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Abstract. Query recommendation is a popular add-on feature of search
engines, which provides related and helpful reformulations of a keyword
query. Due to the dropping prices of smartphones and the increasing
coverage and bandwidth of mobile networks, a large percentage of search
engine queries are issued from mobile devices. This makes it possible to
provide better query recommendations by considering the physical loca-
tions of the query issuers. However, limited research has been done on
location-aware query recommendation for search engines. In this paper,
we propose an effective spatial proximity measure between a query issuer
and a query with a location distribution obtained from its clicked URLs
in the query history. Based on this, we extend two popular query rec-
ommendation approaches to our location-aware setting, which provides
recommendations that are semantically relevant to the original query and
their results are spatially close to the query issuer. In addition, we extend
the bookmark coloring algorithm for graph proximity search to support
our proposed approaches online, with a spatial partitioning based ap-
proximation that accelerates the computation of our proposed spatial
proximity. We conduct experiments using a real query log, which show
that our query recommendation approaches significantly outperform pre-
vious work in terms of quality, and they can be efficiently applied online.

1 Introduction

Keyword search, which allows a user to express her query with a few keywords,
has become a fundamental tool in Web search engines. Recently, lots of interest
from both research and industry has been drawn to the topic of query recom-
mendation, which is closely related to keyword search. Besides ranking the Web
pages according to their relevance to the query provided by the user, a search
engine may provide several alternative formulations of the query, which can be
more focused and interesting to the user. Query recommendation, as an add-on
function to a search engine, has provided significant benefit to search engine
users [11] in terms of providing better user experience.

Most of the existing work on query recommendation focuses on the analysis
of query logs, which contain large amounts of historical information of search



engine users, including what query was issued by whom at what time and which
URLs were subsequently clicked [5,6,8,14]. The query logs are often represented
as graphs of queries and other related components, allowing graph analysis tech-
niques to perform relevance search on query logs. For example, [5] built a graph
of queries based on query logs. The weight of a graph edge that connects two
queries is proportional to the times that the two queries are issued by a same user
within a short period (i.e., the queries are in the same search session). Query rec-
ommendation is performed by applying Personalized PageRank proximity search
on this graph starting from the original query.

Nowadays, as mobile devices are ubiquitous, many keyword search queries
are expressed by mobile users and have spatial intent, i.e., the users require
results that are physically close to their locations. However, very few studies
have considered location information when performing query recommendation.
The most recent work [17] proposes a solution based on a bipartite graph that
connects queries to their clicked documents (or URLs). The edges of the graph
are adjusted based on the location of the query issuer and then Personalized
PageRank proximity search is applied to obtain the recommendations. The work
of [17] only considers the locations of documents to derive the proximity between
queries. In this work, we propose a more sophisticated approach that generates
a spatial distribution for each query (based on its clicked URLs) and uses it
to directly measure the proximity between each query and the query issuer. We
extend two popular query recommendation approaches, i.e., query-flow graph [5]
and term-query-flow graph [6], to our location-aware setting. The basic idea is
to give higher preference to queries that have larger spatial proximity to the user
during the random walk-based recommendation process, which finally leads to
recommendations that are more spatially relevant compared to those suggested
by the method of [17], as shown in our experimental results.

The main technical challenge is efficiency; search engines should provide in-
stant responses to users; hence, query recommendation should also be conducted
in sub-seconds. However, differently from the traditional query recommendation
setting, which ignores user locations, we need to consider the spatial proxim-
ity between queries and the user, which can only be obtained online after the
user issues her query. We first adopt Bookmark Coloring Algorithm (BCA) [4],
a classic method for online Personalized PageRank based proximity search, to
support our recommendation method. Then, we design an approximate version
of the algorithm, which is based on a spatial partitioning and greatly reduces
the cost without sacrificing the quality of the results.

We perform extensive experiments on a real query log from to verify the
performance of our methods. We first conduct a user study, which shows that
the users prefer recommendations generated by our proposed spatial proximity
measure compared to four alternatives. Then, we compare our proposed location-
aware query recommendation approaches with previous work, and show that
our approaches achieve significantly better recommendations in terms of both
semantic relevance and spatial proximity.

The contributions of our paper are summarized as follows:



– We consider the spatial proximity between a query and a search engine user
in location-aware query recommendation. We propose an effective spatial
proximity measure, shown to outperform alternatives in our user study.

