). The end boundary of Gi = ∪qGq
i is the

vector ei = {ei
1, ei

2, . . . ei
m}, where ei

q is either the order of the record with largest
QT of Gi in Dq , if Gi includes a record with SA value sq at all, or otherwise
the order of the record with the largest QT value in Dq in any group G j ≺ Gi.
We say that Gi ends at boundary ei. The begin boundary bi = {bi

1, bi
2, . . . bi

m}
is defined symmetrically. We call Gi the group between boundaries bi and ei.
A group’s end record is the record with the largest QT value in the group end
boundary, and is denoted by enditem(ei).

Intuitively, ei marks the position of the last record of Gi in each domain Dq
of a sensitive value sq . If Gi does not contain a record with sensitive value sq ,
then eq is equal to the corresponding eq in the previous group G j (G j ≺ Gi).
For instance, in Figure 11, let G1 = {r1, r2, r3} and G2 = {r4, r5, r6}. The end
boundary of G2 is e2 = {1, 1, 2, 2}, since records r4, r6, and r5 that belong to
G2 have positions 1, 2, and 2 in their respective domains D2, D3, and D4.
Furthermore, since G1 ≺ G2, the value of e2 in D1 is 1, namely, the position of r2
from G1. As an immediate result of Lemma 4, if two groups are ordered as G j ≺
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Gi, then the same order is enforced for their corresponding end boundaries. In
other words, even if groups overlap in the QT space, their boundaries defined
over the Dq domains do not overlap.

4.2 An Optimal 1D Algorithm

We introduce a dynamic programming algorithm that determines the opti-
mal solution to the 1D privacy-constrained �-diversification problem under the
group extent-based information loss metrics we focus on. The following lemma
gives the number of possibilities in choosing a group boundary, and provides
upper bounds that are later used in the complexity analysis.

LEMMA 6. Given an interval I that includes c records drawing their sensitive
values from a set of m different values sq, 1 ≤ q ≤ m, the worst-case number of
ways Bc

m in which we can construct a group boundary within I is

Bc
m =

{
O(� c

m�m) , m ≤ c
O(2c) , m > c.

(7)

PROOF. Let Iq be the subset of records of value sq in I and let cq = |Iq|,
1 ≤ q ≤ m. Then I = ∪q Iq and c = ∑m

q=1 cq . We can choose exactly one record
from Iq in cq ways. In combination, we can choose at most one record in each
value domain from I in Prod = ∏m

q=1(cq + 1) ways (the +1 term represents the
case where the boundary is placed before the first I record in domain Dq). If
m ≤ c, then Prod is maximized when ∀q, cq = � c

m� or cq = � c
m�. In that case,

Bc
m = O(� c

m�m). Otherwise, if m > c, Prod is maximized when ∀q, cq = 1, that
is, each value sq is represented by exactly one record. Then Bc

m = O(2c).

Definition 6 (a-Prefix). Given a boundary a, the a-prefix of R is the subset
of R that includes all records which precede or match the record of a in their
value domain: {r ∈ R|∃q : r ∈ Dq such that r ≤ aq}.

Given a boundary a = {a1, a2, . . . am}, let IL(a) be the information loss of the
optimal �-diverse partitioning achieved for the a-prefix of R. Given two bound-
aries a, b, such that b ≺ a, we define ILI (b, a) as the (immediate) information
loss of the group between the boundaries b and a. Similarly, we use PMI (b, a)
to denote the privacy of the group between the boundaries b and a, measured
according to Eq. (6). Based on these definitions, the following recursive dynamic
programming formulation determines the optimal �-diverse partitioning of R.
We have

IL(a) = min
b≺a,PMI (b,a)≥�

{F{IL(b), ILI (b, a)}}, (8)

where F can be either sum (if IL1 is used) or max (for IL∞). This recursive
scheme, based on Lemmata 3 and 4, selects the best out of all possible options
of groups ending at each allowed end boundary a. We group allowed end bound-
aries a based on their end record aq = enditem(a). There are O(N ) possible end
records aq , and, according to Lemma 6, for each aq = ri, there are Bi

m possible
end boundaries a, since the rest of the records (besides aq) in the boundary
must be chosen from the predecessors of ri in the 1D space. Besides, for each
end boundary a corresponding to end record aq , we should establish all allowed
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Fig. 12. Optimal 1D privacy-constrained �-diversification pseudocode.

begin boundaries b, that is, all possible groups with aq as end record which have
at most one record in each value domain Dq (according to Corollary 1). Then
the chosen b-boundary record in each domain Dq contains the predecessor of
the last assigned record in its respective domain.

Figure 12 presents the pseudocode of the proposed algorithm.

Complexity analysis. The algorithm needs to maintain an entry for each
record ri, storing all allowed end boundaries a such that enditem(a) = ri. Hence,
its space complexity is O(Nm). For each a, it has to iterate through all eligible
begin boundaries (equivalently, end boundaries of an immediately preceding
group) b. Due to the value singularity property (Corollary 1), once a bound-
ary is set, we only have two choices for each of the m sensitive values (either
to include the respective boundary record in the group or not), hence at most
O(2m) choices. Each choice requires the computation of the information loss
ILI (b, a), incurring cost O(1) for a 1D quasi-identifier, since the group’s extent is
straightforwardly computed from its first and last records. The worst-case time
complexity is O(2mNm). Although the algorithm is polynomial in the input size,
it can be prohibitively costly in practice. Next, we discuss an efficient heuristic.

4.3 An Efficient 1D Heuristic for �-Diversification

We present an heuristic 1D �-diversification algorithm. Our heuristic is inspired
from the theoretical analysis of Section 4.1, but its applicability is not limited to
the group extent-based metrics IL. As we will show in Section 7, our heuristic
yields good results with a variety of information loss metrics.
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Given a sorted input, the algorithm exhibits time and I/O cost linear in the
input size. The heuristic guarantees that if the original table satisfies the eli-
gibility condition (EG, see Section 2.3) for a given � value, then a solution will
be found, although it may not be an optimal one.

First, the records are sorted according to their QT value and are assigned to
m domains D1≤q≤m, based on their sensitive attribute value. Subsequently, fol-
lowing the results from Corollary 1 and Lemmata 3 and 4, the group formation
phase attempts to form groups having between � and m records with distinct
SA values. Let e = {e1, e2, . . . em} be the end boundary of the previously formed
group. We denote by frontier of the search the set {rq ∈ Dq|1 ≤ q ≤ m}, such
that each rq is the successor of eq in its respective domain. Initially, the frontier
consists of the first record in each domain Dq .

The heuristic consists of two steps: the greedy step and the fall-back step.
In the greedy step, it assigns to the current group G those � records on the
frontier with the lowest QT values, and checks the eligibility condition EG
for the remaining records. If EG is satisfied, then G is closed, the frontier is
advanced beyond the records in G, and the algorithm starts building the next
group. Otherwise, out of the remaining unassigned records on the frontier, the
record with the lowest QT is added to G, and EG is checked again. The process
continues until EG is satisfied, or all m records on the frontier are in G.

