
Approximate Spatio-Temporal Retrieval

DIMITRIS PAPADIAS
Hong Kong University of Science and Technology
NIKOS MAMOULIS
CWI
and
VASILIS DELIS
University of Patras

This paper proposes a framework for the handling of spatio-temporal queries with inexact
matches, using the concept of relation similarity. We initially describe a binary string
encoding for 1D relations that permits the automatic derivation of similarity measures. We
then extend this model to various granularity levels and many dimensions, and show that
reasoning on spatio-temporal structure is significantly facilitated in the new framework.
Finally, we provide algorithms and optimization methods for four types of queries: (i) object
retrieval based on some spatio-temporal relations with respect to a reference object, (ii) spatial
joins, i.e., retrieval of object pairs that satisfy some input relation, (iii) structural queries,
which retrieve configurations matching a particular spatio-temporal structure, and (iv) special
cases of motion queries. Considering the current large availability of multidimensional data
and the increasing need for flexible query-answering mechanisms, our techniques can be used
as the core of spatio-temporal query processors.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design—
Access methods; H.2.4 [Database Management]: Systems—Multimedia databases; H.2.8
[Database Management]: Database applications—Spatial databases and GIS

This work is the extended and revised version of the papers “Algorithms for Querying by
Spatial Structure,” Proceedings of Very Large Data Bases Conference, New York, 1998 and
“Assessing Multimedia Similarity: A Framework for Structure and Motion,” Proceedings of
ACM Conference on Multimedia, Brighton, UK, ACM Press, 1998.
The authors were supported by RGC grants HKUST 6090/99E and HKUST 6070/00E.
Authors’ addresses: D. Papadias, Department of Computer Science, Hong Kong University of
Science and Technology, Room 3503, Clear Water Bay, Hong Kong, Clearwater Bay, Hong
Kong; email: dimitris@cs.ust.hk; N. Mamoulis, CWI, Kruislaan 413, PO Box 94079, Amster-
dam, 1090 GB, The Netherlands; email: Nikos.Mamoulis@cwi.nl; V. Delis, Computer Engi-
neering and Informatics Department and Computer Technology Institute, University of
Patras, GR-26110, Patras, P.O. Box 1122, Greece; email: delis@cti.gr.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 1046-8188/01/0100–0053 $5.00

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001, Pages 53–96.

1. INTRODUCTION

The general theme of this work is the design and implementation of
efficient retrieval mechanisms for spatio-temporal databases. Adopting a
relational view, such databases are collections of entities which have either
spatial attributes (e.g., geographic databases) or temporal attributes (e.g.,
medical databases) or combinations thereof (e.g., multimedia databases).
Spatial attributes can be viewed as 0D, 1D, 2D, or 3D positions1 in a
“space,” either the physical one (e.g., map objects) or an artificial one such
as a computer screen (e.g., multimedia objects). Temporal attributes cap-
ture the temporal existence of entities and in the general case can be
represented as time points or time intervals. Continuing the relational
analogue, such attributes should be allowed in the expression of user
queries related through appropriate operators such as contains, northeast,
near, during, after, etc.

Retrieval mechanisms able to handle queries of the above type could also
be beneficial even for unstructured or semistructured collections of spatio-
temporal entities. The prohibitively large volumes and the heterogeneity of
the widespread multimedia information (like maps, satellite imagery, mul-
timedia presentations, images, etc.) render purely textual searching inef-
fective and raise the need for “intelligent” query processing, focusing on
content [Nabil and Yelena 1996]. As a result, there has already been
significant progress on image and video content retrieval research [Falout-
sos et al. 1994; Ogle and Stonebraker 1995; Smith and Chang 1996; Seidl
and Kriegel 1997; Maybury 1998; Chang et al. 1998]. Most of these
techniques, however, address retrieval of visual content, i.e., properties like
color, shape, texture, etc. A rather neglected type of content is spatio-
temporal structure,which refers to the spatial and temporal arrangement of
a collection of objects. Used in conjunction with visual content retrieval,
spatio-temporal retrieval could allow for the processing of powerful similar-
ity queries like “find all multimedia presentations depicting a sunset image,
which is followed by a slide show on its left, synchronized with a narration.”

Handling spatio-temporal queries requires a breakthrough in structure
description, as well as retrieval mechanisms. This is even more stressed
considering a salient characteristic of such queries, the requirement for
inexact matches and approximation scores to rank the query output, which
can be attributed to two main reasons. First, if a user asks for a specific
spatio-temporal configuration they may be interested in receiving matching
configurations, possibly at a defined tolerance (degree of approximation).
Second, spatio-temporal predicates like far, northeast, during, etc. do not
always have crisp definitions, so users may typically accept answers
similar although not identical to their query, as these could correspond to
conceptually valid representations. The need for approximation constitutes
a serious impediment if traditional query-processing techniques are to be
employed.

1In GIS literature a position is often defined as a tuple ,location, size, shape, orientation..

54 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

In this work we deal effectively with the above issues. In particular, we
(i) propose a powerful framework for representing and reasoning on spatio-
temporal relations at various resolution levels and arbitrary dimensions,
(ii) demonstrate how the framework can be employed in database systems
that use multidimensional data structures, (iii) develop algorithms for
several types of approximate retrieval, and (iv) evaluate the efficiency of
our methods with extensive experiments involving real data.

The rest of the paper is organized as follows. Section 2 describes a binary
string encoding for the representation of spatio-temporal structure in
multiple resolutions and dimensions. Section 3 illustrates how the frame-
work is used for retrieval of objects that have certain structural character-
istics within a repository of spatio-temporal information. Section 4 deals
with spatial joins, i.e., retrieval of object pairs that satisfy some spatio-
temporal constraint. Section 5 studies the most complex, and probably most
interesting problem, that of configuration similarity between spatio-tempo-
ral scenes (object collections). Section 6 illustrates the application of our
framework to motion queries, viewed as temporal sequences of spatial
events. Finally, Section 7 concludes the paper with a discussion about
further continuation of this work.

2. A FRAMEWORK FOR SIMILARITY

Several types of relations such as topological (e.g., inside, overlaps), direc-
tion (north, southeast), and distance (e.g., near, far) have been applied to
express spatial queries. Even for a single type of constraint, definitions
may vary [Hernandez 1994]; for instance, direction relations can be defined
by angles between object centroids (e.g., north may correspond to an angle
of 90 degrees) or by projections (an object is north of another if all its points
are higher than any point of the second one). For the temporal domain
there is a widely acceptable set of 13 mutually exclusive relations (proposed
by Allen [1983]) which describe the relative locations between 1D (time)
intervals. Sample configurations of intervals that satisfy each of these
relations are shown in Figure 1. Relation R1 for instance, corresponds to
the situation where all points of the upper interval are before the lower
one. Multidimensional extensions of Allen’s relations have also been ap-
plied for spatial queries.

The concept of conceptual neighborhood [Freksa 1992] provides the
means for defining similarity measures for a set of relations. A conceptual
neighborhood is represented as a graph whose nodes denote relations that
are linked through an edge, if they can be directly transformed to each
other by continuous interval deformations. In such a graph, similar rela-
tions are closer to each other than nonsimilar ones. Depending on the
allowed deformation (e.g., movement, enlargement), several graphs may be
obtained. The one in Figure 1 corresponds to what Freksa called A-neigh-
bors (three fixed endpoints, while the fourth is allowed to move). Starting
from relation R1 and extending the upper interval to the right, we derive
relation R2. With a similar extension we can produce the transition from R2

Approximate Spatio-Temporal Retrieval • 55

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

to R3 and so on. R1 and R3 are called 1st-degree neighbors of R2. The
distance d between two relations is equal to the length of the shortest path
relating them in the neighborhood graph.

Related work on conceptual neighborhoods has been carried out for
direction [Nabil et al. 1996], topological relations [Egenhofer and Al-Taha
1992], and for classes of both topological and direction relations [Bruns and
Egenhofer 1996]. According to all these approaches there is a predefined
set of relations for which conceptual neighborhoods are precomputed and
encoded in lookup tables. Subsequent queries use the lookup tables to
retrieve similar matches.

However, assuming a predefined set of relations and similarity measures
is a serious restriction for most applications. Different users may impose
different kinds of spatio-temporal constraints, or even if the constraints are
similar they may refer to different granularities. An effective system for
spatio-temporal retrieval should provide flexibility in the definition of
constraints and the means for the automatic calculation of similarity
measures depending on the query. In this section we describe a framework
for spatio-temporal relations that supports dynamic (i.e., not predefined)
constraints and similarity measures. The proposed framework is easily
adjustable to different user needs and may have a wide range of applica-
tions in spatio-temporal query processing.

2.1 Binary String Encoding of Relations

Let [a,b] be a closed and continuous 1D (time) interval with endpoints a
and b, 2` , a , b , `. We identify five distinct regions of interest (which
can be points or open intervals) with respect to [a,b]: 1.(2`,a) 2.[a,a] 3.(a,b)
4.[b,b] 5.(b,1`) (see Figure 2(a)). The relationship between a primary
interval [z,y], and [a,b] can be uniquely determined by consideirng the five
empty or nonempty intersections of [z,y] with each of the five aforemen-
tioned regions, modeled by the five binary variables t, u, v, w, x, respec-
tively, with the obvious semantics (“0” corresponds to an empty intersection
while “1” corresponds to a nonempty one). Therefore, we can define relations

R
9

R
1

R
2 R

3

R
4

R
5

R
6

R
7

R
8

R
10

R
11

R
12

R
13

Fig. 1. Conceptual neighborhood for relations between intervals in 1D space.

56 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

in 1D to be binary 5-tuples ~Rtuvwx : t, u, v, w, x [$0, 1%!. For example
R00011~t 5 0, u 5 0, v 5 0, w 5 1, x 5 1! corresponds to the relation of
Figure 2(b) (R12 in Figure 1). Not any 5-tuple of 1’s and 0’s represents a
valid spatial relation between 1D intervals. If we deal with continuous
intervals with nonzero duration, the underlying constraints are

—at least one “1” must exist. If it is unique, it should not correspond to u or
w (because in this case [z,y] collapses to a single point).

—all the 1’s must be consecutive (otherwise we refer to disconnected
intervals).

—the intervals of interest must be a consecutive partition of (2`, 1`).

The binary encoding can be extended in order to handle relations at
varying resolution levels. We will initially illustrate its applicability to a
coarse resolution level where only a few relations can be distinguished. In the
example of Figure 3(a), the 1D regions of interest are (2`,a), [a,b], and (b,1`),
respectively. The corresponding relations are of the form Rtuv, t, u, v [$0, 1%.
This allows for the definition of only six relations, since information
content concerning the endpoints of [a,b] is reduced: R100~before!,
R010~during!, R001~after!, R110~before2overlap!, R011~after2overlap!, R111~includes!.
Figure 3(b) illustrates four configurations that correspond to R010 and
cannot be distinguished in this resolution.

Increasing the resolution of relations can be achieved simply by increas-
ing the number of regions of interest. For instance, we can capture distance
by refining disjoint relations, i.e., by splitting (2`,a), (b,1`) to several
intervals. Figure 4 illustrates a simple partitioning that uses nine bits and
allows the distinction between far and near relations (near defined as being
in a distance up to d and far otherwise). An arbitrary number of distance
refinements can be defined (e.g., a distance grid), according to the applica-
tion needs. We call such consecutive partitionings of space resolution
schemes.

a b

t u v w x

-∞ ∞
1 2 3 4 5

a b

R00011 z y

(a) (b)

Fig. 2. Encoding of spatio-temporal relations. (a) Interval and regions of interest. (b)
Example of relation R00011.

a b

t u v

-∞ ∞ a b

R010

a b a b a b
(a) (b)

Fig. 3. Encoding at a coarse resolution level. (a) Interval and regions of interest. (b)
Examples of relation R010.

