
1

Density-based Place Clustering Using
Geo-Social Network Data

Dingming Wu, Jieming Shi, and Nikos Mamoulis,

Abstract—Spatial clustering deals with the unsupervised grouping of places into clusters and finds important applications in urban
planning and marketing. Current spatial clustering models disregard information about the people and the time who and when are
related to the clustered places. In this paper, we show how the density-based clustering paradigm can be extended to apply on places
which are visited by users of a geo-social network. Our model considers spatio-temporal information and the social relationships
between users who visit the clustered places. After formally defining the model and the distance measure it relies on, we provide
alternatives to our model and the distance measure. We evaluate the effectiveness of our model via a case study on real data; in
addition, we design two quantitative measures, called social entropy and community score to evaluate the quality of the discovered
clusters. The results show that temporal-geo-social clusters have special properties and cannot be found by applying simple spatial
clustering approaches and other alternatives.

Index Terms—Clustering, Similarity Measurements, Algorithms.

F

1 INTRODUCTION

C LUSTERING is commonly used as a method for data explo-
ration, characterization, and summarization. Density-based

clustering [1], in particular, divides a large collection of points into
densely populated regions and it is the most appropriate clustering
paradigm for spatial data, which have low dimensionality [2].
Density-based clusters have arbitrary shapes and sizes and exclude
objects in areas of low density (i.e., outliers). The DBSCAN model
[1] finds the spatial eps-neighborhood of each point p in the
dataset, which is a circular region centered at p with radius eps.
If the eps-neighborhood of p is dense, meaning that it contains
no less than MinPts places, p is called a core point. Dense eps-
neighborhoods are put into the same cluster if they contain the
cores of each other.

In this paper, we investigate the extension of traditional
density-based clustering for spatial locations to consider their
relationship to a social network of people who visit them and the
time when they were visited. In specific, we consider the places
of a Geo-Social Network (GeoSN) application, which allows
users to capture their geographic locations and share them in
the social network, by an operation called checkin. Online social
networks with this functionality include Gowalla1, Foursquare2,
and Facebook Places3. A checkin is a triplet ⟨uid ,pid , time⟩
modeling the fact that user uid visited place pid at a certain time .

We define the new problem of Density-based Clustering Places
in Geo-Social Networks (DCPGS), to detect geo-social clusters in
GeoSNs. DCPGS extends DBSCAN by replacing the Euclidean

● D. Wu is with the College of Computer Science & Engineering, Shenzhen
University, China.
E-mail: dingming@szu.edu.cn

● J. Shi (corresponding author) is with the Lenovo Big Data Lab, Hong Kong
E-mail: jshi@lenovo.com

● N. Mamoulis is with the Department of Computer Science and Engineer-
ing, University of Ioannina.
E-mail: nikos@cs.uoi.gr

Manuscript received 2016; revised .
1. http://gowalla.com
2. https://foursquare.com
3. https://www.facebook.com/about/location

distance threshold eps for the extents of dense regions by a thresh-
old ε, which considers both the spatial and the social distances
between places. For two places pi and pj , the spatial distance
is considered to be the Euclidean distance between pi and pj ,
while the social distance should consider the social relationships
between the two sets of users Upi and Upj which have checked in
pi and pj , respectively. We define and use such a social distance
measure, based on the intuition that two places are socially similar
if they share many common users in their checkin records or the
users in these records are linked by friendship edges. Figure 1(a)
illustrates the data of a GeoSN that includes eight users (u1–
u8) and two places (pi and pj). The dashed lines represent user
friendships and the solid lines annotated with timestamps (t1–t9)
illustrate checkins of users at places. For instance, user u1 is a
friend with u2 and u3 and has visited place pi at time t3 and pj
at t5. As Figure 1(b) shows, each place is modeled by its spatial
coordinates (e.g., ⟨lai, loi⟩ for the latitude and longitude of pi)
and the set of users that have visited it (e.g., Upi for pi). For
the spatial distance between pi and pj , we can use the Euclidean
distance between ⟨lai, loi⟩ and ⟨laj , loj⟩, while for the social
distance component we use the set of common users in Upi and
Upj (e.g., {u1, u2}) and the users in one place’s record who are
friends with visitors of the other place (e.g., u3 ∈ Upi and u6 ∈ Upj
who are friends with each other). The intuition is that users who
are friends can influence each other to visit the places included
in their checkin history. The details of our distance measure are
presented in Section 2.

In our previous work [3], the time of the check-ins made by
users is not considered during the clustering process. The social
connections established between places may be either out-dated
or based on distant checkins in terms of time. For instance, the
place clusters discovered according to the checkins one year ago
may not interest analysts that value recent relationships between
places. In addition, a cluster may have low quality if the check-
in times of the different places in it vary significantly. In this
paper, we investigate three methods of incorporating the temporal
information (i.e., when did users checkin at the various places)

2

u4

u8

u7

u6

u5

u2u1

u3

pjpi

t3

t1 t2

t4 t5
t6 t7

t8
t9

(a) A toy example

u4

u3

u2
u1

u6

u5

u2

u1

u7

Upi

u8

Upj

pi : <lai, loi> pj : <laj, loj>

(b) Abstraction

Fig. 1. Example and storage structure of GeoSNs

in the process of geo-social clustering, i.e., (1) history-frame geo-
social clustering, (2) damping window, and (3) temporally con-
tributing users, yielding temporal-geo-social clusters. The three
methods of incorporating temporal information result in different
clusters that satisfy different analysis needs. The history-frame
method reveals how clusters evolve over time; its result can be
used to analyze relationships between places at different periods of
time. The damping window method weighs the recently checkins
higher than old ones, so it generates clusters relevant to the current
time. The temporally contributing user method only considers
the checkins that have been made within a period of time, and
ignores distant checkins. Hence, the places in the same cluster are
visited by socially related users in the same periods of time, which
indicates a stronger relationship between them. We compare the
temporal-geo-social clusters and the geo-social clusters based on
visualization and social entropy evaluation. The result shows that
the temporal information helps improving the quality of clusters.

To the best of our knowledge, there is no previous work on
clustering GeoSN places. While there exists a significant body of
research on analyzing and querying GeoSN data [4], [5], [6], [7],
most of these works are centered around users; i.e., they study
user behavior, user link prediction or recommendation, or the
evaluation of user queries. Thus, the places and checkins are only
regarded as some auxiliary information to facilitate user-centered
analysis. On the other hand, GeoSNs provide a new and rich form
of geographical data, affiliated with the social network graph,
the analysis of which can provide new and interesting insights,
compared to raw spatial data. In specific, clustering of places in a
GeoSN network finds a number of interesting applications:
Generalization and characterization of places. In geographic
data analysis, a common task is to define regions (especially in
urban areas), which include similar places with respect to the
people who live in them or visit them. For example, in urban
planning, land managers are interested in identifying regions
which have uniform (i.e., consistent) demographic statistics, e.g.,
areas where elderly people prefer to visit, or people who belong
to certain religious communities and have special transportation
or living needs. Our DCPGS framework is especially useful for
such spatial generalization and characterization tasks, because it
can identify geographic regions where places form dense regions
and the people who visit them are also socially connected to each
other. By considering also the temporal information in the data
(i.e., when did users checkin at the various places), the discovered
clusters can be further refined and can become valuable for urban
activity analysis, local authorities, service providers, decision
makes, etc. For example, a certain set of places (e.g., shopping
spots) may be characterized as a cluster for only restricted time
periods or intervals (e.g., during Saturday morning hours).
Data cleaning. Intuitively, places that belong in the same geo-

social cluster, according to our DCPGS framework, should have
similar semantics. Therefore, our clustering results can help to-
ward the cleaning of semantics (e.g., tags), which are given
to places being in the same cluster (e.g., inspect tags that are
inconsistent with the ones given to the majority of places in
the cluster). In addition, as already mentioned, nearby GeoSN
locations collected by user checkins could belong to the same
physical place (e.g., a large restaurant) and our clusters can help
toward identifying such cases and integrating multiple locations to
the same physical place (i.e., region), possibly with the joint help
of map-matching tools. Besides, taking the temporal dimension
into account can also help to provide more accurate cleaning.
Marketing. GeoSN places may be commercial (e.g., restaurants).
The fact that two (or more) such places belong to the same
geo-social cluster indicates that there is a high likelihood that a
user who likes one place would also be interested to visit the
other(s). Therefore, by having knowledge of a place’s geo-social
cluster, the management of the place may initiate campaigns to
users who visited other places in the same cluster, or a set of
places could do collaborative promotion (e.g., a discount for users
who visit multiple places in the cluster). In addition, the user-
groups that are relevant to a cluster could be relative to certain
time periods. For example, shopping places in downtown are
visited during the evening by people who have to work and
could not shop at daytime, while supermarkets and small shops
in the suburbs are usually visited by housewives in the daytime.
Such geo-social-temporal clusters can be useful to marketing or
advertising companies, which may benefit from understanding the
(time sensitive) shopping habits of various social groups.

Compared to conventional density-based spatial clusters, geo-
social clusters detected by DCPGS exhibit larger intra-cluster so-
cial strength, as we confirm experimentally in Section 3. DCPGS
also has additional advantages. First, DCPGS uses geo-social
splitting criteria; for example, DCPGS splits clusters, which are
spatially dense, but they are separated by barriers, such as rivers or
walls, or visitors’ weak social connections. Second, DCPGS finds
spatially loose clusters that include sets of places that (pairwise)
are not very close to each other (and therefore violate a typically
tight spatial density threshold), but have very tight social relation-
ships with each other. Such places satisfy our DCPGS criteria.
On the other hand, DBSCAN is less flexible in including them in
the same cluster as loosening its spatial distance threshold would
result in putting everything in a single huge cluster. Third, DCPGS
can discover geo-social clusters with fuzzy spatial boundaries;
such clusters cannot be identified by spatial clustering, which
defines strict spatial boundaries between clusters. Our evaluation
is based on case studies and on the use of quantitative measures
that we also propose in this paper. In addition, we demonstrate
that the social distance measure we propose and use in DCPGS
is more effective compared to alternative measures (based on
node-to-node proximity). Overall, the results of our evaluation
indicate that the social relationships between users who visit
places have great impact in the clustering of places and cannot be
overlooked. Furthermore, considering the temporal information in
the clustering not only reveals how the clusters evolve with time,
but also helps finding groups of places having more coherent social
relationships.

Summing up, the contributions of this paper are as follows:

● We propose and formulate the problem of density-based
clustering GeoSN places.

3

● We define a simple but effective social distance measure
between places in GeoSNs.

● We demonstrate the effectiveness of DCPGS by case studies
and quantitative evaluation through two quality measures that
are also devised in this paper.

● We study three ways of incorporating temporal information
in DCPGS and evaluate the resulting temporal-geo-social
clusters.

The rest of the paper is organized as follows. Section 2 for-
mulates the DCPGS problem, defines the social distance measure
between places that we use, and introduces three methods of in-
corporating temporal information into DCPGS. The effectiveness
of our framework are analyzed in Sections 3. Related work is
reviewed in Section 4. Finally, Section 5 concludes this paper and
discusses future work. The efficient algorithms in our previous
work [3] for clustering GeoSN places and the performance evalu-
ations are presented in Appendices B and C.

2 MODEL AND DEFINITIONS

Our data input includes three components: a social network, a
set of places and the checkins of users to the places. The social
network is an undirected graph G = (U,E), where U is the set of
all users and each edge (ui, uj) ∈ E indicates that users ui, uj ∈
U are friends. Set P is the set of all places visited by users, in
the form of ⟨latitude, longitude⟩ GPS points. Thus, identifiers are
assigned to places according to their distinct GPS coordinates. Set
CK = {⟨ui, pk, tr⟩∣ui ∈ U and pk ∈ P} includes all checkins
generated by users in U . A checkin in CK is a triplet ⟨ui, pk, tr⟩
modelling the fact that user ui visited place pk at a certain tr .
For a place pk, the set Upk of visiting users of pk is defined by
Upk = {ui∣⟨ui, pk,∗⟩ ∈ CK}, where ∗ means any time. Figure
1(b) shows Upi and Upj for the two places pi and pj of the toy
example in Figure 1(a). The figure also connects the user pairs
in the two sets who are linked by friendship edges in the social
network. Note that user u8 does not belong to either Upi or Upj ,
but connects users u4 and u7 in the social graph.

2.1 DCPGS Model

Our Density-based Clustering Places in Geo-Social Networks
(DCPGS) model extends the model of DBSCAN [1]; for
each place pi in the GeoSN, DCPGS finds the geo-social ε-
neighborhood Nε(pi) of pi, which includes all places pj
such that Dgs(pi, pj) ≤ ε, DS(pi, pj) ≤ τ , and E(pi, pj) ≤

maxD . For two places pi, pj , E(pi, pj) is the Euclidean dis-
tance, DS(pi, pj) is the social distance, and Dgs(pi, pj) =

f(DS(pi, pj),E(pi, pj)) is the geo-social distance, defined as
a function of E(pi, pj) and DS(pi, pj). Parameter ε is geo-
social distance threshold, while τ and maxD are two sanity
constraints for the social and the spatial distances between places,
respectively. We will give detailed definitions for all above dis-
tance functions and parameters later on. If the geo-social ε-
neighborhood of a place pi contains at least MinPts places, then
pi is a core place. In DCPGS, w.r.t. ε and MinPts ; a place pi is
directly density-reachable from a place pj if pi ∈ Nε(pj) and
Nε(pj) ≥ MinPts ; a place pi is density reachable from a place
pj if there is a chain of places p1,⋯, pn, p1 = pi, pn = pj such
that pk−1 is directly density-reachable from pk (1 < k ≤ n); a
place pi is density connected to a place pj if there is a place pk,
such that both pi and pj are density-reachable from pk. A cluster

C in DCPGS w.r.t. ε and MinPts is a non-empty subset of places
satisfying the following conditions: 1) ∀pi, pj : if pi ∈ C and pj
is density-reachable from pi then pj ∈ C . 2) ∀pi, pj ∈ C: pi is
density-connected to pj . Outliers are the places that do not belong
to any cluster.
Parameters. ε and MinPts are the main parameters of DCPGS.
MinPts (i.e., the minimum number of places in the neighborhood
of a core point) is set as in the original DBSCAN model (see [1]);
a typical value is 5. ε takes a value between 0 and 1, because, as we
explain later on, we defineDgs(pi, pj) to take values in this range.
Since the geo-social distance Dgs(pi, pj) is a function of a spatial
and a social distance, τ and maxD constrain these individual
distances to avoid the following two cases that negatively affect
the quality of geo-social clusters.