If EG is still not satisfied, the records in G are rolled back, and the following
fall-back strategy step is executed: � of the records on the frontier with SA
values which are the most frequent among the unassigned records are added
to G (in case of ties, the record with the lowest QT is chosen). If EG is not
satisfied, the record with the (� + 1)th most frequent value is added, and so
forth, up to m − 1 (the case where all m records on the frontier are chosen has
been considered in the greedy step). It is guaranteed that by picking the most
frequent records, EG is eventually satisfied [Xiao and Tao 2006a]; therefore, a
solution can be found. We emphasize that the need to execute the fall-back step
for the current group does not imply that it will be necessary for the next one.
The fall-back step may be necessary for QT regions with significant variance
in density of records among distinct SA domains.

Figure 13 shows the pseudocode of the heuristic algorithm. To evaluate EG,
we maintain a counter remaining with the number of unassigned records, and
a histogram H with the distribution of the SA values of the remaining records.
Upon each record assignment, remaining and H are updated. H contains m
elements; hence the cost of updating H and evaluating EG is O(m) (the cost
can be reduced to O(log m) using a priority queue for histogram H).

The presented heuristic will finalize the current group G if it is able to find
count ≤ m records such that EG holds. However, in some cases, this approach
may generate groups with large extent. Consider the example in Figure 14,
where � = 3. After picking the first three records, the algorithm closes G at
boundary 1, and r4 is grouped with r5−7. However, if it were grouped with r1−3
(boundary 2), the extent of the partitioning (hence, the resulting information
loss) would be considerably smaller.

To minimize this effect, we implement the following optimization: After G
is formed (e.g., {r1, r2, r3} in Figure 14), we inspect records rA and rB on the
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Fig. 13. Heuristic 1D privacy-constrained �-diversification.

Fig. 14. Heuristic optimization, � = 3.

frontier with the 1st and, respectively, �th lowest QT value (i.e., rA ≡ r4, rB ≡ r6
in the example). The extent of the group that contains rA, .., rB is a lower bound
for the extent of the group that will contain rA. If the distance from rA to the
leftmost record in G (e.g., |r4−r1|) is smaller than the distance from rA to rB (e.g.,
|r4 − r6|), and there is not already a record with rA.S in G (e.g., no record from
D2 in G), we add rA to G, subject to EG being satisfied for the set of remaining
records. In the running example, the two obtained groups are {r1, r2, r3, r4} and
{r5, r6, r7}. This optimization aims to reduce the information loss of �-diverse
groups, and has complexity O(m). The overall cost of the heuristic is O(m · N ).

5. 1D ACCURACY-CONSTRAINED PROBLEMS (DUAL PROBLEMS)

In this section, we study the accuracy-constrained problem (Problem 2.5), fo-
cusing on the more difficult scenario of accuracy-constrained �-diversification.
The dual k-anonymization problem can be easily solved by collapsing the
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multidomain representation discussed in Section 4, and placing a constraint on
group extent only. The optimal 1D solution for dual k-anonymization is similar
to the DP formulation in Section 3, and has complexity O(N 2), where N is the
dataset size. In the following, we present the solution for accuracy-constrained
�-diversification with 1D quasi-identifiers.

We preserve the multidomain data representation, the notations, and termi-
nology introduced in Section 4.1. As stated in Section 2.5, the information loss
bound E is expressed as a maximum-loss-per-group function. In our theoretical
analysis, we consider the information loss metric IL∞ of Eq. (4). The extension
to the NCP metric is straightforward, since NCP is the normalized version of
IL∞. We say that a partitioning P is E-bounded iff IL∞(P) ≤ E. Privacy is
measured according to the PM metric (Eq. (6)).

Some of the general properties of the optimal solution for the direct problem
also hold for the dual problem. The group order property (Lemma 3) and the
border order property (Lemma 4) apply without change. However, the value
singularity property (Corollary 1) does not hold anymore, because the solution
does not rely on a fixed (integer) privacy bound. Instead, given an accuracy
bound, we aim at maximizing privacy. Increasing the number of records in
a group can enhance its privacy, according to the monotonicity property of �-
diversity [Machanavajjhala et al. 2006], which states that given groups G1 and
G2 with respective privacy metrics PM(G1) and PM(G2), then PM(G1 ∪G2) ≥
min {PM(G1), PM(G2)}. In other words, by merging two groups of records, the
resulting privacy can only increase.

The following lemma shows that although groups in the optimal solution may
contain multiple records with the same SA value, these records are consecutive
within each SA domain.

LEMMA 7 (CONSECUTIVITY PROPERTY). Any E-bounded partitioningP ofR can
be substituted by another E-bounded partitioning P ′ such that PM(P) ≤
PM(P ′) and each projection P ′

q of P ′ onto a domain Dq, 1 ≤ q ≤ m, contains
only groups of records that are consecutive in Dq. Formally, ∀G ∈ P ′, if group G
contains records ri ∈ Dq and rk ∈ Dq, ri < rk, then it also contains every record
r j ∈ Dq such that ri < r j < rk.

PROOF. Assume a partitioning P such that a group G ∈ P, with begin record
b and end record e, contains records ri, rk ∈ Dq , but there exists a record r j ∈ Dq
such that ri < r j < rk and r j /∈ G. Assume that r j ∈ G ′, where G ′ ∈ P,
with begin record b′ and end record e′. Since ri, r j , rk share the same sensitive
value, the PM of the groups that contain them is not modified by exchanging
a pair of these records between these groups. In all cases, there exists such an
exchange that enforces the consecutivity of G and maintains the privacy of the
partitioning. The same reasoning applies to all nonconsecutive group records
and all value domains. By induction, it follows that there exists a partitioning
P ′ of no worse privacy thanP, whose projectionP ′

q onto each domainDq contains
only groups of records which are consecutive in Dq .

The practical consequence of the consecutivity property is that an algorithm
striving to establish an optimal partitioning for the dual problem needs to
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Fig. 15. Consecutivity property violation.

include in the same group records with the same SA value sq which are consec-
utive in their domain Dq . In other words, there need not be overlaps between
partitions within each sensitive value domain Dq . It follows that an ordered set
{Gq

1, Gq
2, . . . , Gq

|P|} is defined by the groups formed by a partitioning P of R for
each domain Dq , where Gi = ∪qGq

i , 1 ≤ i ≤ |P|.
Figure 15 shows an example with two E-bounded groups, G1 and G2, and

records r ∈ G1 and r ′ ∈ G2 which violate the consecutivity property. By per-
forming an exchange of the two records, the extent of neither G1 nor G2 can be
enlarged, whereas the privacy metric of the two groups is unchanged. Hence,
an E-bounded partitioning of no worse privacy than the initial one is obtained,
such that the consecutivity property is satisfied.