– We extend two popular query recommendation approaches to support location-
aware recommendation.

– We evaluate our proposed location-aware query recommendation methods,
demonstrating that our methods outperform previous work significantly and
that they can be applied online (within 300ms).

The rest of the paper is organized as follows. Section 2 introduces some
preliminaries and definitions. Section 3 presents our location-aware query rec-
ommendation model. Section 4 includes our algorithm for efficient query recom-
mendation. Section 5 presents our experimental results. Section 6 reviews related
work and Section 7 concludes the paper.

2 Preliminaries and Definitions

In this section, we introduce some necessary preliminaries and definitions, includ-
ing query logs (Section 2.1), how we model and obtain the relevance of queries
to locations (Section 2.2), and two popular location-agnostic query recommen-
dation methods (Sections 2.3 and 2.4).

2.1 Query Log

The query log of a keyword search engine is typically modeled as a set of records
(qi, ui, ti,Ci ), where qi is a query submitted by user ui at time ti , and Ci is the
set of clicked URLs by ui after qi and before the user issues another query.

Following common practice [5, 6, 14], we can partition a query log into task-
oriented sessions, where each session is a contiguous sequence of query records
from the same user. Two contiguous queries are put in the same session if their
time difference is at most tθ (typically, tθ is 30 minutes). Within the same session,
we can assume that the user’s search intent remains unchanged.

2.2 Obtaining Locations from a Query Log

Location Distribution of URLs. A webpage, corresponding to a URL, may
contain information about one or more spatial locations. The location distri-
bution of a URL d is a probability distribution pd over a set of locations L =
{(lat, lon) | lat, lon ∈ R}, where

∑
l ∈L pd (l) = 1. For the purposes of this paper,

for each URL in the query log, we fetch the document and parse the content
using GeoDict1, a simple library/tool for pulling location information from un-
structured text. This provides us with the location distribution for each URL.
Alternatively, other methods for extracting locations from text can be applied [9].

1 https://github.com/petewarden/geodict



Location Distribution of Queries. We also model the location distribution
of a query qi as a probability distribution pqi , and we can obtain it from a linear
combination of the distributions of the clicked URLs for qi . Formally,

pqi (l) =

∑
d j ∈Cqi

pd j (l)∑
l′∈L

∑
d j ∈Cqi

pd j (l ′)
,

where Cqi is the set of clicked URLs for query qi . In this paper, we use the
location distributions of the queries to facilitate the problem of recommending
queries to a search engine user u, that are not only semantically relevant to the
query issued by u, but also are spatially close to the physical location of u.

2.3 Query-Flow Graph

One of the most promising directions for performing query recommendation relies
on the extraction of behavioral patterns in query reformulation from query logs.
The query-flow graph (QFG in short) [5] is a graph representation of query logs,
capturing the “flow” between query units. Intuitively, a QFG is a directed graph
of queries, in which an edge (qi, qj ) with weight w indicates that query qj follows
query qi in the same session of the query log with probability w.

More formally, QFG is defined as a directed graph Gq f = (Q, E,W ), where
Q is the set of nodes, with each node representing a unique query in the log,
E ⊆ Q ×Q is the set of edges, and W is a weighting function assigning a weight
w(qi, qj ) to each edge (qi, qj ) ∈ E. In Gq f , two queries qi and qj are connected
if and only if there exists a session in the query log where qj follows qi . Figure
1 illustrates a QFG with three query nodes.
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Fig. 1: QFG

0.7

0.3

0.4

0.6

0.6

1.0

0.1

1.0

 LA 

 LA weather 

 LA hotel 

weather

LA

hotel

0.3

Fig. 2: TQGraph

Recommendation via QFG.Given a query q ∈ Q, the top-k recommendations
for q can be obtained by a random walk with restart (RWR) [13] process starting
from q, as suggested in [5]. At each step of the RWR, the random walker moves
to an adjacent node with probability 1 − α via the transition matrix W , or



teleports to the original node q with probability α. In this way, a RWR process
defines a Personalized PageRank score PPR(q, q′,W ) for each node q′ as the
probability that the RWR starting from q reaches node q′. In this way, the top-
k recommendations can be the set of k nodes q′ in Q, which have the maximum
PPR scores w.r.t. q in QFG. In other words, the recommendation score recq (q′)
for each q′ ∈ Q is defined as:

recq (q′) = PPR(q, q′,W ), (1)

where W is the transition matrix for the PPR, and queries having the top-k
scores are recommended.