● The geo-social distance between two places pi and pj could
be less than ε if they are extremely close to each other in
space, but have no social connection at all. This may lead
to putting places close to each other spatially, but having no
social relationship, into the same cluster.

● The geo-social distance between two places pi and pj could
be less than ε if they have very small social distance, but they
are extremely far from each other spatially. This may lead
to putting places with close social distances, but large spatial
distances, into the same cluster.

Constraints τ and maxD are defined for quality control and can
be set by experts or according to the analyst’s experience. We
experimentally study how clustering quality is affected by the two
constraints and ε in Section 3.
Distance Functions. The social distance DS(pi, pj) takes as
inputs the sets of users Upi and Upj who have visited pi and pj ,
respectively, and returns a value between 0 and 1. In Section 2.2,
we present our definition for DS(pi, pj) and alternative ways
to define it based on previous work. Before defining the geo-
social distance Dgs(pi, pj), we convert the Euclidean distance
E(pi, pj) into a spatial distance DP (pi, pj) =

E(pi,pj)
maxD so that

any place pj in the geo-social ε-neighborhood of pi has spatial
distance no larger than 1. Finally, Dgs(pi, pj) is defined as
weighted sum of DS(pi, pj) and DP (pi, pj), i.e.,

Dgs(pi, pj) = ω ⋅DP (pi, pj) + (1 − ω) ⋅DS(pi, pj), (1)

where ω ∈ [0,1].

2.1.1 Alternatives to DCPGS
Using the proposed geo-social distance, our place clustering model
(DCPGS) extends density-based clustering in spatial databases.
We next present two alternatives to DCPGS, which can be also
used to cluster GeoSN places.
SNN-based Clustering. The SNN clustering algorithm [8] is
an improvement of DBSCAN that can find clusters of widely
differing shapes, sizes, and densities. It first finds the k nearest
neighbors of each data point and then redefines the similarity
between pairs of points in terms of how many nearest neighbors
the two points share. Using this definition of similarity, the SNN
algorithm identifies core points and then builds clusters around the
core points as DBSCAN does.

We extend SNN to cluster places in the geo-social network as
follows. Firstly, the neighborhood of a place p in SNN is defined as
NN (p) = {q ∈ P ∧ q ≠ p∣E(p, q) ≤ maxD and DS(p, q) ≤ τ}.
Then, according to SNN, the similarity between two places pi
and pj is defined as the cardinality of the common places in

4

their neighborhood, i.e., Ssnn(pi, pj) = ∣NN (pi) ∩ NN (pj)∣.
Given a user specified similarity parameter epssnn , the SNN geo-
social neighborhood of a place pi is defined as Nsnn(pi) =

{pj ∈ P ∣Ssnn(pi, pj) ≥ epssnn}. Place pi is a core place if
∣Nsnn(pi)∣ ≥MinPtssnn , where MinPtssnn is the user specified
density threshold. If two core places are within each other’s SNN
geo-social neighborhood, then they are put into the same cluster.
Graph-based Clustering. GeoSN places can alternatively be
clustered by the use of graph clustering models. The main idea of
such a model is to construct a place network PN , which connects
places according to their social and spatial distances and then
apply an off-the-shelf community detection algorithm on PN .
Specifically, given two places pi and pj , if E(pi, pj) ≤ maxD
and DS(pi, pj) ≤ τ , an undirected and weighted edge with geo-
social weight Wgs(pi, pj) = 1−Dgs(pi, pj) is added between pi
and pj . Community detection algorithms like Link Clustering [9],
[10] or Metis [11] can then be applied to derive the clusters.
Link Clustering constructs a dendrogram of network communities
(that may overlap) in a hierarchical manner. Metis is another
multilevel graph partition paradigm that includes three phases:
graph coarsening, initial partitioning, and uncoarsening; Metis
divides a network into k non-overlapping communities. As we
will show in Section 3, these graph clustering methods are inferior
to DCPGS.

2.2 Social Distance Between Places
The social distance DS(pi, pj) between pi and pj naturally
depends on the social network relationships between the sets Upi
and Upj of users who visited pi and pj , respectively. DS(pi, pj)
is based on the set CU ij of contributing users between two places
pi and pj :

Definition 1. (Contributing Users) Given two places pi and pj
with visiting users Upi and Upj , respectively, the set of contribut-
ing users CU ij for the place pair (pi, pj) is defined as

CU ij = {ua ∈ Upi ∣ua ∈ Upj or ∃ub ∈ Upj , (ua, ub) ∈ E}

∪ {ua ∈ Upj ∣ua ∈ Upi or ∃ub ∈ Upi , (ua, ub) ∈ E} (2)

Specifically, if a user ua has visited both pi and pj , then ua is
a contributing user. Also if ua has visited place pi, ub has visited
pj , and ua and ub are friends, both ua and ub are contributing
users. Users in CU ij contribute positively (negatively) to the
social similarity (distance) between pi and pj . Formally:

Definition 2. (Social Distance) Given two places pi and pj
with visiting users Upi and Upj , respectively, the social distance
between pi and pj is defined as

DS(pi, pj) = 1 −
∣CU ij ∣

∣Upi ∪Upj ∣
(3)

The above definition of DS(pi, pj) takes both the set sim-
ilarity between sets Upi and Upj and the social relationships
among users in Upi and Upj into account. In addition, the distance
measure penalizes pairs of places pi and pj which are popular
(i.e., Upi and/or Upj are large) but their set of contributing
users is relatively small (see Equation 3). The reason is that
such place pairs are not characteristic to their (loose) social
connections. As an example, consider places pi and pj of Figure
1. To compute DS(pi, pj), we first set Upi = {u1, u2, u3, u4}
and Upj = {u1, u2, u5, u6, u7}. All users in Upi and Upj are
checked one by one to obtain the contributing users between pi

and pj . We derive CU ij = {u1, u2, u3, u5, u6}, since (i) both
u1 and u2 have visited pi and pj , (ii) user u3, who visited pi,
has a friend u6 who visited pj , (iii) symmetrically, user u6, who
visited pj , has a friend u3 who visited pi, and (iv) u5 (∈ Upj)
has a friend u2 having been to pi. According to Definition 2,
the social distance DS(pi, pj) between pi and pj in Figure 1 is
1 − ∣CU ij ∣/(∣Upi ∪Upj ∣) = 1 − 5/7 ≈ 0.2857.

Observe that only direct friendship edges between users of Upi
and Upj are considered in our social distance definition. Longer
network paths, such as friend-of-friend relationships, are ignored
(e.g., the case of users u4 and u7 in Figure 1(b) who are connected
via user u8). According to the small world effect [12], a user in
a social network can reach a large portion of other users within
only few hops. For instance, the 90-percentile effective diameter
[13] of Gowalla GeoSN, used in our experiments, is just 5.7.4 This
means within quite a few hops most users can reach a very large
percentage of all users. In Gowalla, only 8 users can access more
than 1% of all the users in 1 hop, while 40516 users (20.61%
of all the users) can access more than 1% of all the users in 2
hops and 141582 users (72.02% of all the users) can reach more
than 1% of all the users in 3 hops. The number of users who can
reach more than 1% users in 2 or 3 hops increases dramatically
compared to the percentage of those visited within 1 hop. Thus,
paths longer than 1 hops are too common and cannot be considered
as (indirect) user relationships; i.e., their impact is much weaker
compared to direct friendship edges. Hence, Definition 2 intro-
duces a simple, but powerful social distance measure. Properties
of DS(pi, pj) include symmetry (i.e., DS(pi, pj) = DS(pj , pi))
and self-minimality (i.e., DS(pi, pj) ∈ [0,1], and DS(pi, pj) = 0
for Upi = Upj). On the other hand, DS(pi, pj) does not obey
the triangular inequality, but this does not affect our clustering
algorithm.

2.2.1 Alternatives to DS

Our DCPGS model is independent of the social distance definition
between places (i.e., DS). As an alternative to our Definition 2,
the following measures can be used. In Section 3, we evaluate the
effectiveness of these alternatives.
Jaccard. Based on the Jaccard similarity J(pi, pj) = (∣Upi ∩
Upj ∣)/(∣Upi ∪ Upj ∣) between the sets of visiting users for pi and
pj , we define DJac

S (pi, pj) = 1−J(pi, pj), which is not intuitive;
it disregards the social network, assuming that two users who are
friends do not affect each other in visiting GeoSN places.
SimRank. SimRank is a structural-context model for measuring
the similarity between nodes in a graph. The idea is that two
nodes are equivalent if they relate to equivalent nodes. We can
define a SimRank-based social distance Dsim

S (pi, pj), using the
Minimax version of SimRank [14].5 This measure compares each
of pi’s visiting users upir with the visiting user upjs of pj who is
the most similar to upir , to compute the similarity between places
s(pi, pj). The similarity between users s(upir , u

pj
s) is computed

in an analogous way. Specifically, Dsim
S (pi, pj) = 1 − s(pi, pj),

where s(pi, pj) = min(spi(pi, pj), spj(pi, pj)),
spi(pi, pj) =

φ
∣Upi

∣
∑

ur∈Upi

max
us∈Upj

s(ur, us), where φ = 0.8 is a

decay factor [14], s(ur, us) = min(sur(ur, us), sus(ur, us)),

4. http://snap.stanford.edu/data/index.html
5. The original SimRank measure is only meant for node-to-node similarity;

in our case, we need a measure between Upi and Upj .

5

and assuming that Pur is the set of places visited by ur,
sur(ur, us) =

φ
∣Pur ∣

∑
pi∈Pur

max
pj∈Pus

s(pi, pj).

Katz. The Katz similarity measure [15] sums over all possible
paths from user ur to us with exponential damping by length, i.e.,

K(ur, us) =
∞

∑
l=1
βl∣paths lur,us

∣, where paths lur,us
is the set of all

length-l paths from ur to us, and damping factor β is typically
set to 0.05. Due to the poor scalability of this measurement, in
practice only paths up to length L are considered [16]; i.e., an

approximated Katz score Ka(ur, us) =
L

∑
l=1
βl∣paths lur,us

∣ can be

used. Accordingly, we can define a Katz-based social distance
between places pi and pj , by averaging the normalized Katz
similarities between all pairs of users from Upi and Upj :

DKatz
S (pi, pj) = 1 −

1

∣Upi ∣∣Upj ∣
∑

ur∈Upi

∑
us∈Upj

Ka(ur, us)

CommuteTime. The hitting time h(ur, us) from ur to us is the
expected number of steps required for a random walk starting at ur
to reach us. The commute time between ur and us is defined by
ct(ur, us) = h(ur, us) + h(us, ur). However, the commute time
is sensitive to long paths and favors nodes of high degree. Thus,
the truncated commute time [17], which considers only paths of
length no longer than L, can be used to model the social distance
between a pair of users. Finally, we can define a commute time
based social distance between places pi and pj as follows:

Dct
S (pi, pj) =

1

∣Upi ∣∣Upj ∣
∑

ur∈Upi

∑
us∈Upj

ctL(ur, us)

where ctL(ur, us) is the normalized truncated commute time.

2.3 Incorporating Temporal Information
A checkin in GeoSNs is a triplet ⟨u, p, time⟩ modeling the fact
that user u visited place with point location p = ⟨x, y⟩ at a
certain time . The geo-social clusters found by the DCPGS model
(presented in the previous section) compute the social distance
between places based on the social network relationships between
the visiting user sets of the places, while the temporal information
is disregarded. Taking the advantage of the temporal information
in the checkin data may help improving the quality of discovered
geo-social clusters. In this section, we investigate how the tem-
poral information affects the clustering result. We investigate the
discovery of temporal-geo-social clusters in GeoSNs, which are
spatio-temporal regions visited by groups of socially connected
users. In order to compute such temporal-geo-social clusters,
we extend the definition of social distance between places to a
temporal-social distance DTS . Using the temporal-social distance
DTS , the DCPGS model can then replace the geo-social distance
Dgs by a newly defined temporal-geo-social distance as follows:

Dtgs = ω ⋅DP (pi, pj) + (1 − ω) ⋅DTS(pi, pj) (4)

An intuitive definition of the temporal-social distance DTS would
be to consider a pair of places temporal-socially close if they
share many socially connected visiting users that have checked
in the places within a small time period. On the other hand, two
places are temporal-socially far from each other if they do not
have socially connected visitors within a short time interval. The
temporal dimension captures the evolution of place visits, and
thus reflects the changes of the social distance between places.
Based on the above, we suggest that the following three possible
definitions of DTS should be investigated.

2.3.1 History-Frame Geo-Social Clustering
This method performs geo-social clustering for each time period
separately. The time period can be either continuous or peri-
odic (i.e., calendric). For example, we can generate a different
clustering of places for each month, by only using the checkin
data recorded in that month. We can also generate clusterings for
working days and weekends. The clustering results in consecutive
continuous periods can be used to study the evolution of clusters
over time. It is also possible to track which place enters or leaves
a cluster at a particular month and which parts of the clusters
are time-insensitive. Similarly, calendric clusters of different time
periods can be compared; for instance, some clusters may only
appear in holiday periods.