Approximate Spatio-Temporal Retrieval • 57

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

The feasible relations at a particular resolution scheme are called primi-
tive relations. In general, the fewer the binary variables, the coarser the
resolution, and vice versa. If b is the number of bits, the number of
primitive relations in 1D is b~b 1 1! / 2 2 k, where k is the number of
point variables, i.e., intervals of the form [a,a]. If we fix the starting point
at some bit then we can put the ending point at the same or some
subsequent bit. There are b choices if we fix the first point to the leftmost
bit, b 2 1 if we fix it to the second from the left, and so on. The total
number is b~b 1 1! / 2 from which we subtract the b single-point intervals.
For b 5 9, k 5 4 we get the 41 relations of Figure 4, while for b 5 5, k 5 2
there exist 13 (Allen’s) relations.

The new notation permits the automatic calculation of relation distances
and, consequently, of similarity measures. Consider the neighborhood
graph of Figure 4 where edges are arranged horizontally and vertically.
The semantics of traversing the graph in either direction are captured by
the following “pump and prune” rule of thumb: given a relation R, there are
four potential neighboring relations, denoted right~Rx!, left~Rx!, up~Rx!,
down~Rx!, respectively, with the obvious topological arrangement in the
graph. Right~Rx! can be derived from Rx by “pumping” a “1” from the right,
i.e., finding the first “0” after the rightmost “1” and replacing it by a “1.”
Left~Rx! can be derived from Rx, by “pruning” a “1” from the right, i.e.,
replacing the rightmost “1” by a “0.” Similarly, up~Rx! can be derived from
Rx by pumping a “1” from the left, while down~Rx! can be derived by
pruning the leftmost “1.” Notice that not all neighboring relations are

R100000000 R110000000 R111000000

R011000000

R001000000

R111100000

R011100000

R111110000

R001100000

R011110000

R001110000 R001111000

R011111000

R111111000 R111111100 R111111110 R111111111

R011111111

R001111111R001111110

R011111110R011111100

R001111100

R000111100R000111000R000110000

R000010000 R000011000 R000011100

R000001100

R000000100 R000000110 R000000111

R000000011

R000000001

R000001111R000001110

R000011110 R000011111

R000111111R000111110

a b

r s t u v w x y z

-∞ ∞δ δ

δ δ δ δ δ δ δ δ δ δδ δ

δ δ

δδ

δδδδ

δ

δδδδ

δ

δδδδ

δδ

δδδ

δ δ

δ

δ δ

δ

δ

δ δ

δ

δ

0 1 2 3 4 5 6 7 8bit:

Fig. 4. 1D conceptual neighborhood including distances (41 relations).

58 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

always legal: the relation up~R110000000!, for example, is not defined because
the leftmost digit is a “1.”

Since movement in the neighborhood graph is restricted to horizontal
and vertical directions, the distance between two nodes is the sum of their
vertical and horizontal distances. Equivalently, the distance between any
two relations can be calculated by counting how many elementary move-
ments we have to perform on an interval in order for the two relations to
become identical. The larger the number of simple movements, the less
similar the relations. The binary string representation enables automatic
calculation of distances using the pseudocode of Figure 5, which counts the
minimal number of 0’s that have to be replaced with 1’s in order to make
the two strings identical (leftmost21~R! returns the position of the left-
most bit that contains 1). For example d~R000110000, R010000000! 5 5 and
d~R000110000, R110000000! 5 6 (the underlined 0’s are the ones counted during
the calculation of distance). The distance between a relation R and a
relation set $R1, . . . , Ri% equals the minimum distance between R and any
of R1, . . . , Ri d~R000110000, $R010000000, R110000000%! 5 5.

This method does not need lookup information for computing similarity,
and at the same time is very efficient, since it is based on simple binary
operations. Thus, users are not restricted to a predefined resolution but are
free to employ different sets of constraints depending on their needs. The
framework permits the uniform representation of several types of spatio-
temporal relations (e.g., topological, directional, distance), and, as we show
in the next section, the encoding and distance calculation can be extended
accordingly to multidimensional spaces.

2.2 Multidimensional Extensions

A D-dimensional relation is defined as a D-tuple of 1D projections. We
denote with R2p the projection of R on p, e.g., R00000110021000000002x
5 R000001100. For the x-axis we assume a west-east direction, while for y
north-south (according to the coordinate system used for the computer
screenshots). In order to derive a neighboring relation we have to replace
one of the constituent 1D projections with its neighbors. As a result,
computing D-relation distances is reduced to the already solved problem of
computing 1D distances. In this paper we calculate the distance between

Fig. 5. Distance calculation.

Approximate Spatio-Temporal Retrieval • 59

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

two multidimensional relations by summing up the distances on each
dimension (other metrics, such as in Nabil et al. [1996], can also be
applied). Figure 6 shows the 2D neighborhood for the distance-enhanced
resolution scheme of Figure 4. In this “fractal” graph, 41 conceptual
neighborhoods corresponding to one dimension are linked, forming a high-
er-level conceptual neighborhood for the other dimension (each node in the
big neighborhood graph is a small neighborhood graph). As illustrated in
the magnified portion of the graph, each line corresponds to a complete set
of 41 connections between 2D relationships.

The framework can be easily applied for approximate retrieval of spatio-
temporal queries. As a 2D example, consider that a user is looking for all
configurations of four objects that match the query of Figure 7(a) (this type
of queries will be discussed in Section 5). The prototype configuration is
drawn using a query-by-sketch language where the distance of the grid is
set to d. d can be tuned to match application and user needs; for instance, a
user may specify d as 5% of the global extent per axis, while another may
specify multiple d’s of possibly different lengths. The same retrieval mech-
anisms are applied for both cases, since the underlying data are stored
using absolute coordinates from which the relations between stored objects

Fig. 6. 2D neighborhood graph for the distance-enhanced scheme.

60 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

are computed on-the-fly depending on the resolution scheme for a particu-
lar query. For simplicity, in the following examples we use the distance-
enhanced resolution of Figures 4 and 6.

Figure 7(b) illustrates the set of binary constraints between all pairs of
objects for the query of Figure 7(a). For instance, given that the direction of
y-axis is from north to south, the relation between query objects 0 and 2 is
R0000011002100000000 (the first object (0) is the primary object, while the
second one (2) is the reference). If there does not exist a configuration of
four objects identical to the input in some stored image, then the system
should retrieve the ones that match the query constraints closely. The
output should have an associated “score” to indicate its similarity to the
query, which by adoption is inversely proportional to the degree of neigh-
borhood. Similarly the framework can be extended to capture 2D objects 1
1D time (e.g., motion queries in Section 6) or 3D objects 1 1D time.
Depending on the application needs some dimensions (e.g., time) may be
tuned at different resolution without affecting the applicability of the
proposed methods.

In the rest of the paper we show how the framework can be employed for
various types of spatio-temporal retrieval. We assume databases indexed
by R-trees which store the minimum bounding rectangles (MBRs) of the
actual objects (an assumption which is true for many commercial systems).
Since MBRs are projection-based approximations, the above projection-
based definitions of relations and similarity measures are particularly
suitable for implementation in real systems.

3. OBJECT RETRIEVAL

The predominant access method for multidimensional data is R-trees
[Guttman 1984] and their variations, which are currently used in many
commercial DBMSes, like Illustra, Postgress, Mapinfo, etc. The R-tree data
structure is a height-balanced tree that consists of intermediate and leaf
nodes (R-trees are direct extensions of B-trees in many dimensions). The
MBRs of the actual data objects are stored in the leaf nodes, and intermediate

Fig. 7. An example 2D application.

Approximate Spatio-Temporal Retrieval • 61

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

nodes are built by grouping rectangles at the lower level. Figure 8 illus-
trates an image containing objects a, b,. . . , l and the corresponding R-tree.
MBRs a, b, and f are grouped together in a node A, which is pointed by
intermediate node 1. In the rest of the paper, we make the distinction
between an R-tree node N[i] and its entries Nk, which correspond to MBRs
included in N[i]. Nk.ref points to the corresponding node N[k] at the next
(lower) level. A leaf entry is an object MBR rk. For instance, at level 1, the
entries of node 1 are A, B, which point to nodes at level 0. Nk.l~rk.l! and
Nk.u~rk.u! represent the lower left point and the upper right point of Nk~rk!,
respectively.

3.1 Exact Retrieval—Window Queries

Traditionally, R-trees have been used for window queries, which ask for a
set of objects that intersect a window W (the reference object). The
processing of a window query (e.g., light gray window in Figure 8(a)) in
R-trees involves the following procedures. Starting from the top node,
exclude the nodes that are disjoint with W, and recursively search the
remaining ones (gray nodes in the tree of Figure 8(b)). Among the entries of
the leaf nodes retrieved, select the ones that overlap W. Notice, that even
though the MBR of entry D intersects W, there is no solution MBR inside
node D.

The fact that R-trees permit overlap among node entries at the same
level, sometimes leads to redundant search in the tree structure. The R1

-tree [Sellis et al. 1987] and the R*-tree [Beckmann et al. 1990] were
proposed to address the problem of performance degradation caused by the
overlapping regions and excessive dead space. The R1-tree achieves zero
overlap among intermediate node entries by allowing partitioning of the
leaf objects, whereas, the R*-tree permits overlap among nodes, but tries to
minimize it by organizing rectangles into nodes using a more complex
insertion algorithm than the original R-tree.

When the MBRs of two objects are disjoint we can conclude that the
objects that they represent are also disjoint. If the MBRs, however, share
common points, no conclusion can be drawn about the spatial relation
between the objects. For this reason, spatial queries involve the following
two-step strategy [Orenstein 1986]:

1

2

A

B

C

D

a
b

c

e
d

f

g

i

jk
l

δ

W

A B

a b f c d e

D

k j g i

1 2

C

llevel 0

level 1

level 2

node 1 node 2

root

node A node B node D node C

(a) (b)

Fig. 8. A set of objects and the corresponding R-tree. (a) Image. (b) R-tree.

62 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

(1) Filter step: The tree is used to rapidly eliminate objects that could not
possibly satisfy the query. The result of this step is a set of candidates
which includes all the results and possibly some false hits.

(2) Refinement step: The actual representation of each candidate (e.g., a set
of points describing a polygonal shape) is retrieved from the database
and tested for the satisfaction of the query using computational geome-
try techniques.2

The two-step processing method has been extended to handle several
types of queries: Papadias et al. [1995] applied R-trees for the retrieval of
topological relations, Papadias and Theodoridis [1997] of direction rela-
tions, and Roussopoulos et al. [1995] of nearest-neighbor queries. All the
above methods deal with exact retrieval of objects that satisfy some spatial
predicate (e.g., inside, north, near), with respect to some reference object.
However, due to the fuzzy nature of some spatial predicates, the solution
set is not always uniquely defined. For example, consider the following
query: “find all objects northeast of a in Figure 8(a).” Depending on the user
and the application, the answer may vary: object g is definitely northeast of
a, but also k, or even b may be considered as a solution. This uncertainty
raises the need for approximate retrieval, which would retrieve similar, in
addition to exact, matches.

3.2 Approximate Object Retrieval

The problem of approximate object retrieval can be stated as follows: given
a reference object r, a spatio-temporal constraint C (which can be a
primitive relation or a disjunction), and a maximum distance t “find all
(primary) objects V, whose relation R with r is such that d~C, R~V, r!! #

t.” That is, in addition to the reference object and the desired relation, the
user inputs the maximum allowed distance t from the input constraint.

Initially, we will deal with exact object retrieval, using the aforemen-
tioned framework, and limit our discussion to the case where t 5 0 and C
is a primitive relation. The goal, given such a query, is to identify a
minimal query window to guide search. Consider, for example, that r 5 a
and C 5 R000001100 (which could be interpreted as right-near). The objects
V to be retrieved should intersect the regions @a.u, a.u# and ~a.u, a.u 1 d!,
shown in Figure 9.

