
Noname manuscript No.
(will be inserted by the editor)

Local and Global Recoding Methods for Anonymizing
Set-valued Data

Manolis Terrovitis · Nikos Mamoulis · Panos Kalnis

Received: date / Accepted: date

Abstract In this paper we study the problem of pro-
tecting privacy in the publication of set-valued data.

Consider a collection of supermarket transactions that

contains detailed information about items bought to-
gether by individuals. Even after removing all personal

characteristics of the buyer, which can serve as links to

his identity, the publication of such data is still subject
to privacy attacks from adversaries who have partial

knowledge about the set. Unlike most previous works,

we do not distinguish data as sensitive and non-sensitive,

but we consider them both as potential quasi-identifiers
and potential sensitive data, depending on the knowl-

edge of the adversary. We define a new version of the

k-anonymity guarantee, the km-anonymity, to limit the
effects of the data dimensionality and we propose effi-

cient algorithms to transform the database. Our anony-

mization model relies on generalization instead of sup-
pression, which is the most common practice in related

works on such data. We develop an algorithm which

finds the optimal solution, however, at a high cost which

makes it inapplicable for large, realistic problems. Then,
we propose a greedy heuristic, which performs general-

Manolis Terrovitis
Institute for the Management of Information Systems (IMIS)
Research Center “Athena”
E-mail: mter@imis.athena-innovation.gr

Nikos Mamoulis
Dept. of Computer Science
University of Hong Kong
E-mail: nikos@cs.hku.hk

Panos Kalnis
Div. of Mathematical and Computer Sciences and Engineering
King Abdullah University of Science and Technology
E-mail: panos.kalnis@kaust.edu.sa

izations in an Apriori, level-wise fashion. The heuristic
scales much better and in most of the cases finds a so-

lution close to the optimal. Finally, we investigate the

application of techniques that partition the database
and perform anonymization locally, aiming at the re-

duction of the memory consumption and further scal-

ability. A thorough experimental evaluation with real
datasets shows that a vertical partitioning approach

achieves excellent results in practice.

1 Introduction

We consider the problem of publishing set-valued data,

while preserving the privacy of individuals associated
with them. Consider a database D, which stores in-

formation about items purchased at a supermarket by

various customers. We observe that the direct publica-
tion of D may result in unveiling the identity of the

person associated with a particular transaction, if the

adversary has some partial knowledge about a subset of

items purchased by that person. For example, assume
that Bob went to the supermarket on a particular day

and purchased a set of items including coffee, bread,

brie cheese, diapers, milk, tea, scissors and a light bulb.
Assume that some of the items purchased by Bob were

on top of his shopping bag (e.g., brie cheese, scissors,

light bulb) and were spotted by his neighbor Jim, while
both persons were on the same bus. Bob would not like

Jim to find out other items that he bought. However,

if the supermarket decides to publish its transactions

and there is only one transaction containing brie cheese,
scissors, and light bulb, Jim can immediately infer that

this transaction corresponds to Bob and he can find out

his complete shopping bag contents.

2

This motivating example stresses the need to trans-

form the original transactional databaseD to a database
D′ before publication, in order to avoid the association

of specific transactions to a particular person or event.

In practice, we expect the adversary to have only par-
tial knowledge about the transactions (otherwise, there

would be little sensitive information to hide). On the

other hand, since the knowledge of the adversary is not
known to the data publisher, it makes sense to define

a generic model for privacy, which protects against ad-

versaries having knowledge limited to a level, expressed

as a parameter of the model.

In this paper, we propose such a km-anonymization
model, for transactional databases. Assuming that the

maximum knowledge of the adversary is at most m

items in a specific transaction, we want to prevent him
from distinguishing the transaction from a set of k pub-

lished transactions in the database. Equivalently, for

any set of m or less items, there should be at least
k transactions that contain this set, in the published

database D′. In our example, Jim would not be able to

identify Bob’s transaction in a set of 5 transactions of

D′, if D′ is 53-anonymous.

This anonymization problem is quite different com-
pared to well-studied privacy preservation problems in

the literature. Unlike the k-anonymity problem in rela-

tional databases [24,25], there is no fixed, well-defined
set of quasi-identifier attributes and sensitive data. A

subset of items in a transaction could play the role of

the quasi-identifier for the remaining (sensitive) ones

and vice-versa. Another fundamental difference is that
transactions have variable length and high dimensional-

ity, as opposed to a fixed set of relatively few attributes

in relational tuples. Finally, we can consider that all
items that participate in transactions take values from

the same domain (i.e., complete universe of items), un-

like relational data, where different attributes of a tuple
have different domains.

The m parameter in the km guaranty introduces a

degree of flexibility in the traditional k-anonymity. It

allows considering different scenarios of privacy threats

and adjusting the guaranty depending on the sever-
ity of the threat and the sensitivity of the data. km-

anonymity simulates k-anonymity if m is set equal to

the domain size, i.e., the adversary knows all items.
Still, this is not a realistic scenario in the transactional

context. Since all items can act as quasi-identifiers, an

attacker who knows them all and can link them to a
specific person has nothing to learn from the original

database; her background knowledge already contains

the original data.

To solve the km-anonymization problem for a trans-

actional database, we follow a generalization approach.

We consider a domain hierarchy for the items that par-

ticipate in transactions. If the original database D does
not meet the km-anonymity requirement, we gradu-

ally transform D, by replacing precise item descriptions

with more generalized ones. For example, “skimmed
milk” could be generalized to “milk” and then to “dairy

product” if necessary. By carefully browsing into the

lattice of possible item generalizations, we aim at find-
ing a set of item generalizations that satisfies the km-

anonymity requirement, while retaining as much detail

as possible to the published data D′.

We propose three classes of algorithms in this di-

rection. Our first algorithmic class is represented by
the optimal anonymization (OA) algorithm, which ex-

plores in a bottom-up fashion the lattice of all possi-

ble combinations of item generalizations, and finds the
most detailed such sets of combinations that satisfy

km-anonymity. The best combination is then picked,

according to an information loss metric. Although op-
timal, OA has very high computational cost and can-

not be applied to realistic databases with thousands of

items.

Motivated by the scalability problems of the OA, we

propose a second class of heuristic algorithms, which
greedily identify itemsets that violate the anonymity

requirement and choose generalization rules that fix the

corresponding problems.

The first direct anonymization (DA) heuristic op-
erates directly on m-sized itemsets found to violate k-

anonymity. Our second, apriori anonymization (AA) is

a more carefully designed heuristic, which explores the

space of itemsets, in an Apriori, bottom-up fashion. AA
first identifies and solves anonymity violations by (l−1)-

itemsets, before checking l-itemsets, for l=2 to m. By

operating in such a bottom-up fashion, the combina-
tions of itemsets that have to be checked at a higher

level can be greatly reduced, as in the meanwhile de-

tailed items (e.g., “skimmed milk”, “choco-milk”, “full-
fat milk”) could have been generalized to more gener-

alized ones (e.g., “milk”), thus reducing the number

of items to be combined. Our experimental evaluation,

using real datasets, shows that AA is a practical algo-
rithm, as it scales well with the number of items and

transactions, and finds a solution close to the optimal

in most tested cases.

AA does not operate under limited memory, so there
is still a case where the database will be large enough

to prohibit its execution. We introduce a third class

of algorithms, Local Recoding Anonymization (LRA)

and Vertical Partitioning Anonymization (VPA), which
anonymize the dataset in the presence of limited mem-

ory. The basic idea in both cases is that the database is

partitioned and each part is processed separately from

3

the others. A short version of this paper covering the

first two classes of algorithms appears in [26].
The rest of the paper is organized as follows. Sec-

tion 2 describes related work and positions this paper

against it. Section 3 formally describes the problem,
provides an analysis for its solution space, and defines

the information loss metric. In Section 4, we describe

the algorithms and the data structures used by them.
In Section 5 we discuss the advanced concepts of nega-

tive knowledge and ℓm-diversity. Section 6 includes the

experimental evaluation, and Section 7 concludes the

paper.

2 Related Work

Anonymity for relational data has received consider-
able attention due to the need of several organizations

to publish data (often called microdata) without re-

vealing the identity of individual records. Even if the

identifying attributes (e.g., name) are removed, an at-
tacker may be able to associate records with specific

persons using combinations of other attributes (e.g.,

〈zip, sex, birthdate〉), called quasi-identifiers (QI). A
table is k-anonymized if each record is indistinguishable

from at least k− 1 other records with respect to the QI

set [24,25]. Records with identical QI values form an
anonymized group. Two techniques to preserve privacy

are generalization and suppression [25]. Generalization

replaces their actual QI values with more general ones

(e.g., replaces the city with the state); typically, there is
a generalization hierarchy (e.g., city→state→country).

Suppression excludes some QI attributes or entire records

(known as outliers) from the microdata.
The privacy preserving transformation of the mi-

crodata is referred to as recoding. Two models exist:

in global recoding, a particular detailed value must be
mapped to the same generalized value in all records. Lo-

cal recoding, on the other hand, allows the same detailed

value to be mapped to different generalized values in

each anonymized group. The recoding process can also
be classified into single-dimensional, where the map-

ping is performed for each attribute individually, and

multi-dimensional, which maps the Cartesian product
of multiple attributes. Our work is based on global re-

coding and can be roughly considered as single-dime-

nsional (although this is not entirely accurate), since
in our problem all items take values from the same do-

main.

[18] proved that optimal k-anonymity for multidi-

mensional QI is NP -hard, under both the generaliza-
tion and suppression models. For the latter, they pro-

posed an approximate algorithm that minimizes the

number of suppressed values; the approximation bound

is O(k · logk). [3] improved this bound to O(k), while

[22] further reduced it to O(log k). Several approaches
limit the search space by considering only global re-

coding. [5] proposed an optimal algorithm for single-

dimensional global recoding with respect to the Classi-
fication Metric (CM) and Discernibility Metric (DM),

which we discuss in Section 3.3. Incognito [14] takes

a dynamic programming approach and finds an opti-
mal solution for any metric by considering all possible

generalizations, but only for global, full-domain recod-

ing. Full-domain means that all values in a dimension

must be mapped to the same level of hierarchy. For
example, in the country→continent→world hierarchy,

if Italy is mapped to Europe, then Thailand must be

mapped to Asia, even if the generalization of Thailand
is not necessary to guarantee anonymity. A different

approach is taken in [21], where the authors propose to

use natural domain generalization hierarchies (as op-
posed to user-defined ones) to reduce information loss.

Our optimal algorithm is inspired by Incognito; how-

ever, we do not perform full-domain recoding, because,

given that we have only one domain, this would lead
to unacceptable information loss due to unnecessary

generalization. As we discuss in the next section, our

solution space is essentially different due to the avoid-
ance of full-domain recoding. The computational cost

of Incognito (and that of our optimal algorithm) grows

exponentially, so it cannot be used for more than 20 di-
mensions. In our problem, every item can be considered

as a dimension. Typically, we have thousands of items,

therefore we develop fast greedy heuristics (based on

the same generalization model), which are scalable to
the number of items in the set domain.

Several methods employ multidimensional local re-

coding, which achieves lower information loss. Mon-

drian [15] partitions the space recursively across the
dimension with the widest normalized range of values

and supports a limited version of local recoding. [2]

model the problem as clustering and propose a con-

stant factor approximation of the optimal solution, but
the bound only holds for the Euclidean distance met-

ric. [29] propose agglomerative and divisive recursive

clustering algorithms, which attempt to minimize the
NCP metric (to be described in Section 3.3). Our prob-

lem is not suitable for multidimensional recoding (after

modeling sets as binary vectors), because the dimen-
sionality of our data is too high; any multidimensional

grouping is likely to cause high information loss due to

the dimensionality curse. [20,19] studied multirelational

k-anonymity, which can be translated to a problem sim-
ilar to the one studied here, but still there is the funda-

mental separation between sensitive values and quasi-

identifiers. Moreover there is the underlying assumption

4

that the dimensionality of the quasi-identifier is limited,

since the authors accept the traditional unconditional
definition of k-anonymity.