2.3.2 Damping Window
Recall that the social distance (Equation 3) between two places is
calculated based on the users who checked in the two places. The
social distance between two places is small if their visiting users
are socially connected well. In this method, given a place p, each
user u who has visited p is assigned an exponential decay factor
uw(p) = exp−x, where x = (tc − t(u, p))/T , tc is the current
time, t(u, p) is the last time when user u checked in place p, and
T is the time range of the data (i.e., tc minus the earliest time
of the data), which is used for normalization purpose. The users
who made checkins recently are weighed high. This method favors
place pairs to which the socially connected users have paid recent
visits. The temporal-social distance is defined as
DTS(pi, pj) = 1 − (∑

u∈CUij∩Upi
∩Upj

max{uw(pi), u
w
(pj)}

+ ∑
u∈CUij∩(Upi

∖Upj
)

uw(pi)

+ ∑
u∈CUij∩(Upj

∖Upi
)

uw(pj))/∣Upi ∪Upj ∣

As an example, consider the social network and places pi and
pj in Figure 1. Table 1 shows the visiting users’ check-in time. Let
the current time be 10 and the time range of the data be T = 10.
Table 2 shows the exponential decay factors of the visiting users.
For example, the exponential decay factor of user u4 for place
pi is computed as uw4 (pi) = exp−(10−3)/10 = 0.5. According to
Definition 1, CUij = {u1, u2, u3, u5, u6}. Hence, the temporal-
social distance between places pi and pj is DTS(pi, pj) = 1 −
(0.5 + 0.82 + 0.61 + 0.67 + 0.55)/7 = 0.55.

TABLE 1
Checkin Time

Checkin Time u1 u2 u3 u4 u5 u6 u7
pi 2 8 5 3 - - -
pj 3 7 - - 6 4 9

TABLE 2
Exponential Decay Factor

exp−x u1 u2 u3 u4 u5 u6 u7
pi 0.45 0.82 0.61 0.50 - - -
pj 0.50 0.74 - - 0.67 0.55 0.90

2.3.3 Temporally Contributing Users
In this method, we consider temporally contributing users that are
socially connected users who checked in places pi and pj within
a time interval θ.

Definition 3. (Temporally Contributing Users) Let E be the edge
set of the social network. Given two places pi and pj with visiting

6

user sets Upi and Upj , the contributing user set CUij is defined
in Definition 1. The temporally contributing user set is a subset
of the contributing user set, i.e., TCUij ⊆ CUij . Each user in
the temporally contributing user set satisfies one of the following
conditions ∀u ∈ TCUij

1) ∣t(u, pi) − t(u, pj)∣ ≤ θ
2) ∃u′ ∈ TCUij ((u,u

′
) ∈ E ∧ ∣t(u, pi) − t(u

′, pj)∣ ≤ θ)
3) ∃u′ ∈ TCUij ((u,u

′
) ∈ E ∧ ∣t(u′, pi) − t(u, pj)∣ ≤ θ)

The temporal-social distance between places pi and pj is defined
as DTS(pi, pj) = 1 − ∣TCUij ∣/∣Upi ∪Upj ∣.

3 QUALITATIVE ANALYSIS

This section analyzes the quality of the geo-social clusters and the
temporal-geo-social clusters discovered by our proposed frame-
work. Firstly, we compare with two extreme versions of DCPGS:
PureSocialDistance applies density-based clustering by using the
social distance DS(pi, pj) only, while DBSCAN uses only the
Euclidean distance E(pi, pj). This comparison shows the appro-
priateness of using both social and spatial distances in clustering.
In the implementation of PureSocialDistance, we do not put place
pairs with spatial distance more than 1000 meters in the same
cluster; otherwise this method becomes too expensive. Secondly,
we compare DCPGS with the graph clustering and SNN-based
approaches discussed in Section 2.1.1, in order to demonstrate
the suitability of the density-based clustering model for this
application. Thirdly, we assess the suitability of our social distance
measure (Section 2.2) by evaluating versions of DCPGS, which
use the alternative social distance definitions discussed in Section
2.2.1. Finally, we analyze the temporal effects on the geo-social
clusters found by DCPGS. All tested methods were implemented
in C++ and the experiments were performed on a 3.4 GHz quad-
core machine running Ubuntu 12.04 with 16 GBytes memory.
Data. We use two publicly available datasets6 from historical
geo-social networks. Gowalla contains a social network with
∣U ∣ =196,591 users and ∣E∣ =950,327 undirected friendship edges.
There are ∣CK ∣ =6,442,892 checkins performed by those users
on ∣P ∣ =1,280,969 places over a period from Feb. 2009 to
Oct. 2010. Brightkite includes a social network of ∣U ∣ =58,228
users and ∣E∣ =214,078 undirected friendship edges. It contains
∣CK ∣ =4,491,143 checkins on ∣P ∣ =772,783 distinct places col-
lected over the period from Apr. 2008 to Oct. 2010.
Default Parameter Settings. The density requirement of the clus-
tering is determined by parameters MinPts and ε (or DBSCAN’s
eps). We set MinPts = 5 for all approaches; various density
settings can be achieved by just tuning ε (or DBSCAN’s eps).
For instance, a large MinPts has similar effect as a small ε
(or DBSCAN’s eps). By default, parameter ω in the geo-social
distance is set to 0.5 to equally weigh the social and spatial
distances. By default, parameter τ is set to 0.7, and maxD is
set to 100 meters for dataset Gowalla and 120 meters for dataset
Brightkite. In the rest of the paper, the length values of the spatial
distance are in the unit of meter, and thus we omit “meter” when
context is clear.

3.1 Visualization-based Analysis
We first visualize and compare the clusters found by DCPGS and
alternative approaches in the area of Manhattan on the Gowalla

6. downloaded from snap.stanford.edu/data/index.html

dataset and in the area of Chicago on the Brightkite dataset.
Figures 2(a)-(c) show the clusters by DCPGS, DBSCAN (which
disregards the social network behind the places) and PureSocialD-
istance (which disregards the spatial information). DCPGS finds
geo-social clusters with the following features.

Geo-Social Splitting/Merging Criteria. Geo-social clusters that
are very close to each other are split correctly by DCPGS, while
DBSCAN may consider them as a single cluster due to their
spatial closeness; in other cases, clusters split by DBSCAN due to
relatively low spatial density between them are merged by DCPGS
because of their strong social ties. For example, consider region
A in Figures 2(a) and the corresponding region A′ in Figure 2(b),
where DCPGS and DBSCAN detect clusters with totally different
layouts. By tuning the parameters of DBSCAN, we are not able
to find the clusters found by DCPGS, because the densities of
the two clusters in region A are similar and the two clusters are
close to each other. Thus, DBSCAN can only consider the places
in region A′ as either a single cluster or as several fragmented
clusters (Figure 2(b)), under different parameter settings. In certain
cases, spatially dense clusters may be split by DCPGS because of
some natural barriers, such as rivers, and walls. These barriers
make it inconvenient to travel from one side to the other, resulting
in a splitting effect. As an example, in Figure 3, a cluster (region
D) found by DBSCAN is split into two DCPGS clusters (regions
D1 and D2) by the river, since the users on different river sides
are proved to have weak social connection. While it is possible for
DBSCAN to find the two DCPGS clusters by reducing the value of
eps , its parameter settings in this case make some existing clusters
disappear, resulting in too many outliers.

Spatially Loose Clusters. Some geo-social clusters detected by
DCPGS in region B of Figure 2(a) are considered as outliers by
DBSCAN in the corresponding region B′ of Figure 2(b). Region
B′ is spatially too sparse to satisfy the density requirement of
DBSCAN, and thus most places inside it are filtered out as out-
liers. However, the users who checked in those places have strong
social relationships. Hence, geo-social clusters are discovered in
region B by DCPGS in Figure 2(a). While it is possible for
DBSCAN to discover such spatially loose clusters by reducing
the density parameters, this would result in merging too many
clusters together, making denser clusters indistinguishable.

Fuzzy Boundary Clusters. Some DCPGS geo-social clusters
have fuzzy boundaries with each other, which is reasonable in
the real world, since groups of socially connected users may
spatially overlap. On the other hand, DBSCAN produces clusters
with strict boundaries. For instance, in Figure 2(a), there is no
strict boundary between the two clusters enclosed in region C.
Although PureSocialDistance, which is the other extreme method,
also produces clusters with fuzzy boundaries (see Figure 2(c)), the
clusters are spatially indistinguishable and they are not interesting,
i.e., for the applications mentioned in the Introduction.
Alternatives to DCPGS. We visually analyzed the results of
the alternatives to DCPGS, i.e., SNN-based clustering model
and graph-based clustering models (LinkClustering and Metis),
described in Section 2.1.1. LinkClustering and Metis produce
similar results; indicatively, we show the clusters produced by
LinkClustering in Figure 2(d). LinkClustering produces thousands
of small clusters (average size around 3), which are typically not
well-separated spatially. Due to the sparsity of geo-social network
data, the constructed place network contains many connected
components that are disconnected with each other (e.g., the place

7

B

A

C

(a) DCPGS: ε = 0.4, τ = 0.7,
maxD = 100

A
′

B
′

(b) DBSCAN: eps = 40 (c) PureSocialDistance: ε = 0.2, τ =
1, maxD = 1000

(d) LinkClustering: τ = 0.7,
maxD = 100

A

C

B

(e) Jaccard: ε = 0.4, τ = 0.7,
maxD = 100

A

C

B

(f) SimRank: ε = 0.3, τ = 0.7,
maxD = 100

●

●●

●●

●

●
● ●●

●●

●

●●
●
●●
●
●

●

●●
●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●
●

●

●
●

●
●●

●●●

●

●●●
●
●
●

●

●
●

●●●●
●●
●

●
●●

●
●
●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●●● ●
●●

●●●● ●●
●
●●● ●●●

●
●●●●●●● ●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●●
●
●●●
●●

●
●

●●

●●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●●

●

●

●●●
●
●

● ●
●

●

●●
●

●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97

lon

la
t

(g) SNN: epssnn = 1, maxD = 60

●

●●

●
●●

●

●

●
●●●●●

●
●

● ●

●

●

●

●●

●

●
●

●

●
●

●●

●●
●

●●
●

●

●

●

●

●

●●●●●●●

●●●
●
●
●
●●

●

●
●●●●
●

●

●

●

●●●●●●●●●●
●
●●

●

●

●

●●●●
●●

●●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●●

●

●

●

●

●
●●

●●●
●●

●●

●●

●●●●●●●●●●

●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97

lon

la
t

d$names
● 0

1

2

3

4

5

10

20

30

40

50

d$cluster

(h) SNN: epssnn = 2, maxD = 60

●●

●
●

●●

●
●●●●●

●

●
●

●●● ●

●●

●

●

●

●

●

●

●
●

●

●
●
●
●
●●

●
●●●●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●
●● ●

●●
●
●●

●

● ●●●

●

●
●● ●●●

●●

●

●
●

●●●●●●●●

●

●
●

●

●

●●

●●
●

●

●
●● ●

●

●●●●●●●●●●●●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97

lon

la
t

d$names
● 0

1

2

3

4

5

10

20

30

40

d$cluster

(i) SNN: epssnn = 3, maxD = 60

● ●

●
●

●
●

●●●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97

lon

la
t

d$names
● 0

1

2

3

4

5

2.5

5.0

7.5

10.0

d$cluster

(j) SNN: epssnn = 1, maxD = 120

●
●

●●
●

●

●
●●

●
●●●

●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97

lon

la
t

d$names
● 0

1

2

3

4

5

5

10

15

20

d$cluster

(k) SNN: epssnn = 3, maxD = 120

●

●

●●

●●●●

●

●
●

●

●

●
●

●●
●●

●
●

●

●

●●●●●
●

●

●
●

●●●
●

● ●●
●

●
●● ●●●

●●

●●

●●

●●●●●●●●●●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97

lon

la
t

10

20

30
d$cluster

d$names
● 0

1

2

3

4

5

(l) SNN: epssnn = 5, maxD = 120

Fig. 2. Place clusters of Gowalla found in Manhattan

network built when τ = 0.7, maxD = 100, and ω = 0.5 contains
34,496 connected components with 4.3 nodes and 8.2 edges on
average). The clusters found by Metis are fewer and larger, but
also spatially indistinguishable. Metis ignores outliers; as a result,
places belong to the same cluster may have low spatial proximity
and social similarity.

Figures 2(g)–2(l) show the clusters found by the SNN-based
clustering model. Since DCPGS and SNN-based model only differ
in the way of measuring the closeness/similarity between places,
by carefully tuning the parameters of SNN-based model, we try

to figure out whether it can discover similar clusters to those of
DCPGS. We observe that when maxD = 60 and epssnn = 1
(Figure 2(g)), the SNN-based model indeed finds similar clusters
in the areas highlighted by rectangles. As epssnn increases (Fig-
ures 2(h) and 2(i)), the sizes of clusters decrease. This is because
large epssnn puts strict constraints on the places to be a member
of a cluster. When maxD = 120 and epssnn = 1 (Figure 2(j)),
a big cluster is discovered by the SNN-based model. As epssnn
increases (Figures 2(k) and 2(l)), several clusters are identified
from this big cluster. Although our geo-social distance can also be

8

!

(a) DBSCAN: eps = 60

D2

D1

(b) DCPGS: ε = 0.4 s.t. τ = 0.7,
maxD = 120

Fig. 3. Clusters of Brightkite found by DBSCAN and DCPGS in Chicago

used in an extension of DBSCAN (DCPGS) or in an extension of
SNN for geo-social clustering, In most cases, DCPGS discovers
clusters with better social entropy than SNN-based model does
(Figure 5).
Alternatives to DS . Finally, we analyzed the results of DCPGS,
if our DS definition (Definition 2) is replaced by the alternatives
described in Section 2.2.1. For DKatz

S and Dct
S , we set L = 3;

for bigger L values, these measures become extremely expensive.
We observed that DJac

S , DKatz
S , and Dct

S produce similar results
to each other. Indicatively, Figure 2(e) shows the clusters found
by DCPGS if DJac

S is used instead of DS . All these measures
produce small clusters and too many outliers since they give
large distance values for most pairs of places pi and pj . The set
of common users for two places in Jaccard (i.e., Upi ∩ Upj) is
expected to be small and the decay factor of Katz dampens the
effect of long connections between Upi and Upj . The expected
CommuteTime distance between places is also high due to the
effect of normalization.

