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Optimal Route Queries with Arbitrary Order
Constraints
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Abstract—Given a set of spatial points DS, each of which is associated with categorical information, e.g., restaurant, pub, etc., the
optimal route query finds the shortest path that starts from the query point (e.g., a home or hotel), and covers a user-specified set of
categories (e.g., {pub, restaurant, museum}). The user may also specify partial order constraints between different categories, e.g.,
a restaurant must be visited before a pub. Previous work has focused on a special case where the query contains the total order of
all categories to be visited (e.g., museum → restaurant → pub). For the general scenario without such a total order, the only known
solution reduces the problem to multiple, total-order optimal route queries. As we show in this paper, this naı̈ve approach incurs a
significant amount of repeated computations, and, thus, is not scalable to large datasets. Motivated by this, we propose novel solutions
to the general optimal route query, based on two different methodologies, namely backward search and forward search. In addition,
we discuss how the proposed methods can be adapted to answer a variant of the optimal route queries, in which the route only needs
to cover a subset of the given categories. Extensive experiments, using both real and synthetic datasets, confirm that the proposed
solutions are efficient and practical, and outperform existing methods by large margins.

Index Terms—H.2.4.h Query processing, H.2.4.k Spatial databases
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1 INTRODUCTION

Consider a tourist who will have a free day to travel
around Hong Kong. Without much knowledge about the
city, s/he searches online maps to plan for a trip. Usually,
s/he has a fixed starting point, e.g., her/his hotel, and
certain objectives in mind, such as visiting a museum,
dining at a fine restaurant, and enjoying a few drinks at
a local pub. Meanwhile, some destinations may need to
be visited in a certain order. For instance, the trip should
have a pub after a restaurant. The ideal route should
cover all the destinations, satisfy all order constraints,
and minimize the total travel length. Searching for such
a route is captured by the optimal route query [4],
[10], [13], which usually has a vast search space, and,
consequently, is too tedious to be done manually. Cur-
rently, major online map providers have already shown
interest in tools that assist such trip planning tasks.
For example, Google City Tours (citytours.googlelabs.com)
provides suggested tours for a given starting address.
However, these tours are pre-defined, and cannot be
customized according to the user’s plans. Yahoo Travel
(travel.yahoo.com) has a similar service that allows users
to search and share trips, which, unfortunately, cannot
answer optimal route queries either.

Figure 1 illustrates an example optimal route query
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on a dataset DS with 6 locations p1-p6. Each location
is associated with one category Cp, e.g., p1, p2 are mu-
seums; p3, p4 are pubs; and p5, p6 are restaurants. (If a
location belongs to multiple categories, e.g., a restaurant
and pub, we conceptually split it into multiple points
with identical coordinates, each associated to a single
category.) The query contains two parameters: a starting
point q, and a directed acyclic graph GQ called the visit
order graph. Each vertex in GQ corresponds to a category
and each edge ⟨C,C ′⟩ indicates that a point of category
C must be visited before another of category C ′. In our
example, GQ signifies that a restaurant must be visited
before a pub. We follow a common assumption that each
category appears at most once in GQ [4], [10], [13]. In
addition, to represent the fact that q must be the first
point in the route, we create an artificial category Cq

containing a single point q, and add an edge connecting
Cq and every other vertex in GQ without an in-edge. The
result of the query is the shortest route that visits all cate-
gories in GQ, while satisfying the visit order constraints.
In our example, such a route is q → p1 → p5 → p3. In
practice, the user may not have sufficient time to visit all
the categories. In this situation, a reasonable compromise
is to find a route that covers a subset of l categories from
GQ, where l is a user-specified parameter. We call this
variant the size-l optimal route query.

A Greedy algorithm[13] to answer the optimal route
query first finds the nearest neighbor of q that is allowed
to be visited right after q according to GQ. In the running
example, Greedy chooses point p2 (note that p4 cannot
be selected, since GQ requires that a pub is visited after
a restaurant). Then, Greedy adds p2 to the current route,
and continues to compute the nearest allowable point
according to GQ to be added to the route, which is p5.
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Fig. 1. Example of optimal route query

After that, Greedy finds the nearest allowable point after
p5, i.e., p3. Since all categories in GQ are visited, Greedy
returns the route q → p2 → p5 → p3. Observe that this
is longer than the optimal route q → p1 → p5 → p3. The
reason is that although p2 is closer to q than p1, the latter
leads to a shorter sub-route that covers the remaining
categories. In fact, the optimal route query is proven to
be NP-hard [13], and heuristics-based algorithms such
as Greedy cannot guarantee optimality of the result.

Previous work on the optimal route query, e.g., [13],
has mainly focused on a special case where GQ de-
fines a total order of categories to be visited. A naı̈ve
approach for the general case, where GQ is a partial
order, is to enumerate all total orders in GQ and process
each of them individually. As we explain in Section
2.1, this method is inefficient as it incurs considerable
repeated work. Motivated by this, we propose sev-
eral efficient solutions to the general-case optimal route
query. Specifically, we investigate two methodologies:
backward search and forward search. The former com-
putes the optimal route from the last point to the first,
while the latter follows the first-to-last order of points.
Furthermore, all proposed solutions extend naturally to
size-l optimal route processing. Extensive experiments,
using large-scale real and synthetic datasets, confirm that
the proposed methods are efficient and practical.

The rest of this paper is organized as follows. Section
2 surveys related work. Section 3 and 4 present solutions
for the optimal route query, following the backward
search and forward search frameworks, respectively.
Section 5 extends the proposed solutions to the size-
l optimal query. Section 6 contains an extensive set of
experiments. Finally, Section 7 concludes the paper.

2 RELATED WORK

Section 2.1 reviews existing solutions to the optimal
route query. Section 2.2 surveys other related queries that
operate on spatial data with categorical information.

2.1 Optimal Route Query Processing
Early work on optimal route computation focuses on
greedy solutions. Chen et al. [4] use the same query
definition as this paper, and propose two heuristics. The
first, namely NNPSR, resembles the greedy approach
described in Section 1; the second retrieves the nearest
point of the query start position q in every category,

and then connects them to form a route. In addition, [4]
also describe a simple combination of NNPSR and R-
LORD [13], which answers a special case of the optimal
route query with a total order of the categories to be
visited. The hybrid solution first runs NNPSR to find
a greedy route; then, it extract the category of each
point on the greedy route, and runs R-LORD with this
category sequence as input. None of the solutions in
[13] guarantees the quality of the results; these meth-
ods usually return sub-optimal routes according to the
experiments in [4]. Li et al. [10] study a variant of the
optimal route query that specifies both a start point
qstart and an end position qend, but no order constraint
between the data categories. This is equivalent to a visit
order graph GQ that contains two artificial categories
Cstart = {qstart} and Cend = {qend}, and two edges
⟨Cstart, C⟩ and ⟨C,Cend⟩ for each category C in the
dataset. The solutions of [10] report approximate query
results; on the other hand, this paper focuses on efficient,
exact methods for the general optimal route problem.

Sharifzadeh et al. [13] propose R-LORD, the first exact
solution for optimal route queries with a total order. In
the example of Figure 1, suppose that GQ specifies total
order q → museum → restaurant → pub; then, R-LORD
is directly applicable. Specifically, let r∗ be the optimal
route; an important observation made in [13] is that any
suffix r of r∗ is also the shortest among all routes that
(i) start at the first point of r, and (ii) visit the same
categories as r, in the same order. In our example, the
best answer to the query is r∗ = q → p1 → p5 → p3. Its
length-2 suffix p5 → p3 is the shortest route that starts at
p5 and visits a restaurant followed by a pub. Similarly,
its length-3 suffix p1 → p5 → p3 is the shortest path
that originates at p1 and follows the category sequence
museum → restaurant → pub. This fact enables dynamic
programming, which gradually fills an optimal suffix table.

In particular, R-LORD first uses a greedy algorithm to
compute a route that satisfies the query, as well as its
length θ. Then, the method computes length-1 optimal
suffixes, which are points from the last category in the
visit order that are within θ-distance to the query start
position q. In our example, R-LORD obtains pubs p3 and
p4, and stores them in the optimal suffix table shown in
Table 1. Next, R-LORD retrieves points from the second-
to-last category that are no farther than θ from q, i.e.,
restaurants p5 and p6, and prepends them to the opti-
mal length-1 suffixes to form optimal length-2 suffixes
p5 → p3 and p6 → p4. Note that p5 → p4 and p6 → p3
are discarded, as they have the same starting points
and category sequences as their shorter counterparts
p5 → p3 and p6 → p4, respectively. In the third step, R-
LORD retrieves museums p1, p2, combines them with the
optimal length-2 suffixes, and obtains optimal length-3
suffixes p1 → p5 → p3 and p2 → p5 → p3. Finally, R-
LORD connects them with q, and selects the shortest one
q → p1 → p5 → p3 as the answer to the query.