5.1 An Optimal 1D Algorithm

We propose a dynamic programming algorithm that finds the optimal solution
for the 1D dual problem. The following lemma bounds the number of possible
group formations in an interval of size E.

LEMMA 8. Given an interval I of extent E which includes c records drawing
their sensitive values from a set of m different values sq, 1 ≤ q ≤ m, the worst-
case number of ways Cc

m to form a group with records from I is

Cc
m =

⎧⎨
⎩ O

(( � c
m �2

2

)m)
, m ≤ c

O(2c) , m > c.

PROOF. Let Iq be the subset of records of Dq in I and let cq = |Iq|, 1 ≤ q ≤ m.
Then I = ∪q Iq and c = ∑m

q=1 cq . We can choose i consecutive records from Iq
in j = cq + 1 − i ways, 0 ≤ i ≤ cq , where the case i = 0 stands for the choice
of a boundary record for a formed group which does not include records in Dq .
In total, we can choose from 0 to cq consecutive records (note that choosing
0 records implies choosing just a boundary position; such choices also count)
from Iq in

∑cq+1
j=1 j = (cq+1)(cq+2)

2 ways. In combination, we can form a group with

records from I in Cc
m = ∏m

q=1
(cq+1)(cq+2)

2 ways. If m ≤ c, then Cc
m is maximized

when ∀q, cq = � c
m�, or cq = � c

m�. In that case, Cc
m = O((� c

m�2/2)m). Otherwise, if
m > c, then Cc

m is maximized when ∀q, cq = 1, that is, when each represented
value sq in I is represented by exactly one record. For each record there are two
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options: to include the record in the group, or to put the group boundary before
it (still counted as a boundary within interval I ). Hence Cc

m = O(2c).

Let c be the maximum number of consecutive records of R found in an inter-
val of extent E. Then the optimal algorithm needs to examine groups of at most
c records in the worst case. Given a boundary a = {a1, a2, . . . am}, let PM(a) be
the optimal (i.e., maximum) privacy achieved by a partitioning of the a-prefix
of R, allowing groups of maximum extent E. We use the notation PMI (b, a)
to denote the privacy of the group between the boundaries b and a. Similarly,
we denote by E(b, a) the extent of the group between b and a. The following
recursive dynamic programming scheme computes the optimal value of PM(a).

PM(a) = max
b≺a|E(b,a)≤E,

{min{PM(b), PMI (b, a)}} (9)

This recursive scheme is based on the group order property (Lemma 3). It selects
the best out of all possible groups ending at each allowed end boundary a; that
group has to be delimited by a start boundary b. For a given a, the eligible
choices of b are those for which the group between b and a satisfies the bound
E. The appropriate optimal solution for the b-prefix of R, PM(b), must be
calculated in advance. In our implementation, we index allowed end boundaries
a based on their end record aq . Each out of N records in R can be an end record
aq . Thereafter, each end record aq = enditem(a) (recall Definition 5) defines an
E-extent interval I E

aq
ending at aq . According to Lemma 6, for each aq , there

are O(Bc
m) possible end boundaries a within I E

aq
, where c = |I E

aq
|. Then, for each

end boundary a corresponding to end record aq , we should establish all allowed
start boundaries b within I E

aq
. In other words, for each end record aq , we should

establish all possible valid groups within I E
aq

having aq as end record. According
to Lemma 8, there are Cc

m such possible groups. The final result isPM(e), where
e is the end boundary such that e-prefix = R.

Figure 16 presents the pseudocode of the proposed algorithm.

Complexity analysis. The algorithm maintains a table which stores at entry i
the PM(a) value for every allowed boundary a such that enditem(a) = ri; hence
the space complexity is O(Bc

m · N ), c = maxi |I E
ri

|. For each a, it ranges through
all eligible start boundaries b, for which the group between b and a satisfies
the bound E. That makes a total of O(Cc

m) choices for group formation between
b and a for each ri. Besides, each choice of b (i.e., group formation) requires
the computation of PMI (b, a) in O(c) time, which is absorbed by the Cc

m factor.
Hence the total worst-case time complexity is O(Cc

m · N ).

5.2 Using the Dual Problem to Solve Privacy-Constrained �-Diversification

As mentioned in Section 4.1, the 1D direct optimal algorithm for the privacy-
constrained problem has O(2mNm) complexity. However, the solution to the
dual problem can be used to solve the direct problem more efficiently, because
in practice c � N . Given the privacy constraint �, we choose an initial arbitrary
upper bound Einit, for instance, half of the maximum 1D extent in the quasi-
identifier attribute. Then, we use Einit as the seed for a binary search procedure
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Fig. 16. Optimal 1D accuracy-constrained �-diversification pseudocode.

that solves the dual problem, with changing bound E. The search stops when
two values E0, E ′

0 are found, such that the privacy obtained with E0 is at least �,
the privacy obtained with E ′

0 is less than �, and |E0−E ′
0| < ε, an arbitrary-small

constant.

Complexity analysis. The time complexity of the binary search procedure is
O(Cc̄

m·N ·log E0), where E0 is the final, optimal extent bound and c̄ the maximum
value of c encountered during the search. Accordingly, the space complexity is
O(Bc̄

m · N ).

5.3 An Efficient 1D Heuristic for the Dual Problem

Similarly to the direct problem, the optimal 1D algorithm for the dual one
can incur a high overhead. Although it is polynomial to the input size N , the
exponential factor m (cardinality of SA domain) can lead to prohibitive cost. For
this reason, we propose an efficient heuristic (linear in N ) which is guided by the
properties of the optimal solution, but reduces considerably the search space.

As dictated by Lemma 7, only records that are consecutive in the multi-
domain representation need to be considered for inclusion in one group.
In addition, our heuristic uses the monotonicity property of �-diversity
[Machanavajjhala et al. 2006] mentioned earlier, and for the given accuracy
bound E, attempts to increase the cardinality of each group, therefore improv-
ing its privacy metric.

Based on these two guidelines, our heuristic traverses the record set R (or-
dered by the 1D quasi-identifier) in a greedy fashion, and adds records to the
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Fig. 17. Heuristic 1D accuracy-constrained �-diversification.

current group Gcrt as long as IL∞(Gcrt) does not exceed E. Once Gcrt can no
longer be enlarged, it is stored as candidate group G prev (but not output yet),
and a new group Gcrt is built with the records that follow G prev. When Gcrt can
no longer be enlarged, a privacy adjustment phase is performed between G prev
and Gcrt, with the purpose of maximizing

min {PM(Gprev), PM(Gcrt)}.
After readjustment, Gprev is output, Gcrt becomes Gprev, and the process contin-
ues with the remaining records.