On the other hand, Dsim
S produces clusters of slightly larger

sizes compared to DS . We observed that the probability dis-
tribution of Dsim

S is skewed towards low values, meaning that
many pairs of places have low bipartite minimax SimRank social
distance, because SimRank is based on the most similar pair of
visiting users. The clustering results of SimRank (Figure 2(f)) and
DCPGS are visually similar; it is hard to tell which results are
better based on visualization.

3.2 Social Quality Evaluation
In this section, we design and use two measures for assessing
the social coherence between places in the discovered clusters.
Based on these measures, we assess the quality of DCPGS and the
alternative approaches for clustering GeoSN places.

3.2.1 Social Entropy based Evaluation
The first measure, called social entropy, measures the social
quality of the clusters based on the network communities that the
GeoSN users form. Given a social network G = (U,E), we first
partition all the users in U into several disjoint network commu-
nities. Let PC be a cluster of GeoSN places and let UPC be the
set of users who visit the places in PC , i.e., UPC = ∪p∈PCUp.
According to the detected network communities, the visiting
users of PC , UPC , can be divided into several disjoint sets in
CPC = {C1,C2, . . . ,Cm}, such that each set Ci is a subset of
users in UPC belonging to the same network community. We call
CPC the community set of PC .

Definition 4. (Social Entropy) Given a cluster PC , let UPC be
the set of users who visit the places in PC , i.e., UPC = ∪p∈PCUp.
The social entropy of PC is then defined as:

E = ∑
Ci∈CPC

−
∣Ci∣

∣UPC ∣
log

∣Ci∣

∣UPC ∣

The social entropy, analogous to the entropy used in decision
tree induction, measures the impurity of a cluster PC with respect
to the participation of its users into different communities. A low
social entropy means that the great majority of the visitors of PC
come from the same community (i.e., low impurity), indicating
that the places in PC have tighter social relationships between
each other, which is favored.

We applied the METIS community detection algorithm [11]
to divide the set of users in the GeoSN into k non-overlapping
communities7, providing a baseline for social entropy evaluation.
To avoid a comparison that is biased to parameter k, we evaluate
the social entropy of clustering results obtained by DCPGS and the
competitors for two different values of k. One value of k is chosen
based on the following rule of the thumb [18], i.e., k =

√
N/2

where N is the number of users in the social network. The other
value of k is decided by Dunbar’s number that suggests humans
can only comfortably maintain 150 stable relationships and the
mean community size is around 150. For dataset Gowalla, these
values are k = 313 and k = 1310, respectively.

In Figure 4, we use social entropy to test our method DCPGS
with alternative social distance definitions, which are denoted
by the name of the social distance measure used in each case.
Figures 4(a) and 4(b) show the average social entropy for DCPGS,
versions of DCPGS with alternative DS (SimRank, Commute-
Time, Katz, and Jaccard) and PureSocialDistance when varying ε.
CommuteTime, and Katz have the lowest social entropy; however,
these methods produce small clusters and have too many outliers
as explained in Section 3.1. Within each small cluster, the places
are only visited by few people and this explains the low entropy.
Jaccard also has low social entropy for the same reason. PureSo-
cialDistance has low social entropy in most cases; this indicates
that our proposed social distance between places is effective
in putting places with close social relationships together. When
ε = 0.1, the social entropies of DCPGS and PureSocialDistance
are similar, both good, since only those places with very close
social distances are clustered. When ε = 1, PureSocialDistance
has no social distance constraint τ thus its entropy becomes
higher than that of DCPGS. DCPGS outperforms SimRank-based
DCPGS, meaning that our proposed social distance is better than
the SimRank-based Dsim

S (pi, pj) distance. When k = 1310, the
average social entropy of all the methods is larger than in the case
where k = 313, since a larger number of network communities
increases the probability that users in a single cluster belong to
diverse communities. The average cluster size increases with ε,
increasing the probability that the visitors of a cluster belong to
different communities; thus, the average social entropy increases.
In addition, the clustering result becomes stable at large values of
ε, thus the social entropy converges. By visualization, we observed
that ε should be set to a value smaller than 0.5 for the clustering
results to be interesting.

Figures 4(c) and 4(d) show the average social entropies
of DCPGS, DCPGS based on SimRank, CommuteTime, Katz,

7. This is different from Metis used as a competitor of DCPGS in GeoSN
place clustering (discussed in Section 2.1.1).

9

and Jaccard, and the graph-based clustering methods Metis and
LinkClustering, when varying the social distance constraint τ .
Similar to the case when ε varies, the social entropy increases
and then stabilizes as τ increases, except for the entropy of Metis,
which keeps increasing due to the network partitioning methodol-
ogy of Metis with the increase of τ , the constructed place network
becomes less connected, however, due to its partitioning nature,
Metis puts disconnected places in the constructed place network
into same cluster. When τ is less than 0.5, the social entropy
of CommuteTime is zero, since with these distance measures the
places in each cluster are visited by only one person when τ < 0.5.
Jaccard has low social entropy also due to the small sizes of its
clusters. For τ ≤ 0.1 SimRank-based DCPGS fails to find any
clusters, therefore the entropy is 0. After investigation, we found
that there is no pair of places pi, pj with Dsim

S (pi, pj) < 0.2
because of the decay factor φ. When τ = 0.2, SimRank has a low
social entropy, since only few (987) clusters of small size are found
compared to the 3605 clusters discovered by DCPGS. After the
point where the two approaches find a similar number of clusters
(e.g., at τ = 0.5, SimRank finds 5880 clusters, while DCPGS
finds 6742 clusters), DCPGS has constantly lower entropy than
SimRank. In addition, DCPGS is less sensitive to τ compared to
SimRank. DCPGS outperforms the two graph-based competitors
Metis and LinkClustering. As we observed by visualization, in
practice τ should be set to a value higher than 0.5, because a
very tight social distance constraint creates too few and too small
geo-social clusters.

Figures 4(e) and 4(f) show the average social entropies of the
various versions of DCPGS and all the competitor approaches
when varying the spatial distance constraint maxD (eps for
DBSCAN). DCPGS is superior to SimRank-based DCPGS, DB-
SCAN, LinkClustering and Metis for all values of maxD (eps).
In general, the social entropies of all methods are not very sensitive
to maxD . For Gowalla, a good value for maxD is around 100;
large maxD values result in clusters that are spatially too loose.

Figure 5 compares the social entropy of SNN-based model
(when varying epssnn) and DCPGS (when varying ε), where
SNN−60 and SNN−120 denote SNN-based model with
maxD = 60 and maxD = 120, respectively. Parameter τ is fixed
at 0.7 and MinPts is set to 5. The first row of the x-axis represents
the values of ε in DCPGS, while the second row contains the
values of epssnn in SNN-based model. The range of ε in DCPGS
is [0,1]. Parameter epssnn in SNN is an integer in the range of
[0,+∞). Small ε in DCPGS can be translated into large epssnn
in SNN-based model, which indicates that the condition of a place
being a core is that there should be enough places with small geo-
social distances surrounding it. We observe that the social entropy
of SNN-based model does not change much with epssnn and it
is worse than DCPGS with small ε, and comparable with DCPGS
with large ε.

3.2.2 Community Score based Evaluation
Given a GeoSN place cluster PC , let UPC be the set of users
who visit the places in PC , i.e., UPC = ∪p∈PCUp. Assume each
UPC is a community in the GeoSN. We adopt the eight network
community multi-criterion scores surveyed in [19] to compute
the community score of UPC for each cluster PC . Figure 6
compares the results of DCPGS and its alternatives on Gowalla
(Katz is omitted because its result is quite similar to that of
CommuteTime), in terms of the internal density and conductance
scores. We group the clusters discovered by each method by size

△ DCPGS ▽ DBSCAN ▼ PureSocialDistance
☆ Jaccard × SimRank ◻ Katz
● CommuteTime ∎ LinkClustering ▷ Metis

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

ε

S
oc

ia
l E

nt
ro

py

(a) k = 313
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

ε

S
oc

ia
l E

nt
ro

py

(b) k = 1310

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

τ

S
oc

ia
l E

nt
ro

py

(c) k = 313
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

3.5

4

τ

S
oc

ia
l E

nt
ro

py

(d) k = 1310

10 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

(DBSCAN) or (others)

S
oc

ia
l E

nt
ro

py

m
eps maxD

(e) k = 313

10 50 100 150 200 250 300
0

0.5
1

1.5
2

2.5
3

3.5
4

(DBSCAN) or (others)

S
oc

ia
l E

nt
ro

py

m
maxDeps

(f) k = 1310

Fig. 4. Social entropy evaluation in Gowalla

0.1
10

0.2
9

0.3
8

0.4
7

0.5
6

0.6
5

0.7
4

0.8
3

0.9
2

1.0
1

ε (epssnn)

0.0

0.5

1.0

1.5

2.0

2.5

So
ci

al
 E

nt
ro

py

DCPGS
SNN-60
SNN-120

(a) k = 313

0.1
10

0.2
9

0.3
8

0.4
7

0.5
6

0.6
5

0.7
4

0.8
3

0.9
2

1.0
1

ε (epssnn)

0.0

0.5

1.0

1.5

2.0

2.5

So
ci

al
 E

nt
ro

py

DCPGS
SNN-60
SNN-120

(b) k = 1310

Fig. 5. Social entropy of SNN geo-social clusters in Gowalla

and compute and plot the average community score (i.e., internal
density and conductance) for each cluster size group. The results
based on the other six criteria of [19] are similar and we omit
them due to lack of space. The internal density of UPC is defined
by 1−mUPC

/(∣UPC ∣(∣UPC ∣− 1)/2), where mUPC
is the number

of edges, which belongs to E and whose two endpoints are both
in UPC , mUPC

= ∣{(u, v)∣u ∈ UPC , v ∈ UPC , (u, v) ∈ E}∣. Con-
ductance is the fraction of edges, which belongs to E, from nodes
of UPC that point outside UPC , i.e., oUPC

/(2mUPC
+ oUPC

),
where oUPC

= ∣{(u, v)∣u ∈ UPC , v ∉ UPC , (u, v) ∈ E}∣. Let
f(UPC) be the community score of PC , based on either internal

10

density or conductance; a smaller value of f(UPC) indicates
better social quality.

0 50 100 150 200 250 300 350 400
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Cluster size

In
te

rn
al

 d
en

sit
y

PureSocialDistance
DBSCAN
SimRank
DCPGS

(a) Internal Density

0 50 100 150 200 250 300 350 400
0.75

0.8

0.85

0.9

0.95

1

Cluster size
Co

nd
uc

ta
nc

e

PureSocialDistance
DBSCAN
SimRank
DCPGS

(b) Conductance

0 50 100 150 200 250 300 350 400
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

In
te

rn
al

 d
en

sit
y

Cluster size

Metis
LinkClustering
CommuteTime
Jaccard
DCPGS

(c) Internal Density

0 50 100 150 200 250 300 350 400
0.75

0.8

0.85

0.9

0.95

1

C
on

du
ct

an
ce

Cluster size

Metis
LinkClustering
CommuteTime
Jaccard
DCPGS

(d) Conductance

Fig. 6. Community score evaluation in Gowalla

As Figures 6(a) and 6(c) show, the internal density increases
with the cluster size. As the size of a place cluster increases, the
denominator of the internal density formula increases quadrati-
cally while the number of social links between users in the cluster
(i.e., the numerator) does not increase at the same pace. On the
other hand, Figures 6(b) and 6(d) show that conductance initially
decreases as the size of a cluster increases and fluctuates randomly
for larger UPC sizes, which is in line with the observations in [19].
In Figure 6, we observe that the geo-social clusters discovered
by DCPGS have better community scores (i.e., lower internal
density and conductance scores) compared to all competitors,
except PureSocialDistance. Since PureSocialDistance uses our
social distance in clustering and disregards spatial proximity, its
social quality is expected to be better than that of DCPGS; still, as
shown in Figure 2(c), its clusters are not distinguishable spatially.
DCPGS outperforms DBSCAN and SimRank-based DCPGS. The
quality gap between DCPGS and the 3 competitors in Figure 6(a)
and 6(b) narrows as the size of clusters increases, since it is more
difficult for a larger UPC (usually obtained from a larger PC)
to maintain a community-like structure compared to a smaller
UPC [19]. This indicates that our social distance is effective in
finding geo-social clusters with small or medium size. DCPGS
is also generally better than the four competitors in Figures 6(c)
and 6(d). CommuteTime has better community scores when the
cluster size is around 50. Most community scores of Jaccard,
CommuteTime, LinkClustering, and Metis concentrate at the top-
left corner of Figures 6(c) and 6(d), which indicates that these
competitors have limited ability to discover geo-social clusters
of various sizes. Furthermore, the quality gap between DCPGS
and the five competitors in Figures 6(c) and 6(d) grows when the
cluster size increases. We conclude that DCPGS (paired with our
social distance measure) is the most effective method in finding
geo-social clusters with both good social quality and identifiable
spatial contour.