However, QFG has an obvious disadvantage for query recommendation; that
is, it cannot make any recommendation to an input query q, if q < Q. In other
words, if a query has not appeared in the query log before, QFG fails to generate
any recommendation.

2.4 Term-Query-Flow Graph

Another popular method for query recommendation is the term-query-flow graph
(TQGraph) [6], which basically extends the QFG method by considering a
center-piece subgraph induced by terms contained into queries.

Formally, a TQGraph is a directed graph Gtqg = Gq f ∪ Gtq , where Gq f is
the QFG as described in Section 2.3, and Gtq is a bipartite graph of term nodes
and query nodes. Specifically, the set of nodes in the TQGraph is Vtq = Q ∪ T ,
where Q is the set of queries and T is the set of terms. Edge (t, q) exists in Etq ,
if the term t is contained in query q. Figure 2 illustrates a TQGraph with three
query nodes and three term nodes.

Recommendation via TQGraph. Given a query q ∈ Q, the top-k TQGraph
recommendations for q are obtained by ranking all q′ ∈ Q based on their ag-
gregate PPR scores w.r.t. each term t ∈ q. In other words, the recommendation
score recq (q′) for each q′ ∈ Q is defined as follows:

recq (q′) =
∏
t ∈q

PPR(t, q′,W ∪ Etq ) (2)

We can see that TQGraph can generate recommendations for query q, as
long as all the terms within q appear in the query log. Empirically, TQGraph
has a much better query coverage compared to QFG, because it can also be used
for queries that are asked for the first time.

3 Location-aware Query Recommendation

In this section, we introduce our location-aware query recommendation models.
Our goal is to provide recommendations that are spatially close to the query
issuer. For this, we should first define spatial proximity between a user located
at lu and a query with location distribution pq . Some of the alternatives are:



– (i) Expected Distance (ED). Formally, ED(pq, lu ) =
∑

l ∈L(q) pq (l) × dist(l, lu ).
– (ii) Min Distance (MinD). Formally, MinD(pq, lu ) = minl ∈L(q)dist(l, lu ).
– (iii) Max Distance (MaxD). Formally, MinD(pq, lu ) = maxl ∈L(q)dist(l, lu ).
– (iv) Mean Distance (MeanD). Formally, MeanD(pq, lu ) = dist(mean(pq ), lu ).

However, these four distance-based measures are not fully consistent with
our goal of finding spatially close queries to the user. For example, suppose we
have two queries q1 and q2 with the following location distribution:

q1 Hong Kong : 0.6, New York : 0.3, Los Angeles : 0.1
q2 Beijing: 0.8, Los Angeles : 0.2

One would argue that q1 is more spatially relevant to a user u1 located
in Hong Kong, compared to q2, as a great portion of q1’s distribution is very
close to u1, which means that the majority of URLs related to query q1 contain
information that is spatially relevant to u1. However, using ED, MaxD or MeanD
might not select q1, because after considering all locations of q1, its overall
distance to Hong Kong is quite far. At the same time, MinD does not distinguish
q1 and q2 for a user u2 located in Los Angeles, because MinD neglects the support
probability of each location. Hence, we should define a more appropriate spatial
proximity measure that better captures the distance between a query and a
search engine user. In this direction, we propose the following measure:

Definition 1. Spatial Proximity sims. Given the location of the user lu ∈ L,
a range threshold r, and a location distribution pq of a query q, the spatial
proximity between lu and q is the portion of pq within distance r from lu , i.e.,

sims (q, lu ) =
∑

dist (lu,l′)<r

pq (l ′)

The range threshold r models the distance that the user is willing to travel in
order to use a service offered by the query results. In the example above, assuming
that we select r as a within-city travel distance, we will have: sims (q1, lu1 ) = 0.6,
sims (q2, lu1 ) = 0, sims (q1, lu2 ) = 0.1, sims (q2, lu2 ) = 0.2. This is consistent with
the intuition that u1 is more related to query q1, and u2 is more related to
query q2. In our experiments, we use r = 100km by default and compare the
performances of our methods for different values of r.

After obtaining the spatial proximity between the user and the queries, we
can adjust the weights on the edges of QFG to give higher preference to queries
that have larger sims to the user.