2The refinement step is performed by plane-sweep algorithms which identify whether two
arbitrary polygons intersect in O~n log n! time, where n is the total number of edges in both
polygons. Thus, it is more expensive than the filter step, since finding whether two MBRs
intersect requires only two comparisons per dimension. Notice that there is a trade-off
between the two steps in the sense that by using finer approximations (e.g., convex hulls
instead of MBRs) one can decrease the number of candidates (and the cost of the refinement
step) at the expense of the filter step (which becomes more complicated) and storage (finer
approximations require more than two points per object) [Brinkhoff et al. 1994]. Since MBRs
are the most commonly used approximation, we follow this approach.

Approximate Spatio-Temporal Retrieval • 63

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

It is enough to search according to one of these regions, in order to
retrieve all solution objects, plus possibly some false hits. Hence, we can
answer the query in two steps:

(1) Set as minimal window Wmin, the smallest region defined by the 1’s in
C. The smallest regions are points which correspond to odd bits in C,
e.g., for R000001100 the minimal window is @r.u, r.u# which corresponds
to the 5th bit. If there exist more than one odd bits, any of the
corresponding points can be chosen as Wmin. The nonexistence of an odd
bit implies that there is a single even bit which becomes Wmin.

(2) Apply a window query using Wmin and filter out the results that do not
satisfy C with respect to r.

We call the bit in C that identifies Wmin the minimal intersection bit, IB
(C). For the 2D example consider the image of Figure 10(a), and let r 5 a
and C 5 R0000011002100000000 (the constraint between query objects 0 and 2 in
Figure 7(a)). As shown in the previous example, Wmin2x corresponds to
@a.u, a.u#. On the y-axis the only 1 is at position 8; thus IBy~C! 5 8, and
Wmin2x is set to ~ay.u 1 d, 1`#. The thick line over a corresponds to Wmin

for the 2D query. Assuming that the objects are organized in the R-tree of
Figure 8(b), Figure 10(b) shows the search path if we apply the 2D Wmin
window query. The query returns the candidates {c,d}, from which only d
satisfies R0000011002100000000 with respect to a

Now let t . 0. A naive approach to solve the problem is to find all
neighbor relations $Ri d~Ri, C! # t%, transform them to Wmin queries, and
take the union of the results. This method is expensive, since we have to
apply as many tree searches as the number of t-neighbors. An improved
method (containmentWin) computes a single window W, extending C by t
1’s to the left and right, and applies a containment query. Some objects
inside the window are false hits; a refinement step keeps the objects whose
relation with r is similar to C within the input tolerance t. However, the
containment window in some cases (e.g., high tolerance) can be as large as
the whole space, rendering this method inefficient. Therefore, next we
propose a more sophisticated algorithm (getBits) that avoids the disadvan-
tages of the above techniques.

The goal of getBits (Figure 11) is to find the smallest single window Wmin

that intersects all potential solution objects, given t $ 0. An equivalent

a-∞ ∞δ δ

000001100
R

012345678

Fig. 9. Correspondence between 1-bits and regions.

64 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

problem is to find a minimal set of bits that cannot be all 0 in a t-neighbor
of C. All solution objects will intersect at least one of the regions defined by
this set of bits; thus their union is the corresponding Wmin. For every
projection p, getBits returns a pair of bits ~bL, bR! that determine the
bounds of Wmin2p (the p-projection of Wmin) with respect to the p-projection
of r~r2p!.

Let len1~C! be the number of 1’s in C, and bC be the central 1 in the
sequence of len1~C! bits. For instance, len1~R000111110! 5 5 and bC 5 5. The
algorithm tests four cases:

(i) t , len1~C! / 2 . In this case, there can be no t-neighbor of C having
bc 5 0. Thus we can set bl 5 bR 5 bC, and the minimal intersection
window will correspond to the area defined by bc and r. For instance, for
R000111110 and t 5 1, we choose bL 5 bR 5 5, and Wmin 5 @r.u, r.u#.

(ii) t 5 len1~C! / 2 . Here, if len1~C! is odd, we can use the central bit bc

as above (it will be 1 in all t-neighbors of C). However, if len1~C! is

a

δ

b

c

e
d

f

g

i

jk
l

Wmin

A B

a b f c d e

D

k j g i

1 2

C

l

(a) (b)

Fig. 10. Example query (r 5 a, and C 5 R0000011002100000000). (a) Image and window queries.
(b) R-tree search path when applying Wmin.

Fig. 11. getBits function.

Approximate Spatio-Temporal Retrieval • 65

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

even, all 1’s in C, can be 0 in some t-neighbor of C, e.g., for R000111100

and t 5 2, the 2-neighbor R000110000 has b5 5 b6 5 0 and R000111100 has
b3 5 b4 5 0. In this case, we consider as Wmin the region defined by
both central bits, as both cannot be zero, i.e., bL 5 b4, bR 5 b5 and
Wmin 5 ~r.l, r.u!.

(iii) len1~C! / 2 , t , len1~C!. As in the even-length case above, all
1-bits can be 0 in t-neighbors of C. Furthermore, t 2 len1~C! / 2
determines to what extent we have to “pull” Wmin limits from the
central bit bc. For instance, for R000111110, and t 5 3 : bL 5 bC 2 ~t 2
 len1~C! / 2 ! 5 4, bR 5 bC 2 ~t 2 len1~C! / 2 ! 5 6, and Wmin 5
~r.l, r.u 1 d!.

(iv) t $ len1~C!. In this case, all 1’s in C can become 0 in a t-neighbor of
C. Positions bL and bR are decided by extending both leftmost and
rightmost 1’s of C by t 2 len1~C!, e.g., for R000111110, and t 5 6, bL 5
leftmost1~C! 2 ~t 2 len1~C!! 5 2, bR 5 rightmost1~C! 1 ~t 2 len1~C!!
5 8, and Wmin 5 ~r.l 2 d, 1`!.

In the pseudocode of Figure 11 cases (ii) and (iii) above have been
combined in one. ObjectRetrieval (Figure 12) calls getBits to calculate the
limits of Wmin and performs a window query using Wmin. Then it filters the
result according to the input constraint and the tolerance

As an example, consider again that r 5 a, C 5 R0000011002100000000, while
t 5 2. The gray window Wmin in Figure 13 corresponds to the query
window calculated by the algorithm. For both dimensions the fourth case
applies ~t $ len1~C!!. The tuple ~bL, bR! is (5,6) and (0,1) for the x- and
y-dimension, respectively, e.g., for the y-axis the first two bits cannot be 0
at the same time in any 2nd-degree neighbor of R100000000. Thus, the
corresponding x- and y-projections of Wmin are @a.u, a.u 1 d! and ~2`,
a.l 2 d!. The window query retrieves $c, d, e, g%. From these rectangles, c
and g do not constitute solutions (d~C, R~c, a!! 5 7 and d~C, R~g, a!! 5 3),
whereas d and e are solutions with distances 0 and 1, respectively.
Constraints involving disjunctions of primitive relations, can be processed
using the above method after finding the leftmost and rightmost 1’s in all
constituent relations.

Fig. 12. objectRetrieval.

66 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

We evaluated the efficiency of getBits by comparing it with the other two
methods that can be applied for approximate object retrieval using our
framework. For the following experiment we used the LB data-file (TIGER/
Line Files) [Bureau of the Census 1994] which contains 53,145 rectangles
representing road segments of Long Beach county. The maximum distance
of the rectangles on each axis is 10,000, and the data density is 0.15. We
inserted these rectangles to an R*-tree of 4K page size. For each value of
tolerance t from 0 to 6 we generated a set of 50 queries, where r had a
random position on the map and random length between 20 and 200 at
each projection. Figure 14 shows the average number of page accesses
caused by each method (no buffer scheme was used) as a function of t.
Clearly, getBits outperforms the other alternatives, in all cases. The
number of window queries explodes with t, and so does the complexity of
the naive method. Moreover, the containment window used by the second
method increases significantly with t, and the whole data set is traversed
for large values of t. On the other hand, getBits facilitates efficiency by
minimizing the size of the single search window.

Summarizing, this section constitutes the first approach on retrieval
under uncertainty using the framework of Section 2. In particular we
develop a projection-based technique, extensible to arbitrary dimensions,
that determines some minimum intersection windows based on the input

a

δ

δ

b

c

e
d

f

g

i

jk
l

minW

Fig. 13. Example of approximate retrieval (r 5 a, C 5 R0000011002100000000 and t 5 2).

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6

naive

containmentWin

getBits

Fig. 14. Performance comparison of three retrieval methods.

Approximate Spatio-Temporal Retrieval • 67

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

constraint and the tolerance t. Retrieval is then performed in a traditional
window query manner using the minimum windows, and the output is
ranked according to its distance from the input constraint. In the next
section we discuss another important type of queries for spatio-temporal
databases: spatial joins.

4. SPATIAL JOINS

The spatial join operation selects from two object sets, the pairs that satisfy
some spatial predicate, usually intersect (e.g., “find all cities that are
crossed by a river”). Previous work on pairwise spatial joins can be
classified in two categories. The first one includes approaches which
assume that the relations to be joined are indexed on the spatial attributes,
which is true for most modern spatial databases because spatial indexing
facilitates fast execution of selection queries. The dominant technique in
this category [Brinkhoff et al. 1993] presupposes the existence of R-trees
for both relations and synchronously traverses the trees to report the join
results. An alternative approach [Rotem 1991] maintains a special index
for spatial joins analogous to the relational join index [Valduriez 1987].

Methods in the second category do not presume spatial indexes for both
relations. Some partition the space either regularly [Patel and DeWitt
1996; Koudas and Sevcik 1997] or irregularly [Lo and Ravishankar 1996],
and distribute the relation objects into buckets defined by these partitions.
The spatial join is then performed in a relational hash join fashion.
Although, the above methods work well for uniform distributed inputs, they
cannot guarantee good worst-case performance. Another method [Arge et
al. 1998] first applies external sorting to both files and then uses an
adaptable plane-sweep algorithm, considering that in most cases the “hori-
zon” of the sweep line will fit in main memory. Finally, Lo and Ravishankar
[1994] join two inputs for which there exists only one R-tree index, by
building a second R-tree using the existing one as a skeleton and then
applying the method of Brinkhoff et al. [1993] to join them.

The methods of the second category are applicable when there do not
exist indexes for both sets to be joined or when there is another operation
(e.g., a selection) before join. However, when both sets are indexed by
R-trees they have a disadvantage compared to the methods in the first
category which utilize R-trees for efficient query processing. In this section
we extend traditional R-tree-based techniques for multirelation approxima-
tion joins, by proposing algorithms and appropriate optimization methods.

4.1 Intersection Joins Using R-trees

The most influential algorithm for efficiently computing pairwise, intersec-
tion joins using R-trees is presented in Brinkhoff et al. [1993]. SpatialJoin
is based on the R-tree enclosure property: if two intermediate nodes do not
intersect, there can be no MBRs below them that intersect. The algorithm
(Figure 15) first joins the high-level nodes and then follows the links in
order to find qualifying pairs below them.

68 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

Suppose that we want to join the level-1 subtrees 1 and 2 of the R-tree in
Figure 8(b). SpatialJoin (1,2) will be recursively called for A and D at the
next level, and finally will output the solution (f,l). Although the version of
Figure 15 assumes that the nodes to be joined are of equal height, the
extension to different heights is straightforward [Brinkhoff et al. 1993].

Two local optimization techniques are used to improve the CPU speed of
the above algorithm. The first, search space restriction, reduces the qua-
dratic number of pairs to be evaluated when two nodes N[i], N[j] are joined.
If an entry Nk [N[i] does not intersect the MBR of N[j] (i.e., the MBR of
all entries contained in N[j]), then there can be no entry NI [N[j], such
that Nk and NI overlap. In the above example, entry B of node 1 does not
intersect node 2, so it cannot intersect any entry inside 2. Using this
observation, space restriction performs two linear scans in the entries of
both nodes before starting the spatialJoin procedure, and prunes out from
each node the entries that do not intersect the MBR of the other node. The
second technique, based on the plane-sweep paradigm [Preparata and
Shamos 1988], applies sorting in one dimension in order to reduce the
overhead of computing overlapping pairs between the nodes to be joined.