In general, k-anonymity assumes that the set of QI
attributes is known. Our problem is different, since any

combination ofm items (which correspond to attributes)

can be used by the attacker as a quasi-identifier. Re-
cently, the concept of ℓ-diversity [17] was introduced

to address the limitations of k-anonymity. The latter

may disclose sensitive information when there are many

identical sensitive attribute (SA) values within an ano-
nymized group (e.g., all persons suffer from the same

disease). [28,31,7] present various methods to solve the

ℓ-diversity problem efficiently. [8] extends [28] for trans-
actional datasets with a large number of items per trans-

action, however, as opposed to our work, distinguishes

between non-sensitive and sensitive attributes. This dis-
tinction allows for a simpler solution that the one re-

quired in out setting, since the QI remains unchanged

for all attackers. [30] also considers transactional data

and distinguishes between sensitive and non-sensitive
items, but assumes that the attacker has limited knowl-

edge of up to p non-sensitive items in each transaction

(i.e., p similar to our parameter m). Given this, [30]
aims at satisfaction of ℓ-diversity, when anonymizing

the dataset and requires that the original support of

any itemset retained in the anonymized database is pre-
served. A greedy anonymization technique is proposed,

which is based on suppression of items that cause pri-

vacy leaks. Thus, the main differences of our work to

[30] is that we do not distinguish between sensitive and
public items and that we consider generalization instead

of suppression, which in general results in lower infor-

mation loss. [16] proposes an extension of ℓ-diversity,
called t-closeness. Observe that in ℓ-diversity the QI

values of all tuples in a group must be the same, whereas

the SA values must be different. Therefore, introducing
the ℓ-diversity concept in our problem is a challenging,

if not infeasible, task, since any attribute can be consid-

ered as QI or SA, leading to contradicting requirements.

In Section 5 we discuss this issue in more detail.

Related issues were also studied in the context of

data mining. [27] consider a dataset D of transactions,
each of which contains a number of items. Let S be a

set of association rules that can be generated by the

dataset, and S′ ⊂ S be a set of association rules that
should be hidden. The original transactions are altered

by adding or removing items, in such a way that S′

cannot be generated. This method requires the knowl-

edge of S′ and depends on the mining algorithm, there-
fore it is not applicable to our problem. Another ap-

proach is presented in [4], where the data owner gen-

erates a set of anonymized association rules, and pub-

lishes them instead of the original dataset. Assume a

rule a1a2a3 ⇒ a4 (ai’s are items) with support 80 ≫ k
and confidence 98.7%. By definition, we can calculate

the support of itemset a1a2a3 as 80/0.987 ≃ 81, there-

fore we infer that a1a2a3¬a4 appears in 81 − 80 = 1
transaction. If that itemset can be used as QI, the pri-

vacy of the corresponding individual is compromised.

[4] presents a method to solve the inference problem
which is based on the apriori principle, similar to our

approach. Observe that inference is possible because of

publishing the rules instead of the transactions. In our

case we publish the anonymized transactions, therefore
the support of a1a2a3¬a4 is by default known to the

attacker and does not constitute a privacy breach.

Concurrently to our work, a new approach for ano-

nymizing transactional data was proposed in [12]. The

authors introduce a top-down local recoding method,
named Partition using the same assumptions for data

as we do, but they focus on a stronger privacy guaranty,

the complete k-anonymity. They present a comparison
between their method and AA algorithm. Partition is

superior to AA, when large values of m are used by

AA to approximate complete k-anonymity1, However,
Partition is inferior to AA for a small m. Since both lo-

cal recoding algorithms we propose in this paper use the

AA algorithm, we are able to provide a qualitative com-

parison with the Partition algorithm. The comparison
appears in Section 6 and it is based on the experimental

results of [12] for the AA and Partition algorithms.

3 Problem Setting

Let D be a database containing |D| transactions. Each

transaction t ∈ D is a set of items 2. Formally, t is a non-

empty subset of I = {o1, o2, . . . , o|I|}. I is the domain

of possible items that can appear in a transaction. We

assume that the database provides answers to subset

queries, i.e., queries of the form {t | (qs ⊆ t)∧ (t ∈ D)},
where qs is a set of items from I provided by the user.

The number of query items in qs defines the size of

the query. We define a database as km-anonymous as
follows:

Definition 1 Given a database D, no attacker that

has background knowledge of up to m items of a trans-

1 It should be noted that even if m is equal to the maximum
record length, km-anonymity is not equivalent to k-anonymity,
as explained in [12].

2 We consider only sets and not multisets for reasons of sim-
plicity. In a multiset transaction, each item is tagged with a num-

ber of occurrences, adding to the dimensionality of the solution

space. We can transform multisets to sets by considering each

combination of (〈item〉,〈number of appearances〉) as a different

item.

5

action t ∈ D can use these items to identify fewer than

k tuples from D.

In other words, any subset query of size m or less,

issued by the attacker should return either nothing or

more than k answers. Note that queries with zero an-
swers are also secure, since they correspond to back-

ground information that cannot be associated to any

transaction.

3.1 Generalization Model

If D is not km-anonymous, we can transform it to a

km-anonymous database D′ by using generalization.

Generalization refers to the mapping of values from
an initial domain to another domain, such that sev-

eral different values of the initial domain are mapped

to a single value in the destination domain. In the gen-
eral case, we assume the existence of a generalization

hierarchy where each value of the initial domain can

be mapped to a value in the next most general level,

and these values can be mapped to even more gen-
eral ones, etc. For example, we could generalize items

“skimmed milk”, “choco-milk”, and “full-fat milk”, to

a single value “milk” that represents all three detailed
concepts. At a higher generalization level, “milk”, “yo-

gurt” and “cheese” could be generalized to “dairy prod-

uct”. The effect of generalization is that sets of items
which are different in a detailed level (e.g., {skimmed

milk, bread}, {full-fat milk, bread}) could become iden-

tical (e.g., {milk, bread}).

Formally, we use a generalization hierarchy for the
complete domain I of items that may appear in a trans-

action. Such an exemplary hierarchy is shown in Figure

1. In this example we assume I = {a1, a2, b1, b2}, items
a1, a2 can be generalized to A, items b1, b2 can be gen-

eralized to B, and the two classes A, B can be further

generalized to ALL.

A B

a1 a2 b1 b2

ALL

Fig. 1 Sample generalization hierarchy

If a generalization is applied to a transaction, this
leads to the replacement of some original items in the

transaction by generalized values. For example, the gen-

eralization rule {a1, a2} → A, if applied to all transac-

tions of the database D, shown in Figure 2a, will result

to the database D′, shown in Figure 2b. Notice that we
consider strict set semantics for the transactions; this

leads to possibly reduced cardinality for the generalized

sets. For example, t4 is transformed to t′4 which has two
items instead of three. We say that itemset t′4 is a gen-

eralization of itemset t4. Formally a generalized itemset

is defined as follows:

Definition 2 A itemset gt is a generalization of item-
set t iff ∀o(o ∈ t) ⇔ ((o ∈ gt) ∨ (g(o) ∈ gt))

Where g(o) stands for a generalization of item o.

id contents

t1 {a1, b1, b2}

t2 {a2, b1}

t3 {a2, b1, b2}
t4 {a1, a2, b2}

id contents

t′
1

{A, b1, b2}

t′
2

{A, b1}

t′
3

{A, b1, b2}
t′
4

{A, b2}

(a) original database (D) (b) transformed database (D′)

Fig. 2 Transformation using {a1, a2} → A

If we aim for 22-anonymity, database D in Figure 2a

is not secure, since there are 2-itemsets (e.g., {a1, b1})
that appear in less than k = 2 transactions (e.g., only in

t1). The application of the generalization rule {a1, a2} →

A to all transactions of D results in a 22-anonymous
databaseD′ (shown in Figure 2b). To test the anonymity

requirement, we have to translate all possible 2-itemsets

from the original domain, to the generalized domain
and count their supports in D′. For example, finding

the support of {a1, b2} in D′ is equivalent to finding

the support of {A, b2} in D′, which is 3 (≥ k). Notice

that, when testing an original itemset containing two
or more items that are mapped to the same generalized

value, this translates to testing a lower-cardinality set.

For example, {a1, a2} is generalized to {A} in D′, which
has a support of 4. Seeing A in the published dataset

one can only infer that {a1, a2} appears up to 4 times

in the original dataset.

All the proposed algorithms, except LRA, have a
global recoding approach [5,14] which applies the se-

lected generalization rules to all transactions in the

database. An example of global recoding has already
been shown in Figure 2. The LRA algorithm uses an

alternative local recoding generalization [15,2] that ap-

plies selected generalization rules to a subset of the

transactions and results in a database where items are
generalized at different levels in different transactions.

This allows more flexibility, and facilitates partitioning

of the anonymization procedure.

6

3.2 Possible solutions

A transformation of the original database D to a D′

is related to a set of generalizations that apply to do-

main I. Formally, the set of possible transformations

corresponds to the set of possible horizontal cuts of the
hierarchy tree. Each such cut, defines a unique set of

generalization rules. Figure 3 shows the possible cuts of

the hierarchy depicted in Figure 1 together with the cor-
responding generalization rules. Each cut corresponds

to a set of non-overlapping subtrees of the hierarchy,

which altogether span the complete domain I. The root

of each subtree corresponds to the generalization rule
which maps all values in its leaves to the label of the

root.

A B

a1 a2 b1 b2

ALL

no generalization

A B

a1 a2 b1 b2

ALL

{a1,a2} A

A B

a1 a2 b1 b2

ALL

{b1,b2} B

A B

a1 a2 b1 b2

ALL

{a1,a2} A

{b1,b2} B

A B

a1 a2 b1 b2

ALL

{a1,a2,b1,b2} ALL

Fig. 3 Possible domain generalizations

The trivial generalization I → ALL, suppresses the

whole database, since all items are replaced by a gen-

eralized value (e.g., “product”). This generalization al-
ways leads to a km-anonymous database, assuming that

the original database D has at least k transactions.

However, the transformation eliminates all information

from the database, making it useless. In Section 3.3 we
formally define the information loss of a generalization

rule (and a hierarchy cut).

The set of possible cuts also form a hierarchy, based

on the generalizations implied by them. Figure 4 shows
this hierarchy lattice for the cuts of Figure 3. We say

that cut c1 is a generalization of cut c2, denoted by

c1 ≻ c2, if the rules of c1 generalize the rules of c2. For

example, in Figure 4, cut 〈{a1, a2, b1, b2} → ALL〉 is
a generalization of cut 〈{a1, a2} → A〉. A cut can also

be denoted by the generalization it derives; e.g., cut

〈{a1, a2} → A〉 can be denoted as 〈A, b1, b2〉.

no generalization

{a1,a2} A {b1,b2} B

{a1,a2} A

{b1,b2} B

{a1,a2,b1,b2} ALL

Fig. 4 Hierarchy of domain generalizations

3.3 Information loss

All privacy-preserving transformations cause informa-

tion loss, which must be minimized in order to maintain

the ability to extract meaningful information from the
published data. A variety of information loss metrics

have been proposed. The Classification Metric (CM)

[13] is suitable when the purpose of the anonymized
data is to train a classifier, whereas the Discernibil-

ity Metric (DM) [5] measures the cardinality of the

anonymized groups. More accurate is the Generalized

Loss Metric [13] and the similar Normalized Certainty

Penalty (NCP) [29]. In the case of categorical attributes

NCP is defined with respect to the hierarchy. Let p be

an item in I. Then:

NCP (p) =

{

0, |up| = 1

|up|/|I|, otherwise

where up is the node of the item generalization hierar-

chy where p is generalized. |up| and |I| are the number

of leaves under up and in the entire hierarchy, respec-

tively. Intuitively, NCP tries to capture the degree of
generalization of each item, by considering the ratio of

the total items in the domain that are indistinguish-

able from it. For example, in the hierarchy of Figure 1,
if a1 is generalized to A in a transaction t, the infor-

mation loss NCP (a1) is 2/4. The NCP for the whole

database weights the information loss of each general-
ized item using the ratio of the item appearances that

are affected to the total items in the database. If the

total number of occurrences of item p in the database

is Cp, then the information loss in the whole database
due to the generalization can be expressed by:

NCP (D) =

∑

p∈I Cp ·NPC(p)
∑

p∈I Cp

The information loss of a particular generalization

(cut) ranges from 0 to 1 and can be easily measured.