Definition 2. Spatially Adjusted Weights. Given a query q ∈ Q issued at
location lu , the spatially adjusted weight for an edge of a QFG (qi, qj ) ∈ E is
defined as:

w̃(qi, qj ) = β × w(qi, qj ) + (1 − β) × sims (qj, lu )),

where β is a parameter that controls the relative importance of spatial proximity
and w(qi, qj ) is the original weight of the edge (qi, qj ) in the QFG.



With the linear function in Definition 2, we obtain a location-aware transi-
tion matrix W̃ from the original matrix W . Then, we can perform location-aware
query recommendation based on W̃ . In other words, the recommendation pro-
cesses for spatial QFG (SQFG) and spatial TQGraph (STQGraph) are the same
as their location-agnostic counterparts, except that we use W̃ instead of W .

Recommendation via SQFG. Given a query q ∈ Q issued at location lu ,
the top-k SQFG recommendations for q can be obtained by a location-aware
Personalized PageRank w.r.t. node q, i.e.,

recq (q′) = PPR(q, q′, W̃ ), (3)

where recq (q′) is the recommendation score for query q′ and W̃ is the location-
aware transition matrix for the PPR.

Recommendation via STQGraph. Given a query q ∈ Q issued at location
lu , the top-k STQGraph recommendations for q can be obtained by ranking all
q′ ∈ Q based on their aggregate PPR scores w.r.t. each term t ∈ q. In other
words, the recommendation score recq (q′) for each q′ ∈ Q is defined as follows:

recq (q′) =
∏
t ∈q

PPR(t, q′, W̃ ∪ Etq ) (4)

4 Location-aware PPR

Both our SQFG and STQGraph models require computation of location-aware
PPR over the spatially adjusted transition matrix W̃ . However, this can be ex-
pensive, as the transition matrix W̃ depends on the location lu of the search
engine user, which can only be known at query time. Thus, traditional indexing
techniques for efficiently computing PPR cannot be used in our setting. In this
section, we first introduce a basic solution, by extending the Bookmark Coloring
Algorithm (BCA) [4]. Then, we propose a more efficient, approximate version of
the algorithm, which is based on a spatial partitioning approach.

4.1 BCA with Online Transition Matrix W̃

We extend the famous Bookmark Coloring Algorithm (BCA) [4] to compute the
top-k PPR results based on the location-aware transition matrix W̃ on query
time as our basic method. The basic idea of BCA is to model the RWR process
as a bookmark coloring process, in which some portion of the ink in a processed
node is sent to its neighbors, while the remaining ink is retained at the node.

Specifically, starting from the query node q with 1.0 units of ink, BCA keeps
α portion in q and distributes the remaining 1 − α portion to q’s neighbors in
the graph using the weights of the outgoing edges to determine the percentage
of ink sent to each neighbor. The process is repeated for each node that receives
ink, until the residue ink to be redistributed becomes a very small percentage of
the original 1.0 units. Different from traditional PPR computation using BCA,



Algorithm 1: BCA
Input: Transition matrix W , starting node q, user location lu
Output: Apprximated PPR vector recq

1 PriorityQueue que ← ∅
2 Add q to que with q.ink ← 1.0
3 R← ∅;
4 Cache ← ∅;
5 while que , ∅ and que.top.ink ≥ ε do
6 Deheap the first entry top from que;
7 R[top]← R[top] + top.ink × α;
8 for q′ ∈ top.neighbors do
9 if q′ ∈ Cache then

10 sims (q′, lu ) ← Cache[q′];

11 else
12 Compute sims (q′, lu ) using Definition 1;
13 Cache[q′]← sims (q′, lu );

14 Compute w̃(top, q′) using Definition 2;
15 q′.bu f ← top.ink × (1 − α) × w̃(top, q′);
16 if q′.bu f ≥ ε then
17 Add q′ to que with ink q′.bu f ;
18 q′.bu f ← 0;

19 return R

our transition matrix W̃ can only be obtained online by Definition 2, after we
know the location of the query issuer lu .

In our implementation, the spatially adjusted weights of each edge (qi, qj )
are also computed online based on lu , at the time when the query node qi is
distributing ink. This means that the computation of W̃ is done during BCA
simulation. A node distributes ink only if the quantity of the ink exceeds a
threshold ε (typically, ε = 10−5). BCA terminates when there are no more nodes
to distribute ink.

We adopt the following two optimizations in our BCA implementation.