In addition, Brinkhoff et al. [1993] employ a technique that uses pinning
(or page fixing), a well-known I/O buffer management method, to force page
fetching according to the optimal order. In Huang et al. [1997], spatialJoin
was extended by introducing an on-the-fly indexing mechanism to optimize
the execution order of matchings at intermediate levels. Brinkhoff et al.
[1994] study the multistep processing of spatial joins using several approx-
imations, while Brinkhoff et al. [1996] employ parallel execution.

4.2 Multirelation Approximate Joins

The general problem of multirelation approximate spatial joins is: given
two sets of objects (potentially indexed by two R-trees Ri, Rj), a spatial
constraint C, and a maximum distance t, find all pairs of objects ~Vi, Vj!,
Vi [Ri, such that d~Cij, R~Vi, Vj!! # t. SpatialJoin is not directly appli-
cable for the processing of this general type of spatial joins, because
intermediate nodes that may contain solutions do not necessarily overlap.
We study two alternative techniques to process joins using the framework
of Section 2.

Fig. 15. R-tree spatialJoin.

Approximate Spatio-Temporal Retrieval • 69

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

A first approach to process multirelational spatial joins is to apply the
indexed nested loop join algorithm [Mishra and Eich 1992], which is
originally used for relational joins. In this adapted version of INLJ, all
MBRs r in the outer object set Rj are scanned sequentially, and for each r
an object retrieval query is applied to find all objects Vi in the inner object
set Ri, such that d~Cij, R~Vi, r!! # t. INLJ uses the objectRetrieval algo-
rithm presented in Section 3.

The second extends the techniques proposed in Brinkhoff et al. [1993] to
handle multiple relations. In order to use an arbitrary constraint as the
join condition in spatialJoin, we need a mapping from relations, to bound-
ing conditions between intermediate node entries that should be recur-
sively joined. Figure 17 shows the bounding condition BCij for Ni given Nj.
This condition is based solely on the positions of the leftmost and rightmost
1’s in Cij. In particular, the leftmost 1 determines the position of Ni.l with
respect to Nj.u, while the rightmost 1 of Ni.u with respect to Nj.l. Entries
that do not satisfy these conditions can be excluded during search.

Assume, for instance, the query “find all objects Vi and Vj related by
R000000001” (i.e., Vi is to the right and far of Vj). An entry Ni is bounded with
respect to Nj by the following condition ~Ni.u . Nj.l 1 d!. This bounding
condition corresponds to the first row of Figure 17(b); the position of the
leftmost bit (last row of Figure 17(a)) does not constrain Ni.l. Figure 18
illustrates an example: if Nj is the intermediate node entry containing an
object Vj, then the upper point of candidate entries for Ni.u should lie in the
gray area. Entries like N9i, not satisfying this constraint, cannot contain
objects Vi. For approximate retrieval, bounding conditions are easily
adapted to include t.

Using the above transformation, spatialJoin can be extended to handle
multiple relations. Figure 19 illustrates the pseudocode for multirelation
spatial join (MSJ). In this case, the desired relation C ij, as well as t, are
passed as parameters. Each BCij is computed using C ij and Figure 17
(inverse conditions are also computed, but omitted here for simplicity). Leaf
nodes constitute solutions, if they are related by a relation whose distance
from C ij is less than or equal to t. Intermediate nodes are recursively
searched if they satisfy BCij. Initially MSJ is called with parameters the
roots of the trees Ri and Rj to be joined.

Fig. 16. R-tree indexed nested-loop join.

70 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

4.3 Optimization Methods

In order to enhance the performance of MSJ, we have implemented a
multirelation version of the space restriction heuristic. The following space-
Restriction routine takes the entries of node N[i] one by one and tests them
against N[j], eliminating the ones that do not satisfy the corresponding
bounding conditions.

The bounding conditions of Figure 17 are used when N[i] is at an
intermediate level. On the other hand, when N[i] is a leaf node (its entries
are object MBRs) a more restrictive bounding condition can be applied.
Consider, that in Figure 21 we want to join objects in N[i] with all objects
in N[j] with respect to R000000001 (in Figure 18 we showed that N[i] satisfies
the corresponding BC). Once we know the locations of each MBR in N[i] we

R1XXXXXXXX

R01XXXXXXX

R001XXXXXX

R0001XXXXX

R00001XXXX

R000001XXX

R0000001XX

R00000001X

R000000001

Ni.l < Nj.u - δ
Ni.l ≤ Nj.u - δ

Ni.l < Nj.u

Ni.l ≤ Nj.u

Ni.l ≤ Nj.u

Ni.l ≤ Nj.u

Ni.l < Nj.u + δ
Ni.l ≤ Nj.u + δ
Ni.l unlimited

RXXXXXXXX1

RXXXXXXX10 δ
RXXXXXX100

RXXXXX1000

RXXXX10000

RXXX100000

RXX1000000

RX10000000

R100000000

Ni.u > Nj.l + δ
Ni.u ≥ Nj.l +

Ni.u > Nj.l

Ni.u ≥ Nj.l

Ni.u ≥ Nj.l

Ni.u ≥ Nj.l

Ni.u > Nj.l - δ
Ni.u ≥ Nj.l - δ
Ni.u unlimited

(a) (b)

Fig. 17. Bounding condition BCij for Ni. (a) leftmost bit. (b) rightmost bit.

Vj

δ

Vi

Nj

Ni

δ

bounding condition for N
i .u

N'i

Fig. 18. Example of bounding condition for intermediate nodes.

Fig. 19. Multirelation spatial join.

Approximate Spatio-Temporal Retrieval • 71

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

can determine that some objects, such as r9i, can be excluded—r9i cannot be
related by R000000001 with any MBR in N[j] because r9i.l , N@ j #.l 1 d. If only
the bounding conditions of Figure 17 were used, r9i would pass the space
restriction test.

Figure 22 illustrates the complete set of leaf bounding conditions LBCij

between object MBRs and intermediate nodes. The bounding condition for
the previous example is at the bottom row of the first table (the correspond-
ing condition was unlimited in Figure 17).

In addition, we apply a multirelation plane-sweep (MPS), which can deal
with the whole set of relations of the current resolution scheme. MPS finds
intersections of rectangles belonging to nodes N[i], N[j] in two steps:

Fig. 20. Multirelation space restriction.

rj
δ

ri

N[j]
δ

bounding condition for N
i
.l

r'i

N[i]

Fig. 21. Multirelation space restriction.

R1XXXXXXXX ri.l < N[j].u - δ
R01XXXXXXX ri.l < N[j].u - δ, ri.l ≥ N[j]. l - δ
R001XXXXXX ri.l < N[j].u, ri.l > N[j]. l - δ
R0001XXXXX ri.l < N[j].u, ri.l > N[j]. l

R00001XXXX ri.l < N[j].u, ri.l > N[j]. l

R000001XXX ri.l < N[j].u, ri.l > N[j]. l

R0000001XX ri.l < N[j].u + δ, ri.l > N[j]. l

R00000001X ri.l ≤ N[j].u + δ, ri.l > N[j]. l + δ
R000000001 ri.l > N[j]. l + δ

RXXXXXXXX1 ri.u > N[j]. l + δ
RXXXXXXX10 ri.u > N[j]. l + δ, ri.u ≤ N[j]. u + δ
RXXXXXX100 ri.u > N[j]. l, ri.u < N[j].u + δ
RXXXXX1000 ri.u > N[j]. l, ri.u < N[j].u

RXXXX10000 ri.u > N[j]. l, ri.u < N[j].u

RXXX100000 ri.u > N[j]. l, ri.u < N[j].u

RXX1000000 ri.u > N[j]. l - δ, ri.u < N[j].u

RX10000000 ri.u ≥ N[j]. l - δ, ri.u < N[j].u - δ
R100000000 ri.u < N[j].u - δ

(a) (b)

Fig. 22. LBC that MBR Nk must satisfy to pass space restriction. (a) leftmost bit. (b)
rightmost bit.

72 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

(1) First transforms the x-projection of each rectangle NI [N[j] to a new
one N91, according to C2x. This transformation is done so that if
N912x does not intersect on the x-axis with some entry Nk2x [N[i],
then the original rectangles N1 and Nk cannot not be related by C ij.

(2) Then it applies spatial sorting and plane-sweep to find all pairs
~Nk2x, N9I2x! that intersect. For each such pair it checks whether the
corresponding pair ~Nk, NI! satisfies C ij and C ji.

In order to perform the transformation, MPS chooses a bit, whose value
is 1 on Cij2x. This bit is the minimal intersection bit IB~Cij2x!, described
in Section 3. For instance, consider that Cij2x 5 R000000011. We transform
the reference interval Nl [N[j] to N9I as shown in Figure 23. If N9I (which
is a single point) does not intersect some Nk then the original intervals
cannot satisfy R000000011.

The transformation differs for intermediate and leaf-level entries. The
x-projection of each leaf level-entry Nl is transformed to the area defined by
IB~Cij2x! and Nl (see Figure 24(a)). For intermediate node entries the
transformation relies on different bounding criteria presented in Figure
24(b). The first column of the tables correspond to IB~Cij2x! and the
second to the transformed rectangle.

4.4 Experimental Evaluation

We have implemented and tested INLJ and MSJ in order to compare their
performance. For the following experiments we used the LB data-file

a bδ δ

Nk

Nl

R000000011

N'l

Fig. 23. An example transformation.

0 N'l.l=-∞, N'l.u=Nl.l-δ
1 N'l.l=N'l.u=Nl.l-δ
2 N'l.l=Nl.l-δ, N'l.u=Nl.l

3 N'l.l=N'l.u=Nl.l

4 N'l.l=Nl.l, N'l.u=Nl.u

5 N'l.l=N'l.u=Nl.u

6 N'l.l=Nl.u, N'l.u=Nl.u+δ
7 N'l.l=N'l.u=Nl.u+δ
8 N'l.l=Nl.u+δ, N'l.u=+∞

0 N'l.l=-∞, N'l.u=Nl.u

1 N'l.l=Nl.l-δ, N'l.u=Nl.u-δ
2 N'l.l=Nl.l-δ, N'l.u=Nl.u

3,4,5 N'l.l=Nl.l, N'l.u=Nl.u

6 N'l.l=Nl.l, N'l.u=Nl.u+δ
7 N'l.l=Nl.l+δ, N'l.u=Nl.u+δ
8 N'l.l=Nl.l, N'l.u=+∞

(a) (b)

Fig. 24. Transformation of x-axis projections. (a) leaf nodes. (b) Intermediate nodes.

Approximate Spatio-Temporal Retrieval • 73

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

(TIGER/Line Files) [Bureau of the Census 1994] (described in Section 3.2).
Figure 25 illustrates the data set and two sample results of multirelational
self-joins in magnified portions of the map. The left result corresponds to a
join R0001111002000111100 (light gray, dark gray rectangle), while the right one
to R0000111002000111000.

From LB we built several R*-trees of different block sizes, i.e., 512 bytes,
1K, 2K, and 4K. The LRU buffer size of the R*-trees was set to 128. An
artificial set of 20 constraints was constructed. Then the self-join of the
data set was computed using these constraints and the two algorithms. In
order to avoid trivial queries, we excluded constraints with far-disjoint
(R100000000 and R000000001). The distance limit, d, was set to 100. In all
queries t was set to 0. The implementation language was C11, and the
experiments were run on a SUN UltraSparc2 (200MHz) workstation with
256MB of RAM.

Figure 26 illustrates the performance of the algorithms for various R-tree
page sizes. MSJ outperforms INLJ by means of both CPU-time and the
number of I/O page accesses. The high cost of INLJ is due to the linear
scanning of the outer file. The CPU-cost of both algorithms increases with
page size. For INLJ this is due to the degeneration of the tree (the higher
the level of the tree, the faster the search in terms of CPU-time). For MSJ,
the slight increase of cost is due to the increase of the number of pairs that
have to be joined for 2-specific nodes (this cost is in the worst case C2,
where C is the capacity of the node).