3.3 Temporal Effects on Geo-Social Clusters
In this section, we illustrate the discovered temporal-geo-social
clusters in the area of Manhattan on the Gowalla dataset and in the
area of Chicago on the Brightkite dataset using the three methods
introduced in Section 2.3.
History-Frame Geo-Social Clustering. Figure 7 shows the
temporal-geo-social clusters found using continuous history
frame method in periods 01/08/2009–31/01/2010, 01/02/2010–
31/07/2010, and 01/08/2010-31/01/2011 in the area of Manhattan.
We observe that some clusters evolve over time. For instance, the
cluster in region A first expanded and then shrinked. During period
01/02/2010–31/07/2010, there are multiple clusters in region B,
while in period 01/08/2010-31/01/2011, those clusters are merged
into one big cluster. In region C, before there exists no cluster,
while later a new cluster appeared. Figure 8 shows the temporal-
geo-social clusters found using the periodic history frames, i.e., on
working days and weekends. We observe different place clusters
on working days and weekends which is expected, since normally
people visit places related to work on working days, while visit
entertainment places on weekends.

●

●●●
●

●

●●

●
●
●●●

●
●●●●●

●
●●

●

●

●●●
●

●

●

●

●●

●●●● ●●

●

●

●

●

●

●

●
●

●

●●

●●

●●

●

●

●

●

●●
●

●
●
●
●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●
●●

●
●●

●

●

●

●
●

●

●
●

●●●●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●● ●
●

●

●
●

●●

●●●
● ●● ●●

●●

●●

●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97
lon

la
t

20

40

60

d$cluster

d$names
● 0

1

2

3

4

5

(a) Working Days

●●
●●

●●
●

●
●

●
●●●●●

●
●

●

●
●●●

●
● ●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●●

●

●

●

●●

● ●●●●

●

●

●

●
●●●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97
lon

la
t

10

20

30

40

d$cluster

d$names
● 0

1

2

3

4

5

(b) Weekends

Fig. 8. Periodic History Frame Geo-Social Clustering in Manhattan: ε =
0.5, MinPts = 5, maxD = 120, τ = 0.7, ω = 0.5.

Temporally Contributing Users. Figure 9 shows the temporal-
geo-social clusters found in Manhattan when parameter θ of
temporally contributing users is set to 1 week, 1 month, and
6 months, respectively. When θ is a short time interval (e.g., 1
week), the result reveals that the places in the same clusters are
revisited by socially connected users within a short period of time.
As θ increases, the temporal-social distances between more places
decrease, thus as expected (1) some clusters expand, (2) multiple
clusters merge (e.g., regions A and B), (3) new clusters are found
(e.g., region C). For marketing and management purpose, people
may be interested in both the short term and long term clusters.
Damping Window. In Figure 11, we show the temporal-geo-
social clusters found by the damping window method in Man-
hattan, where the starting time is 01/02/2009 and the current
time is set to 31/07/2010 and 31/01/2011, respectively. To better
understand the effect of the damping window, Figure 10 shows the
clusters found by DCPGS on the same data in the same periods as
the damping window method. We observe that both the size of the
clusters and the number of clusters found by the damping window
are smaller than DCPGS. This is expected, since weighing the old
data less increases the temporal-social distances between places.
Under the same parameter setting, more regions in the damping
window are considered as sparse. However, the advantage of the
damping window is offering the up-to-date clustering result. As we

11

●●
●●

●

●

●

●
●●

●●

●

●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97
lon

la
t

d$names
● 0

1

2

3

4

5

5

10

15
d$clusterA

(a) 01/08/2009–31/01/2010

●

●

●

●●

●
●●

●

●

●●

●●

●●

●
●
●●●

●

●

●

●

●
●
●●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●
●● ●●

●

●●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●

●
●

●
●●

●

●
●
●●

●
●

●

●

●
●
●●
●

●●●
●

●
●

●●●

●

●●●●

●

●

●
●●
●
●●

●

●

●

●●●●●●

●

●

●

●

●
●

●

●

●●●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●●●
●

● ●
●

●

●

●
●

●●
●

●●

●
●

●
●

●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97
lon

la
t

d$names
● 0

1

2

3

4

5

20

40

60

d$clusterA

B

C

(b) 01/02/2010–31/07/2010

●

●●

●

●

●●

●
●
●●●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●●●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●●

●

●●●
●●

●

●
●
●

●

●
●
●

●

●

●
●
●

●
●
●

●●

●

●
●
●

●●
●●

●

●

●

●
●
●●

●

●

●

●
●●

●
●

●

●
●
●●
●

●
●●
●●
●

●

●●
●●●●

●●
● ●●●

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●●
●●●

● ●● ●●

●

●

●

●●

●

●

●●

●●

●

●

●●
●

●

●
● ●

●

●
●
●

●

●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97
lon

la
t

d$names
● 0

1

2

3

4

5

10

20

30

40

d$clusterA

B

C

(c) 01/08/2010-31/01/2011

Fig. 7. Continuous History Frame Geo-Social Clustering in Manhattan: ε = 0.5, MinPts = 5, maxD = 120, τ = 0.7, ω = 0.5.

●

●

●
●●
●
●●●
●●

●
●

●●

●●

●●
●●

●

●
●
●

●

●
●
●
●

●
●
●
●

●●●
●●

●

●●
●
●
●
●●

●

●

●

●

●

●

●

●●

●
● ●
●

● ●

●

●●

●

●

●

●

● ●

●
●●

●●
●
●●
●
●●

●
●

●●

●

●●●
●

●
●● ●●●●

●●
●

●●●●●
●

●

●

●

●
●●●
●

●
●

●

●

●●
●●●

●●●●●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97
lon

la
t

d$names
● 0

1

2

3

4

5

10

20

30

40

50

d$cluster

A
B

C

(a) θ = 1 week

●

●

●

●

●
●●●
●
●●●
●●

●

●●
●

●
●

●

●

●

●

●●

●●

●

●●
●●

●

●
●
●

●

●
●
●

●

●

●
●
●

●
●
●

●●

●

●
●
●

●●
●●

●●
●
●
●
●●

●
●●●

●●
● ●●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●
●●

●

●

●

●

● ●

●
●●

●●
●
●●
●
●●

●
●

●

●

●

●

●●●
●

●

●

●
●● ●●●●

●●
●

●

●

●●●●●
●

●

●

●

●
●●●
●

●
●
●●
●

● ●●
●●

●●●●

●

●●●●●

●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97
lon

la
t

d$names
● 0

1

2

3

4

5

20

40

60
d$cluster

A
B

C

(b) θ = 1 month

●

●

●
●

●

●

●●● ●●

●

●●
●

●

●

●

●

●●
●

●
●

●●

●●●●●

●

● ●

●

●

●

●●
●

●●

●● ●

●

●

●●●●
●●

●

●
●
●

●

●
●
●

●

●

●
●
●

●
●
●

●●

●

●
●
●

●●
●●

●

●

●

●

●
●●●●

●●
● ●●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

● ●

●
●●

●●
●
●●
●
●●

●
●

●

●

●

●

●●●
●

●

●

●
●● ●●●●

●●

●

●

●

●

●●
●
●●●
●●

●
●●
●

●

●●

●

●

●●

●●●●●

●●
●

●
●

●

●

●●

●

●
●

●

●
●●●
●

●
●
●●
●● ● ●●

●●

●●●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●●●●

●
●●

●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97
lon

la
t

d$names
● 0

1

2

3

4

5

20

40

60

d$cluster

A
B

(c) θ = 6 months

Fig. 9. Temporally Contributing Users in Manhattan: ε = 0.5, MinPts = 5, maxD = 120, τ = 0.7, ω = 0.5

can see in Figure 11, the discovered clusters for the two periods are
different, which are sensitive to time. For instance, by 31/07/2010,
clusters are found on Lafayette St., while by 31/01/2011, clusters
are found close to Washington Square Park. Nevertheless, it is
not easy to notice these interesting up-to-date small clusters in
Figure 10 because of the accumulated old data.

In summary, the three ways of considering the temporal
information in the geo-social clustering yield different temporal-
geo-social clusters, which may serve various purposes of analysis
and investigation. The history-frame method offers the evolution
of clusters over time. The damping window method generates
the up-to-date clusters. The temporally contributing user method
shows the places that are revisited within a period of time. More
results from the area of Chicago on the Brightkite data set can be
found in Appendix A.
Social Entropy based Evaluation Figure 12 shows the social
entropy of the temporal-geo-social clusters discovered by the
three methods introduced in Section 2.3 compared with the social
entropy of the geo-social clusters found by DCPGS. Recall that a
low social entropy means that the great majority of the visitors of
a place cluster come from the same community, indicating that the
places in the cluster have tighter social relationships between each
other. We observe that the clusters found by the damping window

●

●
●

●

●
●
●

●

●
●

●●

●

●

●● ●

●

●

●

●●

● ●

●

●●

●

●
●●
●●
●

●
●●●

●

●

●

●
●

●

●
●

●

●

●●
●
●●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

● ●

●

●

●●

●

●
●●●

●

●

●●

●

●●●
●●

●●●
● ●

●

●●
●●

●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97
lon

la
t

d$names
● 0

1

2

3

4

5

20

40

60
d$cluster

(a) 01/02/2009–31/07/2010

●

●

●

●

●●●
●●●

●
●

●●

●

●
●
●

●

●

●

●

●
●
●●●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●
●

● ●
●●

●

●●

●

●●

●
●

●

●

●
●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●
●

●
●

●●●●
●

●

●

●●

●

●

●●●
●●
●●
●

●

●

●

●

●

●
●

●

●
●●●

●
●●

●

●

●●

● ●
●

●● ●

●

●

●

●●●
●●
●
●●●●● ●

●

●

●

●
●

●●
●●●●●●● ●●●

●
●

●

●●

●●●

●● ●●●

●

●●●●
●●
●

●
●

●
●●●●●●●●

●

●

●

●
●●

●

●

●●
●

●

●

●●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●
●

●●●
●

●
●

●

●

●

●

●

●

● ●●●

●

●
●
●●
●●●●●●●●●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●●●●●

●

●
●

●

●●
●
●●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

● ●

●

●●

●

●

●

● ●
●

●

●
●●

●●

●

●

●

●

●
●●●

●

●

●●

●

●●●
●●

●●●
●

●
●

●
●

●

●
●● ●

●

●

●

●

●

●
●●

●

●●●
●●

●●

●●

●●●●●●●●●●

●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97
lon

la
t

d$names
● 0

1

2

3

4

5

20

40

60

d$cluster

(b) 01/02/2009-31/01/2011

Fig. 10. DCPGS in Manhattan: ε = 0.5, MinPts = 5, maxD = 120, τ =
0.7, ω = 0.5

method (DCPGSDW-Exp) and the temporally contributing user
method (DCPGSTT) have better (lower) social entropy, compared
to the result found by DCPGS that does not consider the tem-
porally information. Furthermore, the improvement achieved by
damping window method is larger than that of the temporally
contributing user method. However, the social entropy of the

12

●

● ●
●●

●
●

●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97
lon

la
t

d$names
● 0

1

2

3

4

5

2.5

5.0

7.5

d$cluster

(a) 01/02/2009–31/07/2010

●

●

●
●●

●
●●

●

40.72

40.73

40.74

40.75

−74.01 −74.00 −73.99 −73.98 −73.97
lon

la
t

d$names
● 0

1

2

3

4

5

2.5

5.0

7.5

10.0
d$cluster

(b) 01/02/2009-31/01/2011

Fig. 11. Damping Window in Manhattan: ε = 0.5, MinPts = 5, maxD =
120, τ = 0.7, ω = 0.5

clusters found by the history frame method (DCPGSHF) is worse
than the result of DCPGS. DCPGSHF in fact splits the whole
data into several sub-datasets based on time frames and performs
clustering on these sub-datasets. The social entropies of the
clusters from these sub-datasets should not necessarily be smaller
than the clusters from the whole data. DCPGSTT and DCPGSDW-
Exp require more intra temporal closeness among places within
the temporal-geo-social cluster. The smaller entropies of these
two methods indicates that temporal constraints can enhance the
social connections within a cluster. According to the analysis
in previously sections, the result of the community score based
evaluation is consistent with the result of the social entropy based
evaluation, and thus is omitted.