Figure 17 shows the pseudocode for the 1D dual �-diversification heuris-
tic. The main routine (lines 1–13) assembles candidate groups and invokes
adjust privacy for each pair of consecutive groups. The adjust privacy routine
consists of redistribution of records among the input groups G1 and G2. In-
tuitively, G1 attempts to move some of its records to G2, and vice versa. For
each group, the heuristic attempts to transfer away the records with the most
frequent SA value first, since removing them has the most significant impact
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Fig. 18. Accuracy-constrained heuristic example.

in increasing the group PM. The readjustment phase continues until no such
transfer can be done. The move record(src,dest) routine performs the actual
record transfer, provided that the minimum privacy is not decreased, and the
resulting IL∞(dest) does not exceed the accuracy bound (line 20). If such a
transfer is allowed for a certain SA value s, out of all s-valued records in src,
the one that causes the smallest enlargement to dest is chosen (this can be
either the first or last s-valued record in src, depending on the relative 1D or-
der of groups src and dest). In order to avoid situations when records with a
particular SA value are swapped back-and-forth between the two groups, we
allow the transfer of any SA value to occur in one direction only, during the
re-adjustment.8 This restriction does not affect the process of increasing the
minimum privacy among groups, since if a SA value s is very frequent in G1,
but less frequent in G2, then a transfer of an s-valued record from G2 to G1 will
be invalidated by the test in line 20 (should the transfer be attempted from G2
to G1 first).

Figure 18 shows an example; the number on top of a record signifies the 1D
quasi-identifier value. Assume E = 20. Group Gprev contains all records to the
left of the dotted line, which signifies the limit (value 31 = 11+20) beyond which
Gprev cannot be extended. All remaining records belong to Gcrt. The privacy of
the two groups is PM(Gprev) = 7/3 (because there are at most three records
of the same SA value in Gprev, and |Gprev| = 7) and PM(Gcrt) = 4/2 = 2.
During the readjustment phase, the record with 1D value 27, which has the
most frequent SA value in Gprev, is moved to Gcrt. The transfer is allowed, since
the resulting extent of Gcrt is 44 − 27 < 20, resulting in new groups G ′

prev and
G ′

crt (highlighted with distinct colors), such that PM(G ′
prev) = 6/2 = 3 and

PM(G ′
crt) = 5/2. The overall privacy is thus increased from 2 to 2.5.

The move record routine, which performs the bulk of the work, does not
need to access all records in the group to check the eligibility of a transfer.
In each group, records are partitioned into buckets, one for each SA value;
within each bucket, records are ordered according to the 1D quasi-identifier.
A record count is maintained for each bucket, resulting into a histogram over
all SA values. With this data structure, determining the resulting privacy of a

8For brevity, this detail is not included in the pseudocode, but it can be efficiently implemented by
keeping a bitmap with one entry for each SA value, and setting the corresponding bit every time a
transfer is performed.
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potential transfer costs9 O(m). Furthermore, determining the particular record
to move (i.e., the closest one to dest) costs O(1) (it is either the first or last in
its bucket, depending on whether dest precedes or follows src in the 1D order).

Each record belongs to exactly one group and, for each pair of consecutive
candidate groups, a record can be moved at most once (due to the unidirectional
transfer constraint). Note that the transfer of a record cannot be propagated
over two or more groups. For instance, if a record is initially in G1 and it is
transferred to G2 in the privacy adjustment phase, it cannot be subsequently
moved to G3 when adjustment is performed among groups G2 and G3, because
the E bound for G3 would be exceeded. This is a consequence of the greedy
group formation process, which keeps adding records to the current candidate
group as long as bound E is satisfied. Checking whether a transfer is allowed
(line 20) takes O(1); updating the IL∞ of the src and dest groups (line 22) also
costs O(1) (due to the 1D quasi-identifier). Therefore, the overall cost of the
heuristic is O(m · N ).

6. GENERAL MULTIDIMENSIONAL CASE

In this section we extend our 1D k-anonymization and �-diversification algo-
rithms to multidimensional quasi-identifiers. Let QT be a quasi-identifier with
d attributes (i.e., d dimensions). We map the d -dimensional QT to one dimen-
sion and execute our 1D algorithms on the transformed data, while adapting
them to compute information loss in the multidimensional space. Recall that
both optimal k-anonymization and �-diversification are NP-hard [Meyerson and
Williams 2004; Machanavajjhala et al. 2006] in the multidimensional case. The
solutions we obtain through mapping are not optimal; however, due to the good
locality properties of the space mapping techniques, information loss is low, as
we demonstrate experimentally in Section 7. In the following, we measure the
information loss of each k-anonymous or �-diverse group using NCP, and the
information loss over the entire partitioning using GCP (see Section 2).

We employ two well-known space mapping techniques: the Hilbert space
filling curve and iDistance [Zhang et al. 2005]. The Hilbert curve is a continuous
fractal which maps each region of the space to an integer. With high probability,
if two points are close in the multidimensional space, they will also be close
in the Hilbert transformation [Moon et al. 2001]. Figure 19(a), for instance,
shows the transformation from 2D to 1D for the 8 × 8 grid of the example in
Section 1; the granularity of the regions can be arbitrarily small. The dataset
is totally ordered with respect to the 1D Hilbert value.

iDistance is optimized for nearest-neighbor queries. In iDistance, a random
sample of the data is first clustered around a fixed number of center points.
The cluster centers are ordered according to any method (e.g., Hilbert order-
ing). Each data point is then assigned to its closest cluster center according to
Euclidean distance. The 1D value of a point p is the sum of the 1D value of its
cluster center C, plus the distance from p to C (see Figure 19(b)).

Regardless of the technique, in order to perform the data mapping, each
attribute value must be assigned to a number. For numerical attributes, we can

9As mentioned in Section 4.3, this bound can be improved to O(log m) by using a priority queue.
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Fig. 19. Multidimensional to 1D mappings.

Fig. 20. Categorical attribute mapping.

use the attribute value directly; furthermore, the semantic distance between
two numeric attribute values can be measured as the difference between the
two values. For categorical attributes and their associated taxonomy tree, we
adopt the labeling approach of Bayardo and Agrawal [2005] and LeFevre et al.
[2005], where each attribute value is assigned to a distinct integer according
to the in-order traversal of the taxonomy tree. If an equivalence class spans
across different subtrees, it is penalized according to NCP. Figure 20 shows
an example, where NCP({Italy, France}) = 3/5 because their common ancestor
is Europe (which has 3 leaves) and there are 5 leaves in the entire Country
domain. Also, NCP({US, Spain}) = 1 (i.e., maximum information loss), because
their common ancestor is the entire Country domain. The mapping is performed
only with respect to QT ; the sensitive attribute is not included in the mapping.

The overhead of the Hilbert mapping is O(d ) per record, hence the method is
efficient. For iDistance, the mapping involves the additional overhead of finding
the cl cluster centers for a random sample of the data. After selecting the
centers, the overhead of mapping is O(cl ) per record. Our 1D k-anonymization
and �-diversification algorithms require the input to be sorted according to 1D
value; the cost is O(N log N ). Assuming a sorted input, our methods need to
scan the data only once; therefore the I/O cost is linear. Next, we discuss some
further issues about the extension of our 1D algorithms to d dimensions.