7

If we scan the database D once and bookkeep the sup-

ports of all items in I, we can use this information
to measure the information loss of any generalization,

without having to access the database again. For exam-

ple the information loss due to cut 〈{a1, a2} → A〉 in
the database of Figure 2a is 2·0.5+3·0.5+0+0

11 = 2.5
11 .

In addition, to NCP , we introduce a more special-

ized information loss measure, which reflects the impact
of anonymization to the result of data mining on the

anonymized data. Themultiple level mining loss (ML2)

measure expresses the information loss in the detection
of multi-level frequent itemsets, when mining is per-

formed on the published dataset instead of the original

one. Mining a dataset at multiple levels of a generaliza-

tion hierarchy is a technique that has attracted inter-
est in the data mining literature [9,10], since it allows

detecting frequent association rules and frequent item-

sets that might not appear at the most detailed level of
the data. Assume for example that we have a dataset

that describes sales of a supermarket. When using the

original data, which contain items at the most detailed
product level, we might not detect any interesting fre-

quent itemset that associates a specific skimmed milk

product with a specific type of cookie. Still, if we gener-

alize the data (or move to a higher level of abstraction
in the terminology of [10]), we might be able to infer

that ’skimmed milk’ and ’cookies’ appear frequently to-

gether. When using a generalization-based method to
anonymize the original data, frequent itemsets at the

lower levels of the hierarchy might be hidden and the

correlations between the items can only be detected at
higher levels. ML2 expresses the percentage of all fre-

quent itemsets that do not appear at the appropriate

generalization level when a multilevel mining algorithm

is applied to the published dataset instead of the origi-
nal one. Formally:

ML2 = 1−

∑h
i FIi(Dp)

∑h
i FIi(D)

(1)

where FIi() returns the number of frequent itemsets

at generalization level i, and Dp and D stand for the
published and original dataset respectively.

We can further enhance the insight on the informa-

tion loss in multiple level data mining by tracing the
difference between the generalization level at which a

frequent item appears in the original data and the gen-

eralization level it first appears in the published data.

Assume, for example, that in the dataset with super-
market sales, one can infer that ‘skimmed milk 2%’ and

‘cookies 100g’ appear together at some hierarchy level l.

Since such a frequent itemset appears at level l, a more

generalized form of the itemset should appear at all lev-

els l′ > l. In the anonymized dataset generalizations can
possibly hide ’skimmed milk 2%’ or ’cookies 100g’, so

an itemset that expresses this correlation might firstly

appear at level l + d as {’skimmed milk’, ’cookies’}.
The difference d between level l where a frequent item-

set appears in the original data and level l + d, which

is the lowest level at which the same correlation is ex-
pressed in the published dataset can be used to define

the the differential multiple level mining loss (dML2).

More formally:

dML2 =

∑h
i

∑

fi∈FIi(D) dlevel(fi,D,Dp)
∑h

i FIi(D)
(2)

where dlevel(fi,D,Dp) returns the level difference be-
tween the generalization level at which a frequent item-

set fi first appears in the original data D, and the gen-

eralization level at which the same frequent itemset or
a more generalized form of it first appears in the pub-

lished data Dp. FIi(D) is the set of all frequent item-

sets at level i in D and FIi(D) is their total number.

Note, that the generalized form of a frequent itemset
might have a smaller arity than the original, if some of

the items have been generalized to a common ancestor.

In the rest of the paper, unless otherwise stated,

we will use the generic NCP metric when referring to

information loss. ML2 and dML2 are only used in our
experimental evaluation to assess the quality of our ano-

nymization techniques from a different prism.

3.4 Monotonicity

We now provide a property (trivial to prove), which is

very useful towards the design of algorithms that seek

for the best hierarchy cut.

Property 1 (Monotonicity of cuts) If the hierarchy

cut c results in a km-anonymous database D′ then all

cuts c′, such that c′ ≻ c also result in a km-anonymous
database D′′.

In addition, we know that if c′ ≻ c, then c′ has

higher cost (information loss) than c. Based on this and

Property 1, we know that as soon as we find a cut c
that satisfies the km-anonymity constraint, we do not

have to seek for a better cut in c’s ancestors (according

to the cut hierarchy). Therefore, for a database with

at least k transactions, there is a set C of cuts, such
that for each c ∈ C, (i) the km-anonymity constraint is

satisfied by the database D′ resulting after applying the

generalizations in c toD, and (ii) there is no descendant

8

of c in the hierarchy of cuts, for which condition (i) is

true.

We call C the set of minimal cuts. The ultimate

objective of an anonymization algorithm is to find one
of the optimal cuts copt in C, which incurs the minimum

information loss by transforming D to D′. In the next

section, we propose a set of algorithms that operate in
this direction.

4 Anonymization techniques

The aim of the anonymization procedure is to detect

the cut in the generalization hierarchy that prevents

any privacy breach and at the same time introduces

the minimum information loss. We first apply a system-
atic search algorithm, which seeks for the optimal cut,

operating in a fashion similar to Incognito [14]. This

algorithm suffers from the dimensionality of the gener-
alization space and becomes unacceptably slow for large

item domains I and generalization hierarchies. To deal

with this problem we propose heuristics, which instead
of searching the whole generalization space, they detect

the privacy breaches and search for local solutions. The

result of these methods is a cut on the generalization hi-

erarchy that guarantees km-anonymity, while incurring
low information loss. Before presenting these methods

in detail, we present a data structure, which is used by

all algorithms to accelerate the search of itemset sup-
ports.

4.1 The count-tree

An important issue in determining whether applying a

generalization to D can provide km-anonymity or not,

is to be able to count efficiently the supports of all the
combinations of m items that appear in the database.

Moreover, if we want to avoid scanning the database

each time we need to check a generalization, we must

keep track of how each possible generalization can affect
the database. To achieve both goals we construct a data

structure that keeps track not only of all combinations

of m items from I, but also all combinations of items
from the generalized databases that could be generated

by applying any of the possible cuts in the hierarchy

tree. The information we trace is the support of each
combination of m items from I, be detailed or gener-

alized. Note that, if we keep track of the support of all

combinations of size m of items from I, it is enough to

establish whether there is a privacy breach or not by
shorter itemsets. This follows from the Apriori princi-

ple that states that the support of an itemset is always

less or equal to the support of its subsets.

To count the supports of all these combinations and

store them in a compressed way in our main memory, we
use a count-tree data structure, similar to the FP-tree

[11]. An exemplary such tree for the database of Figure

2a and m = 2 is shown in Figure 5. The tree assumes
an order of the items and their generalizations, based

on their frequencies (supports) in D. For instance, the

(decreasing frequency) order of (generalized) items in
the database of Figure 2a is {ALL,A,B, a2, b1, b2, a1}.

To compute this order, a database scan is required. If

we want to avoid the scan, a heuristic approach is to

put the items in order of the number of detailed items
they generalize (e.g., {ALL,A,B, a1, a2, b1, b2}). How-

ever, since it makes no sense to count the number of

ALL occurrences (they are always |D|) and ALL can-
not be combined with any other item (it subsumes all

items), there is no need to include ALL in the tree.

The support of each itemset with up to m items can be
computed by following the corresponding path in the

tree and using the value of the corresponding node. For

example, the support of itemset {a1} is 2 (i.e., the value

of node a1) and the support of itemset {A, b2} is 3 (i.e.,
the value at the node where path A → b2 ends).

Algorithm 1 is a pseudocode for creating this tree.

The database is scanned and each transaction is ex-

panded by adding all the generalized items that can be
derived by generalizing the detailed items. Since we as-

sume strict set semantics, each generalized item appears

only once. The expansion of the database of Figure 2a
is shown in Figure 6. Note that the expansion does not

have to be done explicitly for the database; in practice,

we expand each transaction t read from D on-the-fly.
For each expanded transaction t, we find all subsets of t

up to size m that do not contain any two items i, j, such

that i is a generalization of j, we follow the correspond-

ing path at the tree (or create it if not already there)
and increase the counter of the final node in this search.

For example, the expanded transaction t2 in Figure 6

generates the following itemsets: a2, b1, A, B, {a2, b1},
{a2, B}, {b1, A}, {A,B}.

A

b2b1
2 2

a1
3

a2
3

a1
2

4

B
4

a2

3

b1

3

b2

3

a1

2

b1B
4 3

b2
3

b2
3

a1
2

a1
2

Fig. 5 Count-tree for the database of Figure 2

Although this tree facilitates fast support counting
for any ad-hoc set of m items or less, generalized in any

ad-hoc fashion, (i) it requires a large amount of memory,

and (ii) its construction incurs high computational cost,

9

id contents

t1 {a1, b1, b2, A,B}
t2 {a2, b1, A,B}

t3 {a2, b1, b2, A,B}

t4 {a1, a2, b2, A,B}

Fig. 6 Expanded Database

Algorithm 1 Creation of the tree for km anonymity
populateTree(D, tree, m)

1: for all t in D do ⊲ for each transaction
2: expand t with the supported generalized items
3: for all combination of c ≤ m items in the expanded t do

4: if ∄i, j ∈ c such that i generalizes j then

5: insert c in tree

6: increase the support counter of the final node

as all m-sized or less itemsets, generalized or not, in ev-
ery transaction t have to be found and inserted into the

tree. For a database with |D| transactions, each of size

τ , the tree construction cost is O(|D|·
(

τ
m

)

). Our best al-
gorithm, discussed in Section 4.4 greatly decreases this

cost, by examining the itemsets level-by-level and us-

ing the Apriori property to reduce the number of item

combinations that need to be inserted to the tree and
counted.

4.2 Optimal anonymization

To find the optimal cut, i.e., the generalization that sat-

isfies km-anonymity and has the least information loss,

we can examine systematically the generalizations in
the cut hierarchy, in a bottom-up, breadth-first fashion.

Initially, the cut cng that corresponds to no generaliza-

tion (i.e., bottommost cut in the hierarchy) is put in a
queue Q. While Q is not empty, we remove the first cut

c from it and examine whether c satisfies km-anonymity.

If so, it becomes a candidate solution. Any immediate
ancestors of c are marked as non-optimal (since they

cannot be minimal cuts) and removed from Q if they

appear there. The marked combinations are kept in a

hash table H, so they will not be added again in Q in
the future. The information loss of c is computed and

compared with that of the best found cut copt so far. If

c’s information loss is lower, then c replaces copt as the
optimal solution found so far.

If c does not satisfy km-anonymity, its immediate

ancestors in the hierarchy, which do not have a descen-

dant cut that satisfies km-anonymity, are added to the

queue of cuts Q to be examined at the next lattice lev-
els. The algorithm terminates as soon as Q is empty.

Algorithm 2 is pseudocode of this optimal anonymiza-

tion (OA) algorithm.

Note that the immediate ancestors of a cut c are cre-

ated constructively, by replacing a set of (generalized)
items which have common parent in the item hierar-

chy, by their parent. For example, cut 〈A,B〉 is derived

from 〈A, b1, b2〉, by replacing {b1, b2}, by B. This way
the complete hierarchy lattice of the cuts does not need

to be precomputed.