4 RELATED WORK

Our clustering problem is related to various research topics,
including traditional spatial clustering, using mobility data to
analyze places, clustering using spatial and non-spatial attributes,
studying the relationship between spatial and social attributes,
community detection, and other work on GeoSNs.
Spatial Clustering. Spatial clustering algorithms, surveyed in
[20], are divided into three categories: partitioning, hierarchical
and density-based clustering. Partitioning methods, including k-
means, k-medoids, and CLARANS [21], are good at finding
spherical-shaped clusters in small and medium-sized datasets.
They need a pre-defined parameter k to specify the number of
clusters obtained. However, partitioning methods are not able to
detect clusters of arbitrary shapes. Hierarchical clustering tech-
niques, such as BIRCH [22], Chameleon [23] and CURE [24],
assign objects to clusters in two fashions: agglomerative (bottom-
up) and divisive (top-down). Hierarchical clustering methods do
not have well-defined termination criteria and cannot correct the
result if some objects are assigned to the wrong clusters at an
early stage. Density-based clustering methods, like DBSCAN [1],
[25], discover clusters of arbitrary shapes and sizes. Objects in
dense regions are grouped as clusters, while objects in sparse
regions are labeled as outliers. OPTICS [26] is an extension of
DBSCAN, which generates an augmented ordering of the dataset
that captures its density-based clustering structure at different
granularities. DENCLUE [27] models the overall point density
analytically as the sum of influence functions of the data points.
Clusters can then be identified by determining density-attractors
and clusters of arbitrary shapes can be easily described by a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ε

0.0

0.5

1.0

1.5

2.0

2.5

So
ci

al
 E

nt
ro

py

DCPGS
DCPGSHF090801-100131
DCPGSHF100201-100731
DCPGSHF100801-110131

(a) k = 313

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ε

0.0

0.5

1.0

1.5

2.0

2.5

So
ci

al
 E

nt
ro

py

DCPGS
DCPGSHF090801-100131
DCPGSHF100201-100731
DCPGSHF100801-110131

(b) k = 1310

History-Frame Geo-Social Clustering

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ε

0.0

0.5

1.0

1.5

2.0

2.5

So
ci

al
 E

nt
ro

py

DCPGS
DCPGSDW-Exp-090201-100731
DCPGSDW-Exp-090201-110131
DCPGS-090201-100731

(c) k = 313

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ε

0.0

0.5

1.0

1.5

2.0

2.5

3.0

So
ci

al
 E

nt
ro

py

DCPGS
DCPGSDW-Exp-090201-100731
DCPGSDW-Exp-090201-110131
DCPGS-090201-100731

(d) k = 1310

Damping Window

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ε

0.0

0.5

1.0

1.5

2.0

2.5

So
ci

al
 E

nt
ro

py

DCPGS
DCPGSTT-1W
DCPGSTT-1M
DCPGSTT-6M

(e) k = 313

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ε

0.0

0.5

1.0

1.5

2.0

2.5

3.0

So
ci

al
 E

nt
ro

py

DCPGS
DCPGSTT-1W
DCPGSTT-1M
DCPGSTT-6M

(f) k = 1310

Temporally Contributing Users

Fig. 12. Social entropy of temporal-geo-social clusters in Gowalla

simple equation based on the overall density function. Later, an
adaptive method [28] that automatically determines the parameter
ε of DBSCAN is proposed. GDBSCAN [29] is a generalization
of DBSCAN that clusters point objects as well as spatially
extended objects according to both their spatial and their non-
spatial attributes. A-DBSCAN [30] is an anytime density-based
clustering algorithm which is applicable to many complex data
such as trajectory and medical data. It uses a sequence of lower
bounding functions of the true distance function to produce
multiple approximate results of the true density-based clusters.
Recently, Gan and Tao [31] discussed hardness of DBSCAN and
proposed an efficient approximate version. Our work adopts the
density-based clustering framework to find place clusters in a geo-
social network, by considering both the spatial distance and the
social coherence of the places.
Analysis of Places based on Mobility Data. Brilhante et al. [10]
detect “communities” of places of interest (POIs) on a map based
on how strongly the places are correlated in sequences of visits
by mobile users. Different from our work, the social relationships
between the users who visit the places and the spatial distances
between places are disregarded. The co-existence of places in the
visiting histories of users is the only criterion used for clustering.
The proposed solution generates a graph G that connects pairs
POIs according to the nature of their co-existence in sequences
of user visits and then employs a classic algorithm for community

13

detection on G to identify the place communities. Andrienko et al.
[32] present an analysis and visualization tool, which first identi-
fies interesting events of moving objects (e.g., instances of slow
car movements), then spatially clusters these events, using density-
based clustering to derive a set of significant places (e.g., regions
where traffic jams occur), and finally applies visual analytics to
aggregate and analyze the events with respect to parameters such
as location, time and direction of movement. Noulas et al. [33]
perform an empirical analysis of the topological properties of
place networks formed by the trajectories of mobile users. They
note their resemblance to online social networks in terms of heavy-
tailed degree distributions, triadic closure mechanisms and the
small world property.

Clustering based on Spatial and Non-Spatial Attributes. Clus-
tering objects based on spatial and non-spatial attributes finds
applications in different areas, such as computer vision, GIS, and
social networks. Yu et al. [34] cluster pixels considering both the
RGB color vectors and spatial proximity that is useful in natural
image segmentation. Gennip et al. [35] use spectral clustering to
identify communities in a graph where nodes are gang members
and weighted edges indicate the gang members’ social interactions
and geographic locations. Zhang et al. [36] apply clustering by
adjusting the spatial distance between two objects according to the
non-spatial attribute values between them. EBSCAN [37] clusters
georeferenced big data based on not only spatial information but
also human behavior derived from geographical features.

Spatial-Social Relationship. The relationship between geography
and social structure has been long studied by sociologists. Re-
searchers have found that the likelihood of friendship with a per-
son is decreasing with distance, which has been observed within
colleges [38], new housing developments [39], and projects for
the elderly [40]. Scellato et al. [4] performed a quantitative study
on the socio-spatial properties of users in GeoSNs. By utilizing
social and spatial properties of GeoSNs, the same research group
proposed a link prediction model [5]. Backstrom et al. [41] predict
the location of an individual from a sparse set of known user
locations using the relationship between geography and friendship.
Wang et al. [15] find that the similarity between the movements
of two individuals strongly correlates with their proximity in the
social network. This correlation is used as a tool for link prediction
in a social network. Pham et al. [42] propose an entropy-based
model (EBM) that not only infers social connections but also
estimates the strength of social connections by analyzing people’s
co-occurrences in space and time. Different from existing work,
we neither study the spatial-social relationship nor do prediction or
recommendation utilizing this relationship. We perform density-
based clustering of GeoSN places considering both the spatial
distances between them and the social relationships between users
that visit the places.

Detecting and Evaluating Communities in Networks. There
are many existing works on network community detection and
clustering of nodes in a graph using only the network distance
between nodes [43], [44], [45], [46]. SCAN [45] is an algorithm
that detects clusters, hubs, and outliers in networks. [46] proposed
partitioning, hierarchical and density-based algorithms to cluster
objects on spatial networks, based on shortest-path distance. [19]
summarized and empirically evaluated algorithms for network
community detection. In Section 3.2.2, we have used network
community quality measures [19] to evaluate the social quality
of the place clusters found by our algorithms.

Importing Time into Clustering. Previous works on spatio-
temporal data clustering typically include the time concept in the
data or algorithms as a threshold or as a parameter of the distance
function. Some works transform the spatio-temporal clustering
problem to a multi-sequence spatial data clustering problem [47].
The history-frame clustering method that we propose is simi-
lar to multi-sequence clustering. Trasarti [48] imported time to
data as a new dimension. Thus clustering is performed on high
dimensional data using standard distance measure such as the
Euclidean distance. In this method, the time effect may be re-
duced compared with many other dimensions. ST-DBSCAN [49]
improves DBSCAN to cluster spatialtemporal data where a time
period attached to the spatial data expresses when it was valid
or stored in the database. During clustering, spatio-temporal data
are filtered by retaining only the temporal neighbors and their
corresponding spatial values. Two objects are temporal neighbors
if the values of these objects are observed in consecutive time units
such as consecutive days in the same year or in the same day in
consecutive years. Similarly, [50], [51], [52] integrate the temporal
information into the distance function used for clustering. In other
words, two objects have to be close in terms of time (e.g., time
difference lower than 1 hour) in order to belong to the same cluster.
Different from existing works that simply set a time threshold and
use it as an additional filtering step when computing distances
between objects, the damping window and temporally contributing
user methods in the paper take the temporal information and the
users’ social relationships into account simultaneously.

5 CONCLUSION

In this paper, we studied for the first time the problem of Density-
based Clustering Places in Geo-Social Networks (DCPGS). Our
clustering model extends the density-based clustering paradigm to
consider both the spatial and social distances between places. We
defined a new measure for the social distance between places,
considering the social ties between users that visit them. Our
measure is shown to be more effective to compute, compared
to more complex ones based on node-to-node graph proximity
and SNN-based model. We analyzed the effectiveness of DCPGS
via case studies and demonstrated that DCPGS can discover
clusters with interesting properties (i.e., barrier-based splitting,
spatially loose clusters, clusters with fuzzy boundaries), which
cannot be found by merely using spatial clustering. To improve
the quality of clusters, we incorporate the temporal information
of the checkins using three different ways that satisfy different
analysis and investigation requirements. Besides, we designed two
evaluation measures to quantitatively evaluate the social quality of
clusters detected by DCPGS or competitors, called social entropy
and community score, which also confirm that DCPGS is more
effective than alternative approaches and the temporal dimension
further improves the quality of the clusters.

ACKNOWLEDGMENT

This work was supported in part by NSFC grant No. 61502310 and
by the European Unions Horizon 2020 research and innovation
programme under grant agreement No 657347.

REFERENCES

[1] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in KDD,
1996.

14

[2] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Addison-Wesley, 2005.

[3] J. Shi, N. Mamoulis, D. Wu, and D. W. Cheung, “Density-based place
clustering in geo-social networks,” in SIGMOD, 2014, pp. 99–110.

[4] S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo, “Socio-spatial
properties of online location-based social networks,” in ICWSM, 2011.

[5] S. Scellato, A. Noulas, and C. Mascolo, “Exploiting place features in link
prediction on location-based social networks,” in KDD, 2011.

[6] D.-N. Yang, C.-Y. Shen, W.-C. Lee, and M.-S. Chen, “On socio-spatial
group query for location-based social networks,” in KDD, 2012.

[7] N. Armenatzoglou, S. Papadopoulos, and D. Papadias, “A general frame-
work for geo-social query processing,” PVLDB, vol. 6, no. 10, pp. 913–
924, 2013.

[8] L. Ertöz, M. Steinbach, and V. Kumar, “Finding clusters of different
sizes, shapes, and densities in noisy, high dimensional data,” in SDM,
2003, pp. 47–58.

[9] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal
multiscale complexity in networks,” Nature, vol. 466, pp. 761–764, 2010.

[10] I. R. Brilhante, M. Berlingerio, R. Trasarti, C. Renso, J. A. F. de Macêdo,
and M. A. Casanova, “Cometogether: Discovering communities of places
in mobility data,” in MDM, 2012.

[11] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998.

[12] S. Milgram, “The small world problem,” Psychology today, vol. 2, no. 1,
pp. 60–67, 1967.

[13] J. Leskovec, J. M. Kleinberg, and C. Faloutsos, “Graph evolution:
Densification and shrinking diameters,” TKDD, vol. 1, no. 1, 2007.

[14] G. Jeh and J. Widom, “Simrank: A measure of structural-context simi-
larity,” Stanford InfoLab, Technical Report, 2001.

[15] D. Wang, D. Pedreschi, C. Song, F. Giannotti, and A.-L. Barabasi,
“Human mobility, social ties, and link prediction,” in KDD, 2011.

[16] C. Wang, V. Satuluri, and S. Parthasarathy, “Local probabilistic models
for link prediction,” in ICDM, 2007.

[17] P. Sarkar and A. W. Moore, “A tractable approach to finding closest
truncated-commute-time neighbors in large graphs,” in UAI, 2007.

[18] K. V. Mardia, J. Kent, and J. Bibby, Multivariate analysis (probability
and mathematical statistics). Academic Press London, 1980.

[19] J. Leskovec, K. J. Lang, and M. W. Mahoney, “Empirical comparison of
algorithms for network community detection,” in WWW, 2010.

[20] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2000.

[21] R. T. Ng and J. Han, “Efficient and effective clustering methods for
spatial data mining,” in VLDB, 1994.

[22] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: An efficient data
clustering method for very large databases,” in SIGMOD, 1996.

[23] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical cluster-
ing using dynamic modeling,” IEEE Computer, vol. 32, no. 8, pp. 68–75,
1999.

[24] S. Guha, R. Rastogi, and K. Shim, “Cure: An efficient clustering
algorithm for large databases,” in SIGMOD, 1998.

[25] A. Gunawan, “A faster algorithm for dbscan,” Master Thesis, Technische
University Eindhoven, March 2013.

[26] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
Ordering points to identify the clustering structure,” in SIGMOD, 1999.

[27] A. Hinneburg and D. A. Keim, “An efficient approach to clustering in
large multimedia databases with noise,” in KDD, 1998.

[28] S. Jahirabadkar and P. Kulkarni, “Short communication: Algorithm to
determine epsilon-distance parameter in density based clustering,” Expert
Syst. Appl., vol. 41, no. 6, pp. 2939–2946, 2014.

[29] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based clustering
in spatial databases: The algorithm gdbscan and its applications,” Data
Min. Knowl. Discov., vol. 2, no. 2, pp. 169–194, 1998.

[30] S. T. Mai, X. He, J. Feng, C. Plant, and C. Böhm, “Anytime density-
based clustering of complex data,” Knowl. Inf. Syst., vol. 45, no. 2, pp.
319–355, 2015.

[31] J. Gan and Y. Tao, “Dbscan revisited: Mis-claim, un-fixability, and
approximation,” in SIGMOD, 2015, pp. 519–530.

[32] G. L. Andrienko, N. V. Andrienko, C. Hurter, S. Rinzivillo, and S. Wro-
bel, “Scalable analysis of movement data for extracting and exploring
significant places,” IEEE TVCG, vol. 19, no. 7, pp. 1078–1094, 2013.

[33] A. Noulas, B. Shaw, R. Lambiotte, and C. Mascolo, “Topological prop-
erties and temporal dynamics of place networks in urban environments,”
in WWW, 2015, pp. 431–441.

[34] Z. Yu, O. C. Au, R. Zou, W. Yu, and J. Tian, “An adaptive unsupervised
approach toward pixel clustering and color image segmentation,” Pattern
Recognition, vol. 43, no. 5, pp. 1889–1906, 2010.

[35] Y. van Gennip, B. Hunter, R. Ahn, P. Elliott, K. Luh, M. Halvorson,
S. Reid, M. Valasik, J. Wo, G. E. Tita, A. L. Bertozzi, and P. J.
Brantingham, “Community detection using spectral clustering on sparse
geosocial data,” CoRR, vol. abs/1206.4969, 2012.

[36] B. Zhang, W. J. Yin, M. Xie, and J. Dong, “Geo-spatial clustering
with non-spatial attributes and geographic non-overlapping constraint:
A penalized spatial distance measure,” in PAKDD, 2007.

[37] S. Yokoyama, A. Bogárdi-Mészöly, and H. Ishikawa, “Ebscan: An
entanglement-based algorithm for discovering dense regions in large geo-
social data streams with noise,” in LBSN, 2015, pp. 7:1–7:10.

[38] J. Q. Stewart, “An inverse distance variation for certain social influence,”
Science, vol. 93, no. 2404, pp. 89–90, 1941.