6.1 Privacy-Constrained k-Anonymization

The k-anonymization dynamic programming algorithm builds two tables: (i)
the main table with N entries, which stores at entry i the cost of the optimal
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solution for the first i records, and (ii) the auxiliary table that stores the base-
case cost (i.e., NCP) for each sequence of consecutive k to 2k − 1 records. Since
the tabulation proceeds from left to right, at each step we need to look back at
most 2k − 1 entries; therefore, we do not need more than a constant fraction of
the tables in main memory. If the tables do not fit in main memory, we need to
store and then read them from the disk once; the I/O cost is O(N ).

The time required to compute the NCP for a sequence of records
is linear to the sequence length. Since the sequences are in the form
[ri−2k+2, ri] . . . [ri−k+1, ri], we optimize this process as follows: For each sequence
[ra, rb], we use the already computed cost for the sequence [ra, rb−1], and check
if rb increases the cost. The check needs constant time, if we maintain the
Minimum Bounding Rectangle (MBR) of each sequence. This reduces the com-
putational cost for the auxiliary table from O(k2Nd ) to O(kNd ), where the d
factor corresponds to updating the MBR and recomputing the NCP. To improve
execution time, we also implement more time-efficient versions of our algo-
rithms, HilbFast and iDistFast, which calculate the cost of each sequence by
its extent in the 1D space. This variation relies on the assumption that records
in close proximity in the multidimensional space are also likely to be close in
the 1D space. Specifically, let r1D denote the mapped 1D value of the quasi-
identifier of record r. We approximate the cost of each sequence [ra, rb] with its
1D extent |r1D

b − r1D
a |. The 1D extent can be computed in O(1), regardless of

the sequence length. Therefore, there is no need to maintain an auxiliary table
at all. The computational complexity of k-anonymization is reduced by a factor
of d , to O(kN ). Later in Section 7.1, we investigate through experiments the
trade-off between information loss and computational overhead when the NCP
is approximated with the 1D cost.

6.2 Privacy-Constrained �-Diversification

Our heuristic �-diversification algorithm presented in Section 4.3 performs a
preprocessing step in which it partitions the input into m buckets, one for each
value of the sensitive attribute. Combined with the sorting of mapped 1D data,
the preprocessing step costs O(NlogN). Since tabulation is not needed, the space
requirement of the algorithm is O(m) (i.e., constant in practice), as we only need
to access the frontier of the search at each step and look back at most one group.
The NCP computation for each �-diverse group formation is O(d · m), and the
overall complexity of the heuristic is O(d · m · N ).

6.3 Accuracy-Constrained �-Diversification (Dual Problem)

The complexity of the dual �-diversification heuristic from Section 5.3 increases
in the case of multidimensional quasi-identifiers. The main factor causing
the increase is finding the closest record to the dest group in line 18 of the
move record routine (Figure 17). Consider the example in Figure 21(a), and
assume E = 0.5, measured according to NCP. During the candidate group for-
mation phase, records are added to Gprev, according to the 1D order, as long
as the accuracy bound is not exceeded: As a result, Gprev = {2, 11, 14, 30} and
Gcrt = {51, 57} (records are identified by their 1D mapped value). We have

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 9, Publication date: June 2009.



A Framework for Efficient Data Anonymization • 9:33

Fig. 21. Accuracy-constrained heuristic: extension to multidimensional quasi-identifiers.

NCP(Gprev) = 0.5, NCP(Gcrt) = 0.14, and a privacy metric value of PM = 2. In
the privacy readjustment phase, the heuristic will attempt to move one of the
records with SA value Flu from Gprev to Gcrt, since Flu occurs most frequently
in Gprev. Note that trying to move the record which is closest to Gcrt in the
mapped 1D value, namely record 30, will determine the group marked with
dashed line in Figure 21(a), having NCP = 0.57 > E, hence the transfer will be
disallowed. Nevertheless, if we choose to move the Flu record which is closest
to Gcrt in the multidimensional QT space, namely record 11, we obtain groups
G ′

prev and G ′
crt in Figure 21(b), with NCP(G ′

prev) = 0.43, NCP(Gcrt) = 0.36, and
a privacy metric value of PM = 3. Therefore, by considering the distance in
the multidimensional space in line 18 of the move record routine, we can con-
siderably improve the privacy of the partitioning. However, finding the closest
record in the multidimensional space costs O(d · |src|), which in the worst case
is O(d · N ), as opposed to O(1) in the 1D space.

Furthermore, updating the NCP for the candidate groups after privacy ad-
justment (line 22 in Figure 17) is also more expensive. By storing separately
the extents of the groups in each dimension, we can compute the new NCP of
the dest group (the one which is enlarged) in O(d ) time. However, determining
for the src group whether the removed record reduces the group extent requires
O(d · log |src|), if sorted lists of records’ coordinates are separately maintained
for each of the d dimensions. Hence, due to the changes in lines 18 and 22, the
cost of move record increases from O(m) to O(m·(d ·N+d ·log N )) = O(m·d ·N ).

Finally, the property discussed in Section 5.3 that a record transfer cannot
be propagated over two or more groups no longer holds in the multidimensional
space. However, in our implementation we explicitly disallow this sort of trans-
fer propagation (which is unlikely to occur in practice anyway). The resulting
overall complexity of the heuristic is O(m · d · N 2). Although the worst-case
complexity is quadratic in N , we show in Section 7.3 that the dual heuristic is
very efficient in practice.
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Table II. CENSUS Dataset Characteristics

Attribute Cardinality Type
Age 79 Numerical

Gender 2 Hierarchical (2)
Education Level 17 Numerical
Marital Status 6 Hierarchical (3)

Race 9 Hierarchical (2)
Work Class 10 Hierarchical (4)

Country 83 Hierarchical (3)
Occupation 50 Sensitive Value

Salary Class 50 Sensitive Value

Table III. Experimental Parameter Values

Parameter Notation Description Values
k anonymity degree 10,20,50,100
� diversity degree 2,3,4,5,6,7,8,9,10,11,12,13
d QT dimensionality 2,3,4,5,6,7
N data size 50000,100000,200000,400000
E accuracy bound 0.2,0.3,0.4,0.5,0.6

7. EXPERIMENTAL EVALUATION

In this section, we evaluate our techniques against the existing state-of-the-art.
All algorithms are implemented in C++ and the experiments were run on an
Intel Xeon 2.8 GHz machine with 2.5GB of RAM and Linux OS.

Our workload consists of the CENSUS10 dataset, containing information
of 500,000 persons. The schema is summarized in Table II. There are nine
attributes; the first seven represent the quasi-identifier QT , whereas the last
two (i.e., Occupation and Salary) are the sensitive attributes (SA) (for brevity,
we only include in our evaluation the Occupation attribute). Two of the QT
attributes are numerical and the rest categorical; the number of levels in the
taxonomy trees is shown in parentheses. We generate input tables with 50,000
to 400,000 records, by randomly selecting tuples from the entire dataset.