On the other hand the decrease of I/O page accesses pays off this
computation cost, and the overall efficiency of MSJ increases with the page
size, as shown in Figure 26(c). Here, the overall cost of the algorithms has
been calculated by charging 10ms for each page access (a typical value
[Huang et al. 1997]). Observe that a page size equal to 2KB is the best for
INLJ, while the performance of MSJ tends to stabilize for large page sizes.

000111100-000111100R

000011100-000111000R

Fig. 25. LB data set and sample retrieval results for multirelational spatial self-joins.

74 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

Despite its inferior performance, INLJ can be very useful when there
exists a multidimensional index only for the one of the two data sets to be
joined. In this case MSJ cannot be applied, and INLJ remains the only
alternative. Furthermore, as we show in the next section, algorithms based
on a similar idea can be very efficient for structural query processing.

5. CONFIGURATION QUERIES

This section examines an alternative form of spatio-temporal information
processing, namely, queries involving the retrieval of n-tuples ~n . 2! of
objects that satisfy some structure. This type of retrieval presupposes that
preprocessing techniques have been applied to extract information about
the objects in a spatial scene and their locations. As an example consider
the query of Figure 7(a) that asks for all configurations of four objects that
match the input drawing. Alternatively the query could be expressed by an
extended SQL language: select V0, V1, V2, V3, from Map, where
R0011110002001111100~V0, V1! and R0000011002100000000~V0, V2!, etc. Linguistic
terms may be used instead of bit strings, e.g., covers (V0, V1) instead of
R0011110002001111100. Although the particular query specifies relations be-
tween all pairs of variables, in some cases queries may be incomplete (some
constraints may be left unspecified) or indefinite (constraints may be
disjunctions of relations). Furthermore, in real applications some additional
unary constraints may appear; these may specify object properties at the
feature (e.g., V0 is red) or semantic level (e.g., V0 is a building). Although
such constraints are easy to handle (provided that the corresponding
properties have been extracted), for generality we omit them here and deal
only with binary spatio-temporal ones.

0

10

20

30

40

50

60

70

80

90

100

512 1K 2K 4K

INLJ MSJ

0

1000

2000

3000

4000

5000

6000

7000

512 1K 2K 4K

INLJ MSJ

0

20

40

60

80

100

120

512 1K 2K 4K

INLJ MSJ

(a) (b)

(c)

Fig. 26. Performance of INLJ and MSJ for various block sizes.

Approximate Spatio-Temporal Retrieval • 75

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

Formally, a configuration (or otherwise, structural) query can be de-
scribed as a binary constraint satisfaction problem [Nadel 1989] (CSP)
which consists of

—set of n variables, V0, V1, . . . , Vn21 that appear in the query.

—For each variable Vi a finite domain Di 5 $r0, . . . , rN21% of N object
MBRs. We assume that all domains are identical, i.e., each variable can
be instantiated to any object.

—For each pair of variables Vi, Vj a binary spatio-temporal constraint Cij.

Figure 27 illustrates a solution where variable V0 is instantiated to object
143, V1 to object 207, and so on (the length of the grid is d). A binary
instantiation $Vi 4 rk, Vj 4 rI% is consistent, if R~rk, rI! # C ij. For instance,
the constraint between V0 and V3 is R1000000002111000000, which is also the
relation between their corresponding instantiations (143,42) in Figure 27;
therefore, $V0 4 143, V3 4 42% is consistent. On the other hand, although
the constraint between V0 and V1 is R0011110002001111100, the relation be-
tween objects 143 and 207 is R001111000200111000; therefore the particular
solution is approximate. The total distance of a solution $V0 4 rp, . . . ,
Vn21 4 rr% is the sum of all binary distances:

O
@ij, 0#i, j,n

d~Cij, R~rk, rl!! where $Vi 4 rk, Vj 4 r1%

The maximum allowed total and pairwise distances, T and t, are submitted
with a query in order to adjust the trade-off between the level of approxi-
mation and the cost of query processing. For instance, if T 5 6 and t 5 2,
only solutions that produce total relation distance 6 and pairwise distance
2 will be retrieved. Obviously as T and t increase, so does the number of
solutions, but also the cost of query processing.

Fig. 27. A solution (to the query of Figure 7).

76 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

5.1 Forward Checking

Since configuration queries can be viewed as CSP problems, they can be
processed by a variety of CSP algorithms. One of the most effective ones is
forward checking (FC) [Haralick and Elliott 1980], which has been shown
to perform very well in a wide range of problems involving “crisp” con-
straints [Bacchus and Grove 1995]. FC must be modified for configuration
queries in order to handle soft constraint processing using T and t.

A “branch and bound” version of FC for the current problem works as
follows: when a variable Vi is assigned a value rk, the domain of each future
(uninstantiated) variable Vj is pruned according to rk and the constraint
Cij, for all j . i. That is, all MBRs rl that produce a distance d~Cij, R~rk, rl!!
. t are removed from the domain of Vj. The same happens for MBRs that
produce global distance . T, taking into account the constraints between Vj

and all instantiated variables.3 Consequently, when we reach instantiation
level i (variables up to Vi have been instantiated), the values of variables
Vo, . . . , Vi will constitute a partial solution, and the domains of future
variables will contain only values that may lead to a (complete) solution
given the instantiations so far.

The procedure of pruning the domains of the future variables is called
check forward. If, after a check forward, the whole domain of a future
variable is eliminated, the algorithm unassigns the current variable’s
value, and restores the values of future variables, which were eliminated
due to the current instantiation. When the domain of the current variable
is exhausted the algorithm backtracks to the previous one and assigns a
new value to it. FC outputs a solution whenever the last variable is given a
value, and terminates when it backtracks from the first variable.

In order to keep track of the allowable values for each variable at every
instantiation level, FC uses an n 3 n 3 N domain table, where n is the
number of variables and N the domain size. Each element of domain [i][j] is
an array of N values that Vj can take at different levels. Before FC starts,
domain [0][j] is initialized to Dj for all variables. When V0 is assigned an
object rp, domain[1][j] is computed for each remaining Vj, by including only
objects r1 [domain@0#@ j # such that d~C0j, R~rp, r1!! # t. In general if rk

is the current instantiation of Vi, domain[i11][j] is the subset of do-
main[i][j] which is valid with respect to C ij and rk. In this way, at each
instantiation level the domain [i][j] of Vj continuously shrinks; when we
reach level j, Vj gets instantiated from domain [j][j] which contains only
MBRs compatible with the instantiations of all previous variables. If a
value of Vi results in the domain of some Vj to become empty, a new value is
chosen and domain[i11][j] is reinitialized to domain[i][j]. The pseudocode
of a nonrecursive version of FC which can be applied for configuration
query processing is given in Figure 28.

3The inverse constraints Cij are also considered, but for the sake of simplicity we omit these
tests in the rest of the paper.

Approximate Spatio-Temporal Retrieval • 77

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

Dynamic variable ordering (DVO) [Bacchus and van Run 1995] is a
technique employed by several CSP algorithms to improve efficiency. The
key idea behind FC-DVO is to reorder the future variables according to
their domain size after “checking forward” at the current instantiation
level. The variable with the minimum domain size becomes the next
variable to be tested. In this way the number of search paths is minimized,
because the variable with the smallest domain is the most likely to be
pruned out; the algorithm will backtrack faster in the case that there is no
valid assignment after the current partial solution. DVO is responsible for
changing the order of V1 and V2 in Figure 27.

FC-DVO has two drawbacks for the current application. First it is
inapplicable for large spatial databases, because the 3D domain table
cannot fit in main memory. The second drawback is the fact that it does not
utilize the spatial indices which may exist for spatial relations. The
incorporation of R-trees and appropriate query-processing techniques can
solve both these problems.

5.2 Window-Reduction Algorithms

Window reduction techniques combine the concepts of indexed nested loop
join (Section 4.2) and forward checking. The algorithms after instantiating

Fig. 28. Branch-and-bound forward checking with dynamic variable ordering.

78 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

a variable will use its value as a query window to restrict the possible
values of subsequent variables. For instance, after assigning V0 4 143
(Figure 27), object 143 becomes the query window for values that will
constitute the domain of V1, avoiding unnecessary consistency checks. The
pseudocode of window reduction (WR) algorithm is presented in Figure 29.

In order to avoid the 3D domain set used by FC, WR maintains an n 3 n
domain window that encloses all potential objects for each variable (and
possibly some false hits). When Vi takes a new value rk, a new window Wj is
computed for every uninstantiated variable Vj taking into account rk and
Cji. The intersection of Wj with (existing) domainWindow[i][j] is stored at
domainWindow[i11][j]. Figure 30(a) illustrates the domain windows for V2

and V3, assuming that the first two variables of the example query have
been instantiated to d and e respectively. When V2 is instantiated to a
(Figure 30(b)), the constraint C32 specifies that valid instantiations for V3

should lie in W3. The new domainWindow[3][3] for V3 is the intersection of
domainWindow[2][3] and W3, i.e., it corresponds to the only area that may
contain values consistent with both $V0 4 d, V1 4 e% and V2 4 a. The
domain windows are computed in a way similar to objectRetrieval.

Fig. 29. Window-reduction algorithm.

Approximate Spatio-Temporal Retrieval • 79

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

If some domain window becomes null (empty intersection), the current
instantiation is invalid, and the algorithm then proceeds to the next value
for Vi. WR can be thought of as a “lazy” version of forward checking because
the domain windows are calculated but no objects are retrieved until the
variable gets instantiated. A drawback of this method is the fact that a
possibly empty domain of Vj (i.e., a window not containing any objects)
cannot be detected until WR reaches instantiation level j and performs the
window search. However, this disadvantage is counterbalanced by the
smaller number of R-tree searches.

The next value for a variable Vi is retrieved via getNextValue (), which
uses domainWindow[i][i] as the query window for Vi. GetNextValue() does
not perform a window query every time it is invoked, but the whole search
path for each variable is maintained in memory. The overhead for this
path-holding technique is pinning at most n z h pages—a small number for
most applications. After a value is retrieved for Vi, the algorithm checks
whether it is consistent with the previous instantiations, since not all
values that fall inside the domain window of Vi are necessarily legal.

In addition to domain windows and path maintenance techniques, WR
uses DVO: when the domain windows of the future variables are calculated
after an instantiation, the variable with the smallest domain window
becomes the next to be examined. This is led by the intuition that a small
window is more likely to contain the least number of instantiations and
minimize redundant consistency checks.

WR essentially searches the whole space in order to instantiate the first
variable, but after doing so it performs only window queries which are
cheap operations in R-trees (in this sense it is similar to INLJ). The
disadvantage of blindly instantiating the first variable in the whole uni-
verse could be avoided by an algorithm that combines properties of multire-
lation spatial join and window reduction. Join Window Reduction (JWR)
first applies a pairwise spatial join to retrieve instantiations for the first
pair of variables and then uses window reduction to instantiate the rest of
the variables. The subsequent variables are instantiated in the same way
as WR (see Figure 31). Function getNextPair() assigns the next pair that
satisfies the relations between the first two variables using MSJ. For
calculating the first pair of variables to be joined we use statistical

e
d

δ

δ
domainWindow[2][3]

domainWindow[2][2]

δ

e
d

δ

δ

domainWindow[2][3]
a

δ W
3

domainWindow[3][3]

δ

(a) (b)

Fig. 30. Example of WR (a) $V0 4 d, V1 4 c% (b) $V0 4 d, V1 4 e, V2 4 a%.

80 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

information about the number of occurrences of each relation in the data
files. Relations that occur rarely prune search space more effectively than
frequent ones. For instance, the constraint R0011110002001111100 between V0

and V1 is more restrictive than the other relations, because only a few pairs
of objects satisfy it in normal data distributions.