During the computation of the optimal suffix table, R-
LORD uses a pruning technique to eliminate sub-routes
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TABLE 1
Optimal suffix table used in R-LORD

Suffix Length Start Point Optimal Suffix

1 p3 p3

p4 p4

2 p5 p5 → p3

p6 p6 → p4

3 p1 p1 → p5 → p3

p2 p2 → p5 → p3

that cannot participate in the optimal solution. Figure 2
illustrates this technique, which we call elliptic pruning.
Suppose that at step i, R-LORD has computed an optimal
sub-route r of length i. Let pr be the first point of r,
length(r) be the total length of r, and θ be the length of
the greedy route. Then, at step i + 1, R-LORD connects
r only to points whose total distance to q and pr is no
larger than θ − length(r). Thus, the range for points al-
lowed to connect to r is an ellipse with foci q and pr and
major diameter length(r). For example, in Figure 2(a),
point p1 is not connected to sub-route r, as the former
falls outside the latter’s ellipse. This is true even when
the combination of p1 and r leads to an optimal sub-
route of length i + 1. Thus, elliptic pruning reduces the
number of stored optimal sub-routes and, thus, improves
both memory consumption and CPU time. Furthermore,
to minimize I/O costs, R-LORD computes the minimum
bounding rectangle (MBR) of all ellipses generated from
length-i optimal sub-routes, as shown in Figure 2(b), and
uses this MBR as a range query to retrieve points from
the R-tree [9] that indexes the category to be examined
during the (i+ 1)th step.
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Fig. 2. Elliptic pruning in R-LORD

PLUB [11] decomposes a general optimal route query
to multiple total-order queries and processes them in-
dividually, e.g., using R-LORD. For instance, the query
in Figure 1 is decomposed into three total-order queries:
museum → restaurant → pub, restaurant → museum
→ pub, and restaurant → pub → museum. This incurs
significant amounts of repeated computations for longer
sequences. For example, assume that in the query of Fig-
ure 1 there is an additional category (e.g., mall) that does
not have any order constraints with other categories.
The decomposition of this new query involves multiple
total orders that share a common suffix, such as mall →
museum → restaurant → pub and museum → mall →
restaurant → pub. Consequently, the processing of both

orders involves the computation of optimal sub-routes
that start at a restaurant and are followed by a pub. This
problem is amplified, as the number of categories in GQ

increases, since the number of total orders that share a
common suffix increases exponentially.

Finally, Chen et al. [6] study the k Best Connected
Trajectories (k-BCT) query, which resembles the optimal
route query in that a k-BCT query consists of a set
of (ordered or un-ordered) spatial locations, and each
of it results should cover all locations in the query
set. However, unlike the optimal route query which
constructs routes on the fly, k-BCT retrieves k existing
trajectories from a database with the lowest aggregate
distance to the query points. The focus of [6] is clearly
different from our work, and its methods do not apply
to the optimal route query.

2.2 Spatial Search with Categorical Information

Besides the optimal route query, categorical information
has been used to identify locations with good surround-
ing facilities. Yiu et al. [15] study the spatial prefer-
ence query, which contains a list of desired categories.
Data points are then ranked by their total distances
to nearest points of these categories and those with
top-k best scores are returned to the user. Martinenghi
and Tagliasacchi [12] introduce the proximity rank join
operator, which searches for clusters of points that cover
all categories specified by the user and are close to a
given point and to each other.

Another class of related work concerns spatial key-
word search in collections of documents, which are
associated to spatial locations (e.g., derived from the
content of the document [1]). The query contains both
a spatial component (e.g., nearest neighbor search) and
a set of keywords. A keyword set is similar to a category
in that they are both non-spatial properties that can
be used to select a set of points (i.e., document loca-
tions). However, the number of different keyword sets
is significantly larger than the number of categories and,
thus, the former require specialized data structures (e.g.,
inverted lists) and search techniques (e.g., inverted list
intersection) to select relevant points. To accelerate spa-
tial keyword search, a common approach is to combine a
spatial index, e.g., R-tree with inverted lists or signature
techniques, to form a composite index [8], [16], [7], [5].
The relevance of a document to a query is calculated
by combining textual relevance with spatial distance; the
top-k objects with the highest overall scores are returned
to the user [7]. Besides simple similarity retrieval, the
mCK query [17] identifies clusters of points with mini-
mum diameters that match all query keywords. The top-
k prestige query [3] retrieves points based on prestige
scores, which originate from matching keywords and
flows to nearby points. Finally, the continuous top-k
spatial keyword query [14] returns a validity region to
the user; as long as the query point stays in the validity
region, the query results remain the same.
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3 BACKWARD SEARCH SOLUTIONS

In this section, we present the first methodology for
answering optimal route queries. Similar to R-LORD
[13], the backward search methodology computes the
optimal routes in reverse order of its points. Before
explaining the methods that fit this framework in detail,
we first present an important property of the general
sub-route query, as follows.

Lemma 1 (Suffix Optimality). Given a query ⟨q,GQ⟩ and
its optimal solution r∗, let r ⊆ r∗ be any suffix of r∗, p be the
start point of r, and V be the set of categories covered by r.
Meanwhile, let G ⊆ GQ be the sub-graph of GQ that contains
the set of categories V and all edges between these categories
in GQ. Then, r is the optimal solution for query ⟨p,G⟩.

Proof (By contradiction): Suppose that there is a
better solution r′ than r for the query ⟨p,G⟩, i.e.,
length(r′)<length(r). Since r and r′ have the same
starting point p, we can replace the suffix r with
r′ in r∗, and obtain a new route r′∗ such that
length(r′∗)=length(r∗)−length(r)+length(r′) < length(r∗).
Meanwhile, since r′ is a valid solution to the query
⟨p,G⟩, r′ covers the same category set V as r, and
satisfies the visit orders in G ⊂ GQ. Because G contains
all visit orders about V , replacing suffix r with r′ in r∗

does not violate GQ. Hence, r′∗ also satisfies GQ. This
means that r′∗ is a better solution to query ⟨q,GQ⟩ than
r∗, which contradicts with the optimality of the r∗.

Consider again the example in Figure 1, where the
optimal solution for the query ⟨q,GQ⟩ is r∗ = q →
p1 → p5 → p3. The length-2 suffix of the optimal route
is r2 = p5 → p3, which starts at point p5, and covers
two categories V2 = {restaurant, pub}. Clearly, r is the
shortest route that starts at p5 and covers V2, since p3 is
the nearest pub with respect to p5. Likewise, the length-3
suffix r3 = p1 → p5 → p3 of r∗ is the optimal route that
(i) starts at p1, (ii) covers category set V3 = {museum,
restaurant, pub}, and (iii) satisfies the constraint that a
restaurant must be visited before a pub. In general, all
suffixes of the query result are also optimal routes for
their respective starting point and categories visited and
the idea of backward search is to enumerate all possible
such suffixes. The suffix-optimality result in [13] is a
special case of Lemma 1, with the limitation that a total
order exists for all categories in GQ.

Based on Lemma 1, we develop two algorithms SBS
and BBS, presented in Sections 3.1 and 3.2 respectively.
SBS directly extends R-LORD to the general optimal
route problem, while BBS improves the performance
of SBS through batch processing. Table 2 summarizes
frequently used notations throughout the paper.

3.1 Simple Backward Search
Algorithm 1 illustrates the simple backward search (SBS)
method. Initially, SBS computes an upper bound θ of the
optimal route length, using a greedy algorithm (lines
1-2), e.g., the one described in Section 1. Then, SBS

TABLE 2
List of common symbols

Symbol Meaning
DS, N Dataset and its cardinality
q,GQ Query start point and visit order graph
m Total number of categories in GQ

dist(p1, p2) Euclidean distance between points p1 and p2

mindist(M1,M2) Minimum distance between MBRs M1, M2

length(r) Length of route r
minlen(R) Minimum length among the set R of routes
p → r (r → p) A route that first visits point p (follows sub-route r)

and then follows sub-route r (visits point p)
θ Length of a known route that satisfies the query
CS Set of points that may appear in the optimal route
Ωp,V Shortest route that starts at point p and visits all

categories in set V
ΩP,V Set of shortest routes that start at a point p ∈ P and

visits all categories in set V
Cp, CP Category of a point p and that of a set P of points

having the same category, respectively

retrieves the set CS of candidate points that may be
part of the optimal route (line 3), which are those that (i)
belong to any category contained in the visit order graph
GQ, (ii) fall within distance θ to the query start point
q. This can be performed efficiently, e.g., by executing
a circular range query on each R-tree that indexes a
category of points relevant to the query. In the example
of Figure 1, SBS obtains all points p1-p6. Note that this
is different from R-LORD [13], which only loads points
belonging to the last category of the total-ordered query
in the initial step, e.g., pubs p3, p4. In out setting, there is
neither a total order or the concept of the last category.