– Lazy Updating Mechanism. In the original BCA, a node distributes its
ink aggressively, i.e, each neighbor q′ of node top will be pushed into the
priority queue que after receiving some portion of top.ink. On the other
hand, we only care about the nodes with ink greater than ε . Based on these
two observations, a lazy updating mechanism can reduce the number of non-
necessary pushing without changing the final results; the pushing a node q′

into the priority queue que is delayed until the ink it receives is greater than
ε . If the amount of received ink is less than ε , q′ only accumulates it in in a
buffer; as soon as the buffer’s ink exceeds ε , q′ is pushed into que.

– Spatial Proximity Caching. Every time when we need to distribute ink
to a query node q′, we need to compute the spatial proximity between q′ and



the location of the user lu . However, the same query node may be processed
multiple times in a single BCA call. In view of this, we cache the spatial
proximities between the location of the user lu and the query nodes that
have been computed so far. By doing this, we only need to compute the
spatial proximity for a query q′ once during a BCA call.

Algorithm 1 details our implementation of BCA, including the two optimiza-
tions mentioned above. Priority query que maintains the nodes to be processed
in descending order of their ink (Line 1). que initially contains only one node
with ink amount 1.0 (Line 2), i.e., the starting node of the PPR. The nodes
that have some retained ink are kept in a dictionary R, which is initially empty
(Line 3). Termination conditions are checked at each iteration (Line 5). Within
each iteration, we first dequeue from que the node with the most ink to dis-
tribute (Line 6). Then we leave α portion to its result (Line 7), and distribute
the rest to its neighbors with weights w̃ (Lines 8-18). We first check the spatial
cache whether q′ has been computed before (Line 9). If so, the spatial proximity
between q′ and lu can be directly got from the cache (Line 10). Otherwise we
need to compute sims (q′, lu ) (Line 12) and save to the cache (Line 13). Finally,
for each of the neighbors, if the received ink is greater than a threshold ε (Line
16), the corresponding query node will be pushed into que (Line 17) and the
corresponding buffer is cleared (Line 18). Finally, the dictionary R is returned.
In SQFG, where a single RWR search is applied, the k query nodes in R with
the most retained ink are recommended. In STQGraph, the Rs of the RWR
searches from all terms are summed up at each query node before computing
and returning the top-k query nodes.

Partitioning Based Approximation. The previous two optimizations guar-
antee the same results as the original BCA and improve its performance. How-
ever, the cost of computing the spatial proximity sims (q′, lu ) between a query
q′ and the location of the user lu at each iteration is still the bottleneck of the
algorithm. Recall from Definition 1 that we need to enumerate all locations of
the query q′ in order to accumulate the distribution. To reduce this high cost, we
propose to compute a partitioning based approximation of sims (q, l) as follows:

ˆsims (q, l) =
∑

cir (lu ) intersects c

pq (c), (5)

where c is a spatial partition of locations, cir (lu ) is the circle with lu as center
and r as radius, and pq (c) =

∑
l′∈c pq (l ′) is the location distribution of q that

falls into partition c.
We use a grid to partition the space. Hence, locations that fall into the same

cell belong to the same partition. If the length of each grid cell is a, to compute
ˆsims , we only need to accumulate pq (c) for at most d 2ra + 1e2 partitions. In

our experiments, we use a = r, so the computational cost is much lower than
computing the exact sims , which requires enumeration of all locations.

Figure 3 illustrates an example of our partitioning based approximation. The
dots with number next to them represent the location distribution of a query q.



lu

0.15

0.10.2

0.05

0.1

0.1

0.3

c1 c2 c3

c4 c5

c7 c8 c9

c6
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Table 1: Location distribution approximation

cell pq (c) cell pq (c) cell pq (c)
c1 0.1 c2 0.1 c3 0
c4 0 c5 0.25 c6 0.1
c7 0.15 c8 0 c9 0.3

Suppose a user is located at the starred location and the circle is defined by that
location and the range threshold r. The shaded cells are those which intersect
the circle and according to Definition 1, sims (q, lu ) = 0.2 + 0.05 + 0.3 = 0.55.
After using our spatial partition, we can obtain an approximation of the location
distribution as in Table 1. Then, an approximation of the spatial proximity is
computed as ˆsims (q, lu ) = 0.25 + 0.1 + 0 + 0.3 = 0.65.2

5 Experimental Evaluation

5.1 Dataset

We use AOL in all our experiments. AOL is a well-known public query log from a
major commercial search engine, which consists of Web search queries collected
from 657k users over a two months period in year 2006. This dataset is sorted by
anonymous user ID and sequentially arranged, containing 20M query instances
corresponding to around 9M distinct queries. After we sessionize the query log
with θt = 30min, we obtain a total of 12M sessions.