5.3 Multilevel Forward Checking

Multilevel forward checking (MFC) is another variation of FC that extends
MSJ to deal with n-tuples instead of pairs. MFC finds all n-combinations of
intermediate nodes (at each level of the R-tree) that may contain some
solution objects and follows the references to the next level, until it reaches
the leaves, where it outputs solutions. As an example consider the tree of
Figure 8. The path to solution (d,e,a,k) of the example query is (1,1,1,2) at
the top, (B,B,A,D) at level 1, and (d,e,a,k) at level 0.

The calculation of combinations of the qualifying nodes at each level (e.g.,
(1,1,1,1), (1,1,1,2), . . . , (2,2,2,2) for the top) is expensive, as their number
can be as high as Cn , where C is the capacity of an R-tree node. Although
the search space is not prohibitively large (usually n # 10 and C # 200),
the computational burden is due to numerous appearances of the problem
during query processing. Finding the subset of node combinations which is
consistent with the input query can be treated as a local CSP at each level.
In particular the problem consists of

—A set of n variables, V0, V1, . . . , Vn21.

Fig. 31. Join window-reduction algorithm.

Approximate Spatio-Temporal Retrieval • 81

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

—For each variable Vi a domain Di 5 $N0, . . . , NI21% of I~I # C! potential
values which correspond to entries in R-tree node N[i].

—For each pair of variables Vi, Vj a binary constraint which: (i) for
intermediate nodes is a bounding condition BCij derived from Figure 16
using the corresponding C ij and t, (ii) for leaf nodes is a constraint C ij

(disjunction of primitive relations).

The CSP in the case of the top level of the tree in Figure 8 has four
variables V0, V1, V2, V3, which can be instantiated to entries 1 or 2 of the
root. Consider the constraint R0000000012001100000 between V3 and V2 (Figure
7). The bounding condition on the x dimension for R000000001~V3, V2! is
BC32 : ~N3.u . N2.l 1 d! (example of Figure 18). The binary instantiation
$V2 4 2, V3 4 1% cannot lead to a solution at the lower levels because

Fig. 32. Multilevel FC.

82 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

~1.u , 2.l 1 d!. Therefore, all combinations (x,x,2,1) can be pruned out
during search. The pseudocode for MFC is shown in Figure 32.

MFC applies forward checking to solve the CSP at each R-tree level:
every time a variable Vi is instantiated to an entry Nk, the algorithm
eliminates all Nl that do not satisfy BCij~Nk, Nl! from the domains of each
uninstantiated variable Vj. Initially N@# is set to an n-tuple that points to
the tree root for all variables, i.e., N@i# 5 root, for i 5 0. . . n 2 1. A solution
for the current tree level is found when the last variable is instantiated.
The algorithm is then recursively invoked for the lower level, taking as
parameter the n-tuple of the solution’s references. Solutions are output if
they refer to actual objects. MFC returns to the previous tree level when it
backtracks from the first variable at the current level.

In the example of Figure 8, when the first valid combination (1,1,1,1) is
found at the top, MFC will be called for the next level, trying to find a
combination of nodes inside node 1 that satisfy all BCij (the domain of all
variables is now D 5 $A, B%). If such a combination does not exist, as is the
case here, it will backtrack to the top level and attempt to find another
solution—assume (1,1,1,2). The new domains for the next call of MFC
become D0 5 D1 5 D2 5 $A, B% and D3 5 $C, D%. A solution at this level is
$V0 4 B, V1 4 B, V2 4 A, V3 4 D%. At the next call of MFC for level 0, the
domains become D0 5 D1 5 $c, d, e%, D2 5 $a, b, f%, D3 5 $l, k, j%, and the
solution (d,e,a,k) is found.

5.4 Experiments

In order to compare the performance of the three algorithms (WR, JWR,
MFC), we used the experimental setup of the previous sections. We
constructed 5 artificial sets of 30 queries: the number of variables in the
queries of each set was fixed to 3, 4, . . . , 7. The distance between two
variables on each axis did not exceed d, which was set to 100.

Figure 33(a) shows the mean CPU-time and 33(b) the I/O page accesses
averaged over all query-sets on the R*-tree with 1KB block size. WR and
JWR clearly outperform MFC by orders of magnitude in terms of CPU-
time. The performance gap widens with the query size because the domain
windows in WR and JWR are continuously decreasing as new variables are
instantiated. Moreover, empty window domains of the latter variables are
detected early using the window reduction policy. On the other hand, the
relaxed constraints between intermediate nodes do not permit MFC to
prune the search space at the higher levels of the tree; thus, MFC cannot
avoid the combinatorial explosion of possible instantiations as the number
of variables increases. It is interesting to notice that MFC is better than
WR in terms of page faults, and this is due to the fact that WR instantiates
the first variable in the whole space.

Figure 33(c) illustrates the relative CPU-time performance of WR and
JWR (also for block size of 1K). JWR maintains a significant performance
gain over WR. The performance gap is not affected by query size, because

Approximate Spatio-Temporal Retrieval • 83

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

the only difference of the algorithms is the instantiation method for the
first pair of variables.

In order to evaluate the algorithms for various block sizes we executed
the 4-variable query set using R*-trees of 512, 1K, 2K, and 4K bucket sizes.
CPU-time and page accesses are shown in Figures 34(a) and 34(b), respec-
tively. Figure 34(c) shows the overall cost for WR and JWR, which was
estimated by charging 10ms for each page access. The algorithms perform
better for page size of 2K, while for larger sizes (4K) the degeneration of the
tree affects the speed of the search.

Another important observation from our experiments (not obvious in
these diagrams) was the expected behavior of MFC for almost all queries;
the CPU-time was at the same levels, depending only on the query size. On
the other hand, the performance of WR and JWR was unpredictable: for
instance the CPU time of WR may differ an order of magnitude for two
different queries of the same size. This unstable behavior is due to the fact
that the resolution scheme may facilitate large reduction of the domain
windows for some queries (e.g., inside), and not for others (e.g., disjoint).

Finally, we tested the performance of JWR over queries with nonzero
degrees of inconsistency. In all experiments the value of T was set to 10.
Figure 35 illustrates the overall cost of JWR for the 2K page size R*-tree as
a function of the query size. Each line corresponds to a different value of
local tolerance t. Because approximate retrieval is equivalent to exact
retrieval using a larger window, the domain windows of JWR get larger as
t increases. Larger windows imply more potential legal values and more
consistency checks.

0

2000

4000

6000

8000

10000

12000

3 4 5 6 7

MFC

WR

JWR

2000

2200

2400

2600

2800

3000

3 4 5 6 7

MFC WR JWR

0

50

100

150

200

250

300

350

400

3 4 5 6 7

WR

JWR

(a) (b)

(c)

Fig. 33. Experimental evaluation 1. (a) CPU-time as a function of n. (b) Page accesses as a
function of n. (c) CPU-time for WR-JWR.

84 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

5.5 Discussion

Although the previous descriptions refer to retrieval from a single image,
the extension to multiple images is straightforward: repeat the same
process in each selected image. Let n be the number of variables and NI be
number of objects in image I: in the worst case (exhaustive search), all n-
permutations of NI objects (i.e., NI! / ~NI 2 n!!) have to be searched in order
to find solutions in I. In most applications where NI .. n, this number is
O~N I

n!, meaning that the retrieval of configuration queries can be exponen-
tial to the query size. In order to avoid this problem, most related previous
techniques (e.g., Gudivada and Raghavan [1995] and Nabil et al. [1996])
have focused on a specific instance where each image contains a spatial
arrangement of the same set of known (labeled) objects. The goal is to find
all images that contain a subset of the objects matching some given
configuration. The problem in this case is polynomial ~O~n2!!, since it
suffices to locate all query objects in some image and then for each pair
calculate its similarity to the input constraints.

0

500

1000

1500

2000

2500

512 1K 2K 4K

MFC

WR

JWR

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

512 1K 2K 4K

MFC

WR

JWR

0

100

200

300

400

500

512 1K 2K 4K

WR

JWR

(a) (b)

(c)

Fig. 34. Experimental evaluation 2 (a) CPU-time as a function of block size (b) Accesses as a
function of block size (c) Overall cost of WR and JWR.

0

100

200

300

400

500

600

700

800

3 4 5

0

2

4

Fig. 35. Overall cost of JWR for partial retrieval.

Approximate Spatio-Temporal Retrieval • 85

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

Petrakis and Faloutsos [1997] move a step further and employ spatial
indexing to solve configuration queries for images that contain a constant
number of labeled objects (e.g., lungs) and a small number of unlabeled
ones (e.g., tumours). They map each image onto a point in multidimen-
sional space, where each dimension corresponds to a relation between a
specific pair of objects (the number of dimensions is quadratic to the
number of objects), and engage R-trees for nearest neighbor retrieval. In
order to keep the number of dimensions stable, images containing unla-
beled objects are decomposed into combinations of images of fixed size.
Although the above method (and feature-based methods, in general) is
efficient for domains involving small images with few unlabeled objects
(e.g., medical databases of x-rays) it is not applicable to large images of
unlabeled objects, because of the potentially huge number of dimensions4

(R-trees are not suitable for spaces of very high dimensionality [Berchtold
et al. 1998]) and the enormous number of subimages generated by the
decomposition of each image in smaller ones with a certain number of
objects. In addition, the method can only be applied with a predetermined
resolution scheme according to which the multidimensional index is built.
On the other hand, our techniques do not make any assumptions about the
size of images and the types of objects but solve the general problem
assuming the same indexes as for window and join queries.

A number of methods are based on several variations of 2D strings,
which encode the arrangement of objects on each dimension into sequential
structures. 2DB strings [Lee et al. 1992] capture the object projections,
effectively approximating each object by its MBR (similar to the approach
taken here). 2DC and 2DG strings decompose objects in entities with
disjoint convex hulls, allowing the representation of more detailed spatial
information at the expense of storage [Chang et al. 1989; Lee and Hsu
1992]. Every database image is indexed by a 2D string; queries are also
transformed to 2D strings, and configuration similarity retrieval is per-
formed by applying appropriate string-matching algorithms [Chang et al.
1987]. If the query contains only labeled objects, the cost of processing each
image is linear, while in the general case it is exponential, since matching
has to be performed for multiple instantiations of the variables to different
image objects. Unlike in our methods, users are not allowed to define and
use their own relations but only the scheme according to which 2D strings
are built.

In case of nonindexed images with unlabeled objects, Papadias et al.
[1999b] propose retrieval heuristics for configuration similarity based on
genetic algorithms, iterated improvement, and simulated annealing. Exper-
imental evaluation suggests that these techniques outperform forward
checking for queries of the form “find one solution (or a small percentage of
the solutions) with similarity above a target” or “find the best solution

4If all images contain N objects and the resolution scheme defines r relations, the number of
dimensions would be r z N 2, i.e., for the distance-enhanced scheme and images of only five
objects, the number of dimensions would be 1025.

86 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

within a restricted time.” Although they are efficient for retrieval involving
numerous relatively small images (e.g., video clips, medical imagery), the
methods cannot be applied for queries involving the retrieval of all solu-
tions in large indexed images.

An alternative approach for processing configuration queries using un-
derlying indexes is motivated by multiway spatial joins [Mamoulis and
Papadias 1999].5 Consider the example query of Figure 7: MSJ can be
applied for computing the join between V0 and V1 and between V2 and V3;
the intermediate results may then be combined by some pairwise algorithm
for nonindexed inputs. A problem with this approach is that algorithms for
nonindexed inputs (see Section 4 for references) are developed for the
overlap predicate and exact retrieval. Their extension to arbitrary con-
straints and approximate retrieval is complicated and outside the scope of
this paper. Conversely, the proposed algorithms can be easily modified for
multiway spatial join processing. Papadias et al. [1999a] describe formulae
for the expected number of solutions in case of uniform data sets and
overlap constraints, which are applied for optimization of joins using a
combination of WR and MFC. The idea is similar to JWR, but instead of
two, any number of inputs can be processed by MFC and then pipelined to
WR. This technique, however, cannot be effectively employed for configura-
tion similarity queries due to the lack of accurate estimations for the
number of solutions in case of arbitrary relations. Park et al. [1999]
proposed a modified version of MFC, and several optimization techniques,
which is efficient for multiway spatial joins involving dense data sets and
query graphs.