Algorithm 1 Simple backward search algorithm
SBS(q,GQ) // SBS stands for simple backward search
// Input: q, GQ: query start point and visit order graph respectively
// Output: the optimal route that satisfies the query
1: Use a greedy algorithm to obtain a route rg
2: Initialize threshold θ to length(rg)
3: Retrieve the set CS of points within θ distance to q, whose categories appear

in GQ

4: Initialize route set R1 to empty
5: for each point p in CS that can be the last point according to GQ do
6: Add ⟨p⟩ to R1

7: for i = 1 to m − 1 do call Ri+1 =BSJoin(q, GQ, θ, Ri, CS)
8: Select from Rm sub-route r∗ that minimizes length(q → r∗)
9: Return q → r∗ as the query result

After loading all candidate points, SBS continues to
compute the optimal route sets R1-Rm (lines 4-7). In
particular, route set Ri (1 ≤ i ≤ m) contains all possible
length-i suffixes of the query solution. According to
Lemma 1, these suffixes must be the optimal routes
for their respective start point and the set of categories
covered. Table 3 lists all routes contained in R1-Rm in
our running example. Specifically, R1 consists of 4 single-
point routes: museums p1, p2, and pubs p3, p4. Restau-
rants are not included in R1, since they must be visited
before a pub and, thus, cannot be valid length-1 suffixes
of the query solution. Route sets R2-Rm are computed
through backward joins, to be explained soon. Continu-
ing the example, R2 contains all optimal suffixes that
cover two categories. Again, a route covering {museum,
restaurant} cannot be a suffix of the query result, since
it would place a pub before a restaurant, violating GQ.
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Similarly, R3 contains all suffixes containing all three
query categories. After obtaining Rm (i.e., R3 in the
example), SBS connects the query point q with the start
point of each route in Rm, and selects the route with
shortest total length (lines 8-9) as the query answer. Here
we use the notation p → r to denote a route that starts
at p and follows the sub-route r, e.g., when r = p2 → p3,
p1 → r = p1 → p2 → p3.

TABLE 3
Optimal suffix table used in SBS

Ri Start point Categories Covered Optimal Suffix

1

p1 {museum} p1

p2 p2

p3 {pub} p3

p4 p4

2

p1

{museum, pub}

p1 → p3

p2 p2 → p4

p3 p3 → p1

p4 p4 → p2

p5 {restaurant, pub} p5 → p3

p6 p6 → p4

3

p1

{museum, restaurant, pub}

p1 → p5 → p3

p2 p1 → p5 → p3

p5 p5 → p3 → p1

p6 p6 → p3 → p1

It remains to clarify the backward join module BSJoin,
shown in Algorithm 2 (also used in our other methods
described later). Besides the query parameters, the main
inputs are (i) a set of points P , which is the entire
candidate set CS in SBS and (ii) a set of routes R (Ri in
SBS), each of which is optimal for the combination of its
start point and categories covered. The join results (Ri+1

in SBS) consist of routes of the form p → r, i.e., start point
p followed by sub-route r, where p ∈ P and r ∈ R. Note
that in SBS, the computation of Ri+1 (1 ≤ i < m) only
involves Ri and CS, meaning that after obtaining Ri+1,
R1-Ri can be safely discarded to conserve memory.

Algorithm 2 Algorithm for backward join
BSJoin(q, GQ, θ, R, P )
// Input: q, GQ: query start point and visit order graph respectively
// θ: length of a known route that satisfies the query
// R, P : a set of routes and points respectively
// Output: backward join results of P and R

1: Initialize route set R′ to empty
2: Partition R based on the set of categories they cover
3: for each point p ∈ P do
4: for each partition RV of R covering the same category set V do
5: if connecting p with a route in RV satisfies GQ then
6: Find the route r ∈ RV that minimizes the length of p → r among

all routes in RV

7: if dist(q, p)+length(p → r) < θ then add p → r to R′

8: Return R′

BSJoin selects join results based on three criteria. The
first concerns the visit order constraints GQ (line 5).
Specifically, the route p → r itself must satisfy GQ and
not contain any duplicate categories. Meanwhile, since
p → r is expected to be the suffix of a solution to the
query, GQ must allow all categories not covered by p → r
be visited before p → r. In the example of Figure 1,
BSJoin eliminates all join outputs that either has a pub
before a restaurant (which directly violate GQ), and those
that contains a restaurant, but not a pub (which cannot
be suffixes of legal routes). Second, according to Lemma

2, p → r should be the optimal among all routes that
start at p and cover the same categories as p → r (line 6).
Finally, p → r must survive elliptic pruning [13] (line 7),
described in Section 2.1. Unlike R-LORD [13] which uses
the MBR of the ellipses to prune, BSJoin directly applies
elliptic pruning, which is more efficient according to our
experiments. The reason is that the MBR usually covers a
significantly larger area than the ellipses (e.g., in Figure
2(b)), leading to poor pruning effectiveness; moreover,
computing the MBR itself consumes considerable CPU
time, sometimes defeating the purpose of pruning. The
complexity of SBS is given by the following lemma.

Lemma 2. The SBS algorithm finds the optimal solution of
the query using O(N ·2m ·m) memory, and O(N2 ·2m) time.

Proof: During the ith backward join (line 7 of Algo-
rithm 2), SBS maintains in memory the set Ri of optimal
sub-routes of length i. Each sub-route has length i, and
there are at most N ·

(
m
i

)
routes in Ri, where N is

total number of points in the dataset and
(
m
i

)
is the

number of category combinations of length i, from a
total of m categories. Because SBS also needs to compute
Ri+1, the total memory consumption at this step is
O(N ·

(
m
i

)
· i + N ·

(
m
i+1

)
· (i + 1)). At the (i + 1)th

backward join, SBS releases the memory occupied by
Ri, since it no longer affects subsequent optimal sub-
route computations. Therefore, the peak memory usage
of SBS is O

(
maxm−1

i=1 (N ·
(
m
i

)
· i+N ·

(
m
i+1

)
· (i+ 1))

)
=

O(2m ·N ·m). Backward joins dominate the runtime cost.
In particular, at step i, 1 ≤ i ≤ m, SBS joins O(N ·

(
m
i

)
)

sub-routes in Ri with O(N) points in the candidate set
CS. The time taken at this step is O(N2 ·

(
m
i

)
). Summing

up all m steps, we obtain the time complexity of SBS:
O
(∑m

i=1 N
2 ·

(
m
i

))
= O(N2 · 2m)

SBS is easy to implement and it achieves the same
worst-case time complexity as more complex algorithms
described later. The main drawback of SBS is that its
effectiveness relies heavily on the bound θ provided by
the greedy algorithm. When θ is loose (i.e., it is much
longer than the optimal length), SBS retrieves a large
number of candidate points, and joins them all with
the current sub-route set at every step. Moreover, the
backward join in SBS is performed in a nested-loop
fashion, which applies elliptic pruning on individual
results. Consequently, SBS can be rather inefficient for
large datasets with a skewed distribution.

3.2 Batch Backward Search
The batch backward search (BBS) method, shown in Al-
gorithm 3, improves SBS by employing batch processing
in the backward join operations. Specifically, both the
candidate set CS and the route set Ri (1 ≤ i ≤ m)
are partitioned into clusters before participating in a
backward join (lines 2 and 4). The partitioning of CS first
groups points by their category, and then for each group,
the points are further partitioned into clusters based on
their spatial proximity. The partitioning of route set Ri
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follows a similar strategy, by first grouping routes based
on the categories they cover, and then clustering each
group according to the locations of their start points. The
clustering module in BBS must be highly efficient, since
it is called during query time. In our implementations we
tested two clustering algorithms, both of which employ
the Hilbert curve [2]. The first method, which we call
average gap (AG), sorts all points by their Hilbert values;
then, for each pair of adjacent points, AG computes their
gap (i.e., difference) in Hilbert values, and obtains the
average value g of such gaps. After that, AG scans the
sorted points again. When two adjacent points p and
p′ have a gap smaller than g, AG places them in the
same cluster; otherwise, AG creates a new cluster for
p′, and continues scanning. The second algorithm, called
maximum area (MA), also sorts points by Hilbert values.
Then, starting from the first point, MA keeps adding
points to the current cluster cl in increasing order of
their Hilbert values, until the MBR of cl has an area
exceeding a pre-defined threshold, at which point MA
starts a new cluster. In our implementation of MA, the
above threshold is set to a percentage ma% of the circular
area centered at the query start point q, with radius θ,
which is the upper length bound of the optimal route.