It is easy to see that when the size of I (and the cor-

responding generalization hierarchy of items) grows, the

algorithm becomes prohibitive expensive. In specific,
assuming that the item generalizations form a tree hier-

archy of node degree κ, then the number of possible cuts

is the solution to the recurrence T (N) = 1 + T (N/κ)κ,
for N = I, which is lower-bounded by 2N/κ, i.e., expo-

nential to N . Moreover, each iteration requires checking

the supports of all m-itemsets with respect to the corre-

sponding generalization, in order to determine whether
the current node satisfies km-anonymity or not. The

basic problem of the optimal algorithm is that it per-

forms its search based on the domain of the database. In
the next sections we present heuristic approaches that

greedily search for a domain generalization that pro-

vides km-anonymity to D and, at the same time, have
low information loss.

Algorithm 2 Optimal Anonymization algorithm
OA(D, I, k, m)

1: copt := null; copt.cost := ∞ ⊲ initialize copt
2: add cng to an initially empty queue Q

3: while (Q is not empty) do

4: pop next cut c from Q

5: if c does not provide km-anonymity to D then

6: for all immediate ancestors cans of c do

7: if cans does not appear in H then

8: push cans to Q

9: else ⊲ c provides km-anonymity to D

10: for all immediate ancestors cans of c do

11: add cans to H

12: if cans in Q then

13: delete cans from Q

14: if c.cost < copt.cost then

15: copt := c

16: return copt

4.3 Direct anonymization

The basic idea of our first heuristic algorithm, called

direct anonymization (DA), is to scan the count-tree

once for possible privacy breaches and then use the

generalized combinations to track down a solution that
solves each problem. Similarly to the optimal anonymi-

zation (OA) algorithm, this method is based on the pre-

computation of the complete count-tree for sets consist-

10

ing of up to m (generalized) itemsets. DA scans the tree

to detect m-sized paths that have support less than k.
For each such path, it generates all the possible general-

izations, in a level-wise fashion, similar to the optimal

anonymization (OA) algorithm, and finds among the
minimal cuts that solve the specific problem, the one

which incurs the lowest information loss.

Specifically, once the count-tree has been created,

DA initializes the output generalization cout, as the

bottommost cut of the lattice (i.e., no generalization).

It then performs a preorder (i.e., depth-first) traversal
of the tree. For every node encountered (correspond-

ing to a prefix), if the item corresponding to that node

has already been generalized in cout, DA backtracks,
as all complete m-sized paths passing from there cor-

respond to itemsets that will not appear in the gener-

alized database based on cout (and therefore their sup-
ports need not be checked). For example, if the algo-

rithm reaches the prefix path B-a2 the algorithm will

examine its descendants only if B and a2 have not al-

ready been further generalized. Note that this path will
be examined even if the items b1 and b2 have not been

generalized to item B. Due to the monotonicity of the

problem, we know that ifB-a2 leads to a privacy breach,
then it is certain that b1-a2 and b1-a1 lead to privacy

breach. Addressing the problem for the path B-a2 al-

lows the algorithm to avoid examining the other two
paths. During the traversal, if a leaf node is encoun-

tered, corresponding to an m-itemset J (with or with-

out generalized components), DA checks whether the

corresponding count J.count is less than k. In this case,
DA seeks for a cut that (i) includes the current general-

ization rules in cout and (ii) makes the support of J at

least k. This is done in a similar fashion as in OA, but
restricted only to the generalization rules that affect

the items of J . For example, if J = {a1, a2}, only gen-

eralizations {a1, a2} → A and {a1, a2, b1, b2} → ALL
will be tested. In addition, from the possible set of cuts

that solve the anonymity breach with respect to J , the

one with the minimum information loss is selected (e.g.,

{a1, a2} → A). The generalization rules included in this
cut are then committed (i.e., added to cout) and any

path of the count-tree which contains items at a more

detailed level (e.g., a1 and a2) than cout is pruned from
search subsequently. Algorithm 3 is a high-level pseu-

docode for DA.

As an example, assume that we want to make the

database of Figure 2a 22-anonymous. First, DA con-

structs the count-tree, shown in Figure 5. cout is ini-

tialized to contain no generalization rules. Then DA
performs a preorder traversal of the tree. The first leaf

node encountered with a support less than 2 is a1 (i.e.,

path a2-a1). The only minimal cut that makes {a2, a1}

Algorithm 3 Direct Anonymization
DA (D, I, k, m)

1: scan D and create count-tree
2: initialize cout
3: for each node v in preorder count-tree traversal do
4: if the item of v has been generalized in cout then

5: backtrack
6: if v is a leaf node and v.count < k then

7: J := itemset corresponding to v

8: find generalization of items in J that make J k-
anonymous

9: merge generalization rules with cout
10: backtrack to longest prefix of path J , wherein no item

has been generalized in cout

11: return cout

k-anonymous is {a1, a2} → A, therefore the correspond-
ing rule is added to cout. DA then backtracks to the

next entry of the root (i.e., b1) since any other path

starting from a2 would be invalid based on cout (i.e.,
its corresponding itemset could not appear in the gen-

eralized database according to cout). The next path to

check would be b1-b2, which is found non-problematic.
DA then examines b1-a1, but backtracks immediately,

since a1 has already been generalized in cout. The same

happens with b2-a1 and the algorithm terminates with

output the cut 〈{a1, a2} → A〉.

The main problem of DA is that it has significant

memory requirements and computational cost, because

it generates and scans the complete count-tree for all

m-sized combinations, whereas it might be evident from
smaller-sized combinations that several generalizations

are necessary. This observation leads to our next algo-

rithm.

4.4 Apriori-based anonymization

Our second heuristic algorithm is based on the apri-

ori principle; if an itemset J of size i causes a privacy

breach, then each superset of J causes a privacy breach.
Thus, it is possible to perform the necessary gener-

alizations progressively. First we examine the privacy

breaches that might be feasible if the adversary knows
only one item from each transaction, then two and so

forth till we examine privacy threats from an adversary

that knows m items.

The benefit of this algorithm is that we can exploit
the generalizations performed in step i, to reduce the

search space at step i+1. The algorithm practically it-

erates the direct algorithm for combinations of sizes

i = {1, . . . ,m}. At each iteration i the database is
scanned and the count-tree is populated with itemsets

of length i. The population of the tree takes into ac-

count the current set of generalization rules cout, thus

11

significantly limiting the combinations of items to be

inserted to the tree. In other words, in the count-tree
at level i, i-itemsets which contain items already gen-

eralized in cout are disregarded. Algorithm 4 is a pseu-

docode for this apriori-based anonymization (AA) tech-
nique.

Algorithm 4 Apriori-based Anonymization
AA (D, I, k, m)

1: initialize cout
2: for i := 1 to m do ⊲ for each itemset length
3: initialize a new count-tree
4: for all t ∈ D do ⊲ scan D

5: extend t according to cout
6: add all i-subsets of extended t to count-tree
7: run DA on count-tree for m = i and update cout

Note that in Line 5 of the algorithm, the current

transaction t is first expanded to include all item gen-

eralizations (as discussed in Section 4.1), and then all
items that are generalized in cout are removed from the

extended t. For example, assume that after the first loop

(i.e., after examining 1-itemsets), cout = 〈{a1, a2} →
A〉. In the second loop (i=2), t4 = {a1, a2, b2} is first

expanded to t4 = {a1, a2, b2, A,B} and then reduced

to t4 = {b2, A,B}, since items a1 and a2 have already
been generalized in cout. Therefore, the 2-itemsets to

be inserted to the count-tree due to this transaction

are significantly decreased.

The size of the tree itself is accordingly decreased
since combinations that include detailed items (based

on cout) do not appear in the tree. As the algorithm

progresses to larger values of i, the effect of pruned de-
tailed items (due to cout) increases because (i) more

rules are expected to be in cout (ii) the total num-

ber of i-combinations increases exponentially with i.
Overall, although D is scanned by AA m times, the

computational cost of the algorithm is expected to be

much lower compared to DA (and OA). The three al-

gorithms are compared in the Section 6 with respect to
(i) their computational cost and (ii) the quality of the

km-anonymization they achieve.

4.5 Local recoding

Local recoding has been used in traditional k-anonymity
and ℓ-diversity problems. It relies on generalizing ex-

isting values, but unlike global recoding, where all or

none of the occurrences of an item o are replaced with

a more generalized item g, the replacement here can be
partial; only some occurrences of o are replaced with

g. Local recoding can potentially reduce the distortion

in the data, by replacing o only in a neighborhood of

the data. The detection of a suitable neighborhood is

hard to achieve in a multidimensional setting, where it
is hard to detect data with similar values. Still, by using

local recoding we can process the database locally, i.e.,

only a part of the dataset is processed at each moment.
Even if the information loss is greater compared to the

AA algorithm, there is better potential for scalability,

since the database can be partitioned according to the
available memory.

As we discussed, the memory requirements for the

count tree that is used by the anonymization heuristics
can be significant. Algorithms like AA algorithm reduce

the count tree’s size, by progressively computing the

required generalizations for publishing a ki-anonymous,
i = 1, . . . ,m, database. Nevertheless, even AA does not

provide effective control over the memory requirements

of the anonymization procedure. If the database and the

items domain are large, AA might have requirements
that exceed the available memory.

The basic idea in the local recoding anonymization
(LRA) algorithm is to partition the original dataset,

and anonymize each part independently, using one of

the proposed algorithms (e.g., AA). It is easy to see

that if all parts of the database are km-anonymous,
then the database will be km-anonymous, too. If a part

is km anonymous, then each m-sized combination of

items would appear at least k times in this part. Unify-
ing this part with other database parts, cannot reduce

the number of appearances of any m-sized combination.

Hence, if all parts are km-anonymous, i.e. all m-sized
combinations of items appear at least k times in each

part, then the whole anonymized database (which is

their union) every m-sized combination will appear at

least k-times. By splitting the database into the desired
number of chunks, we can implicitly define the memory

requirements.

Local anonymization can affect the data quality in

two, conflicting, ways. On the one hand, it fixes a prob-

lem locally, thus it does not distort the whole database

in order to tackle a privacy threat. For example, assume
that we split the database in two parts D1 and D2 and

that items o1, o2, which are both specializations of item

g, appear 2 times each in D1 and 0 and 4 times in D2,
respectively. With k = 3, local anonymization would

generalize both o1 and o2 to g in D1, and it would leave

o2 intact in D2. On the other hand, the algorithm de-
cides whether there is a privacy breach at a local level,

and fails to see whether this problem holds when the

whole database is considered. For example, if we decide

to split database D to two parts D1 and D2, a combina-
tion c which appears 2k− 2 times (k > 2) and does not

pose any threat for the user privacy, might only appear

k − 1 times in both D1 and D2, thus causing general-

12

izations that could have been avoided. Intuitively, we

could mitigate this negative effect by mustering all the
occurrences of any item combination in a single chunk of

D. This is far from trivial to achieve, since each record

supports numerous different combinations. Splitting the
database in a way that we get both the desired number

of chunks and completely different item combinations

at each chunk is usually impossible. In the following we
propose a heuristic that tries to split the database into

the desired number of chunks, by minimizing the over-

lap of the sets of different combinations of items that

appear in each chunk.

Decimal Gray Binary

0 000 000

1 001 001

2 011 010

3 010 011

4 110 100

5 111 101

6 101 110

7 100 111

Table 1 Decimal, binary and gray coding of numbers

4.5.1 Partitioning by Gray code ordering

The Gray code [23] is a binary numeral system where

two successive values differ in only one digit (see Ta-

ble 1). Numbers that are relatively close will have rel-
atively similar Gray codings in terms of the placement

of 0s and 1s in their representation. In the information

theory terminology two successive values in the Gray
code system will have a Hamming distance of 1.3 The

Hamming distance between two strings or sequences of

equal length is the number of positions where the cor-

responding symbols are different.
We exploit the Gray code ordering in the follow-

ing way: For each item i of the domain I, we create

a signature with |I| bits, where the i-th bit is 1 and
all others are 0. Then, for each transaction of t of the

database D we create a signature of I bits by super-

imposing the signatures of the items that appear in t,
i.e., we perform an OR between the signatures. Having

transformed database D to a signature database D′,

we continue by sorting D′ according to Gray code or-

dering. We assume that each signature is a Gray code
and we sort them all in ascending order. An example of

this procedure is depicted in Figure 7. Since sequential

Gray codes have a Hamming distance of one, ordering
all signatures according their Gray ordering will bring

3 Assuming that all numbers are padded with 0s to have an

equal length representation

together transactions that are close in the Hamming

distance space. As a result of this ordering, transac-
tions which contain similar sets of items will be placed

in the same neighborhood. Thus, by partitioning the

Gray-sorted transaction, we have high chances of cre-
ating chunks having transactions with common item

combinations. This way, fewer generalizations will be

needed to anonymize each database chunk.