6. MOTION QUERIES

In this section we show how our techniques can be applied for the handling
of motion queries. Motion can be defined as a temporal sequence of discrete
phenomena called frames. Assuming an ordered set of frames representing
any ordered collection of images of moving objects (e.g., satellite imagery),
several queries may be of importance to a user, examples of which are given
below:

(1) Find the set of frames where some objects move from an initial position
to some destination.

(2) Find the set of frames where an object performs a specific movement
with respect to a reference object.

(3) Describe the movement of an object as a set of relation variances.

(4) Which object moves (qualitatively) faster?

(5) Given a set of frames, find a frame with a specific spatial arrangement.

5Multiway spatial joins can be thought of as a special form of configuration queries, where the
spatial constraint is overlap and retrieval is exact.

Approximate Spatio-Temporal Retrieval • 87

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

The core of any motion query processor must include a mechanism that
compares consecutive frames and decides whether they are similar enough
to be regarded as “elementary” motion. Similarity between different move-
ment patterns relies on several factors:

—the resolution scheme, e.g., a small object’s movement along a large
reference object will not be considered as motion unless a sufficiently
refined resolution is adopted to distinguish among several overlap rela-
tions;

—the sampling rate of frames, as it controls the perceived motion’s smooth-
ness; and

—the user’s expectations and the application requirements.

There exist various ways to elaborate on the identification of motion
patterns. For instance, assume that we are interested in assessing “smooth
motion” as opposed to arbitrary movement. Figure 36 illustrates the initial
position of object A with respect to a reference object B, seven intermediate
frames, and the final frame which shows A in its target position. The
assessment of whether these frames constitute “smooth motion” is based on
a comparison of relative objects’ positions.

Let Ri be the relation between A and B in frame i. Then a motion
constraint can be defined as d~Ri, Ri2I! # t, meaning that in order for an
arbitrary movement to constitute motion, the distance between the rela-
tions of A and B in two successive frames must be less or equal than a
certain threshold (e.g., t 5 2). An obvious implicit constraint is that A is not
allowed to have the same position in any two successive frames. The degree
of smoothness can be indicated by several possible measures, one of which
is the following:

S 5
O

i51

f21d~Ri, Ri2I!

f 2 1
where f is the number of frames

A

B B B A

R (A,B)x-y001110000-000000100

000010000-000000100
00001000-000000100

000011100-000000100

000000100-000000100

000000100-000000100

000000100-000000100

000000100-000011100

000000100-001111100

starting frame final frameintermediate frames

δ

δ

Fig. 36. Assessing movement by fixed reference.

88 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

As long as the above constraints hold, the smaller the value of S, the
smoother the movement in the corresponding set of frames. For the
example in Figure 36 (at the distance-enhanced resolution scheme), the
value of S is ~2 1 0 1 2 1 2 1 0 1 0 1 2 1 2! / 8 5 1.25, which could
be less for a more dense sampling of frames.

In order to evaluate the cost of motion queries as a function of various
input parameters, we constructed an artificial database aiming at simulat-
ing a satellite imagery application. The initial image (or frame) contains
5,000 distinct objects uniformly distributed in a square workspace with
density 0.2. Between two successive images, each object moves at a maxi-
mum distance of 5% on each axis with probability 0.1 (essentially the
majority of objects in two successive frames are in the same position, while
a few are in neighboring ones). We have developed algorithms that use this
database to process the following queries:

(1) Given a well-defined starting window W1 and ending window W2, find
all objects in a specific sequence of frames that have moved from W1 to
W2. The query is processed by finding for each object oi the first frame fi

and the last frame li in the sequence where the object intersects W1 and
W2, respectively. If fi is before li then the object qualifies the query. In
order to detect motion, we define a reference window Wref whose
end-points are considered the average of the corresponding end-points
of W1 and W2, i.e., Wref, l 5 ~W1, l 1 W2, l!, etc. We verify whether a
candidate object moves, by comparing its relation to Wref in consecutive
frames, as described above.

(2) Given a (not necessarily static) reference object oj, find all objects in a
sequence of frames which have changed relative position with respect to
oj, according to a starting relation Rst and an ending Rend. This query is
processed in a similar way as the first one, by defining W1 and W2 using
the position of oj at each frame. The reference object oi is used to detect
motion.

(3) Given a well-defined (static) reference window W, find the fastest object
oi in a sequence of frames which has moved with respect to W,
according to a starting relation Rst and an ending Rend. Speed is defined
as the number of frames between the starting and ending position of
the move. This query is processed by first identifying the objects which
have moved with respect to the reference window and then ranking
them according to their speed. Again, the reference window W is used
for motion detection.

Figure 37 illustrates retrieval results from the database. For the sake of
presentation, we have drawn versions of the same object in a sequence of
frames together. Figure 37(a) shows the trajectory of an object moving
between two windows. Figure 37(b) shows the move of an object that
changes relative position with respect to a static object, while in 37(c) the
reference object is moving as well. Results of the third query type are

Approximate Spatio-Temporal Retrieval • 89

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

depicted in Figures 37(d) and 37(e). In this example query, nine objects
have changed relative position with the reference window W, according to
the constraints. The move of the fastest one (Figure 37(d)) lasts 10 frames,
whereas the slowest one (Figure 37(e)) moves for 48 frames. The move in
some cases is too smooth to be visible in the corresponding figure.

Since all types of queries are reduced to motion detection between two
windows, we experimented only with queries of the first type. The results of
the experiment can be used to draw conclusions for the other query types.
We measured the response time (in seconds) of queries of the first type as a
function of the number of frames (10, 20, . . . , 100) and the ratio query_
window_area/average_object_area (50, 100, . . . , 500). Figure 38 shows the
results. Observe that query time increases linearly with the length of the
sequence of searched frames. It is also linear to the size of the windows W1

and W2, since the number of objects that lie in a window is linearly
dependent to its area.

Fig. 37. Sample retrieval results of motion queries.

90 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

Apart from the three types of simple queries described above, more
complex ones can be processed using our framework. Queries such as
“Given a set of frames, find a frame with a specific spatial arrangement”
are easily modeled as structural queries in multiple frames (instead of
single images). Queries of the form “Find all pairs of objects that perform a
specific movement with respect to each other” can be processed as spatial
joins, where the input constraints correspond to movement relations. This
special type of motion query, called motion join, can be expressed as follows
using the proposed framework. Given a sequence of frames, find all pairs of
objects ~oi, oj! having a starting relation Rst at the first frame f, an ending
relation Rend at the last frame l, and move in the intermediate frames. We
have implemented three algorithms that process motion joins:

(1) OID join. This method performs two multirelational spatial joins (see
Section 4) at the two frames f and l, using the respective relations Rst

and Rend. It then sorts and merges the identifiers of the qualifying pairs
in order to find the common object pairs that constitute the problem’s
solution.

(2) Join and verify. This method performs a multirelational join to one of
the two frames, where the respective relation is expected to be more
restrictive. We will explain later how the constrainedness of a relation
is defined and used as a metric for this algorithm. Each qualifying pair
of objects is then tested whether it satisfies the other relation in the
less restrictive frame.

(3) Nested loops. In this simple method each object pair is checked for
satisfaction of both relations at both frames. Naturally, this method is
expected to be more expensive than the other two, but we implemented
it for the sake of comparison with them.

Verification of move in the intermediate frames is done in the same way
for all methods. Figure 39 illustrates the relative performance of the three
methods using the database described above. The y-axis shows the retrieval
cost in seconds, whereas the x-axis captures the reverse constrainedness of

Fig. 38. Cost of simple motion queries.

Approximate Spatio-Temporal Retrieval • 91

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

a query defined as follows. Let size(f, R) be the expected output size (i.e.,
number of qualifying object pairs) of a multirelational self-join in frame f
using relation R. This quantity can be easily estimated using selectivity
formulae for spatial join queries. More specifically, it is defined as the area
of the window defined by R and a random object in the frame using the
methodology of WR (see Section 5.2), divided by the area of the workspace.
Relations R100000000 and R000000001 naturally have the largest output size
(i.e., they are the loosest). The reverse constrainedness of a motion join is
defined as the minimum expected output size of the joins on the two frames,
divided by the largest possible expected output size on a frame. Thus queries
including only relations R100000000 and R000000001 are expected to have large
reverse constrainedness, and queries that include relations with the central
bit on will have small reverse constrainedness. For each constrainedness
value in the experiment we ran 100 queries and took the average.

As expected, nested loops presents a stable behavior; its cost is indepen-
dent on the constrainedness and much higher than the cost of the other
methods. From the other alternatives, join and verify is the winner in all
cases, having an almost stable performance difference with OID join. Since
the number of objects in each frame is relatively small, verification was
performed in memory with low cost. However, for large applications verifi-
cation may require access to secondary memory, thus join and verify may
be less efficient than OID join in some cases.

Although not initially the main motivation for this work, this section
touches briefly upon motion queries, treating them as special cases of
spatio-temporal queries. The main goal of the section is to indicate the
flexibility of our framework and its easy adaptation for various applica-
tions. We examined some obvious query cases entailing movement of
objects and conducted a few experiments. However, the framework could be
potentially used for more complicated motion analysis tasks, e.g., the
identification of motion patterns like periodicity, global motion patterns vs.
single-axis patterns, etc. This could be accomplished in conjunction with
the use of string-matching algorithms to identify patterns in both relation
variances and relation strings.

0

2

4

6

8

10

12

14

16

18

20

0.025 0.05 0.1 0.2 0.4 0.6 0.8 1

OID Join

Join and verify

Nested loops

Fig. 39. Experimental comparison of motion join methods.

92 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

7. CONCLUSION

In this work we have attempted an in-depth treatment of spatio-temporal
queries. In addition to traditional spatio-temporal applications, their im-
portance is even more stressed, considering them as a means to effectively
retrieve information from large unstructured or semistructured multimedia
repositories like the WWW, where the condition is spatio-temporal struc-
ture instead of textual content. In essence, such queries represent similar-
ity assessments among spatio-temporal configurations. Therefore, exact
matches may not be sufficient for users. Instead, approximation (similarity)
measures should be employed to relate each retrieved configuration with
the queried one.

We have reduced this general similarity problem to elementary 1D
relation similarity, and, by borrowing concepts from spatio-temporal rea-
soning research, we have defined a formal yet practical framework for
encoding 1D relations in a way that allows efficient reasoning on concep-
tual neighborhoods. We subsequently extended the model in a uniform way to
arbitrary dimensions and multiple resolution levels with respect to the defini-
tion of relations, thus covering many potential applications. This logical
representation proved effective and efficient for spatio-temporal retrieval,
used in conjunction with appropriate data structures such as R-trees.

We applied the framework in three major types of spatio-temporal
queries which have been the topic of active research in the database
community: object retrieval, spatial joins, and structural similarity, as well
as to a special class of motion queries as an indication of the flexibility of
our approach. In addition to algorithms, we provided optimization methods
and evaluated the performance of query processing through experiments
with real data. Due to the lack of available higher-dimensional real data,
we confined our experiments to 2D. This, however, does not undermine the
validity of our approach, as similar indexing techniques are employed for
3D or 4D data (see Vazirgiannis et al. [1998]), thus rendering our frame-
work directly applicable.

Our techniques have a wide range of potential applications in various
areas involving multidimensional data. A relative limitation of the ap-
proach is in its dependence on visual feature extraction algorithms, as our
model assumes that images are preprocessed. For example, in order to
assess motion in a set of satellite images, one has first to identify meaning-
ful objects, define MBRs, index them, and subsequently apply our tech-
niques. In some applications, objects are already identified when images
are entered in the system (e.g., most VLSI and GIS applications), while in
others identification can be done automatically due to domain restrictions
(medical images).