Algorithm 3 Batch backward search algorithm
BBS(q, GQ) // BBS stands for batch backward search
//Input and Output: same as algorithm SBS
1: Same as lines 1-6 in algorithm SBS
2: Partition points in CS into clusters, such that points in the same cluster

belong to the same category, and are close to each other
3: for i = 1 to m do
4: Partition the sub-routes in Ri into clusters, such that sub-routes in the

same cluster cover the same set of categories, and that their start points are
close to each other

5: Initialize set Ri+1 to empty
6: for each cluster R ⊂ Ri do
7: for each cluster P ⊂ CS that satisfies GQ do
8: if mindist(q,MBRP ) + mindist(MBRP ,MBRR) +

minlen(R) < θ then
9: Temporarily delete all routes r ∈ R satisfying

mindist(q,MBRP ) + mindist(MBRP , r) + length(r) ≥ θ.
10: Temporarily delete all points p ∈ P satisfying dist(q, P ) +

mindist(P,MBRR) + minlen(R) ≥ θ
11: Call R′ = BSJoin(q,GQ, θ, R, P )
12: Restore R and P by adding back all deleted elements
13: Merge R′ into Ri+1

14: Same as lines 8-9 in algorithm SBS

After the partitioning of CS and Ri, BBS proceeds to
join them in order to obtain Ri+1. This is performed by
joining on two levels: the cluster level and the individual
point/route level. In the cluster level join, BBS tries to
eliminate two participating clusters using a block elliptic
pruning test, which is stated in Lemma 3 below.

Lemma 3 (Block Elliptic Pruning). Given query start
point q, a set of points P , and a set R of sub-routes, let
MBRP and MBRR be the MBR of all points in P and
all start points in R, respectively, and θ be a known upper
bound for the length of the optimal solution to the query.
Let minlen(R) be the length of the shortest route in R,
and mindist() be the function that returns the minimum
distance between objects and MBRs. If mindist(q,MBRP )
+mindist(MBRP ,MBRR) + minlen(R) ≥ θ, then, con-

necting any point in P with any route in R cannot possibly
lead to a sub-route of the optimal solution to the query.

Proof: For all p ∈ P and r ∈ R with start point
pr, dist(q, p)+dist(p, pr)+length(r) ≥ mindist(q, MBRP )
+ mindist(MBRP , MBRR) + minlen(R) ≥ θ. Following
Lemma 2, ⟨p, r⟩ cannot be a sub-route of the optimal
solution.

Figure 3 shows an example of block elliptic pruning,
which involves a point cluster P and a route cluster R.
Note that all points in P belong to the same category (i.e.,
Category 1), and all routes in R cover the same set of
categories (Categories 2-4); meanwhile, the start points
of R may belong to different categories. Clearly, the sum
of (i) mindist(q,MBRP ), i.e., the minimum distance be-
tween q to any point in P , (ii) mindist(MBRP ,MBRR),
which is the minimum distance between any point in P
and the start point of any route in R, and (iii) minlen(R),
the smallest route length in R, gives a lower bound of
any path that starts at q, stops at a point in P , and
finally reaches and subsequently follows a route in R.
If this sum exceeds the upper bound θ obtained through
a greedy algorithm, BBS prunes the combination of P
and R, and saves the computations for joining them.

q

mindist(q, MBRP)
mindist(MBRP, MBRR)

minlen(R)

MBRP

MBRR

Category 1

Category 2

Category 3

Category 4

point cluster P

route cluster R

Fig. 3. Block elliptic pruning

After two clusters pass block elliptic pruning, BBS
proceeds to join their content on the point/route level.
In particular, given a point cluster P ∈ CS and a route
cluster R ∈ Ri, BBS first removes points and routes that
cannot form valid join results, based on similar rules
as block elliptic pruning (lines 9-10), and then joins the
remaining objects using the same BSJoin algorithm as
in SBS (line 11). For instance, a point p is removed, if
the sum of the minimum route length in R, p’s distance
to the query point q, and its minimum distance to
MBRR reaches or exceeds the threshold θ. Such element
eliminations further reduce the cost of backward joins.
After obtaining the join results (let R′) of R and P ,
BBS subsequently merges R′ into the result set Ri+1 as
follows. For each route r in R′, BBS checks whether
there exists a shorter route r′ in Ri+1 that starts at
the same point and covers the same categories. If so,
r is discarded; otherwise, r is inserted to Ri+1, possibly
replacing an existing route in the latter with a longer
length. Finally, BBS restores clusters R and P , by adding
back all deleted points and routes, respectively.

The space and time complexity of BBS is the same
as that of SBS; the proof is also similar to that of
SBS, and is omitted for brevity. As our experiments
demonstrate, BBS significantly improves the efficiency
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of SBS. In fact, when the greedy algorithm obtains a
close approximation of the optimal route length, BBS
can be highly efficient, sometimes even outperforming
the more sophisticated techniques explained later. BBS,
however, shares the same drawback of SBS: its efficiency
depends largely upon the quality of the greedy bound
θ. The forward search strategy, described next, removes
this limitation, and achieves more stable performance.

4 FORWARD SEARCH SOLUTIONS

The forward search approach traverses the search space
in a depth-first manner, and incrementally improves the
bound θ for optimal route length. As an additional ben-
efit, forward search methods report results progressively,
i.e., they first quickly produce one solution to the query,
and then incrementally update it, until reaching the
optimal one or being terminated by the user. Section
4.1 describes a simple solution SFS based on this idea.
Section 4.2 presents an improved BFS algorithm that
integrates elements from the backward search methods
to achieve more effective pruning.

4.1 Simple Forward Search
Recall from Section 1 that algorithm Greedy computes
a route by repeatedly connecting the current location
(starting from the query point q) to the nearest point
belonging to an unvisited category permitted by GQ. The
simple forward search method (SFS) resembles Greedy
in that it also extends the current path by adding the
nearest point from an unvisited category. A major differ-
ence between the two is that SFS backtracks after it obtains
a complete route. In the running example of Figure 1,
after SFS reaches the same route q → p2 → p5 → p3
as Greedy, the former backtracks to point p5, connects it
to its next nearest pub p4, and checks whether the new
route q → p2 → p5 → p4 is shorter than the current best
one q → p2 → p5 → p3. After that, SFS backtracks to p5
again. Since it has tested all pubs, and all other categories
are already covered by the current path q → p2 → p5,
SFS backtracks once more to p2. It then connects p2 to
its next nearest permissible neighbor p6 (note that pubs
p3 and p4 cannot be connected due to order constraints),
and continues with the prefix q → p2 → p6. The process
terminates when all feasible routes are examined, and
the shortest route is reported as the query result.

A naı̈ve implementation of forward search clearly
takes time exponential to the number of points in the
dataset. SFS (shown in Algorithm 4) avoids this by
utilizing the suffix optimality property stated in Lemma
1, and incrementally building the optimal suffix table
(denoted by Ω), as in the backward search methods. SFS
differs from the backward search solutions in that it fills
Ω in a different order. Specifically, in SFS all cells of Ω are
initialized to a special token Unknown (line 2 in function
InitSFS), which indicates that the corresponding optimal
suffix has not been computed yet. Then, whenever SFS
backtracks from a point p, the algorithm guarantees that

it has obtained the optimal suffix that starts at p, and
covers the set of categories V that are not visited by the
current path from the query point q to p 1. Thus, SFS
stores this optimal suffix in the corresponding cell in Ω
(denoted by Ωp,V ), replacing the Unknown token (line
9 in function SFS). If later SFS needs to compute the
same suffix, i.e., when it traverses to p again with the
same set of visited categories, it directly appends Ωp,V

to the current path and backtracks, eliminating repeated
computations (line 3 in function SFS).