We chose to use gray code ordering as a basis for
our partitioning instead of some transaction clustering

algorithm for reasons of efficiency. Our basic motiva-

tion behind proposing a local recoding anonymization
method is to provide a more scalable solution than the

AA algorithm. To this end we opted for a computation-

ally cheap solution, like Gray code based sorting, over
some expensive clustering technique.

One consideration we have to take into account when

partitioning a dataset with the aforementioned ordering

is the average record size in each chunk. One side prod-
uct of the Gray-ordering is that transactions of the same

size will be positioned close to each other. If we naively

split the ordered database in chunks having equal num-
bers of transactions, then the number of m-sized com-

binations that appear in each chunk might vary sig-

nificantly if we have records of various sizes. Having a

skewed distribution of the m-sized combinations in the
database chunks greatly affects the quality of the so-

lution and the memory requirements. As both the size

of the count-tree and of the solution space are directly
affected by the number of m-sized combinations that

appear in the data, we should create chunks with ap-

proximately the same number of m-sized combinations
and not the same number of transactions. To estimate

the total number of combinations, an initial scanning

of the database has to be performed. Note that the

computational overhead is small, since the number of
m-sized combinations C of each transaction needs only

to be calculated once for each different transaction size

s. Then, we simply calculate the product of C and the
number of transactions with length s. This calculation

introduced only an insignificant overhead in our exper-

iments, which could further be reduced with the help
of sampling.

4.5.2 Flexible borders

LRA even with Gray ordering has a weakness; if an

item of one class appears very few times in a database

chunk, then it will cause all its siblings to be generalized

even if they pose no privacy threat. A way to tackle this
problem is to allow some flexibility in the partitioning

of the database. Assume that we have a database and

we want to process it in 4 chunks. A straightforward

13

a1 0001

a2 0010

b1 0100
b2 1000

id contents Gray code decimal

t1 {a1, b1, b2} 1101 9
t2 {a2, b1} 0110 4

t3 {a2, b1, b2} 1110 11

t4 {a1, a2, b2} 1011 13

id contents Gray code decimal

t2 {a2, b1} 0110 4
t1 {a1, b1, b2} 1101 9

t3 {a2, b1, b2} 1110 11

t4 {a1, a2, b2} 1011 13

Fig. 7 Sorting the database using gray code ordering

approach would be to split it in four chunks with an

equal number of m-sized combinations. When we per-
form the split, some items might end up at the wrong

chunk, i.e., a single appearance of item i, which is very

common in the first chunk, might end up at the second
chunk. This has a significant impact on the quality of

the data. The appearance of a unique item and subse-

quently unique item combinations, might require gen-
eralizing many other sibling items in order to guaran-

tee the km-anonymity. To minimize the effect of having

items in the wrong chunk, we allow the algorithm to

create chunks that deviate up to f transactions from
the initial partitioning. The algorithm chooses where

to split the database by selecting the pair or successive

transactions th, th+1 that have the maximum Hamming
distance among all other pairs of successive transactions

in the region of [teq−f , teq+f), where teq is the transac-

tion where the equal size chunk teq would end.

Algorithm 5 Local Recoding Anonymization
LRA(D, I, k, m)

1: GrayPartitioning(D,D1, . . . , Dn)

2: for all Di in D1, . . . , Dn do

3: Dipub
:=AA(Di,I, k, m)

4: insert Dipub
to Dpub

5: return Dpub

Algorithm 6 Gray ordering & partitioning
GrayPartitioning(D, D1, . . . , Dn)

1: D′ = ⊘ ⊲ empty signature database
2: for all t in D do ⊲ for each record of D
3: create signature st of t

4: insert st to D′

5: sort D′ by Gray code ordering

6: for all Di in D1, . . . , Dn do

7: Find the pair (th,th+1) in [t
i×

|D|
n

−f
, t

i×
|D|
n

+f
) of maxi-

mum Hamming distance
8: from unassigned records of D′ assign records t ≤ th to Di

The pseudocode for the LRA algorithm is presented

in Algorithm 5 and for the Gray code partitioning in
Algorithm 6. The main anonymization algorithm sim-

ply invokes the GrayPartitioning procedure to cre-

ate the desired database chunks D1, . . . , Dn, and then

anonymizes each chunk using AA. TheGrayPartitioning

procedure first creates the transaction signatures, by
setting the bits at the positions corresponding to the

items included in each transaction, then sorts the signa-

tures, and finally creates the database chunks, following
the flexibility heuristic.

4.5.3 Parallelization

An additional benefit of partitioning the database into
chunks and solving the anonymization problem for each

of them is that the anonymization procedure can be

parallelized. The parallelization of the LRA algorithm
is trivial; as the local problems at each chunk are in-

dependent, they can directly be parallelized. Thus the

total execution time reduces to that of partitioning the

dataset plus solving the most expensive sub-problem.

4.6 Anonymization by vertical partitioning

The generalization model as described in Section 3.1

groups together different items that are semantically

related, i.e., they belong to the same class. In Section
4.5 we saw that a crucial point in splitting the database

is to group related points (and combinations of points)

together. The Vertical Partitioning Anonymization al-

gorithm (VPA), instead of splitting the database hor-
izontally, i.e., retaining the original transactions but

processing only some of them, it splits the database

vertically; all transactions are processed, but only se-
lected items are taken into account at each step. The

idea is that if we process only a subset of I, the size of

the count tree will be smaller, but at the same time all
combinations of these items will be taken into account.

There are two important issues in this approach: a) how

to select the items that will be processed at each step

and b) what to do with the combinations that are com-
posed by items processed at different steps.

The partitioning of the domain I should group to-

gether items that belong to the same class, and classes

that belong to the same superclass. Since the general-

ization model relies on replacing the members of a class
with a generalized representative value, the effective-

ness of the generalization depends on how many mem-

bers of a class will appear on the same database part.

14

Independently of the original item and class identifiers,

it is possible to sort I in such a way that each class
will contain a contiguous region of items in the order of

I as depicted in Figure 8. For reasons of simplicity we

assume that I is sorted this way, so that we can eas-
ily split the domain in the desired number of regions.

The partitioning of the domain can take place at dif-

ferent hierarchy levels. If we want to split the database
in 3 parts, we can simply split the items that appear

in the leaf level of the generalization hierarchy in three

equal sized groups. Alternatively, we can perform a par-

titioning of the items that splits the classes of level 1 in
three groups with approximately the same number of

items, or the classes of level 2 etc. Creating a partition-

ing that splits items according to their membership to
high level classes has a positive impact on the quality of

the data. Since generalization will group together data

from the same classes, there is a significant benefit in
having all the items of a class in the same chunk. Split-

ting the items in the leaf level does not guarantee that

all classes will have all their items in the same chunk,

especially the high level ones. For example, partitioning
the items according to their level 1 classes, guarantees

that all level 1 classes will have their items in the same

chunk. The same holds for any other level. The tradeoff
for partitioning I in a high level is that the algorithm

has less control over how many items will end up in each

chunk. Different classes might have different sizes and in
high levels there might not exist enough classes to uni-

formly distribute them to different chunks, as in Figure

8. The memory requirements depend on the maximum

memory required by the different algorithm steps. If
too many items and combinations are examined in one

step, the algorithm’s memory requirements might be

significantly greater compared to a more uniform par-
titioning.

A B

a1 a2 b1 b2

ALL

C

c1 c2 c2

Splitting at the first class level

Splitting at the leaf level
Fig. 8 Splitting the domain at different hierarchy levels

The pseudo-code for the VPA algorithm is depicted

in Algorithm 7. Processing at each step only a part Ii
of I ensures that all combinations of items from only

Algorithm 7 Vertical Partitioning Anonymization
VPA(D, I, k, m)

1: partition I to I1, . . . , In
2: for all Ii in I1, . . . , In do

3: Di = project D to Ii
4: HCi=AA(Di, Ii, k, m) ⊲ keep only hierarchy cuts

5: insert HCi to HCtemp ⊲ store all temporary HC

6: AA(D, I, k, m) ⊲ anonymize based on HCtemp

Ii are taken into account in the anonymization. The

same holds for all parts of I, I1, . . . , In. However, com-
binations that contain items from multiple parts of I

have not been examined at any step (e.g., combination

{a1, b1}, assuming a1 ∈ I1 and b1 ∈ I2). To deal with

these combinations we perform a final step where all
items of I are taken into account (i.e., as in the original

AA algorithm). To this end, we rescan the database and

anonymize the whole data. However, instead of exam-
ining all m-sized combinations from I, we consider all

generalizationsHCtemp that have been done at any pre-

vious step as committed. This means that the anonymi-
zation search space is significantly smaller than directly

applying AA to D (i.e., without considering HCtemp).

For example if items a1 and a2 have been generalized

to item A in HCtemp, when we rescan the database
we replace any appearance of a1 or a2 with A and we

trace in the count tree only the appearances on A. The

algorithm has an increased I/O cost compared to the
AA and LRA algorithms since it must scan the data

3 times and write them once. VPA performs an initial

scan to partition D into chunks according to I1, . . . , In
and store them to temporary files; it then reads the

partitions one by one for anonymization. Finally, the

original database in scanned again for the final anony-

mization. As the dominant factor of the anonymization
process is the computational cost, the increased I/O

cost of VPA compared to LRA and AA is insignificant

compared to the benefit in computational savings, as
we will show in Section 6.

Despite the partitioning of the anonymization pro-

cesses in several steps, VPA performs global recoding,
i.e., all the appearances of the items of a class are gen-

eralized and not only a part of them. A significant ad-

vantage of VPA is that we have explicit control in the

partitioning of I, thus better control in the number of
item combinations in each partition, which is the dom-

inant cost factor of the anonymization process.

4.6.1 Parallelization

The VPA algorithm, like LRA, can be easily paral-

lelized, as the processing of each chunk can be per-

formed independently. Since there is an essential final

15

pass over the whole database, the cost is determined

by the two database scans (one in the beginning for the
data partitioning and the final pass in the end) plus the

cost of anonymizing the most expensive partition.

5 Negative knowledge and ℓ-diversity

In this section, we discuss the impact of negative knowl-
edge in k-anonymity. In addition, we outline the reasons

that make the concept of ℓ-diversity hard to apply in

our privacy problem and provide an ℓ-diversity defini-
tion for cases where such a concept can be applied.

5.1 Negative knowledge

An important issue in privacy preservation is the treat-

ment of negative knowledge: the fact that an attacker

knows that a record does not contain a certain item.
This problem is more evident in multidimensional data,

since in relational data nulls in quasi identifiers are usu-

ally treated as all other values. Negative knowledge act-
ing as an inference channel for guessing sensitive values

is studied in [4]: knowing that a value does not exist in

a record can be exploited to breach privacy in several

cases. Negative knowledge can be used in the context
of this paper to isolate fewer than k-tuples for a given

combination ofm or fewer items; still, we opted to focus

on positive knowledge for three reasons:

1. Taking into account negative knowledge in a tradi-

tional privacy guaranty, like k-anonymity, will lead

to extensive information loss due to the curse of di-
mensionality [1]. Forfeiting negative knowledge was

one of the mechanisms we used to reduce this cost.

We believe it offers a good trade-off since nega-
tive knowledge is fairly weak. Transactional data

are usually sparse, containing only a small subset

of the itemset domain. This means that positively

knowing an item that appears in a transaction is a
lot more identifying than knowing an item that does

not.