[39] L. Festinger, S. Schachter, and K. Back, “Social pressures in informal
groups: a study of human factors in housing,” Stanford Univ. Pr., 1963.

[40] L. Nahemow and M. Lawton, “Similarity and propinquity in friendship
formation,” Journal of Personality and Social Psychology, vol. 32, no. 2,
pp. 205–213, 1975.

[41] L. Backstrom, E. Sun, and C. Marlow, “Find me if you can: Improving
geographical prediction with social and spatial proximity,” in WWW,
2010.

[42] H. Pham, C. Shahabi, and Y. Liu, “Ebm: an entropy-based model to infer
social strength from spatiotemporal data,” in SIGMOD, 2013.

[43] C. Tantipathananandh, T. Y. Berger-Wolf, and D. Kempe, “A framework
for community identification in dynamic social networks,” in KDD, 2007.

[44] A. Clauset, M. E. Newman, and C. Moore, “Finding community structure
in very large networks,” Physical review E, vol. 70, no. 6, 2004.

[45] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger, “Scan: a structural
clustering algorithm for networks,” in KDD, 2007.

[46] M. L. Yiu and N. Mamoulis, “Clustering objects on a spatial network,”
in SIGMOD, 2004.

[47] H. F. Tork, “Spatio-temporal clustering methods classification,” in DSIE,
2012.

[48] R. Trasarti, “Mastering the spatio-temporal knowledge discovery pro-
cess,” Ph.D. dissertation, Department of Computer Science, University
of Pisa, 2010.

[49] D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial-
temporal data,” Data Knowl. Eng., vol. 60, no. 1, pp. 208–221, 2007.

[50] M. Wang, A. Wang, and A. Li, “Mining spatial-temporal clusters from
geo-databases,” in ADMA, 2006, pp. 263–270.

[51] G. Andrienko and N. Andrienko, “Interactive cluster analysis of diverse
types of spatiotemporal data,” SIGKDD Explor. Newsl., vol. 11, no. 2,
pp. 19–28, 2010.

[52] D. Fitrianah, A. N. Hidayanto, H. Fahmi1, J. L. Gaol, and A. M.
Arymurthy, “St-agrid: A spatio temporal grid density based clustering
and its application for determining the potential fishing zones,” IJSEIA,
vol. 9, no. 1, 2015.

Dingming Wu is an assistant professor with Col-
lege of Computer Science & Software Engineer-
ing, Shenzhen University, China. She received
the Ph.D. degree in Computer Science in 2011
from Aalborg University, Denmark. Her general
research area is data management and mining,
including data modeling, database design, and
query languages, efficient query and update pro-
cessing, indexing, and mining algorithms.

Jieming Shi received his bachelors degree
of science from the department of Computer
Science and Technology in Nanjing University,
2011, and his PhD in computer science from
the University of Hong Kong. He is now a staff
researcher at Lenovo big data lab in Hong Kong.
His research interests include geo-social net-
work mining, knowledge graph management,
and query processing on spatial-textual data.

Nikos Mamoulis received the diploma in com-
puter engineering and informatics in 1995 from
the University of Patras, Greece, and the PhD
degree in computer science in 2000 from
HKUST. He is currently a faculty member at the
Department of Computer Science and Engineer-
ing, University of Ioannina. His research focuses
on the management and mining of complex data
types, privacy and security in databases, and
uncertain data management.

15

APPENDIX A
TEMPORAL-GEO-SOCIAL CLUSTER EVALUATION

History-Frame Geo-Social Clustering. Figures 17 show the
place clusters found using continuous history frame method
in periods 01/03/2008–31/08/2008, 01/09/2008–28/02/2009, and
01/03/2009-31/08/2009 in Chicago. Similar to the result of Man-
hattan, clusters change with time. Take region A as an example.
The cluster first shrinks and then becomes multiple clusters.
Figure 13 shows the temporal-geo-social clusters found using the
periodic history frames, i.e., on working days and weekends. As
expected, different place clusters on working days and weekends
are discovered.
Temporally Contributing Users. Figure 14 shows the temporal-
geo-social clusters found in Chicago when parameter θ of tempo-
rally contributing users is set to 1 week, 1 month, and 6 months,
respectively. The result of Chicago has similar behaviors as the
result of Manhattan does, i.e., expanded cluster in region A,
merged clusters in region B, and newly found clusters in region C.
Damping Window. In Figure 16, we show the temporal-geo-
social clusters found by the damping window method in Chicago,
where the starting time is 01/03/2008 and the current time is set to
28/02/2009 and 28/02/2010, respectively. To better understand the
effect of the damping window, Figure 15 shows the clusters found
by DCPGS on the same data in the same periods as the damping
window method. The result in Chicago is consistent with the result
in Manhattan. Less and smaller clusters are found using damping
window method. There is a cluster close to W Madison St, which
is ignored by DCPGS.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

41.880

41.885

41.890

41.895

41.900

−87.640 −87.635 −87.630 −87.625 −87.620 −87.615
lon

la
t

5

10

15

20
d$cluster

d$names
● 0

1

2

3

4

5

(a) Working Days

●

●

●

●

●

41.880

41.885

41.890

41.895

41.900

−87.640 −87.635 −87.630 −87.625 −87.620 −87.615
lon

la
t

2

4

6

8
d$cluster

d$names
● 0

1

2

3

4

5

(b) Weekends

Fig. 13. Periodic History Frame Geo-Social Clustering in Chicago: ε =
0.5, MinPts = 5, maxD = 120, τ = 0.7, ω = 0.5.

APPENDIX B
ALGORITHMS OF DCPGS
We propose two algorithms for DCPGS. DCPGS-R (Section B.1)
is based on the R-tree index, while DCPGS-G (Section B.2) uses
a grid partitioning.

B.1 Algorithm DCPGS-R: R-tree based
Algorithm DCPGS-R is a direct extension of the DBSCAN al-
gorithm; it uses an R-tree to facilitate the search of the geo-social
ε-neighborhood for a given place. Initially, all places in the GeoSN
are bulk-loaded into an R-tree. Then, DCPGS-R examines all
places and, given a place pi, it performs a range query centered at
pi with radius maxD to get a set of candidate places that may fall
in the geo-social ε-neighborhood of pi, i.e., Nε(pi). Recall that
maxD is the maximum allowed spatial distance between place

pi and places in its geo-social ε-neighborhood. Then, DCPGS-R
keeps inNε(pi) only the candidates that satisfy the social distance
constraint τ and the geo-social distance threshold ε.

For the sake of efficiency, the social network is stored in a hash
table. Specifically, each pair of friends in the social network is
recorded as an entry in the hash table, such that checking whether
two users are friends or not only incurs constant cost. In addition,
for each place pi, we keep track of its visiting users Upi . The
computation of the social distance (Definition 2) between two
places pi and pj involves finding the pairs of friends between
sets Upi and Upj and has insignificant cost compared to the range
queries used to compute the set of candidate places.

Algorithm 1 is the pseudocode of DCPGS-R. The identity of
the current cluster cid is initialized to 1 in line 1. Queue Q (initial-
ized in line 2) stores the places that have the potential to be added
to the current cluster. Hash table H records whether the geo-social
distances between pairs of places have been computed before
(line 3) and its use will be explained later. For each unprocessed
place pi, its geo-social ε-neighborhood Nε(pi) is obtained by
calling function GETNEIGH(pi, ε, τ , maxD , MinPts , ω, H),
outlined in Algorithm 2. A place is unprocessed if its geo-social
ε-neighborhood has not been computed before. If Nε(pi) contains
at least MinPts places, then pi is a core place, i.e., pi belongs
to a cluster and all places in Nε(pi) should be given the same
cid as pi (lines 6-11). Next, all unprocessed places in Nε(pi) are
pushed into Q for later processing. Lines 12-20 expand the current
cluster cid as much as possible by checking the geo-social ε-
neighborhood of the unprocessed places in Q. No more places can
be included in the current cluster when Q is empty. In this case,
the algorithm proceeds to find the next cluster (cid is increased in
line 21).

Algorithm 1 DCPGS-R(GeoSN, ε, τ , maxD , MinPts , ω)
1: cid = 1
2: Q = empty
3: Geo-social distance cache H
4: for each unprocessed place pi in GeoSN do
5: Nε(pi) = GETNEIGH(pi, ε, τ , maxD , MinPts , ω, H)
6: if ∣Nε(pi)∣ ≥MinPts then
7: assign cid to pi
8: for each place pj ∈ Nε(pi) do
9: assign cid to pj

10: if pj is unprocessed then
11: Q.push(pj)

12: while !Q.isEmpty() do
13: pk = Q.pop()
14: if pk is unprocessed then
15: Nε(pk) = GETNEIGH(pk, ε, τ , maxD , MinPts , ω,

H)
16: if ∣Nε(pk)∣ ≥MinPts then
17: for each place pm ∈ Nε(pk) do
18: assign cid to pm
19: if pm is unprocessed then
20: Q.push(pm)

21: cid = cid + 1

Function GETNEIGH, shown in Algorithm 2, is used to get
the geo-social ε-neighborhood of place pi. Initially Nε(pi) is
empty. Lines 2-4 first perform a spatial range query centered
at the current place pi with radius maxD to get a candidate
set CandSet containing the places that may fall in Nε(pi). If
the size of CandSet is less than MinPts , Nε(pi) definitely
includes less than MinPts places and, therefore, pi is a non-

16

●●●

●●

●●
●●

41.880

41.885

41.890

41.895

41.900

−87.640 −87.635 −87.630 −87.625 −87.620 −87.615
lon

la
t

A

B

C

(a) θ = 1 week

●

●

●●

● ●● ●

●

●

●

●

●

●●

41.880

41.885

41.890

41.895

41.900

−87.640 −87.635 −87.630 −87.625 −87.620 −87.615
lon

la
t

A

B

C

(b) θ = 1 month

●● ●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●
●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●●

41.880

41.885

41.890

41.895

41.900

−87.640 −87.635 −87.630 −87.625 −87.620 −87.615
lon

la
t

A

B

C

(c) θ = 6 months

Fig. 14. Temporally Contributing Users in Chicago: ε = 0.5, MinPts = 5, maxD = 120, τ = 0.7, ω = 0.5

●

●

●

●
●

●

● ●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

41.880

41.885

41.890

41.895

41.900

−87.640 −87.635 −87.630 −87.625 −87.620 −87.615
lon

la
t

d$names
● 0

1

2

3

4

5

4

8

12

16
d$cluster

(a) 01/03/2008–28/02/2009

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

41.880

41.885

41.890

41.895

41.900

−87.640 −87.635 −87.630 −87.625 −87.620 −87.615
lon

la
t

5

10

15

d$cluster

d$names
● 0

1

2

3

4

5

(b) 01/03/2008-28/02/2010

Fig. 15. DCPGS in Chicago: ε = 0.5, MinPts = 5, maxD = 120, τ = 0.7, ω = 0.5

●
●●● ●

41.880

41.885

41.890

41.895

41.900

−87.640 −87.635 −87.630 −87.625 −87.620 −87.615
lon

la
t

1

2

3

4
d$cluster

d$names
● 1

2

3

4

(a) 01/03/2008–28/02/2009

●● ●●●

41.880

41.885

41.890

41.895

41.900

−87.640 −87.635 −87.630 −87.625 −87.620 −87.615
lon

la
t

1

2

3

4

5

6

7
d$cluster

d$names
● 0

1

2

3

4

5

(b) 01/03/2008-28/02/2010

Fig. 16. Damping Window in Chicago: ε = 0.5, MinPts = 5, maxD = 120, τ = 0.7, ω = 0.5

core place. Otherwise, the algorithm tries to compute the social
distance between every point pj ∈ CandSet and pi. However,
before this, given the fact that the spatial distance between pi and
every candidate place pj is already obtained in the spatial range
query step, a spatial filter is employed to avoid unnecessary social
distance computations (line 6).

Proposition 1. Spatial filter. Given two places pi and pj
with spatial distance DP (pi, pj), if ω ⋅ DP (pi, pj) > ε, then
ω ⋅DP (pi, pj) + (1 − ω) ⋅DS(pi, pj) > ε.

Proof. Since ω ∈ [0,1] and DS(pi, pj) ∈ [0,1], (1 − ω) ⋅
DS(pi, pj) ≥ 0. Consequently, if ω ⋅ DP (pi, pj) > ε, then
ω ⋅DP (pi, pj) + (1 − ω) ⋅DS(pi, pj) > ε.

17

●●●

●●

●
●

●

●●

41.880

41.885

41.890

41.895

41.900

−87.640 −87.635 −87.630 −87.625 −87.620 −87.615
lon

la
t

A

(a) 01/03/2008–31/08/2008

●

●

● ●
●

●

●

●

41.880

41.885

41.890

41.895

41.900

−87.640 −87.635 −87.630 −87.625 −87.620 −87.615
lon

la
t

A

(b) 01/09/2008–28/02/2009

●

●

● ●

● ●

●

●

●

●

●
●

●

●

41.880

41.885

41.890

41.895

41.900

−87.640 −87.635 −87.630 −87.625 −87.620 −87.615
lon

la
t

A

(c) 01/03/2009-31/08/2009

Fig. 17. Continuous History Frame Geo-Social Clustering in Chicago: ε = 0.5, MinPts = 5, maxD = 120, τ = 0.7, ω = 0.5.

Note that distances Dgs and DS and DP are all symmetric.
Hence, given a place pi, if pj is (not) in Nε(pi), then pi is also
(not) in Nε(pj), and vice versa. Therefore, we keep track in a
hash table H (line 14) whether pi and pj are in each other’s
geo-social ε-neighborhood once their geo-social distance has been
computed. This information is used when computing the geo-
social ε-neighborhood of pj later (line 7-9), in order to avoid
computing the distance between the same pair of places twice.
Lines 11-15 compute distances, verify candidates, and update H
if necessary. Line 16 is another filter, called sufficient filter, to
check whether there are enough remaining candidate places in
CandSet to render pi’s geo-social ε-neighborhood dense. If no,
the algorithm can stop without checking the remaining candidate
places and return.