Algorithm 4 Simple forward search algorithm
InitSFS(q, GQ)
// Input and Output: same as algorithm SBS
1: Same as lines 1-4 in algorithm SBS
2: Initialize all elements of Ω to Unknown
3: Call SFS(q, GQ, q, 0, θ), and return its result as the query answer

SFS(q, G, p, l, θ) // SFS stands for simple forward search
// Input: q: query start point
// G: sub-graph of GQ containing only unvisited categories
// p, l: end point and length of the current route, respectively
// θ: length of a known route that satisfies the uery
// Output: optimal route starting at p, and covering all categories in G

1: Let V be the set of categories in G, category Cp be the category of p, and
category set V ′ = V \{Cp}

2: Construct new sub-graph G′ by removing Cp and all related edges from G
3: if Ωp,V ̸= Unknown then return Ωp,V

4: if V contains a single category Cp then return single-point route p

5: Compute the distance from p to its nearest neighbor in each category C ∈ V ,
and set dmax to the maximum of these distances

6: if dist(q, p)+dmax ≥ θ then set Ωp,V to Invalid, and return Invalid
7: for each point p′ ∈ CS in increasing order of dist(p, p′) do
8: if adding p′ after p satisfies G then
9: Recursively call Ωp′,V ′=SFS(q, G′, p′, l+dist(p, p′), θ)

10: if length(p → Ωp′,V ′ ) < length(Ωp,V ) then
11: Set Ωp,V to p → Ωp′,V ′
12: if length(Ωp,V )+l<θ then update θ and CS

In our running example, after SFS searches all routes
with the prefix q → p2, it backtracks to q, and connects to
its next permissible neighbor p1. Next, when SFS adds
p5 to the current path, it finds that the optimal suffix
starting at p5 and visiting categories restaurant, pub
has already been computed (i.e., p5 → p3), during the
previous searches with prefix q → p2 → p5. Therefore,
SFS directly appends p3 to p5, forming a new route
q → p1 → p5 → p3, and backtracks to p1.

Note that SFS iteratively improves the upper bound
θ for the length of the optimal query result, whenever
it identifies a better solution to the query (line 12 in
function SFS). Meanwhile, reducing θ also shrinks the
candidate set CS, which are the points within θ distance
to the query point q. Pruning with θ in SFS, however,
is rather tricky. First, the elliptic pruning strategy is no
longer as effective as it is in SBS and BBS, since it aims
at eliminating the storage and extension of unqualified
suffixes. In SFS, although elliptic pruning helps to reduce
memory consumption, it has no effect on CPU time, since
SFS does not extend suffixes. Second, straightforward
pruning using θ and the length of the current prefix
may lead to repeated visits to the same prefix paths.
We explain this point using the SFS example shown in

1. In our presentation, the set V includes the category Cp of the last
point p of the current prefix path.
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Figure 4. Assume that the algorithm has reached a point
p1 through a prefix, and needs to visit the remaining
categories (i.e., categories 2-4). Note that there is no
guarantee on prefix optimality; hence, there can be a
shorter path connecting q and p1 that covers exactly the
same categories.

q

p1

current path to p1,
length = l

p2

p3

dmax p4

shorter alternative
path to p1

dist(q,p) p5

Category 1

Category 2

Category 3

Category 4

Fig. 4. Pruning in SFS

A simple idea for pruning is to backtrack whenever
the length of the current prefix reaches or exceeds the
upper bound θ, since subsequent searches based on this
prefix cannot possibly lead to the optimal solution to the
query. However, with such early backtracking, SFS no
longer obtains the optimal suffixes, and, consequently,
may perform repeated computations in later steps. In
the example of Figure 4, suppose that SFS extends the
prefix from p1 to p3, and then to p4, and at this point, the
length of the current path exceeds θ. If SFS backtracks,
it cannot obtain the optimal suffix starting at p4, and
visiting categories 3-4. Furthermore, when the method
later backtracks to p3, it has not computed the optimal
suffix starting at p3 and covering categories 2-4 either.
The problem propagates to p1 as well, and to all points
preceding p1. Assume that SFS reaches p1 with a shorter
prefix covering the same categories, it cannot reuse the
computations performed before (i.e., extending p1 to p3
and p4), and instead must perform these computations
from scratch. In general, all pruning strategies based on
the prefix length suffer from the same problem. Instead,
SFS uses a weaker pruning method, as follows.

Lemma 4 (SFS Pruning). Given a query ⟨q,GQ⟩, a data
point p, and a category C ∈ GQ such that p /∈ C, let pC
the nearest point of p in C, and θ be an upper bound for
the length of the optimal solution to the query. If dist(q, p)+
dist(p, pC) ≥ θ, then, any route that starts at p and covers
C cannot possibly be a sub-route of the optimal solution.

Proof: Let r be a route that starts at p and covers C.
The length of r is at least dist(p, pC), due to triangular
inequality and the fact that pC is the nearest neighbor of
p in C. Similarly, the length of the route that connects q
to p is at least dist(q, p). Therefore, any route that starts
at q and has r as a sub-route must have length at least
dist(q, p)+dist(p, pC)> θ, which exceeds the upper bound
θ for the optimal solution. Hence, r cannot be a sub-route
the optimal solution.

In Figure 4, SFS compares θ with the sum of the
distance between q and p1 and that between p1 and the
farthest point p5 from an unvisited category. If the latter
reaches or exeeds θ, SFS safely backtracks, and marks
the cell corresponding to the optimal suffix starting at

p1 with a special token Invalid (line 6 in function SFS).
This pruning technique does not involve prefix length,
so it avoids the repeated-work problem described above.
SFS has the same worst-case space and time complexity
as the backward search methods, as shown below.

Lemma 5. SFS finds the optimal solution of the query using
O(N · 2m ·m) memory, and O(N2 · 2m ·m) time.

Proof: In the worst case, SFS stores all possible optimal
sub-routes in Ω. Similar to the proof of Lemma 2, the
number of unique optimal length-i sub-routes is N

(
m
i

)
.

In the worst case, SFS will occupy O(N ·
(
m
i

)
· i) memory.

Summing up sub-routes of all different lengths, the peak
memory usage of SFS is O

(∑m
i=1 N ·

(
m
i

)
·m

)
= O(2m ·

N ·m). The analysis for time complexity is more tricky, as
SFS is a recursive procedure. To avoid double counting,
for each invocation of function SFS (Algorithm 4), we
count only the time for performing simple operations,
and exclude the time spent for recursively calling itself.
The dominant cost of each call to SFS is the loop that
enumerates all possible points to be appended to the
current route starting from q, bounded by O(N). Next
we derive the number of times such a loop is performed.
For each combination of a start point p and category set
V , SFS performs the expensive loop only once, because
the next call with the same parameters simply returns the
route stored in Ωp,V . Since the number of start points is
bounded by O(N) and the number of unique category
sets is O(2m), the total time spent by all invocations of
SFS is O(N ·N · 2m) = O(N2 · 2m).

Compared with backward search methods, SFS grad-
ually tightens the upper length bound θ and shrinks the
candidate set CS accordingly. Therefore, when the initial
value of θ (as well as the initial size of CS) is large, SFS
can be significantly more efficient than SBS and BBS,
due to the elimination of a large portion of candidate
points early. On the other hand, SFS is rather weak in
partial route pruning and it has to examine each partial
route individually. Batch forward search (BFS), presented
next, addresses these issues by integrating elements of
backward search.

4.2 Batch Forward Search

BFS follows the same depth-first search paradigm as SFS.
However, instead of enumerating individual routes, BFS
searches for sequences of clusters, which we call cluster
paths. Specifically, in a pre-processing step, BFS partitions
the candidate set into clusters as in BBS, i.e., the points
in each cluster belong to the same category, and are
close to each other in space. Figure 5 illustrates BFS on
our running example, which involves three clusters P1-
P3, for museums p1-p2, pubs p3-p4 and restaurants p5-p6
respectively. In general, a category may have multiple
clusters. A cluster path is a sequence of clusters, e.g.,
cp1 = q → P1 → P3 → P2. Since each cluster is associated
with a single category, we can check whether a cluster
path satisfies the visit order graph GQ similarly to routes.
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For instance, q → P1 → P2 → P3 violates GQ, since it
contains a pub cluster before a restaurant cluster.

q
P1={p1, p2}

p1

p4

p2

p3

p5

p6

P2={p3, p4}

P3={p5, p6}cluster path

cp1=q P1 P3 P2

instance of cp1

restaurants

pubs

museums

Fig. 5. BFS on the running example

Given a cluster path cp, we can form a route by taking
a point from each cluster, and connect them according to
the order of their corresponding clusters in cp. We call
such a route an instance of cp. In our example, route
q → p1 → p5 → p3 is an instance of cluster path cp1.
Clearly, a cluster path satisfies GQ, if and only if all its
instances satisfy GQ. The main idea of BFS is to enu-
merate all cluster paths that cover all query categories,
while satisfying GQ; for each such cluster path cp, BFS
applies backward search to select its shortest instance,
and the best one among all these instances is returned as
the query result. Continuing the example, BFS computes
the shortest instance of cp1 by backward joining (described
in Section 3.1) P2 with P3, and then the results with
P1, and finally with {q}. This resulting instance, i.e.,
q → p1 → p5 → p3, is compared with the best instance
of other cluster paths, e.g., q → P3 → P1 → P2. Since it
is the shortest among all such instances, BFS returns it
as the query answer.