2. Apart from being weaker, negative knowledge is usu-
ally a lot harder to obtain in most practical sce-

narios. E.g., in a supermarket a customer usually

buys tenths of different products and never buys
thousands of them. Not only is the knowledge of

those she does not buy unimportant compared to

the knowledge of those that she buys, but also is it a

lot harder to obtain this knowlegde. For a casual ob-
server she has to follow all visits of the customer to

the supermarket in order to make sure that a prod-

uct is not bought, but she only has to observe the

customer for a limited time to know the buying of

certain products. The same goes for more powerful
attackers who might be able to trace the consump-

tion of whole product series (for example through

promotional campaigns for certain products, that
require users to register); it is easier to acknowledge

that someone exploited the promotion and bought

a product than to rule out that someone has not
bought it.

3. Finally, we have left negative knowledge out of the

scope of our discussion for reasons of simplicity. The

km-anonymity guaranty can easily be extended to
take into account negative knowledge. Instead of

considering m-sized combinations of items that ap-

pear in a record, we have to consider any m-sized
combination of items whether they appear in a record

or not. To make this more clear, assume that we

populate each record with the negation of each prod-
uct that does not appear in it; e.g., for a user that

has bought only products a and b, we should mark

{a, b,¬c,¬d} (assuming that our domain contains

only items a, b, c, d). Using such a representation
we can generalize our privacy guarantee so that the

anonymized dataset will consider allm-combinations

of any positively or negatively traced product in the
records. In other words, any combination of m items

that are associated or not associated with a per-

son, will appear at least k times in the anonymized
database. For instance, for m = 3 {a, b,¬c} can act

as quasi identifier. For a dataset to be k3 anony-

mous, this quasi identifier has to appear at least k

times.

5.2 ℓm-diversity

An important weakness of the k-anonymity guaranty is
that it does not prohibit an adversary from uncovering

certain values that are associated to a person. For ex-

ample assume that a database D contains three records

that are all identical: a, b, s1, where a and b are quasi
identifiers and s1 a sensitive value. The database might

be 3-anonymous, but an adversary that knows a per-

son which is associated to values a and b can be certain
that the same person is associated with value s1 too.

To tackle this problem the authors of [17], proposed

the ℓ-diversity guaranty where any person cannot be
associated with less than ℓ sensitive values. ℓ-diversity

practically leads to the creation of equivalence classes,

where each set of quasi identifiers is associated with at

least ℓ different sensitive values. This way linking pub-
lic knowledge (quasi identifiers) to sensitive knowledge

cannot be done with certainty. There are basically three

problems with applying ℓ-diversity in our context:

16

1. Without the distinction between sensitive and non-

sensitive values, the ℓ-diversity guaranty implies a
requirement contradictory to almost all utility met-

rics. While utility metrics try to preserve the statis-

tical properties and the correlation between items,
ℓ-diversity requires that no itemset can be associ-

ated with any other itemset with probability higher

than 1/ℓ. Practically the dataset would be rendered
useless if all data were to be treated both as sensi-

tive and as quasi identifiers. ℓ-diversity is applicable

only if are able to clearly differentiate between items

that are quasi identifiers and items that are sensi-
tive.

2. In most practical applications it would be hard to

characterize as sensitive and non-sensitive the items
that might appear in a dataset. While in the rela-

tional context only few attributes have to be charac-

terized, here we must have this knowledge for each
item in a large domain.

3. Even if we knew which items are sensitive and which

are not, sensitive items can still act as quasi identi-

fiers. For example if sensitive items s1, s2, s3 appear
in a single record, in many practical scenarios we

cannot rule out the possibility that an adversary

has somehow managed to associate s1 and s2 with
a specific person. Then she would be able to use

these sensitive items to associate s3 with the same

person.

Despite the aforementioned problems, there can still

be cases where a practical distinction can be made be-

tween sensitive values and quasi identifiers. The dis-
tinction also implies that sensitive values cannot act

as quasi identifiers, i.e., there is no guarantee if the

adversary manages somehow to learn some of the sen-
sitive values. In this setting we can easily adapt the

km-anonymity concept to ℓm-diversity.

Definition 3 Given a database D where all items are

either quasi identifiers or sensitive values, no attacker

that has background knowledge of up to m quasi iden-
tifier items of a transaction t ∈ D can associate these

items with any combination of sensitive values with

probability 1/ℓ.

The difference of ℓm-diversity from km anonymity is

that ℓm-diversity considers only a subset of D as quasi
identifiers and has a different privacy criterion when

checking if a combination of quasi identifiers can lead

to a privacy breach. Adjusting our algorithms to guar-

antee ℓm-diversity is rather straight-forward. We now
only have to consider combinations of items that can

act as quasi-identifiers, thus the count tree has to be

built solely on them. Instead of using the support of a

combination c, s(c) as a criterion for privacy breaches

we have to also use the support of the most frequent
sensitive itemset s, sup(s) that co-appears with c. If
sup(s)
sup(c) > 1

l then there is a privacy breach and items
from c have to be generalized. The criterion for choos-

ing the items remains the same: we choose the gener-

alization that solves the problem and has the lowest
cost. The problem is solved if the resulting combina-

tion c′ has a ratio sup(s′)
sup(c′) ≤ 1

l , where s′ is the most

frequent combination of sensitive items that appears in
the records that contain c′. Since only quasi identifiers

get generalized, the support of their combinations rises

(whereas the support of sensitive items in D remains
stable), thus ultimately ℓm-diversity will be achieved.

6 Experiments

We evaluated experimentally the proposed anonymiza-

tion techniques, i.e., the OA, DA, AA, LRA and VPA

algorithms, by applying them on data stemming from

real world applications. The implementation was done
in C++ and the experiments were performed on a core-

2 duo 2.8GHz CPU server, with 2Gb memory, running

Linux.
OA, DA, and AA use the count-tree to evaluate their

candidate generalization, thus they avoid scanning the

actual database for this purpose. To construct the tree,
OA and DA scan the database once, and AA scans it

m times (as one tree is constructed for each set cardi-

nality). The tree is kept in main memory at all times.

LRA sorts the database and then scans it once for ano-
nymizing each partition, whereas VPA scans it three

times as described in Section 4.5. We assume that the

local partitions of LRA and VPA fit in memory; thus,
although AA is used as a module by these methods to

perform local anonymization and AA may have to scan

the partition more than once, there is no extra I/O cost.
In the following, we detail the experimental setup, the

performance factors we trace, and the parameters we

vary.

6.1 Experimental Setup

6.1.1 Evaluation metrics

We evaluate our algorithms with respect to three per-

formance factors: a) total execution time, b) memory

requirements and c) information loss. We do not mea-

sure the I/O cost explicitly, as all methods are CPU-
bound (due to the high complexity of checking all m-

combinations of items in the worst case). The memory

requirements are dominated by the count-tree so we

17

report the memory usage in terms of tree nodes gen-

erated. Finally, we measure the information loss using
the NCP measure we introduced in Section 3.3.

6.1.2 Evaluation parameters

We investigate how our algorithms behave in terms

of several parameters: (i) the domain size |I|, (ii) the

database size |D| in terms of number of transactions,
(iii) parameters m and k of the km-anonymity model,

and (iv) the height h of the hierarchy tree, assuming a

balanced tree with |I| leaves.

6.1.3 Datasets

To have a realistic setting for our experimental eval-
uation, we used three real word-datasets introduced in

[32]: BMS-POS, BMS-WebView-1 and BMS-WebView-

2. Dataset BMS-POS is a transaction log from several

years of sales of an electronics retailer. Each record rep-
resents the products bought by a customer in a single

transaction. The BMS-WebView-1 and BMS-WebView-

2 datasets contain clickstream data from two e-commerce
web sites, collected over a period of several months. The

characteristics of each dataset are detailed in Figure 9.

All experiments, except those of Fig. 10-12 were run

on the original datasets. We found that the OA and

the DA algorithms cannot deal with datasets that have

very large domains (DA runs out of memory because

it performs no pruning to the combinations of items
inserted to the count-tree, and OA does not provide a

solution within reasonable response time, i.e., several

hours). Still, to be able to evaluate how our heuris-
tics compare to the optimal algorithm in terms of in-

formation loss we created several smaller datasets with

data originating from BMS-WebView-2 in the following
way. We took the first 2K,5K,10K and 15K records and

created four new datasets. Moreover, we had to limit

the items domain to only 40 distinct items, so that we

could have some results from the OA algorithm which
scales the worst compared to the other methods in the

domain size. To investigate how OA scales when the

domain grows we created two more datasets with 10K
records from BMS-WebView-2 with a domain size of

50 and 60 (for larger domains the algorithm did not re-

spond in a reasonable time). We reduced the domain by
performing a modulo on the items ids and sequentially

removing the duplicates.

Unfortunately, we did not have any real hierarchies

for the data, so we constructed some artificial ones. We
created those by choosing a fanout for each node in the

hierarchy tree, that is a default number of values that

are generalized in a direct generalization. For example

if we decide on a fanout of n, then each generalization

from one level to another generalizes n items. If the
size of the domain is not divided by n, some smaller

generalization classes can be created. We used an aver-

age fanout of 5 for the original datasets and a average
fanout of of 4 for the smaller datasets.

dataset |D| |I| max |t| avg |t|

BMS-POS 515,597 1,657 164 6.5

BMS-WebView-1 59,602 497 267 2.5

BMS-WebView-2 77,512 3,340 161 5.0

Fig. 9 Characteristics of the datasets (|t| stands for transaction
size)

6.2 Experimental Results

Figures 10a and 10b show how the computational cost

and memory requirements of the algorithms scale with

the increase of the database size |D|, after fixing the
remaining parameters to |I| = 40, k = 100, m = 3, and

h = 4. As described above, we used prefixes of BMS-

WebView-2 for this purpose. The figure shows that OA
and DA have identical performance, which increases lin-

early to the database size. This is due to the fact that

the performance of these methods rely on the size of

the count-tree which is not very sensitive to |D|, as the
distinct number of m-itemset combinations does not in-

crease significantly. On the other hand, AA is initially

much faster compared to the other methods and con-
verges to their cost as |D| increases. This is expected,

because as |D| increases less i-length itemsets for i < m

become infrequent. As a result, AA is not able to sig-
nificantly prune the space of m-itemsets to be included

in the count-tree at its last iteration, due to generaliza-

tions performed at the previous loops (where i < m).

This is also evident from the memory requirements of
AA (i.e., the size of the count-tree at the m-th iter-

ation) which converge to the memory requirements of

the other two algorithms. Nevertheless, as we will see
later, AA does not have this problem for realistic item

domain sizes (|I|). Figure 10c shows the information

loss incurred by the three methods in this experiment.
Note that all of them achieve the same (optimal) loss,

which indicates the ability of DA and AA in finding the

optimal solution. This behavior is a result of the limited

domain size, which leads to a relatively small solution
space. In this space the AA and DA manage to find the

same, optimal cut.

Figure 11 shows the effect of the domain size |I| on

the performance of the three methods, after fixing |D| =

18

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14

se
co

nd
s

|D| in 1000s

AA

DA

OA

 0

 5000

 10000

 15000

 20000

 2 4 6 8 10 12 14

tr
ee

 n
od

es

|D| in 1000s

AA

DA

OA
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 2 4 6 8 10 12 14

N
C

P

|D| in 1000s

AA

DA

OA

(a) time vs. |D| (b) memory vs. |D| (c) information loss vs. |D|

Fig. 10 Effect of database size on the performance of the algorithms

 0

 20

 40

 60

 80

 100

 120

 40 45 50 55 60

se
co

nd
s

|I|

AA

DA

OA

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 40 45 50 55 60

tr
ee

 n
od

es

|I|

AA

DA

OA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 40 45 50 55 60

N
C

P

|I|

AA

DA

OA

(a) time vs. |I| (b) memory vs. |I| (c) information loss vs. |I|

Fig. 11 Effect of domain size on the performance of the algorithms

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4

se
co

nd
s

m

AA

DA

OA

 10

 100

 1000

 10000

 100000

 1e+006

 1 2 3 4

tr
ee

 n
od

es

m

AA

DA

OA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1 2 3 4

N
C

P

m

AA

DA

OA

(a) time vs. m (b) memory vs. m (c) information loss vs. m

Fig. 12 Effect of m on the performance of the algorithms

10K, k = 100,m = 3, and h = 4 (again a prefix of BMS-

WebView-2 is used). The results show that the costs of
DA and AA increase linearly with the item domain size,

however, OA has exponential computational cost with

respect to |I|, as expected by our analytical results. The
memory requirements of OA and DA increase super-

linearly with |I|, while AA achieves better scalability,

due to its ability to prune items at early iterations.
This does not compromise the information loss of the

algorithm, which is the same as that of the optimal

solution by OA.