5.2 Methodology

We adopt the automatic evaluation process described in [14], to assess the per-
formance of the tested methods. In a nutshell, we use part of the query log as
training data to generate recommendations for a kept-apart query log fragment
(the test data). In the test query log, we denote by qi, j the jth query in session
si . We assume that all {qi, j | j > 1} are good recommendations for query qi,1
which, in accordance to previous work [14].

2 We do not further refine to get an exact result by looking into the locations within
the cells, because we believe that those locations near the range r from the user are
still spatially relevant (see the location in cell c6 of Figure 3).



Specifically, we use 90% of the query log for training, which contains 11M
sessions and 8.4M distinct queries. We use the remaining 10% of the query log to
generate testing queries. We first extract sessions with at least two queries, and
randomly sample 10K queries as our testbed. We take the first query of each ses-
sion as input and the queries that follow as the ground truth recommendations.
Formally, the ground truth for input query qi,1 is {qi, j | j > 1}, where qi, j is the
jth query appearing in the ith session. While the objective of this evaluation ap-
proach may not necessarily be aligned with what a good recommendation could
be on particular instances, by being entirely unsupervised and applied on a large
number of sessions, it is a strong indicator of the techniques’ performance. Note
that we randomly assign the location of the query issuer lu , as the dataset does
not contain the location information of about the users.

We use the following three metrics to evaluate the performance of each
method:

– coverage. This is the percentage of input queries that can be served with at
least one recommendation.

– precision@k. This is the percentage of recommended queries in the top-k lists
that are in the ground truth as described previously. Formally, precision@k =

#HIT
k ·#query , where #HIT is the total number of recommended queries that are
part of the ground truth, and #query is the number of input queries.

– sims@k. This is the average spatial proximity (see Definition 1) between the
recommended queries in the top-k lists to the location of the query issuer lu .

Competitors

– LKS [17]. LKS is the most recently proposed location-aware keyword sug-
gestion approach. It first builds a bipartite graph of queries and URLs using
the query log, and then performs location-aware random walk over the graph
during online recommendation. We use the default settings of LKS, i.e., the
restart probability αLKS and the edge weight adjustment parameter βLKS

are both set to 0.5.
– SQFG. SQFG is our spatial QFG method as described in Section 3. By

default, we set the spatial radius threshold r = 100km, the restart probability
α = 0.5, and the spatial adjustment factor β = 0.5.

– STQGraph. STQGraph is our proposed spatial TQGraph approach as de-
scribed in Section 3. We use the same default settings as in SQFG.

– STQGraph*. STQGraph* is our spatial partitioning based approximation
approach. By default, we use 100km as the length of each grid cell, and all
the other parameters are same as STQGraph.

5.3 User Study

We first conducted a user study to compare our proposed spatial proximity sims

in Definition 1 with the four alternatives mentioned in Section 3. We first used
our STQGraph to generate top-1 recommendations for 100 random queries with



different spatial proximity measures. Then, for each of the recommended queries,
we showed its location distribution as well as the location of the query issuer
lu to the participants. They were asked to rate the spatial relevance between
the recommended query and the query issuer, using one of the following rating
levels: 0 for not related at all, 1 for somehow related and 2 for very related.
The recommended queries were shuffled before given to the participants, so that
they could not know which spatial proximity measure was used to generate
the recommended query. We asked 15 participants (HKU students) to rate the
recommended queries, and each of the queries were given at least 3 ratings.

The results are shown in Figure 4. We can see that our sims has the largest
percentage of 2s, which means that sims is acknowledged to be the best mea-
sure of spatial proximity. Out of the four alternatives, ED and MeanD received
relatively better user feedback. This is because a smaller ED or MeanD implies
smaller overall distance to the query issuer. MinD got the worst user feedback
because MinD only considers the location l which is the closest to lu , but not
the probability pq (l), which could be too small.

From this user study, we can conclude that users prefer sims over the other
four proximity measures. In the rest of our experiments, we use sims to evaluate
the spatial quality of recommended queries.