Akin to SFS, BFS eliminates repeated computations
by materializing optimal suffixes on the cluster path
level, into an optimal cluster path suffix table Ω. In
particular, each row in Ω corresponds to a cluster P ,
and every column a category set V . The cell ΩP,V

contains the set of routes, such that for each point
p ∈ P , ΩP,V includes the shortest route that starts
at p, and covers all categories in V . For instance, in
our running example, ΩP3,{restaurant,pub} consists of two
shortest routes p5 → p3 and p6 → p4 that start at
p5, p6 ∈ P3 respectively, and visit a restaurant and a pub.
BFS gradually fills Ω as it performs the search; when
the method needs the same optimal suffix information
again later, it directly retrieves it from Ω. For instance,
imagine that there is a fourth category “mall” in our
example without any order constraint, and a cluster P4

of such points. Suppose that BFS has traversed cluster
path q → P4 → P1 → P3 → P2, and materialized
ΩP3,{restaurant,pub}. Later, when BFS traverses to another
prefix cluster path q → P1 → P4 → P3, instead of
searching for a pub cluster again, BFS directly backward-
joins ΩP3,{restaurant,pub} with P4, then the results with
P1, and finally with q, obtaining the shortest instance of
any cluster path with prefix q → P1 → P4 → P3.

Algorithm 5 shows the pseudo-code of BFS, which
closely resembles that of SFS (Algorithm 4), with cluster
paths replacing concrete routes. Specifically, the recur-

sive function BFS takes as input a current prefix cluster
path with end cluster P , and a subgraph G → GQ that
involves a category set V . The function computes and
materializes ΩP,V . To do that, each invocation of BFS
appends a cluster to the current prefix cluster path, and
recursively calls itself with the longer prefix and one less
category to visit (lines 7-14). The order of new clusters
to be added to the current prefix is based on their MBRs’
minimum distances to the MBR of the current last cluster
P (line 7). After searching with such a new cluster P ′,
BFS backtracks, and continues to test other new clusters.
The optimal suffixes starting from a point in P ′ are com-
bined with P through a backward join (line 11), whose
results are used to update the optimal suffix set ΩP,V . In
our running example, after testing cluster path q → P1 →
P3 → P2, BFS backtracks to P3, backward joins P2 with
P3, and uses the result to update ΩP3,{restaurant,pub},
i.e., the set of optimal suffixes starting at a point in
P3, and covering a restaurant and a pub. At this point,
since P2 is the only permissible cluster to be added
after P3, BFS finalizes ΩP3,{restaurant,pub}, backtracks
again to P1, and backward joins ΩP3,{restaurant,pub} with
P1. The results contribute to ΩP1,{museum,restaurant,pub}.
After that, as P3 is also the only permissible cluster
to append to P1, BFS backtracks for a third time to
q, and continues to test the next cluster (i.e., P3) after
q, starting a new branch for searching that eventually
leads to ΩP3,{museum,restaurant,pub}. Finally, the query
result is computed based on ΩP1,{museum,restaurant,pub}
and ΩP3,{museum,restaurant,pub}.

BFS integrates pruning strategies from both backward
and forward search methods; the backward join steps
apply elliptic pruning and the extension of the prefix
cluster paths uses a variant of SFS pruning, based on
the following lemma.

Lemma 6 (BFS Pruning). Given a query ⟨q,GQ⟩, a point
set P , and a category C ∈ GQ such that P ̸⊂ C, let PC

the nearest point cluster of P in C, and θ be a known upper
bound for the length of the optimal solution to the query. If
mindist(q, P )+mindist(P , PC)≥ θ, then, any route that starts
at a point p ∈ P and covers C cannot possibly be a sub-route
of the optimal solution to the query.

Proof: Let pC be any point in PC . Then, dist(q, p)+
dist(p, pC)≥mindist(q,P )+mindist (P , PC)≥ θ. Following
Lemma 4, any route that starts at p and covers C cannot
be a sub-route of the optimal solution.

BFS pruning differs from SFS pruning in that the
former applies to the cluster level, rather than individual
point/route level. The usage of BFS pruning is also
similar to that of SFS pruning; i.e., BFS finds the nearest
cluster C of the farthest uncovered category, and tests
whether the sum of distances from the current cluster P
to the query point q and C (lines 5-6).

Finally, we clarify how BFS updates the upper bound
θ. Recall that SFS adds the length l of the current prefix
and the length of the optimal suffix, and compares the
result with the current θ. In BFS, the current prefix is a
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Algorithm 5 Batch forward search algorithm
InitBFS(q, GQ)
// Input and Output: same as algorithm SBS
1: Same as lines 1-4 in algorithm SBS
2: Initialize all elements of Ω to Unknown
3: Partition points in CS into clusters, such that points in the same cluster

belong to the same category, and are close to each other
4: Call BFS(q,GQ,{q},{q},θ), and return the only route in its result set

BFS(q,G,P ,R,θ) // BFS stands for Batch forward search
// Input: q, G, θ: same as in algorithm SFS
// P : tail cluster of the current cluster-route
// R: set of shortest routes from q to each point in P , only includes routes
// with length shorter than θ
// Output: the set of all optimal routes that starts at a point
// in P , and covers all categories in G

1: Let V be the set of categories in G, category CP be the category of all points
in P , and set V ′ = V \{CP }

2: Construct new sub-graph G′ by removing Cp and all related edges from G
3: if ΩP,V ̸= Unknown then return ΩP,V

4: if V contains a single category CP then return a set of routes, each containing
a single point in P

5: Compute the minimum distance from P to its nearest cluster of each category
C ∈ V , and set dmax to the maximum value of these distances

6: if mindist(q, MBRP )+dmax ≥ θ then set ΩP,V to Invalid, and return
Invalid

7: for each cluster P ′ ∈ CS in increasing order of mindist(MBRP , MBRP ′ )
do

8: if adding P ′ to the current cluster route violates G then
Continue

9: Call R′=FSJoin(q, G, R, P ′, θ)
10: Recursively call ΩP ′,V ′ = BFS(q, G′, P ′, R′, θ)
11: Call BSJoin(q,G,P ′,V ′,P ) and merge results to ΩP,V

12: if R ̸= ∅ then
13: Compute routes r1 ∈ R, r2 ∈ ΩP,V such that the end point of r1

is the start point of r2, and length(r1 ∈ R) +length(r2) is minimized
14: if length(r1)+length(r2) < θ then

Update θ and CS

cluster path and the algorithm computes the length of
its shortest instance through forward joins (line 9), and
uses it in place of l (lines 13-14). Algorithm 6 illustrates
the forward join algorithm (FSJoin), which resembles
backward join (Algorithm 2), with two important dif-
ferences. First, FSJoin always adds a point to the end of
a route, rather than the beginning as in BSJoin. Second
and more importantly, the elliptic pruning used in BSJoin
does not apply to FSJoin. Instead, the only pruning
condition is that the resulting routes must have length
shorter than the current threshold θ. This test is sufficient
given the fact that the sole purpose of forward join is to
improve the bound θ, and a prefix with length reaching
or exceeding θ cannot possibly lead to a route with
length shorter than θ.

Algorithm 6 Algorithm for forward search join
FSJoin(q, G, R, P , θ)
//Input: q, G: same as in algorithm BFS
// R, P : a set of routes and points respectively
// θ: length of a known route the satisfies the query
// Output: forward-join results of R and P

1: Initialize route set R′ to empty
2: Partition R based on the set of categories they cover
3: for each point p ∈ P do
4: for each partition RV of R′ covering the same category set V do
5: Find the route rV ∈ RV that minimizes the length of rV → p among

all routes in RV

6: if length(rV → p) < θ then add rV → p to R′

The space and time complexity of BFS is the same as
the other proposed methods, since the former basically
integrates the general forward search framework with

the backward join module. The proof follows directly
from the proofs of SBS and SFS, and is omitted for
brevity. BFS combines the effective pruning of backward
search and incremental bound tightening of forward
methods, and, thus, enjoys the merits of both frame-
works, while avoiding their drawbacks.