Algorithm 2 GETNEIGH(pi, ε, τ , maxD , MinPts , ω, H)
1: Nε(pi)← ∅

2: CandSet = RANGEQUERY(pi,maxD)
3: if ∣CandSet ∣ <MinPts then
4: return Nε(pi)
5: for each place pj ∈ CandSet do
6: if ω ⋅DP (pi, pj) ≤ ε then
7: if H.exists((pi, pj)) then
8: if H[(pi, pj)] is TRUE then
9: Nε(pi).insert(pj)

10: else
11: Compute DS(pi, pj) and Dgs(pi, pj)
12: if DS(pi, pj) ≤ τ && Dgs(pi, pj) ≤ ε then
13: Nε(pi).insert(pj)
14: H[(pi, pj)]← TRUE
15: CandSet .erase(pj)
16: if ∣CandSet ∣ + ∣Nε(pi)∣ <MinPts then break
17: return Nε(pi)

B.2 Algorithm DCPGS-G: Grid based

DCPGS-R conducts a spatial range query for each place in the
GeoSN to obtain the candidate places for the purpose of dis-
covering geo-social clusters. Even though individual R-tree based
range queries are very efficient, discovering geo-social clusters
in a GeoSN with millions of places requires millions of such
queries (e.g., there are 1,280,969 places in the Gowalla dataset
used in our experiments). Given two places pi and pj that are

spatially close to each other, as Figure 18(a) shows, the results
of the two range queries with radius maxD centered at pi and
pj , respectively, are almost identical. In algorithm DCPGS-R, to
get the candidate places CandSet for each place in Figure 18(a),
8 independent range queries are issued on the R-tree that search
almost the same space, resulting in redundant traversing paths and
computations. To overcome this drawback, we develop a dynamic
grid partitioning technique and a new algorithm DCPGS-G.

pi pj

maxD
maxD

(a) Nearby spatial range queries

c

2
maxD

maxD

2
maxD

maxD

maxD

maxD

(b) Grid partitioning

Fig. 18. Nearby spatial range queries and grid partitioning

Grid Partitioning. The area covered by the dataset is partitioned
by a regular grid with cells of size maxD/

√
2 ×maxD/

√
2. The

non-empty cells of the grid are indexed by a hash table with the
grid cell coordinates as search keys.
Neighbor Cells. We define the neighbor cells NC(c) of cell c
as the cells (excluding c) that intersect the Minkowski region of
c, using maxD as radius and excluding c itself. In practice, the
Minkowski region of c can be defined by the region defined by
the four 1/4-circles of the 4 corners, plus the straight lines that
are parallel to the 4 edges of the cell and at distance maxD. As
an example in Figure 18(b), NC(c) contains the 20 gray cells
surrounding c.
Cluster Discovery. Algorithm 3 is a pseudocode for DCPGS-G. It
includes three phases. First, the algorithm maps all places into grid
cells (line 1). Second, it obtains the geo-social ε-neighborhoods
of all places (lines 2-6). The third phase discovers all geo-social
clusters in the GeoSN (line 7). The geo-social ε-neighborhoods of
places are computed at the grid cell level. Specifically, for each
nonempty and unprocessed cell c, function GETNEIGHCELLS

retrieves its neighbor cells NC (c) (GETNEIGHCELLS is trivial
and thus details are omitted). A cell is ‘unprocessed’ if its neighbor

18

cells have not been retrieved before. Function COMPCELLPAIR

(Algorithm 4) first filters out the pairs of places (pi, pj) with
spatial distance greater than maxD , where pi ∈ c, pj ∈ NC (c)
and pi ≠ pj . This step is not needed if pi and pj are in the
same cell (in this case, the spatial distance between pi and pj
is certainly at most maxD). Next, the pairs of places (pi, pj) that
satisfy the social distance constraint τ and the geo-social distance
threshold ε are selected. If pi and pj are in each others’ geo-social
ε-neighborhood, their corresponding Nε(pi) and Nε(pj) are
updated. After all cells have been processed, meaning that the geo-
social ε-neighborhoods of all places in the GeoSN are acquired,
function GETCLUSTERS is called to discover geo-social clusters
following the framework of DCPGS-R (Algorithm 1), except that
the Nε(pi) of each place pi has already been computed. Note that
an unprocessed place pi in function GETCLUSTERS means that
the size of pi’s geo-social ε-neighborhood, ∣Nε(pi)∣, has not been
checked.

Algorithm 3 DCPGS-G(GeoSN, ε, τ,maxD ,MinPts, ω)
1: Map all places into grid cells
2: for each nonempty && unprocessed cell c do
3: COMPCELLPAIR(c, c, ε, τ,maxD , ω)
4: NC (c)=GETNEIGHCELLS(c)
5: for each nonempty && unprocessed cell c′ ∈ NC (c) do
6: COMPCELLPAIR(c, c′, ε, τ,maxD , ω)

7: GETCLUSTERS(Nε, MinPts)

Algorithm 4 COMPCELLPAIR(cell c, cell c′,ε, τ,maxD , ω)
1: for each pair (pi, pj) where pi ∈ c, pj ∈ c′, pi ≠ pj do
2: if c = c′ —— E(pi, pj) ≤ maxD then
3: Compute DP (pi, pj)
4: if ω ⋅DP (pi, pj) ≤ ε then
5: Compute DS(pi, pj) and Dgs(pi, pj)
6: if DS(pi, pj) ≤ τ && Dgs(pi, pj) ≤ ε then
7: Nε(pi).insert(pj)
8: Nε(pj).insert(pi)

Algorithm 5 GETCLUSTERS(Nε, MinPts)
1: cid = 1
2: Q = empty
3: for each unprocessed place pi in GeoSN do
4: if ∣Nε(pi)∣ ≥MinPts then
5: assign cid to pi
6: for each place pj ∈ Nε(pi) do
7: assign cid to pj
8: if pj is unprocessed then
9: Q.push(pj)

10: while !Q.isEmpty() do
11: pk = Q.pop()
12: if pk is unprocessed then
13: if ∣Nε(pk)∣ ≥MinPts then
14: for each place pm ∈ Nε(pk) do
15: assign cid to pm
16: if pm is unprocessed then
17: Q.push(pm)

18: cid = cid + 1

B.3 Complexity Analysis.
Let P be the set of places and n = ∣P ∣. For a place p ∈ P ,
let ∣Up∣ be the number of users visited p. The worst-case com-
plexities of both the DCPGS-R and DCPGS-G algorithms are

O(∑pi,pj∈P∧pi≠pj ∣Upi ∣×∣Upj)∣. This is because in the worst-case,
both the algorithms have to compute the geo-social distances for
Ω(n2) pairs of places, where the cost of computingDgs(pi, pj) is
O(∣Upi ∣ × ∣Upj)∣). However, if one assumes that the input dataset
has a property that the average number of users visited a place
is O(1), then the complexity decreases to O(n2). Moreover, if
one further assumes that in the grid-based algorithm, each cell
contains at most O(1) places, the complexity of this algorithm
becomes O(n) since in this case, there can be at most O(n)
pairs of places that will be checked. It should be noted that these
two bounds only hold under the above assumptions. Below is the
analysis based on the characteristics of the data sets used.

In the two data sets used for experiments, the average number
of check-ins per place is 5 in Gowalla and 6 in Brightkite. Hence
the cost of computing Dgs(pi, pj) can be considered as a constant
cost. Then we derive that the complexity of DCPGS-R is the same
as that of DBSCAN, which is O(n2).

With the help of grid partitioning, the geo-social ε-
neighborhood of all places in cell c can be obtained by checking
all c’s neighbor cells. For any cell c, there are at most 20 neighbor
cells, NC (c). (i) Among the cells in NC (c), in total there are at
most 10 cells that are above c, or in the same row of c but on c’s
left. For each of such cells, noted as c<, we need to retrieve places
in c once when it is processed, specifically when Algorithm 4 is
called for cell pair (c<, c). (ii) When c itself is under processing,
all its places need to be retrieved once. (iii) For all the neighbor
cells of c that are below c, or in the same row of c but on c’s right,
noted as c>, when they are under processing, there is no need to
call Algorithm 4 for cell pair (c>, c) since cell pair (c, c>) has all
ready been computed by Algorithm 4 when c is under processing.
Therefore, in total, any cell is accessed at most 11 times, which
is a constant, during the process of computing all places’ geo-
social neighborhoods. On average, in our experiment, the number
of places per cell is around 1.65 when maxD = 120. In addition,
a cell contains at most 615 places which is significant smaller than
the number of places in the data set. Hence, for each place, the
number of comparisons in a cell is a constant. Taking the fact that
the average cost of computing the geo-social distance is a constant,
the complexity of DCPGS-G is O(n) (as each of its three phases
makes one pass over the data).

B.4 Algorithms for Temporal-Geo-Social Clustering

Algorithms DCPGS-R and DCPGS-G can be easily applied to
compute temporal-geo-social clusters. Specifically, the results of
the history-frame method are obtained by applying one of the two
algorithms on the data that belong to each time period. For the
damping window and the temporally contributing user method,
both the two algorithms can be used with the only modification
that substituting the social distance with the temporal-social dis-
tance between places.

APPENDIX C
EFFICIENCY EVALUATION

Effect of ε. Figures 19(a) and 19(b) show the performance of
all methods when varying ε, except LinkClustering and Metis,
which do not use parameter ε. We keep τ = 0.7 and ω = 0.5 for
both datasets and maxD = 100 for Gowalla and maxD = 120
for Brightkite. Note that DCPGS-G is faster than DCPGS-R in all
cases, which again indicates that grid partitioning greatly improves

19

the efficiency of DCPGS. DCPGS-G (DCPGS-R) is slightly more
expensive than Jaccard-G (Jaccard-R). The runtimes of SimRank-
G, SimRank-R, Katz-G, and CommuteTime-G increase signifi-
cantly when ε increases from 0.1 to 0.5, because the increase
weakens the power of the spatial filter (Proposition 1) and more
(expensive) social distances (Dsim

S (pi, pj), DKatz
S (pi, pj), and

Dct
S (pi, pj)) are computed. DCPGS-G and DCPGS-R remain

quite stable for all ε values since the computational cost of our
social distance is insignificant.
Effect of maxD (eps in DBSCAN). Parameter maxD (eps in
DBSCAN) decides the spatial ranges of the geo-social (spatial)
neighborhoods of places and the size of the constructed place
network for LinkClustering and Metis. Thus, maxD (eps) greatly
influences the efficiency of all methods. Figures 19(c) and 19(d)
display the runtime of all methods when varying maxD (eps).
We set τ = 0.7, ε = 0.4, and ω = 0.5 for all the methods
except DBSCAN on both Gowalla and Brightkite datasets. Note
that SimRank-G, SimRank-R, Katz-G and CommuteTime-G are
more sensitive to maxD compared to the other methods, due to
the high cost of Dsim

S (pi, pj), DKatz
S (pi, pj), and Dct

S (pi, pj)
distance computations.

The cost of DCPGS-G stays below 100 seconds as maxD
ranges from 10 to 300 and remains close to that of DBSCAN-
G and Jaccard-G. DCPGS-R is also close to DBSCAN-R and
Jaccard-R. DCPGS-G remains faster than DCPGS-R, but their
performance gap narrows with maxD ; the reason is that grid-
based computations become more expensive as the grid cell size
(i.e., maxD) increases. DCPGS-R eventually becomes faster than
DCPGS-G for a very large maxD , e.g. maxD > 1000; however,
as shown in Figure 2(c), geo-social clusters with a very large
maxD are not spatially identifiable. At an appropriate maxD
value (around 100), DCPGS-G is clearly the best choice. Metis
has similar cost to DCPGS-G while LinkClustering is slower.
Effect of ω. Figures 19(e) and 19(f) display the runtimes of the
clustering methods when varying ω. We keep τ = 0.7 and ε = 0.4
for all methods on both datasets, while setting maxD = 100 in
Gowalla and maxD = 120 in Brightkite. The costs of all methods
are not much sensitive to ω; an exception is the runtimes of
SimRank-G, SimRank-R, Katz-G, and CommuteTime-G which
decrease when ω > 0.5. The reason is again the high effect of
the spatial filter (Proposition 1), when ω is large, due to which
many expensive social distance computations are avoided. As a
final note, the social distance constraint τ is only applied as an
ultimate filter and has no influence on the runtimes of all methods.
It only slightly influences the costs of LinkClustering and Metis
because it affects the size of the place network, on which these
methods operate.

▷ DCPGS-G * DCPGS-R ◁ Katz-G
+ DBSCAN-G ◻ DBSCAN-R ☆ CommuteTime-G
▽ SimRank-G × SimRank-R ∎ Jaccard-G
LinkClustering ● Metis ▲ Jaccard-R

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

10
5

ε

R
un

tim
e

(
se

co
nd

s
)

(a) Gowalla
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

ε

R
un

tim
e

(
se

co
nd

s
)

(b) Brightkite

10 50 100 150 200 250 300
10

0

10
1

10
2

10
3

10
4

10
5

R
un

tim
e

(
se

co
nd

s
)

(DBSCAN) or (others)eps maxD
m

(c) Gowalla

10 50 100 150 200 250 300
10

0

10
1

10
2

10
3

R
un

tim
e

(
se

co
nd

s
)

(DBSCAN) or (others)eps maxD
m

(d) Brightkite

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

1

10
2

10
3

10
4

10
5

ω

R
un

tim
e

(
se

co
nd

s
)

(e) Gowalla
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

ω

R
un

tim
e

(
se

co
nd

s
)

(f) Brightkite

Fig. 19. Runtime experiments