For the sake of comparison with previous work, we use mainly the GCP
metric (Section 2) to measure information loss. Recall that the values of GCP
are in the range [0, 1], and 0 is the best score (i.e., no information loss). Still, in
some experiments we also include results for other metrics, to emphasize the
versatility of our methods. Table III summarizes the parameter values used in
the experiments; the default values are typeset in boldface.

7.1 Privacy-Constrained k-Anonymization

In the following experiments, we compare our 1D optimal privacy-constrained
k-anonymization algorithm against the existing state-of-the-art techniques:
the multidimensional (Mondrian) k-anonymity [LeFevre et al. 2006a], and the
TopDownstering-based technique [Xu et al. 2006] (see Section 2 for details).
For our optimal 1D algorithm, we consider both the Hilbert and iDistance map-
pings (for the latter, we set cl = 512 reference points, chosen from a fraction of

10http://www.ipums.org/.
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Fig. 22. Privacy-constrained k-anonymization, variable k.

Fig. 23. Privacy-constrained k-anonymization, variable N .

10% of the data). For each of the two mappings, we consider two versions: (i)
in the base version (i.e., Hilb and iDist), partitioning is guided by accurate cost
estimation at the original multidimensional space. As discussed in Section 6,
the amortized complexity for calculating the cost is O(d ), where d is the dimen-
sionality of QT . (ii) in the faster variants HilbFast and iDistFast (see Section 6),
the algorithm estimates the cost at the 1D space in O(1) time. Since this is only
an estimation of the real cost, the resulting information loss is expected to be
higher.

In our first experiment, we vary anonymity degree k. Figure 22 presents
the results. Both Hilb and iDist achieved lower information loss compared to
TopDown and Mondrian, in all cases. In terms of execution time, Mondrian
was faster. However, given the superior quality of the results, we believe that
the running time of Hilb would be acceptable in practice (it was 60 sec. in
the worst case). iDist is a little slower than Hilb, due to the initial phase of
selecting the reference points. Both Hilb and iDist execution times include the
data mapping and sorting phase. We also include the fast implementations of
our algorithms in the graph. HilbFast is better than TopDown and Mondrian
in terms of information loss. It is also very fast, achieving the same running
time as Mondrian. iDistFast is similar to TopDown in terms of information loss;
however it is much faster. The execution time of TopDown is around 2 hours,
considerably longer than the other methods, so we do not include it in the graph.

Next, we vary dataset cardinality N : Figure 23 shows the results. All meth-
ods manage to reduce information loss when the size of the input increases. This
is because the data density becomes higher and the probability of finding good
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Fig. 24. Privacy-constrained k-anonymization, variable QT dimensionality.

partitions increases. Hilb and iDist are better than Mondrian and TopDown
in all cases. As expected, the running time increases with the input size. Hilb
needs only 40 sec. to anonymize 400,000 records, when k = 50. The execution
time of TopDown (not included in the graph) is considerably higher: it ranges
from 8 min. for 50, 000 records to 6 hours for 400, 000 records.

In Figure 24 we vary the dimensionality d of the quasi-identifier by projecting
the original 7D data to fewer dimensions. Since Hilb and iDist are optimal for
d = 1, for low dimensionality their information loss is close to 0 (note that
the information loss of the optimal solution is typically greater than 0 due
to generalization). Interestingly, for larger dimensionality, Hilb outperforms
its competitors by a larger factor; therefore Hilb is suitable for real-life high-
dimensional data. The running time is affected only slightly by dimensionality.
Our methods face a small overhead due to the calculation of the cost of each
partition in the multidimensional space.

7.2 Privacy-Constrained �-Diversification

We compare our linear 1D heuristic for privacy-constrained �-diversification
against an �-diverse variation of Mondrian, which uses the original median
split heuristic and checks for each partition whether the �-diversity property is
satisfied. We defer the comparison against Anatomy [Xiao and Tao 2006a] until
Section 7.4, since Anatomy does not use generalization and the GCP metric
would penalize the method unfairly.

In Figure 25 we vary the value of �. Hilb is the best in terms of information
loss, followed closely by iDist. The execution time of Hilb is very low (roughly
5 sec.) and similar to Mondrian. iDist is slower, due to the initial mapping phase.

Next (Figure 26) we vary dataset cardinality N . As N increases, so does the
data density; therefore, information loss decreases slightly for both Hilb and
iDist. In terms of execution time, Hilb and Mondrian have similar performance,
but Hilb is far superior in terms of information loss. Note that in all experiments
the entire input table fits in the main memory. If the input table is larger than
the main memory, the I/O cost of Mondrian will be much larger, since it needs to
scan the input at each split. In contrast, our methods require a single scan of the
input (excluding the sorting phase). Also observe that Mondrian may exhibit
unpredictable, nonmonotonic behavior with respect to � or N . The reason is that
for particular inputs, the �-diversity property cannot be satisfied by any split.
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Fig. 25. Privacy-constrained �-diversification, variable �.

Fig. 26. Privacy-constrained �-diversification, variable N .

In Figure 27 we vary the dimensionality d of QT . Hilb and iDist clearly out-
perform Mondrian. Observe that Mondrian deteriorates sharply as d increases.
Also note that the execution time is virtually unaffected by dimensionality.

In order to evaluate the performance of our heuristic for various data dis-
tributions, we also include an experiment with synthetic data. Our goal is to
show the behavior of the proposed algorithms when certain correlation pat-
terns exist between quasi-identifier and SA attributes. Intuitively, if there is
no such correlation (i.e., SA values are randomly distributed in the QT space),
�-diversification is easier to solve, because sufficient records with distinct SA
can be found in close proximity to each other. On the other hand, if there is
strong correlation among QT and SA, �-diverse groups need to grow larger in
the QT space in order to fulfill the privacy requirement. The worst-case scenario
is when there is both high correlation and the QT are randomly distributed in
the data space, because in this case groups will span large regions of the QT
space.

We generate a 5D dataset, with a 4D QT randomly distributed in the data
space. Both QT and SA have numerical values between 0 and 9, and the SA
has a linear dependence on QT as follows. We have

S A =
{

(β1 × A1 + β2 × A2 + β3 × A3 + β4 × A4) mod 10 , i f rand () < α

10 × rand () , otherwise

where A1 . . . A4 are the QT values, βi are coefficients of a linear function in
A1 . . . A4, and rand() returns a random value in [0, 1). Parameter α controls the
degree of correlation among QT and SA: A small value (e.g., close to 0) means
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Fig. 27. Privacy-constrained �-diversification, variable QT dimensionality.

Fig. 28. Privacy-constrained �-diversification, synthetic data.

there is little correlation, whereas α = 1 signifies complete correlation among
QT and SA.