5 SIZE-l OPTIMAL ROUTE PROCESSING

This section studies the size-l optimal route query. The
objective is to retrieve shortest routes that cover an arbi-
trary subset of l categories from the given category set,
where l ≤ m is a query parameter. All proposed methods
SBS, BBS, SFS and BFS can be easily adapted to answer
size-l optimal route queries. In particular, SBS and BBS
are modified in two aspects. First, since the optimal route
now has a length of l, the optimal suffix table now
contains suffixes of length up to l, rather than m as in the
original algorithms. Second, pruning of suffixes using
partial order constraints becomes more complex, as not
all categories are covered by the resulting route.

Table 4 shows the optimal suffix table for a size-2 op-
timal route query using the dataset and query graph of
Figure 1. Comparing Table 4 with Table 3, the former in-
cludes only suffixes of lengths 1 and 2. Meanwhile, Table
4 contains suffixes covering category sets {restaurant}
and {museum, restaurant} respectively. Such sub-routes
are pruned in SBS and BBS for the original optimal route
query, since they can only lead to complete routes (i.e.,
those covering all 3 categories) that visit a pub before
a restaurant, violating GQ. On the other hand, they are
valid suffixes for size-2 routes that do not visit a pub
at all. In general, pruning of suffixes based on GQ must
consider that the resulting route may omit an arbitrary
combination of m − l categories. Enumerating all such
combinations may consume excessive CPU time, and,
consequently, defeat the purpose of pruning. Hence, our
implementation of SBS and BBS only eliminate suffixes
that directly violate GQ, e.g., those that contain a pub
before a restaurant in our running example.

TABLE 4
Optimal suffix table for size-2 optimal route query

Ri Start point Categories Covered Optimal Suffix

1

p1 {museum} p1

p2 p2

p3 {pub} p3

p4 p4

p5 {restaurant} p5

p6 p6

2

p1

{museum, pub}

p1 → p3

p2 p2 → p4

p3 p3 → p1

p4 p4 → p2

p5 {restaurant, pub} p5 → p3

p6 p6 → p4

p1

{museum, restaurant}

p1 → p5

p2 p2 → p5

p5 p5 → p1

p6 p6 → p1

The forward search methods are modified in a similar
way to answer size-l optimal route queries. Specifically,
both SFS and BFS now backtrack when the current path
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(cluster path in BFS) reaches length l; additionally, both
methods only detect direct violations of partial order
constraints and backtrack accordingly. Finally, the worst-
case complexity analyses of all methods are almost the
same as for the original query, except that the length of
an optimal suffix is now bounded by l rather than m.
Thus, the space complexity of all 4 methods decreases
to O(N · 2m · l), whereas their time complexity remains
the same. In practice, however, a smaller value of l
usually reduces computational costs considerably, as we
demonstrate experimentally.

6 EXPERIMENTAL EVALUATION

We implemented all 4 algorithms SBS, BBS, SFS, and BFS
in C++ and ran our experiments on an Intel Xeon X5400
3.16GHz CPU with 32GBytes of RAM. In each experi-
ment, we issue 1000 queries, and report their average
response time. We do not report I/O cost separately,
because for all methods in all settings, the I/O time is
no more than a few milliseconds; i.e., at least an order
of magnitude lower than the total response time. All
queries are generated randomly, with their start points
uniformly distributed in the entire space.

Table 5 summarizes the parameters under investiga-
tion, with their default values in bold. Specifically, m
is the total number of categories to be visited. The
visit order graph GQ is another parameter. Since the
properties of GQ are rather difficult to quantify, we
consider three specific types of visit order graphs: one
without any order constraints between data categories,
one with a complete order of all categories, and a
bipartite graph that requires half (i.e., m/2) of the cat-
egories be visited before the remaining ones. Zero-order
and total-order graphs are common definitions used in
previous studies on the optimal route query, e.g., [11],
[13], and the bipartite graph has properties between the
two extremes. In addition, we classify queries based on
the effectiveness of the greedy algorithm. In particular,
let a% be the ratio between the length of the optimal
route and that obtained by the greedy algorithm. We
partition the queries into 4 groups based on their values
of a%, and report the average response time for each
group of queries. Finally, for the synthetic dataset, there
are two additional parameters: the total number N of
points in all categories and the ratio c% between the
number of points in a larger category to that of a smaller
category (see Section 6.1 for details). For each set of
experiments, we vary the value of one parameter, and
fix other parameters to their default values.

TABLE 5
Parameter values in the experiments

Parameter Range & Default
m 4, 6, 8, 10

Type of GQ No order, bipartite graph, total order
a% 0%-25%, 25%-50%, 50%-75%, 75%-100%

N (synthetic data) 500k, 1000k, 1500k, 2000k
c% (synthetic data) 1%, 10%, 100%

6.1 Experimental Data
Two real datasets were retrieved from their
websites in January 2011. The complete Pocket
(from www.pocketgpsworld.com) and GeoName (from
www.geonames.org) datasets contain 168,197 points in
39 categories, and 2,060,001 points in 222 categories,
respectively. We randomly selected 10 larger categories
from each dataset. Table 6 summarizes the categories in
Pocket and GeoName used in our experiments.

TABLE 6
Categories used in real datasets

Pocket categories # points GeoName categories # points
Association 3,539 Hospital 13,286

Commercial Site 4,807 Mall 15,789
Hospital 5,691 Campus 17,015

Bank 7,116 Airport 19,543
Supermarket 8,109 Post Office 29,423

Wi-Fi Hotspot 9,543 Park 66,002
Car Services 10,077 Building 74,037

Fuel 10,689 Cemetery 129,595
ATM 12,573 Popular Place 181,535

Food &Drink 21,287 School 197,991
Total 93,431 Total 744,216

The synthetic dataset uses real locations from the
California Road dataset (available at www.rtreeportal.org)
and categorical information generated as follows. First,
we randomly selected N points from the California Road
dataset. Then, we decide the number of points in each
cluster. Specifically, half (i.e., m/2) of the categories are
assigned a larger cardinality nl, while the remaining ones
have a smaller cardinality ns. The ratio c% = ns/nl is a
parameter under investigation. Finally, for each category
C, we select a random set of points among those that
have not been assigned to any categories before. This
process ensures that all categories in Synthetic follow the
same distribution as the underlying point set.

Table 7 shows statistics on the greedy bound quality
in the three datasets. For instance, in the Pocket dataset,
203 out of 1000 queries have a% value below 25%; i.e.,
the greedy route is at least 4 times as long as the optimal
route. Observe that queries in Pocket tend to yield good
greedy bounds; those in GeoName are more likely to have
the poor bounds; and the quality of greedy bounds in
the synthetic data lies between the other two datasets.
This is reflected in the experimental results.

TABLE 7
Quality of the greedy bound

Pocket GeoName Synthetic
0 ≤ a% < 25% 203 queries 231 queries 133 queries

25% ≤ a% < 50% 247 queries 312 queries 297 queries
50% ≤ a% < 75% 201 queries 205 queries 285 queries
75% ≤ a% < 100% 349 queries 252 queries 285 queries

6.2 Experiments Using Real Datasets
We first compare SBS with PLUB [11], which decomposes
an optimal route query into multiple total orders (see
Section 2.1). Table 8 shows the speedup of SBS compared
to PLUB with varying values of m, e.g., the value 5.0
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indicates that SBS is 5 times faster than PLUB. SBS is
always faster than PLUB, with at least 30% speedup. The
advantage of SBS is more pronounced when m is smaller.
The main reason is that SBS prunes with only the bound
θ obtained by the greedy algorithm, whereas PLUB
tightens the the bound whenever a total-ordered sub-
query returns a better result. As m grows, the accuracy of
the greedy method worsens, and, consequently, the per-
formance gap between SBS and PLUB gradually closes.
Nevertheless, in all settings of our experiments, SBS
always outperforms PLUB; additionally, SBS is usually
the least efficient among the proposed methods. Hence,
in the next experiments, we exclude the results for PLUB.