Future continuation of this work is possible in both theoretical and
practical directions. For example, the algebraic properties of different sets
of relations that are feasible at different resolution levels could be studied
and motivate the framework’s extension to hierarchical relation similarity
problems. From a practical point of view, a very fruitful research direction

Approximate Spatio-Temporal Retrieval • 93

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

would be the coupling of our techniques with appropriate query languages
for spatio-temporal domains (possibly a combination of pictorial and verbal
languages). Finally, findings from the currently active research on indexing
techniques for higher dimensions are expected to enrich the applicability
range of our approach and improve its computational feasibility.

APPENDIX

Symbols Used in this Paper

N@i# node
Nk node entry

Nk.l lower left point of the MBR of Nk (also used for all types of
rectangles)

Nk.u upper right point of the MBR of Nk (also used for all types
of rectangles)

R2p projection of multidimensional relation R on axis p (also
used for all types of rectangles)

C user constraint
d~R, C! distance between C and relation R (as defined by the

conceptual neighborhood graph)
Vi query variable (also used to denote primary objects to be

retrieved)
Cij constraint between variables Vi and Vj

rk object rectangle (also used to denote reference objects in
window queries)

Vi 4 rk instantiation of variable Vi to object rk

d~Cij, R~rk, r1!! distance between Cij and R~rk, r1! where Vi 4 rk and Vj

4 r1

t maximum d~Cij, R~rk, r1!! permitted by the query
T maximum Od~Cij, R~rk, r1!! permitted by the query

domain@i#@ j # set of consistent values for Vj at instantiation level i (for
FC and MFC)

domainWindow[i][j] window containing the consistent values for Vj at
instantiation level i (for WR and JWR)

ACKNOWLEDGMENTS

We would like to thank Marios Mantzourogiannis for proofreading the paper.

REFERENCES

ADAM, N. AND YESHA, Y. 1996. Strategic directions in electronic commerce and digital
libraries: Towards a digital agora. ACM Comput. Surv. 28, 4, 818–835.

ALLEN, J. F. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11
(Nov.), 832–843.

ARGE, L., PROCOPIUC, O., RAMASWAMY, S., SUEL, T., AND VITTER, J. S. 1996. Scalable
sweeping-based spatial join. In Proceedings of the 21st Conference on VLDB (Zurich,
Switzerland). VLDB Endowment, Berkeley, CA, 570–581.

94 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

BACCHUS, F. AND GROVE, A. 1995. On the forward checking algorithm. In Proceedings of the
International Conference on Principles and Practice of Constraint Programming. 292–308.

BACCHUS, F. AND VAN RUN, P. 1995. Dynamic variable ordering in CSPs. In Proceedings of the
International Conference on Principles and Practice of Constraint Programming. 258–275.

BECKMANN, N., KRIEGEL, H.-P., SCHNEIDER, R., AND SEEGER, B. 1990. The R*-tree: An efficient
and robust access method for points and rectangles. SIGMOD Rec. 19, 2 (Jun.), 322–331.

BERCHTOLD, S., ERTL, B., KEIM, D. A., KRIEGEL, H. -P., AND SEIDL, T. 1997. Fast nearest
neighbor search in high-dimensional space. In Proceedings of the 1997 Conference on
ICDE. 209–218.

BUREAU OF THE CENSUS. 1994. TIGER/Line files. Bureau of the Census, Washington DC.
BRINKHOFF, T., KRIEGEL, H.-P., SCHNEIDER, R., AND SEEGER, B. 1994. Multi-step processing of

spatial joins. SIGMOD Rec. 23, 2 (June), 197–208.
BRINKHOFF, T., KRIEGEL, H.-P., AND SEEGER, B. 1993. Efficient processing of spatial joints

using R-trees. SIGMOD Rec. 22, 2 (June 1), 237–246.
BRINKHOFF, T., KRIEGEL, H. -P., AND SEEGER, B. 1997. Parallel processing of spatial joins using

R-trees. In Proceedings of the 1997 Conference on ICDE. 258–265.
BRUNS, T. AND EGENHOFER, M. 1996. Similarity of spatial scenes. In Proceedings of the

Conference on Spatial Data Handling (Delft, The Netherlands), M.-J. Kraak and M.
Molenaar, Eds. 31–42.

CHANG, S., JUNGERT, E., AND LI, T. 1989. Representation and retrieval of symbolic pictures
using generalized 2D strings. In Proceedings of the Conference on SPIE Visual Communi-
cations and Image Processing IV. 1360–1372.

CHANG, S. -F., CHEN, W., MENG, H. J., SUNDARAM, H., AND ZHONG, D. 1998. A fully automatic
content-based video search engine supporting multi-object spatio-temporal queries. IEEE
Trans. Circuits Syst. Video Technol. 8, 5 (Sept.), 602–615.

CHANG, S., SHI, Q., AND YAN, C. 1987. Iconic indexing by 2-D String. IEEE Trans. Pattern
Anal. Mach. Intell. 9, 3, 413–428.

EGENHOFER, M. J. AND AL-TAHA, K. 1992. Reasoning about gradual changes of topological
relations. In International Conference GIS: From Space to Territory. Springer-Verlag, New
York, NY, 196–219.

FALOUTSOS, C., BARBER, R., FLICKNER, M., HAFNER, J., NIBLACK, W., PETKOVIC, D., AND EQUITZ,
W. 1994. Efficient and effective querying by image content. J. Intell. Inf. Syst. 3, 3/4 (July),
231–262.

FREKSA, C. 1992. Temporal reasoning based on semi-intervals. Artif. Intell. 54, 1-2 (Mar.),
199–227.

GUDIVADA, V. N. AND RAGHAVAN, V. V. 1995. Design and evaluation of algorithms for image
retrieval by spatial similarity. ACM Trans. Inf. Syst. 13, 2 (Apr.), 115–144.

GUTTMAN, A. 1984. R-trees: A dynamic index structure for spatial searching. In Proceedings
of the ACM SIGMOD Annual Meeting on Management of Data (SIGMOD ’84, Boston, MA,
June18–21). ACM, New York, NY, 47–57.

HARALICK, R. M. AND ELLIOTT, G. L. 1980. Increasing tree search efficiency for constraint
satisfaction problems. Artif. Intell. 14, 263–313.

HERNÁNDEZ, D. 1994. Qualitative Representation of Spatial Knowledge. Springer-Verlag,
New York, NY.

HUANG, Y. -W., JING, N., AND RUNDENSTEINER, E. 1997. Spatial joins using R-trees: Breadth
first traversal with global optimizations. In Proceedings of the 23rd Conference on VLDB
(Athens, Greece, Aug.). VLDB Endowment, Berkeley, CA, 396–405.

KOUDAS, N. AND SEVCIK, K. 1994. Size separation spatial join. In Proceedings of the 1994
ACM Conference on SIGMOD (Minneapolis, MN, May). ACM Press, New York, NY,
324–335.

LEE, S.-Y. AND HSU, F.-J. 1992. Spatial reasoning and similarity retrieval of images using 2D
C-string knowledge representation. Pattern Recogn. 25, 3 (Mar.), 305–318.

LEE, S., YANG, M., AND CHEN, J. 1992. Signature file as a spatial filter for iconic image
database. J. Visual Lang. Comput. 3, 4, 373–397.

LO, M.-L. AND RAVISHANKAR, C. V. 1994. Spatial joins using seeded trees. SIGMOD Rec. 23, 2
(June), 209–220.

Approximate Spatio-Temporal Retrieval • 95

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

LO, M.-L. AND RAVISHANKAR, C. V. 1996. Spatial hash-joins. SIGMOD Rec. 25, 2, 247–258.
MAMOULIS, N. AND PAPADIAS, D. 1999. Integration of spatial join algorithms for processing

multiple inputs. SIGMOD Rec. 28, 1 (Mar.), 1–12.
MAYBURY, M. T., ED. 1997. Intelligent Multimedia Information Retrieval. MIT Press,

Cambridge, MA.
MISHRA, P. AND EICH, M. H. 1992. Join processing in relational databases. ACM Comput.

Surv. 24, 1 (Mar.), 63–113.
NABIL, M., NGU, A., AND SHEPHERD, J. 1996. Picture similarity retrieval using 2d projection

interval representation. IEEE Trans. Knowl. Data Eng. 8, 4 (Aug.), 533–539.
NADEL, B. A. 1990. Constraint satisfaction algorithms. Comput. Intell. 5, 4 (Nov.), 188–224.
STONEBRAKER, M. 1995. Chabot: Retrieval from a relational database of images. IEEE

Computer 28, 9, 40–48.
ORENSTEIN, J. A. 1986. Spatial query processing in an object-oriented database

system. SIGMOD Rec. 15, 2 (June), 326–336.
PAPADIAS, D. AND THEODORIDIS, Y. 1997. Spatial relations, minimum bounding rectangles, and

spatial data structures. Int. J. Geograph. Inf. Syst. 11, 2, 111–138.
PAPADIAS, D., MAMOULIS, N., AND THEODORIDIS, Y. 1999. Processing and optimization of

multiway spatial joins using R-trees. In Proceedings of the Conference on ACM
PODS. 44–55.

PAPADIAS, D., MANTZOUROGIANNIS, M., KALNIS, P., MAMOULIS, N., AND AHMAD, I. 1992.
Content-based retrieval using heuristic search. In Proceedings on ACM SIGIR. ACM Press,
New York, NY, 168–175.

PAPADIAS, D., THEODORIDIS, Y., SELLIS, T., AND EGENHOFER, M. 1994. Topological relations in
the world of minimum bounding rectangles: A study with R-trees. In Proceedings of the
1994 ACM Conference on SIGMOD (Minneapolis, MN, May). ACM Press, New York, NY,
92–103.

PARK, H., CHA, G., AND CHUNG, J. M. 1999. Multiway spatial joins using R-trees: Methodology
and performance evaluation. In Proceedings of the 6th International Symposium on Spatial
Databases. 229–250.

PATEL, J. M. AND DEWITT, D. J. 1996. Partition based spatial-merge join. SIGMOD Rec. 25, 2,
259–270.

PETRAKIS, E. AND FALOUTSOS, C. 1997. Similarity searching in medical image
databases. IEEE Trans. Knowl. Data Eng. 9, 3 (May/June), 435–447.

PREPARATA, F. P. AND SHAMOS, M. I. 1985. Computational Geometry: An Introduction.
Springer Texts and Monographs in Computer Science. Springer-Verlag, New York, NY.

ROTEM, D. 1991. Spatial join indices. In Proceedings of the Conference on ICDE. 500–509.
ROUSSOPOULOS, N., KELLEY, S., AND VINCENT, F. 1995. Nearest neighbor queries. In

Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’95, San Jose, CA, May 23–25), M. Carey and D. Schneider, Eds. ACM Press, New
York, NY, 71–79.

SEIDL, T. AND KRIEGEL, H. -P. 1997. Efficient user-adaptable similarity search in large
multimedia databases. In Proceedings of the 23rd International Conference on Very Large
Data Bases (VLDB ’97, Athens, Greece, Aug.). 506–515.

SMITH, J. AND CHANG, S. 1996. Searching for images and videos on the world-wide
web. CU/CTR 459-96-25.

SELLIS, T., ROUSSOPOULOS, N., AND FALOUTSOS, C. 1987. The R1-tree: A dynamic index for
multi-dimensional objects. In Proceedings of the 13th Confererence on Very Large Data
Bases (Brighton, England, Sept.). VLDB Endowment, Berkeley, CA, 507–518.

VALDURIEZ, P. 1987. Join indices. ACM Trans. Database Syst. 12, 2 (June), 218–246.
VAZIRGIANNIS, M., THEODORIDIS, Y., AND SELLIS, T. 1998. Spatio-temporal composition and

indexing for large multimedia applications. Multimedia Syst. 6, 4, 284–298.

Received: June 1999; accepted: September 2000

96 • D. Papadias et al.

ACM Transactions on Information Systems, Vol. 19, No. 1, January 2001.

