
Validity Information Retrieval for Spatio-Temporal
Queries: Theoretical Performance Bounds

Yufei Tao1, Nikos Mamoulis2, and Dimitris Papadias3
1 Department of Computer Science

Carnegie Mellon University, USA, 15213-3891
taoyf@cs.cmu.edu

2 Department of Computer Science and Information Systems
University of Hong Kong , Hong Kong

nikos@csis.hku.hk

3 Department of Computer Science
Hong Kong University of Science and Technology, Hong Kong

dimitris@cs.ust.hk

Abstract. The results of traditional spatial queries (i.e., range search, nearest
neighbor, etc.) are usually meaningless in spatio-temporal applications, because
they will be invalidated by the movements of query and/or data objects. In prac-
tice, a query result R should be accompanied with validity information specify-
ing (i) the (future) time T that R will expire, and (ii) the change C of R at time T
(so that R can be updated incrementally). Although several algorithms have
been proposed for this problem, their worst-case performance is the same as
that of sequential scan. This paper presents the first theoretical study on validity
queries, and develops indexes and algorithms with attractive I/O complexities.
Our discussion covers numerous important variations of the problem and differ-
ent query/object mobility combinations. The solutions involve a set of non-
trivial reductions that reveal the problem characteristics and permit the deploy-
ment of existing structures.

1 Problem Formulation

Traditional spatial query processing is insufficient in spatio-temporal applications,
where the data and/or query objects change their locations. Consider, for example, a
moving user who asks for the nearest hotel; the result (e.g., hotel a) of a conventional
nearest neighbor query is by itself meaningless because it may be invalidated as soon
as the user moves. In practice, the query result R should be accompanied by additional
validity information: (i) the expiry time T of R, i.e., the future time when a ceases to be
the nearest hotel (based on the user’s moving direction and speed), and (ii) the result
change C at T (e.g., the next nearest hotel after a expires). This problem is not specific
to nearest neighbor search, but actually exists in all query types [TP02].

In this paper, we discuss validity information retrieval for the most common spatial
queries, namely, (orthogonal) range search (RS) and nearest neighbor (NN) queries,
considering one- or two- dimensional objects with linear movements. Following the
common modeling in the literature [SJLL00, GBE+00], a moving point p is repre-
sented using its location p(0) at the system reference time 0, and its current velocity v
(p(0) and v are 1D/2D vectors), such that its location p(t) at any future time t can be

computed as p(t)=p(0)+v·t. Similarly, we represent a moving rectangle with two mov-
ing points that decide its opposite corners, under the constraint that they have identical
velocity vectors (i.e., the extent of the rectangle remains fixed at all times). Static
objects are trivially captured with zero velocities. Without loss of generality, we as-
sume (unless specifically stated) that the system reference time 0 coincides with the
current time.

The result R of a spatial query is invalidated when some object “influences” it in
the future, namely, (i) an object currently not in R starts qualifying the query predi-
cate, or (ii) an object originally in R incurs predicate violation. A natural way to define
validity retrieval is through the concept of “influence time” introduced in [TP02].
Specifically, given a RS (range search) query q with result R (containing all the ob-
jects currently covered by q), the influence time Tp of data point p in R, equals the
earliest time that p falls out of q; on the other hand, for a point p not in R, Tp corre-
sponds to the first timestamp that p lies in q. The concept of influence time also ap-
plies to NN (nearest neighbor) search. In this case, the influence time of a data point is
the time when it will come closer to q than its current NN. Here the influence time
should be interpreted as the time that the object will invalidate the query result R, only
if it has not changed earlier. Now we are ready to formulate the problem of validity
information retrieval.

Problem (Validity information retrieval): Given a set of points S={p1, p2, ..., pN}
and a spatial query at the current time 0, the corresponding validity query q returns (i)
the expiry time T=min{Tpi

 (1≤i≤N)}, and (ii) the result change (at time T) C={pi∈ S:
Tpi

=T}, where Tpi
 is the influence time of point pi. ■

This paper presents the first study on the theoretical complexity of validity queries,
aiming at solutions with good worst case performance. Our discussion is based on the
popular memory-disk hierarchy [ASV99, AAE00], where each I/O access transfers a
page of B (i.e., page size) units of information from the disk to the main memory,
which contains at least B2 pages (a reasonable assumption in practice). The query cost
is measured as the number of disk pages visited. Our objective is to achieve fast query
time with small space consumption.