TABLE 8
Speedup of SBS with respect to PLUB

Dataset m=4 m=6 m=8 m=10
Pocket 5.0 4.6 2.3 1.3

GeoName 6.4 1.6 2.0 1.6

Figure 6 illustrates the effects of varying number of
categories m in the query. Figure 6(a) and Figure 6(b)
plot the total response time as a function of m for the
Pocket and GeoName datasets, respectively. The response
time of all methods increases exponentially with m,
reflecting their exponential time complexity with respect
to m. Nevertheless, in practice, queries that cover a large
number of categories are expected to be rare. Among
all methods, BFS is consistently the most efficient one.
Meanwhile, both batch methods consistently beat their
simple counterparts in all settings. Comparing BBS and
SFS, the former is faster for low values of m. As m grows,
however, the performance gap between the two dimin-
ishes, and SFS starts to outperform BBS when m ≥ 8.
The main reason is that with increasing m, the optimal
route becomes longer and more complex; consequently,
the difference in length between the optimal route and
the greedy one becomes higher. Since backward search
methods prune based solely on the greedy bound, they
tend to maintain and process a large number of useless
sub-routes. On the other hand, the forward search strat-
egy incrementally improves the bound θ during search,
which helps prune more of the search space. The high
overhead of SFS for low values of m is due to its weaker
pruning condition, which is remedied in BFS, as the
latter integrates backward search components.

Regarding main memory consumption, we found that
SFS consumes a very large amount of RAM; the re-
maining three methods incur similar RAM usage, as
shown in Figures 6(c) and 6(d). The main reason is that
SFS has poor pruning power, requiring the storage of a
large number of intermediate sub-routes. The memory
consumption of all methods grows with m, since a
query with more categories to visit involves a larger
number of materialized sub-routes. Comparing SBS, BBS
and BFS, SBS consumes slightly less memory than BBS
and BFS, since the latter two use more sophisticated
pruning, which requires more memory for bookkeeping.
Nevertheless, this increased memory usage is more than
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Fig. 6. Effect of the number of query categories

compensated by the good runtime performance of BBS
and BFS as described above. Note that memory usage
increases at a significantly slower pace than running
time; meanwhile, with the single exception of SFS, all
methods use less than 1 MBytes of RAM, even for
relatively large values of m, e.g., 10. These facts suggest
that running time is the bottleneck of the query. Thus,
we only compare the runtimes of the 4 methods, next.

Figure 7 investigates the impact of the visit order
graph GQ, after setting m = 6. As expected, GQ with
no order constraint leads to the highest computational
costs, since there are an exponential number of category
permutations, enlarging the search space for possible
routes. As the amount of order constraints increases, the
response times of all methods drop. BFS is the winner for
all settings without a total order. In the case of totally-
ordered queries, the response times of SBS, SFS and BFS
range in milliseconds, and are very close to each other.
Consequently, their relative performance is affected more
by random fluctuations. Batch processing, again, has
obvious benefits, except that SBS is slightly faster than
BBS on the Pocket dataset with a total order. The cost of
SFS drops less rapidly than the other 3 methods, due
to the overhead of the numerous recursive calls, and
generally ineffective pruning. These problems, however,
do not occur to BFS, as the latter uses backward search
components. SBS is very competitive when there is a
total order; however, its performance becomes relatively
poor, when there are less strict order constraints. The rea-
son is that batch processing and forward search focus on
pruning sub-routes. When there is a total order, the search
space is relatively small, and the benefits of pruning are
offset by the overhead of doing so. With more relaxed
order constraints, the search space becomes larger, and
the effect of pruning becomes more pronounced; thus,
BBS and BFS outperform SBS.

Figure 8 studies the impact of the query start point q.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ? 20?? 13

No Order Bipartite Total Order10-4

10-3

10-2

10-1
To
ta
l 
R
u
n
n
in
g
 T
im

e
 (
se
c) SBS

BBS

SFS

BFS

(a) Pocket

No Order Bipartite Total Order10-3

10-2

10-1

100

To
ta
l 
R
u
n
n
in
g
 T
im

e
 (
se
c) SBS

BBS

SFS

BFS

(b) GeoName

Fig. 7. Effect of the type of GQ

The influence of q is measured by the ratio a% between
the length of the optimal route and that of the greedy
route. The number of queries with value a% falling in
ranges 0-25%, 25%-50%, 50%-75%, 75%-100% is listed in
Table 7. For queries where a% is low, the benefit of BFS is
more pronounced, as it gradually shrinks the set of can-
didate points, and reduces the number of unnecessary
sub-route computations. Notably, when a% < 25%, BFS
is over an order of magnitude faster than the remaining
methods. SFS has a similar advantage; however, unlike
BFS, SFS is heavily burdened by ineffective pruning,
leading to uncompetitive response times. The perfor-
mance of SBS and BBS, on the other hand, is significantly
affected by a%, since their pruning effectiveness depends
upon the quality of the greedy bound. The use of batch
processing alleviates this problem, though the efficiency
of BBS still lags behind that of BFS.
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Figure 9 evaluates the proposed methods for size-
l optimal route queries. We omit the results for SFS
since it is subsumed by BFS. Clearly, a smaller value
of l reduces the computational costs dramatically for
all methods, since backward search terminates after l
rather than m joins, and forward search also backtracks
after fewer steps. The relative performance of different
methods remains the same as in the case for the original
optimal route queries.

Finally, Figure 10 evaluates the clustering modules
in algorithms BBS and BFS. Figure 10(a) illustrates the
response times of BBS and BFS, using three different
clustering methods: AG, MA with ma% = 25%, and
MA with ma% = 12.5% (see Section 3.2). All other
parameters are set to their default values. The results
indicate that AG is the best choice among the three for
BBS, whereas MA with ma% = 25% is most suitable
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Fig. 9. Effect of l for size-l optimal route queries

for BFS. Meanwhile, the different clustering modules
may lead to considerable differences in performance,
especially on the GeoName dataset. Further tests confirm
that these observations hold for other settings as well.
In particular, the best value for the parameter ma% in
MA is around 22%-28%. Figure 10(b) shows the ratio
between the time used by clustering in algorithms BBS
and BFS and their respective total running time, varying
m. In these experiments, MA is used for clustering
with ma% = 25%, and all other parameters are fixed
to their defaults. The results show that the overhead
for clustering in both BBS and BFS is only a fraction
(less than 5%) of their total computational costs. This is
much smaller than the performance advantage of BBS
(resp. BFS) over SBS (resp. SFS), therefore clustering is
generally worth paying for.
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6.3 Experiments Using Synthetic Datasets
We repeat all experiments on the synthetic dataset. Due
to space constraints, we do not show the impact of
parameters m, GQ and a% on the performance of the
algorithms; the results are very similar as the case of real
data. Figure 11(a) shows the effect of data cardinality N
after setting all other parameters to their default values.
Surprisingly, the response times of all algorithms de-
crease with growing N ; because categories are randomly
assigned to points in Synthetic, when more points are
included in the dataset, every category becomes denser.
Consequently, the greedy algorithm is more likely to
identify a good route whose length is close to the op-
timal one, meaning that the candidate set CS becomes
smaller, leading to decreased join costs. Figure 11(b)
shows the impact of different relative category sizes. In
this experiment, N is fixed, and we vary the ratio c%
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of the cardinality of larger categories to that of smaller
categories. When categories become highly imbalanced,
all methods become considerably slower, because the
optimal route becomes longer in order to reach points
of rare categories; this reduces the effectiveness of prun-
ing. The results suggest that the scalability issue of the
optimal route query is rather complicated, and it is an
interesting topic for future studies.
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Fig. 11. Experiments on synthetic data

Summing up, BFS is the most efficient and robust
solution overall, with practically low response times
(10−2-10−1 sec.). If there are strict order constraints or
the greedy algorithm returns a relatively accurate bound,
backward search solutions also achieve competitive per-
formance, with BBS typically outperforming SBS. In
these situations, it is preferable to apply BBS due to
its simpler implementation. For total-order queries, SBS
(and, thus, R-LORD [13] which SBS reduces to) is still
highly efficient. Finally, although the performance of all
methods deteriorates with increasingly long routes, they
are robust against large datasets. This indicates that the
optimal route service can effectively control its workload
by adjusting the maximum permissible route length.

7 CONCLUSION

This paper investigates the problem of optimal route
query processing. Existing solutions are either limited
to a specific setting of the problem, or incur expensive,
redundant computations. Hence, we propose novel and
efficient solutions, based on two methodologies: back-
ward and forward search. The solution BFS that com-
bines merits from both backward and forward search
achieves the best performance. In the future, we plan to
study alternative definitions of the optimal route query,
that have temporal constraints (e.g., have lunch at a
specified period) or maximize the number of categories
to be visited given a total travel length budget.
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