We vary α between 0 and 0.5. Figure 28(a) shows the information loss re-
sults: Mondrian performs well for 0 correlation. In fact, this scenario favors
Mondrian the most, since QT is also randomly distributed, and balanced splits
are possible. iDist performs slightly worse than Mondrian because it is designed
for skewed data, where clustering is efficient. As correlation grows, the infor-
mation loss of Mondrian deteriorates quickly: Due to its constraint that group
extents should not overlap, only few splits of the dataset can be performed. Both
Hilb and iDist outperform Mondrian by a large margin, and their performance
becomes similar as correlation increases, because diverse records are situated
far apart and the accuracy of the mapping becomes less influential in group
formation.

Figure 28(b) shows execution time: All methods require a longer execution
time for the 0 correlation case. In the case of Mondrian, more splits are possible,
and the algorithm executes more iterations. For Hilb and iDist, the heuristic
has more flexibility to form groups, and therefore more choices are considered.
As correlation increases, there are fewer choices to form groups and execution
time decreases. Similarly, for Mondrian, only few splits are completed and the
algorithm terminates faster.

Finally, we evaluate the performance of our algorithms with respect to in-
formation loss metrics other than GCP: Specifically, we consider: (i) weighted
maximum NCP (i.e., the NCP of the group with largest extent times group
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Fig. 29. Privacy-constrained �-diversification, weighted maximum NCP metric.

Fig. 30. Privacy-constrained �-diversification, average NCP metric.

cardinality), (ii) average NCP, and (iii) the average group volume weighted
by cardinality. The group volume is determined similarly to NCP in Eq. (1),
except that we compute the product of extents over all attributes, instead of
sum (for those attributes which have a unique value within a group, we mea-
sure the extent as 1/AttributeCardinality, to avoid multiplication by 0). Note
that metric (i) is a maximum-loss-per-group metric, like IL∞, but weighted by
cardinality, like GCP, whereas metric (ii) is a normalized version of IL1. For
this experiment, we use the CENSUS dataset with all seven quasi-identifier
attributes.

Figure 29 shows the results for the weighted maximum NCP metric. Our
methods are clearly superior to Mondrian in all cases. The information loss of
Mondrian is several orders of magnitude higher because it generates groups
with both large extent, and large number of records. Note that for varying
dataset size (Figure 29(b)) a different trend is observed than for the GCP metric:
The information loss first decreases (when dataset size grows from 50k to 100k),
but then exhibits an increasing trend. This is the result of two factors: On
one hand, data density increases, which leads to lower information loss. On
the other hand, increasing the number of records introduces more outliers in
the data. Since here we measure the extent of the maximum group (and not
average), the latter factor prevails for larger sizes, and the resulting information
loss is higher.

In Figure 30, we present the results for the average NCP metric (i.e., nor-
malized IL1), belonging to the family of metrics that our theoretical analysis
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Fig. 31. Privacy-constrained �-diversification, weighted average volume metric.

directly applies to. The measured trends are similar to those observed for the
GCP metric (Figures 25 and 26).

In Figure 31 we present the results for the weighted average volume metric.
Again, our methods outperform Mondrian by a considerable margin. Note that
in Figure 31(a), iDist is better than Hilb in some cases. This is a consequence
of the fact that iDist performs a clustering-based mapping of quasi-identifiers.
Since the optimization objective in iDist is cluster volume, iDist is more suitable
for the volume metric than Hilbert, whose mapping is more influenced by the
Manhattan distance between records.

7.3 Accuracy-Constrained �-Diversification (Dual Problem)

In this section we evaluate the heuristic for the accuracy-constrained (AC)
problem presented in Section 5.3. Since there is no other existing algorithm
that solves the dual problem, we compare AC against the IPCSD algorithm
introduced in Figure 3. IPCSD is based on the solution to the direct problem,
and performs a binary search to find the maximum value of � for which the
accuracy bound E is not exceeded. We use IPCSD in conjunction with both the
1D direct heuristic from Section 4.3 (IPCSD-1D), as well as Mondrian [LeFevre
et al. 2006a] (IPCSD-Mondrian). Mondrian can handle fractional values of �

(recall the example in Figure 4). On the other hand, IPCSD-1D can only handle
integer values of �; nevertheless, in some of the graphs, the privacy value
appears as a fractional number. The reason is the following: Our dataset has 7
dimensions for the QT ; if an experiment uses fewer than 7 of them, there are
multiple ways to project the original data. We run the experiments with all pos-
sible projections, and report the average privacy value, which is not necessarily
an integer. We measure the value of E according to NCP, with values between
0 and 1. For the 1D methods, we consider only the Hilbert transformation.

In Figure 32 we vary E and measure the privacy metric PM for a quasi-
identifier with dimensionality d = 3. AC always outperforms both IPCSD meth-
ods in terms of privacy (i.e., PM metric), whereas IPCSD-1D obtains the lowest
privacy, due to its restriction of allowing only one SA value per group. AC is also
faster in terms of execution time (recall that IPCSD includes a multiple-stage
binary search phase, which increases the computational overhead). For AC,
the processing cost increases with E, since the cardinality of candidate groups
grows, and so does the cost of the privacy adjustment phase.
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Fig. 32. Accuracy-constrained �-diversity, variable accuracy bound E.

Fig. 33. Accuracy-constrained �-diversity, variable QT dimensionality.

In Figure 33 we evaluate the effect of varying quasi-identifier dimensional-
ity. The privacy obtained by AC is considerably better at lower dimensionality.
However, as d grows, the difference between AC and the IPCSD flavors atten-
uates, due to the dimensionality curse: As d increases, fewer records can be
located within an extent that does not exceed E. AC remains more efficient
in terms of computational overhead. Note that, despite their worst-case com-
plexity which is linear in d (as discussed in Section 6), both 1D methods (AC
and IPCSD-1D) do not exhibit an increase in execution time when d grows,
because they work in the mapped 1D space. Hence, the worst-case complex-
ity is not observed in practice. On the other hand, IPCSD-Mondrian needs to
examine candidate splits in all dimensions, therefore its overhead is linear
in d .

In Figure 34, we vary the number of records N , d = 3. AC has the lowest
execution time for most of the considered N range, while it also maintains its
advantage in terms of privacy.

7.4 Precision of Data Analysis Queries

In addition to the general-purpose GCP metric, in this section we employ a
realistic query workload, as suggested by LeFevre et al. [2006b]. We compare
the privacy-constrained �-diversity versions of Hilb and iDist against Anatomy
and �-diverse Mondrian. Anonymized data can be used to extract statistics and
assist decision-making. Since these are typical OLAP operations, our workload
consists of the following type of aggregation queries.
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Fig. 34. Accuracy-constrained �-diversity, variable N .

SELECT QT1, QT2,..., QTi, COUNT(*)
FROM data
WHERE SA = val
GROUP BY QT1, QT2,..., QTi

Each QTi is an attribute of the quasi-identifier (e.g., Age, Gender), whereas SA
is a sensitive attribute (e.g., Occupation). The OLAP datacube [Harinarayan
et al. 1996] consists of all group-bys for all possible combinations of the quasi-
identifier attributes. Interdependencies among group-bys are captured by the
datacube lattice. Level i of the lattice corresponds to all group-bys over exactly
i attributes (the higher the level, the finer the granularity of the group-by). We
represent the cube as a multidimensional array; the cells that do not correspond
to a result tuple of the aforesaid query are set to 0.