In the next experiment, we change the value of m,

fix the values of other experimental parameters (|D| =

10K, |I| = 40, k = 100, h = 4), and compare the

three algorithms on the three performance factors. As
shown in Figure 12, the CPU-time of OA and DA does

not scale well with m (exponential), while the cost of

AA increases linearly. This is due to the exponential
increase of the size of the count-tree used by these two

algorithms. Again, AA achieves better scalability, due

to the early generalization of a large number of items.
The information loss of DA and AA is very close to that

of the optimal solution.

In the next set of experiments (depicted in Fig-

ure 13), we measure the computational cost (in msec),

memory requirements (in number of nodes in the count-

19

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

time memory NCP

POS
WV1
WV2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1 10 100 1000

k

time
nodes

loss

(a) AA on three real datasets (b) effect of k (POS)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 4 5 6 7

h

time
nodes

loss

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 2 3 4

m

a-time
a-nodes

a-loss

(c) effect of h (POS) (d) effect of m (POS)

Fig. 13 Apriori algorithm on the original datasets

tree), and information loss of the AA algorithm for

large, realistic problems, where OA and DA cannot run.

We used the same three datasets described in Figure

9, abbreviated as POS, WV1, and WV2, respectively.
First, we show the performance of AA on all three

datasets by setting m=3, k=5, and the fanout of each

node in the generalization hierarchies of all domains to
5 (this results in h = 6, h = 5, and h = 7, for POS,

WV1, and WV2, respectively). Figure 13a shows that

AA runs in acceptable time, generating a manageable
count-tree, and producing a solution of low information

loss (maximum 3%). Figure 13b shows the performance

of AA on the POS dataset, after varying k and keeping

the values of m and h fixed. The plot shows that both
the computational cost and the memory requirements

are insensitive to k. Figure 13c, fixesm and k and varies

h. Note that for smaller values of h AA is faster but pro-
duces worse solutions. For h = 4, in specific, AA fails

to find a non-trivial generalization of the dataset (note

that this was the only experimental instance where AA
performed badly). For all other values the quality of the

solution is very good (information loss close to 1%). Fi-

nally, Figure 13d shows how the performance is affected

by varying m while fixing k and h. Time increases as m
grows and the solution found becomes slightly worse in

terms of information loss (but within acceptable limits).

This is expected, as m increases the maximum length

of itemsets to be checked and the size of the tree, ac-

cordingly.

In summary, AA is a powerful heuristic for solv-
ing km-anonymity problems of realistic sizes, where the

application of an optimal solution is prohibitively ex-

pensive.

6.2.1 The LRA and VPA algorithms

The performance of the LRA and VPA algorithms is

evaluated in Figures 14-19. Again we measure total ex-

ecution time, maximum memory required in terms of

tree nodes and the NPC information loss as defined in
Section 3.3. Unless explicitly stated otherwise, we per-

form our experiments on the BMS-POS dataset, with

k = 5,m = 3, flexibility = 10 (for LRA), partition level =
1 (for VPA; 0 is the leaf level) and we split the database

in 3 parts for both the LRA and VPA algorithms.

Figure 14 shows how the algorithms behave on all
the three datasets. We also plot the performance of AA

as a point of reference. A surprising result at a first

glance is the poor performance of the LRA method.

While the information loss is only slightly increased
w.r.t. to AA, the LRA has significantly greater memory

requirements and execution time, especially for WV1.

The explanation lies in the skewed distribution of record

20

 0

 500

 1000

 1500

 2000

POS WV1 WV2

se
co

nd
s

AA

LRA

VPA

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

POS WV1 WV2

tr
ee

 n
od

es

AA

LRA

VPA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

POS WV1 WV2

N
P

C

AA

LRA

VPA

(a) time (b) memory (c) information loss

Fig. 14 Performance on the three datasets

sizes in WV1. This dataset has average record length

of 2.5, but contains some very large records, with more
than 200 items each. The Gray code ordering brings to-

gether records that not only have small Hamming dis-

tance, but they also have similar sizes. LRA partitions
the database w.r.t. to the number of m-sized combina-

tions that lie in each chunk, thus we end up with chunks

that have few large records and others that have numer-
ous small records. Large records support all combina-

tions between their items, i.e., they completely support

a subspace of the space of combinations of the items of

I. As a consequence the chunks with few large records
usually have few privacy threats and few generalizations

are performed. The fewer generalizations greatly reduce

the pruning in the the count-tree, thus the memory re-
quirements and the time to construct the larger count

tree is greatly increased for these chunks. As it can be

seen in Figure 18, if we increase the number of chunks
we can limit the memory requirements, but still LRA

cannot beat VPA.

The most efficient method, as indicated by Figure

14, is VPA. It requires significantly less memory and
execution time than the other algorithms and incurs

an information loss similar to the information loss of

AA. The superiority of VPA lies in the fact that we

have better control over the partitioning of the anony-
mization space, which is affected mainly by the number

of item combinations considered at the anonymization.

This number is significantly smaller at the partitions of
VPA, which are well-balanced according to this factor,

compared to the partitions of LRA and of course the full

itemset space examined by AA. Moreover, in the final
step of VPA, when the whole dataset is anonymized, the

solution space has already been substantially pruned.

In Figure 14c we can see that VPA manages to have

marginally better information loss that AA. As they
are both heuristics, there is no guarantee on their rela-

tive information loss. The two methods perform differ-

ent generalizations at the initial steps, which sometimes

turn out to be better in the case of VPA. This result

does not reflect the general case; our complete exper-
imental view shows that AA is in generally (slightly)

better than VPA in terms of information loss.

Figures 15 and 16 depict the effect that k and m

have in the performance of the algorithms (using the

BMS-POS dataset). First we fix all other parameters
and we vary k = 5, 20, 100, 1000. The VPA algorithm

is significantly faster and requires less memory than

the other two, offering an information loss comparable
to AA’s for small k. For a very large k, all algorithms

are fast and have small memory requirements, since the

generalizations that take place at the first level of AA

(which is used by both LRA and VPA) significantly re-
duce the domain. At the same time, we can see that

the information loss introduced by the LRA and VPA

becomes significantly larger for k = 1000, since it is
harder for them to create combinations with support

k in the partition of the database that is at their dis-

posal at each step. To examine the effect of m, we fix all
other parameters and vary m = 1, 2, 3, 4. As m grows

and more item combinations must be examined, VPA

and LRA scale much better than AA, with VPA consis-

tently being much faster than the other methods. Both
LRA and VPA demonstrate a behavior similar to AA in

terms of information loss. Figure 17 shows the behavior

of the algorithms w.r.t. to different generalization hier-
archy heights. A high level signifies a more refined hier-

archy and less information loss. On the other hand, the

increase of h increases the solution space, meaning that
the algorithms may have to spend more effort to reach a

solution. Note that VPA has significantly smaller mem-

ory requirements than the other two methods. LRA and

AA have similar performance, with LRA being better
when the partitioning manages to cluster items from

the same classes well, and worse when it does not.

In Figure 18 we investigate the effect of factors unique

to the LRA and VPA algorithms. Figures 18a and 18b

show the effect of database partitioning. In the horizon-

21

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 10 100 1000

se
co

nd
s

k

AA

LRA

VPA

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 1 10 100 1000

tr
ee

 n
od

es

k

AA

LRA

VPA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 10 100 1000

N
P

C

k

AA

LRA

VPA

(a) time vs. k (b) memory vs. k (c) information loss vs. k

Fig. 15 Effect of k on the performance of the algorithms

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5

se
co

nd
s

m

AA

LRA

VPA

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 0 1 2 3 4 5

tr
ee

 n
od

es

m

AA

LRA

VPA

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 1 2 3 4 5

N
P

C

m

AA

LRA

VPA

(a) time vs. m (b) memory vs. m (c) information loss vs. m

Fig. 16 Effect of m on the performance of the algorithms

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4 5 6 7

se
co

nd
s

h

AA

LRA

VPA

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 4 5 6 7

tr
ee

 n
od

es

h

AA

LRA

VPA

 0

 0.05

 0.1

 0.15

 0.2

 4 5 6 7

N
P

C

h

AA

LRA

VPA

(a) time vs. h (b) memory vs. h (c) information loss vs. h

Fig. 17 Effect of hierarchy level h on the performance of the algorithms

tal axis we vary the number of partitions in the data.

For the LRA algorithm this reflects database chunks
and for the VPA algorithm the domain parts. As ex-

pected, when the number of partitions grows, the mem-

ory requirements and the quality of the data decrease.
This is not a strictly monotonous procedure; as the

database chunks get smaller there is a chance that fewer

rare items might appear, thus the other items of the
same class will not be generalized in the first itera-

tion of AA. This effect explains the small increase of

memory requirements for the LRA algorithm. In Fig-

ures 18c and 18d we see how flexibility affects the LRA
algorithm and how the partitioning level affects VPA.

We observe that these factors do not have a significant

effect in the performance of the methods. We omit time
for Figure 18d and time and memory for Figure 18c, as

they remain approximately stable.

In the set of experiments depicted in Figure 19 we

measure the total time and the total memory needed by
LRA and VPA if they are used to parallelize the anony-

mization of the data. LRA does not benefit much from

parallelization due to the fact that there usually ex-

ists an expensive partition to be serially processed that
dominates the overall cost. As explained, with LRA we

may end up with a chunk of few but very long transac-

tions. This chunk is very hard to anonymize as there

22

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 1 2 3 4 5 6 7 8 9 10 11

N
P

C

number of parts

information loss

LRA

VPA

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 2 4 6 8 10

tr
ee

 n
od

es

number of parts

memory requirements

LRA

VPA

(a) number of parts vs NPC (b) number of parts vs memory

 0.025

 0.0255

 0.026

 0.0265

 0.027

 0.0275

 0.028

 0.0285

 0.029

 0.0295

 0.03

 0 200 400 600 800 1000

N
P

C

of transactions

flexibility

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1 2 3

level

partition level

npc
memory

(c) effect of flexibility (d) effect of partitioning level

Fig. 18 Factors affecting the LRA and VPA algorithms

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

AA LRA VPA

se
co

nd
s

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 1.8e+006

AA LRA VPA

tr
ee

 o
f n

od
es

Fig. 19 Time and memory requirements in parallel execution

is a huge number of item combinations that do not
violate km-anonymity. For this chunk, the AA mod-

ule of LRA cannot perform many generalizations at

its first iterations, therefore a huge count tree is con-
structed. On the other hand, the partitions generated

by VPA are balanced with respect to the item com-

binations and VPA benefits the most from paralleliza-
tion. In summary, VPA is the most robust method for

km-anonymity and can accelerate AA to a high degree,

especially with the use of parallelization, while it does

not compromise the quality of the result.