Fig. 4: User Study on Different Spatial Proximity Measures
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5.4 Effectiveness

We first compare the four tested methods. Then we test the parameter sensitivity
of our STQGraph method to different parameter values.

Comparison Results. Table 2 compares all methods in terms of their coverage.
We can see that SQFG has relatively low coverage compared the other three
approaches. This is expected, because SQFG has the same disadvantage as QFG,
i.e., it cannot provide recommendations to any previously unseen queries. STQ-
Graph and LKS have similar coverage, much higher than that of SQFG. Note



Table 2: coverage results
method LKS SQFG STQGraph STQGraph_P

coverage 36.8% 27.9% 37.1% 37.1%
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Fig. 5: Comparison.

that STQGraph and STQGraph* have the same coverage, since our spatial par-
tition based approximation only affects the ranking of the recommended queries.

Figure 5(a) shows the precision@k of all methods. Since typical search en-
gines (e.g. Google and Yahoo!) show eight recommendations, we test values of k
from 1 to 8. Observe that our STQGraph and STQGraph* methods have signif-
icantly larger precision@k compared to LKS. As k becomes larger, precision@k
becomes smaller. This means our recommendation methods rank the recom-
mended queries reasonably, as those with smaller ranks are more precise. STQ-
Graph* has almost the same precision@k as STQGraph, which means that our
spatial partition based approximation does not harm the recommendation qual-
ity in terms of semantic quality. The precision of SQFG is lower than that of
STQGraph for small values of k.

Figure 5(b) shows the results of sims@k. Similar to the case of precision@k,
sims@k drops as k increases. LKS has very poor sims@k result compared with
our approaches. This is because LKS tends to recommend queries that share
the same clicked URLs with the input query, without directly considering the
location distribution of the recommended queries. SQFG, STQGraph* and STQ-
Graph achieve almost the same sims@k.

Parameter Sensitivity. We now test the sensitivity of our STQGraph ap-
proach to the values of its parameters. As coverage result is only related to the
connectivity of STQGraph and is not sentitive to the parameters, we only show
the precision@k and sims@k results.

• Varying α. Figure 6 shows the quality of STQGraph for various values of α.
Observe that α does not influence precision@k very much. In addition, larger
α leads to smaller sims@k. This is because a larger α gives higher weight to
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the adjacent queries to the input query in the graph, whereas potentially better
queries exist at a larger distance.
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Fig. 7: Varying β

• Varying β. Figure 7 shows the quality of STQGraph for various values of β.
We can see that larger β values lead to slightly higher precision@k. However,
larger β values lead to smaller sims@k. This is because a larger β gives higher
weight to the semantic relevance between queries and lower weight to the spatial
proximity. Overall, a value of β close to 0.5 strikes a balance between the two
factors giving good precision@k and sims@k at the same time.

• Varying r. Figure 8 plots the quality of STQGraph for various values of r. A
larger r leads to a smaller precision@k. This is because a larger r will result in
larger spatial proximity in general, which eventually puts less emphasis to the
original weights on the edges of QFG. From Figure 8(b), we observe that too
large and too small r values lead to worse spatial proximity results. When we use
a very small r, we get very small spatial proximity in general, leading to a worse
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Fig. 8: Varying r

sims@k result. When we use a very large r, we cannot distinguish queries that
are actually close to the user, also leading to a worse sims@k. This result shows
that we should choose an appropriate r for our method. Empirically, r = 106

(100 km) gives good results.

5.5 Efficiency

Now we test the efficiency of our optimizations and the approximation tech-
nique. We compare the overall running time of our STQGraph recommendation
method, implemented with four versions of BCA for this purpose:

– BCA. The basic BCA algorithm without any optimizations.
– BCA_L. The BCA algorithm with the lazy update mechanism.
– BCA_LC. The BCA algorithm with the lazy update mechanism and spatial

caching.
– BCA_LCP. The BCA algorithm with the lazy update mechanism, spatial

caching and spatial partitioning based approximation. Note that this method
corresponds to our STQGraph* method, which returns slightly different rec-
ommendations to STQGraph.

• Varying α. Figure 9(a) shows the average running time of STQGraph using
the different versions of BCA for different values of α. We can see that all four
versions terminate faster for larger values of α, which is consistent with our
intuition. BCA_LCP is significantly faster than all other versions. When α = 0.5,
it takes only 0.3s for a query, which indicates that our STQGraph* can provide
instant query recommendations.