We use the CENSUS dataset and compute the entire datacube for (i) the orig-
inal microdata (P cube) and (ii) the anonymized tables (Q cube). Obviously, Q
is an estimation of P . Each cell of Q is computed as follows: For Anatomy, which
does not use generalization, the estimation is straightforward since the exact
quasi-identifier and the probability of an SA value for a specific record are given.
For the generalization-based methods, we take into account the intersection of
the query with each group, assuming a uniform distribution of records within
the group.

Ideally, the values of all cells in cube Q should be equal to the values in
the corresponding cells of P . Several methods exist to measure similarity. Xiao
and Tao [2006a] use the relative error: RE = |PC − QC|/PC, where PC and QC
are values of a cell in P and Q , respectively. However, this metric is undefined
for PC = 0. In our experiments we use KL-Divergence (K LD), which has been
acknowledged as a representative metric in the data anonymization literature
[Kifer and Gehrke 2006]. P and Q are modeled as multidimensional probability
distribution functions. The estimation error is defined as

KLD(P, Q) =
∑

∀cellC

PC log
PC

QC
.

In the best case (i.e., identical P , Q), KLD = 0.
In Figure 35(a), we show the query precision for varying � at level 2 of the

datacube lattice (i.e., all group-bys with two attributes). For small �, Hilb and
iDist clearly outperform the competitors. Hilb is two orders of magnitude better
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Fig. 35. OLAP query precision results: generalization-based methods vs Anatomy.

than Mondrian, and one order of magnitude better than Anatomy, despite the
fact that Anatomy is not using generalization but publishes the exact quasi-
identifier. As � increases, the extent of the anonymized groups grows accordingly
in all dimensions. This is a clear disadvantage for all generalization methods;
however, even for larger � values, our methods outperform Mondrian by an order
of magnitude, and their precision is only marginally worse than Anatomy.

In Figure 35(b) we show the query precision for different levels of the OLAP
lattice. Hilb and iDist are better than Mondrian by up to an order of magnitude,
and also outperform Anatomy. Hilb and iDist are better at lower levels of the
lattice (i.e., coarse-grained aggregation), since the extent of the anonymized
groups is likely to be completely included in the query range. For finer gran-
ularity, Anatomy performs equally well as our methods, since it is favored by
small query ranges.

In Figure 35(c) we focus on level 2 of the lattice, and vary the dimension-
ality d of the quasi-identifier. Lower dimensionality results to more compact
�-diverse groups, which improves precision. However, since the group-by level is
kept constant, a lower quasi-identifier dimensionality also results in a smaller
extent (i.e., finer granularity) of the queries, which decreases query answer-
ing precision. Depending on the domains of the quasi-identifier attributes, any
of the two effects may become significant. This is why there is an increasing
trend until d = 4 and a decreasing trend afterwards. Hilb and iDist maintain
an advantage over the competitors. Observe that Anatomy is not affected by
dimensionality, since it does not use generalization.
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Fig. 36. OLAP query precision results: Perm-Hilb and Perm-iDist vs. Anatomy.

In Figure 35(d) we vary the size of the input N , at level 2 of the lattice.
Since the extent of the queries is constant but the density of data in the quasi-
identifier space increases, precision increases with N .

Note that our group formation algorithms are orthogonal to the publica-
tion format chosen. If a certain application does not require generalization of
quasi-identifiers, we can adopt the permutation-based publication format of
Anatomy, which enhances the precision of query answering. In the next exper-
iment, we evaluate the query precision of the proposed methods in conjunc-
tion with permutation-based publishing (Perm-Hilb and Perm-iDist), against
Anatomy. Figure 36(a)–(d) shows that our methods clearly outperform Anatomy
in all cases, due to their superior group formation heuristic which accounts for
proximity in the quasi-identifier space. Perm-Hilb and Perm-iDist maintain the
trends observed for their generalization-based counterparts Hilb and iDist (Fig-
ure 35), but they always out-perform Anatomy by up to one order of magnitude.

7.5 Discussion

We demonstrated that for k-anonymization, our algorithms are superior to ex-
isting techniques in terms of information loss. Hilb is the best, but is a bit
slower than Mondrian. If speed is essential, HilbFast can be used. It is as fast
as Mondrian and its quality is only slightly worse that Hilb.

For privacy-constrained �-diversification, Hilb is the clear winner. It is by far
superior in terms of information loss and precision for real queries; it is also
as fast as its competitors. Interestingly, Hilb out-performs Anatomy in most
cases, although Anatomy implements a less secure model, by publishing the
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exact quasi-identifiers. This happens because Anatomy ignores the distance of
the tuples in the QT space (see Section 2.3).

iDist also performed well, but slightly worse than Hilb. We used iDist mainly
to demonstrate the versatility of our framework. For specific applications, other
multidimensional to 1D mappings may be more appropriate. Any such mapping
can be used in our framework.

Our privacy-constrained solutions scale well with the input size, since the
computational complexity is linear, the required memory is constant, and only
one scan of the data is necessary (provided the dataset is sorted).

In practice, the information loss incurred by �-diversification is dependent on
the data distribution. In particular, if the data is skewed, there will be a high
correlation among quasi-identifier and SA values. In this case, to satisfy the
diversity requirement, groups need to span larger regions of the quasi-identifier
space. The experimental evaluation shows that the proposed methods clearly
outperform competitor techniques, which do not handle data skewness well.

Lastly, our accuracy-constrained heuristic for the dual problem (i.e., AC) is
the first to appear in the literature. Compared to the iterative methods based
on the direct solution (i.e., IPCSD), AC achieves superior privacy with faster
execution time.

8. CONCLUSIONS

In this article, we developed a framework for solving the privacy-constrained
and accuracy-constrained data anonymization problems. Our approach relies
on mapping the multidimensional quasi-identifiers to one dimension. We iden-
tified a set of properties for the optimal 1D solutions. Guided by these prop-
erties, we developed efficient heuristics at the 1D space. We used two popular
transformations, namely the Hilbert curve and iDistance, to solve the multidi-
mensional problems through 1D mapping; other transformations can easily be
incorporated in our framework. The experiments demonstrate that our meth-
ods clearly outperform the existing approaches in terms of execution time and
information loss. Moreover, our algorithms are efficient, therefore they are ap-
plicable to large datasets.

In the future we plan to extend our framework to other privacy paradigms,
such as t-closeness and m-invariance. Furthermore, we intend to study the
privacy- and accuracy-constrained problems for data streams. Streaming data
poses two additional challenges: First, not all data are available from the begin-
ning; instead, new data arrive continuously. Second, the data have expiration
deadlines; therefore, it is crucial to minimize the computational overhead of
anonymization algorithms.
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