Finally, in Figures 20-22 we evaluate the best algo-

rithms we have according to the previous experiments,

AA and VPA, in terms of the ML2 and dML2 infor-
mation loss measures, which we introduced in Section

3.3. To measure ML2 and dML2 we mined the original

and the anonymized datasets for frequent itemsets in all
generalization levels, using support thresholds 1%, 2%

and 3%. The results presented in Figure 20 are based

on the average values of all three thresholds for each
dataset. Both ML2 and dML2 follow the NPC results

depicted in Figure 14. ML2 (measured in percentage

points) shows the fraction of frequent itemsets that are

not detected in the appropriate level of the generaliza-
tion hierarchy in the anonymized dataset. dML2 shows

the difference between the actual level the itemsets and

23

 0

 20

 40

 60

 80

 100

POS WV1 WV2

M
L2 (

%
)

AA

VPA

 1

 1.2

 1.4

 1.6

 1.8

 2

POS WV1 WV2

dM
L2

AA

VPA

Fig. 20 The ML2 and dML2 information loss measures

 0

 20

 40

 60

 80

 100

 1 10 100 1000

M
L2

k

AA

VPA

 0

 20

 40

 60

 80

 100

 1 2 3 4

M
L2

m

AA

VPA

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3

M
L2

support threshold (%)

AA

VPA

Fig. 21 Behavior of ML2 with respect to k,m and the frequent itemset support threshold

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 10 100 1000

dM
L2

k

AA

VPA

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 3 4

dM
L2

m

AA

VPA

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.5 2 2.5 3

dM
L2

support threshold (%)

AA

VPA

Fig. 22 Behavior of ML2 with respect to k,m and the frequent itemset support threshold

the level they were detected when using the anonymized

dataset. Note, that in dML2 we take into account only

the frequent itemsets that were not appropriately de-

tected, thus the theoretical minimum is 1. The anony-
mization was performed by using the default parame-

ters for both AA and VPA. The results show that the

percentage of frequent itemsets which are detected only
at a more generalized level is low in general. In addi-

tion, the level at which they are detected is not much

higher than their actual level. This implies that the
datasets anonymized by our methodology do not have

a negative effect on the results of frequent itemset min-

ing methods, since frequent itemsets usually satisfy km

anonymity and they are not generalized; even in the

cases where they are generalized, the information loss

is not very high as they are found only 1 or 2 levels

above in the generalization hierarchy. In Figure 21 we

explore in more depth the effect of k, m and the sup-
port threshold we used to retrieve the frequent itemsets.

We fixed all parameters in the default values (we used

2% as the default support threshold) and varied each
time only one parameter. As is the case of NPC, the

ML2 grows linearly with k and m. On the other hand,

as the support threshold grows, less frequent itemsets
are detected in the low levels of the generalization hi-

erarchy. This means that the impact of the anonymi-

zation procedure, which hides data on these levels, is

reduced, and this is reflected on the decrease of ML2.

24

In Figure 22 we can observe how dML2 is affected by

the same parameters. The general observation is that
apart from the case of m = 1, where the anonymiza-

tion has significantly less impact on the dataset, dML2

does not demonstrate great volatility. Thus, even if the
number of frequent itemsets that are not appropriately

detected in some generalization level changes, these fre-

quent itemsets are found in a fixed higher generalization
level.

6.2.2 Comparison with Partition Algorithm

In [12] the authors propose a top-down local recoding

algorithm, named Partition, for preserving the privacy

in the publication of data that contain set-values. Al-
though the focus of the paper is on full k-anonymity,

they present an experimental comparison with AA. The

comparison investigates the difference in the informa-
tion loss between the km anonymity achieved by the

AA and the k-anonymity achieved by the Partition al-

gorithm for different values of k and m. Their results
show that for small m the information loss of AA is

less than that of Partition and that Partition is signif-

icantly faster than AA. In Figure 23, we complement

the experimental evaluation of our algorithms by show-
ing how the Partition compares to the most efficient of

them, i.e., the VPA. We used our implementation for

VPA and the implementation of [12] for the Partition
algorithm, which we acquired from the authors. Using

again the default parameter values, we performed the

experiments on BMS-POS dataset. The results on Fig-
ure 23 support the same results with [12]; km anonymity

by the VPA algorithm inccurs less information loss for

a small m than k-anonymity with Partition and the pic-

ture is reversed for a large m. Notice that the average
record size for BMS-POS is 6.5, thus the point where

Partition outperforms VPA (m = 5) is quite large. The

experiments show that when we fix m = 3 and vary k,
the VPA retains its advantage. In terms of evaluation

time, Partition is a lot faster; it takes only ∼ 20 sec-

onds, whereas VPA starts from ∼ 40 seconds for m = 1
and goes up to a bit less than 5 hours for m = 6. This is

due to the fact that VPA, being a bottom up algorithm,

runs well when few generalizations are needed but it is

slow when the top levels of the generalization hierarchy
must be reached.4

4 The information loss depicted in Figure 23 is slightly lower
for VPA than that reported in the previous experiments. This is
due to the fact that we had a to create a different generalization
hierarchy for this experiment, so that it would be compatible
with the Partition implementation. The previous hierarchy had
an average fanout of 5, whereas this one has a constant fanout

of 5.

A final point for VPA and LRA is that they have

good parallelization properties and they can take ad-
vantage of parallel architectures like map/reduce [6].

Partition has parallelization properties but offers less

explicit control on the partitioning, since the size of the
partitions is not set explicitly but it it follows the gen-

eralization hierarchy (in top-down order). In contrast

we can directly choose how many records or how many
items will fall in each partition of LRA and VPA re-

spectively.

7 Conclusions

In this paper, we studied the k-anonymization prob-

lem of set-valued data. We defined the novel concept of

km-anonymity for such data and analyzed the space of
possible solutions. Based on our analysis, we developed

an optimal, but not scalable, algorithm which is not

practical for large, realistic databases. In view of this,

we developed two greedy heuristic methods, of lower
computational cost, which find near-optimal solutions.

Our apriori-based anonymization algorithm, in specific,

has low memory requirements, making it practical for
real problems.

We complemented our work with two partitioning-

based approaches aiming at the reduction of the mem-
ory consumption and execution cost. The local recod-

ing anonymization algorithm is an intuitive method,

which partitions the database horizontally and solves

the problem at each part. However, this method does
not perform well in practice, because it is hard to cre-

ate good clusters of transactions due to the extremely

high dimensionality of the problem. Although a sophis-
ticated Gray-ordering scheme has been used for par-

titioning, it is often the case that there exists a par-

tition which is very expensive to anonymize and be-
comes the bottleneck of the whole process. To over-

come these problems, we proposed a vertical partition-

ing algorithm, which splits the hierarchical classifica-

tion of the items into a forest of subtrees, and projects
the database at each subtree, creating a partition. The

partitions are then anonymized and a final pass is ap-

plied on the database to handle privacy breaches caused
by itemsets with items from different partitions. The

vertical partitioning algorithm is shown to be the best

method in practice, as it creates balanced partitions
that can be processed very fast. We have shown that

this method can also greatly benefit from paralleliza-

tion.

We emphasize that our techniques are also directly
applicable to databases, where tuples contain both a

set-valued attribute and other sensitive attributes. In

this case, k-anonymity with respect to all m-subsets of

25

 0

 0.05

 0.1

 0.15

 0.2

 1 10 100 1000

N
P

C

k

Partition
VPA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 1 2 3 4 5 6

N
P

C

m

Partition
VPA

Fig. 23 Comparison of VPA with Partition algorithm

the domain of the set-valued attribute can help avoiding

associating the sensitive value to less than k tuples.

Acknowledgments

We would like to thank the authors of [12] for sharing
with us the implementation of the Partition algorithm.

This work was supported by grant HKU 715108E from

Hong Kong RGC.

References

1. C. C. Aggarwal. On k-anonymity and the curse of dimen-

sionality. In VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, pages 901–909. VLDB
Endowment, 2005.

2. G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Pan-
igrahy, D. Thomas, and A. Zhu. Achieving Anonymity via
Clustering. In Proc. of ACM PODS, pages 153–162, 2006.

3. G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Pan-
igrahy, D. Thomas, and A. Zhu. Approximation Algorithms
for k-Anonymity. Journal of Privacy Technology, (Paper
number: 20051120001), 2005.

4. M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi.

Anonymity Preserving Pattern Discovery. VLDB Journal,
accepted for publication, 2008.

5. R. J. Bayardo and R. Agrawal. Data Privacy through Op-

timal k-Anonymization. In Proc. of ICDE, pages 217–228,
2005.

6. J. Dean and S. Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. pages 137–150, December 2004.

7. G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. Fast
Data Anonymization with Low Information Loss. In vldb,
pages 758–769, 2007.

8. G. Ghinita, Y. Tao, and P. Kalnis. On the Anonymization

of Sparse High-Dimensional Data. In Proc. of ICDE, 2008.
9. J. Han and Y. Fu. Discovery of multiple-level association

rules from large databases. In vldb, pages 420–431, 1995.

10. J. Han and Y. Fu. Mining multiple-level association rules in
large databases. IEEE TKDE, 11(5):798–805, 1999.

11. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In Proc. of ACM SIGMOD, pages 1–

12, 2000.
12. Y. He and J. F. Naughton. Anonymization of set-valued data

via top-down, local generalization. PVLDB, 2(1):934–945,

2009.

13. V. S. Iyengar. Transforming Data to Satisfy Privacy Con-

straints. In Proc. of SIGKDD, pages 279–288, 2002.
14. K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incog-

nito: Efficient Full-domain k-Anonymity. In Proc. of ACM
SIGMOD, pages 49–60, 2005.

15. K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian

Multidimensional k-Anonymity. In Proc. of ICDE, 2006.
16. N. Li, T. Li, and S. Venkatasubramanian. t-Closeness: Pri-

vacy Beyond k-Anonymity and l-Diversity. In Proc. of ICDE,
pages 106–115, 2007.

17. A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkita-

subramaniam. l-Diversity: Privacy Beyond k-Anonymity. In
Proc. of ICDE, 2006.

18. A. Meyerson and R. Williams. On the Complexity of Optimal
K-anonymity. In Proc. of ACM PODS, pages 223–228, 2004.

19. M. Nergiz, C. Clifton, and A. Nergiz. Multirelational k-

anonymity. Technical Report CSD TR 08-002.
20. M. Nergiz, C. Clifton, and A. Nergiz. Multirelational k-

anonymity. In Proc. of ICDE, pages 1417 – 1421, 2007.
21. M. E. Nergiz and C. Clifton. Thoughts on k-anonymization.

Data and Knowledge Engineering, 63(3):622–645, 2007.
22. H. Park and K. Shim. Approximate algorithms for k-

anonymity. In Proc. of ACM SIGMOD, pages 67–78, 2007.
23. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery. Numerical Recipes in C, 2nd Edition. Cambridge
University Press, 1992.

24. P. Samarati. Protecting Respondents’ Identities in Microdata

Release. IEEE TKDE, 13(6):1010–1027, 2001.
25. L. Sweeney. k-Anonymity: A Model for Protecting Pri-

vacy. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(5):557–570, 2002.

26. M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-
preserving Anonymization of Set-valued Data. Proceedings
of the VLDB endowment (PVLDB) (former VLDB proceed-
ings), 1(1), 2008.

27. V. S. Verykios, A. K. Elmagarmid, E. Bertino, Y. Saygin,

and E. Dasseni. Association Rule Hiding. IEEE TKDE,
16(4):434–447, 2004.

28. X. Xiao and Y. Tao. Anatomy: Simple and Effective Privacy
Preservation. In Proc. of VLDB, pages 139–150, 2006.

29. J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. Fu. Utility-

Based Anonymization Using Local Recoding. In Proc. of
SIGKDD, pages 785–790, 2006.

30. Y. Xu, K. Wang, A. W.-C. Fu, and P. S. Yu. Anonymi-
zing transaction databases for publication. In Proc. of KDD,

pages 767–775, 2008.
31. Q. Zhang, N. Koudas, D. Srivastava, and T. Yu. Aggregate

Query Answering on Anonymized Tables. In Proc. of ICDE,
pages 116–125, 2007.

32. Z. Zheng, R. Kohavi, and L. Mason. Real world performance

of association rule algorithms. In Proc. of KDD, pages 401–
406, 2001.