• Varying β. Figure 9(b) shows the running times for different values of β. A
first observation is that the cost of the different versions of BCA is not much
sensitive to β, as β only determines how much importance we put to spatial prox-
imity. For the default values of α and r, BCA_LC takes around 1.0s for each
query, while BCA_LCP needs only 0.3s. Considering that STQGraph* achieves



similar effectiveness to STQGraph, as shown in our previous experiments, STQ-
Graph* (which uses BCA_LCP) is more suitable for real-time applications.

• Varying r. Figure 9(c) shows the running times for different values of r.
Observe that the runtimes for all methods are not sensitive to the change of r.
This is because r only influences the values of spatial proximity sims .
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Fig. 9: Running time.

6 Related Work

Query autocompletion and query recommendation both aim at providing accu-
rate query reformulation suggestions on-the-fly. In query autocompletion, only
the most relevant expansions of the input query are shown, typically while the
user is typing the query. Most existing works apply prefix-based recommenda-
tions and use trie-like index structures [3, 7, 18, 19]. In this paper, we focus on
query recommendation, where the suggestions are not necessarily expansions of
the input query. There have been many works on query recommendation, and
most of them rely on analyzing query logs to extract useful patterns that model
user behavior. All these works boil down to modeling the similarity between
queries, often using random walk based proximity measures on graphs that may
include users, terms, queries and URLs.

Early approaches rely on clustering similar queries [1,20], where the similar-
ity is defined using the query-URL graph or the term-vector representations of
queries obtained from the clicked URLs. Later, [22] proposed the extraction and
analysis of search sessions from the query log that capture the causalities between
queries, and combined this with content-based similarity. In [2], the authors in-
troduced the concept of cover-graph, a bipartite graph between queries and Web
pages, where links indicate the corresponding clicks. [12] proposes recommending
queries in a structured way for better satisfying exploratory interests of users,
and [21] proposes a context-aware query recommendation model considering the
relationship between queries and their clicks.

[5] and [6] are two of the most influential works in query recommendation.
Both of them exploit flow patterns in query logs, and use graph-based meth-
ods to perform query recommendation. [5] builds a graph of queries, termed the
query-flow graph (QFG), in which the links model the transition probabilities



between queries. [6] further extends the QFG to a term-query-flow graph (TQ-
Graph), which also include nodes representing terms within queries. In this way,
TQGraph can provide recommendations even for queries that never appeared
in the query log. In both works, the top-k recommendations are obtained by
performing random walk with restart (RWR) in the graphs.

Although many keyword search queries are sent from mobile users who have
spatial search intent, there is limited research on location-aware query recom-
mendation. In [16], the similarity between two queries is considered high if there
are groups of similar users issuing these queries from nearby places at similar
times. Google [15] keeps track of the locations where past queries are issued
and determines the similarity between queries by also considering the proximity
between the locations of the corresponding query issuers. [23] apply a learning
model on the tensor representation of the user-location-query relations to predict
the user’s search intent. The most recent related work [17] proposes a location-
aware keyword suggestion (LKS) method, which extends the idea of [10]. How-
ever, LKS only considers the location information for the documents (URLs),
without considering that of queries. As we argue in this paper, it is more impor-
tant to consider the spatial proximity between the user and the queries than the
documents, because it is the queries we recommend to the user in the task of
query recommendation. We experimentally compare our proposed methods with
LKS and show that our methods provide better recommendations.

7 Conclusion

We study the problem of location-aware query recommendation for search en-
gines. We first propose a spatial proximity measure between a keyword search
query and a search engine user. Then, based on this proximity measure, we ex-
tend two popular query recommendation approaches (i.g., QFG and TQGraph)
to apply for the location-aware setting. In this way, we can generate recommen-
dations that are not only semantically relevant, but also spatially close to the
query issued by a user at a specific location. In addition, we extend the Bookmark
Coloring Algorithm to support efficient online query recommendation. We also
propose an approximate version of the algorithm that uses spatial partition-
ing to accelerate the computation of our proposed spatial proximity measure.
Experiments on a real query log show that our proposed methods significantly
outperform previous work in terms of both semantic relevance and spatial prox-
imity, and that our method can be applied to providing recommendations within
only a few hundreds of milliseconds.
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