1.1 Previous results

A study of validity queries appear in [TP02] which deploys branch-and-bound algo-
rithms on R*-trees [BKSS90] (for static objects) and TPR-trees [SJLL00] (for dy-
namic objects). In the worst case, these algorithms perform O(N/B) I/Os (i.e., the
complexity of a simple sequential scan), where N is the number of objects in the data-
set. All the other attempts [SR01, TPS02, BJKS02] addressing variations of the prob-
lem, incur the same complexity. On the other hand, there is a significant amount of
theoretical results on conventional spatial queries for static and moving objects.

For orthogonal range search on static points, Kanth and Singh [KS99] prove that
the best possible query time using any structure consuming linear O(N/B) space is
O((N/B)1/2+K/B) I/Os, where K is the number of objects retrieved. This bound is tight
and has been realized by the O-tree [KS99] and the cross-tree [GI99]. Applying the
theory of indexability [HKP97], Arge et al. [ASV99] show that a structure achieving
optimal query cost O(logB(N/B)+K/B) must occupy Ω((N/B)logB(N/B)/loglogB(N/B))

space. They propose the external range tree that achieves these bounds. A special RS
is the so-called 3-sided query, where an edge of the query rectangle lies on the bound-
ary of the data space. Arge et al. [ASV99] design the external priority search tree that
answers such queries optimally (i.e., logarithmic query cost and linear space consump-
tion). Earlier, non-optimal structures for RS and 3-sided queries can be found in
[IKO87, KRVV96, RS94, SR95].

The first study on RS queries for moving objects [KGT99a] deals with only 1D
data. Agarwal et al. [AAE00] present several interesting results in the 2D space fol-
lowing the kinetic approach [BGH97]. In particular, they show that if queries arrive in
chronological order, a RS can be answered with the same time complexity as the static
case (i.e., optimally) using the kinetic external range tree. They also give two time-
responsive indexing schemes (later refined in [AAV01]) where the query cost depends
on the difference between the query issue time and the current time.

Fewer results exist for nearest neighbor search in secondary memory. For static
data, a Voronoi diagram can be constructed in O(NlogN) time [BKOS97], after which
a NN query is reduced to a point-location problem (i.e., identifying the Voronoi cell
that contains the query point), which can be solved optimally using linear space and
logarithmic I/O overhead [ADT03]. Agarwal et al. [AAE+00] design another solution
that avoids computing the Voronoi diagram, and answers a NN query in O(logB(N/B))
time, but uses non-linear (N/B)log(N/B) space. Little work has been done for NN re-
trieval on moving objects in external memory. Kollios et al. [KGT99b] develop vari-
ous schemes, but do not prove any performance bound. Finally, several solutions exist
for the different but related problem of approximate nearest neighbor search [CGR95,
GLM00, AAE00]. In this paper we focus on exact NN queries.

1.2 Our results

For static data (and moving queries), we show that a validity RS query can be an-
swered optimally in O(logB(N/B)) I/Os using O(N/B) space, for a constant number of
query sizes and directions. Then, we discuss the problem where the query has arbitrary
size but its movement is restricted to be axis-parallel, and develop a structure that
consumes O((N/B)logB(N/B)) space and answers a query in O(logB(N/B)) I/Os. Based
on the external range tree, we present another solution that occupies
O((N/B)logB(N/B)/loglogB(N/B)) space and solves a query in
O(logB

2(N/B)/loglogB(N/B)) I/Os. The persistent version of this structure answers a
query with arbitrary size and moving direction with the same cost but higher space
complexity O((N2/B)logB(N/B)/loglogB(N/B)). All the above problems can also be
solved using a modified partition tree with linear space and query overhead
O((N/B)1/2+ε), where ε is an arbitrarily small positive number. For moving data and
static RS, a validity query can be answered with optimal O(logB(N/B)) I/O cost, using
an index with O((N2/B)logB(N/B)) space. If both objects and queries move on a linear
space, we propose a solution that achieves O(logB(N/B)) query time and requires
O(N/B) space. Further, given a Voronoi diagram on static data, a validity NN query
can be answered in log(N/B) time based on an optimal external memory structure for
point location queries. The same complexity can also be achieved for one-dimensional
dynamic queries and objects.

The rest of the paper is organized as follows. Section 2 reviews the previous in-
dexes fundamental to our discussion, and elaborates the problems solved together with
the corresponding query time and space complexities. Section 3 presents our results
for validity RS queries, while Section 4 focuses on nearest neighbor search. Section 5
concludes the paper with a set of open problems.

2. Preliminary Structures

The persistent (also known as multi-version) B-tree [BGO+96] is an efficient storage
scheme for a set of B-trees B1, B2, ..., Bβ. The idea is to store in Bi (2≤i≤β) only the
“changes” from the previous version Bi-1, while sharing the index nodes that contain
their common records. Particularly, in each node, there is either none or at least Θ(B)
records for any Bi (1≤i≤β), which guarantees that querying each Bi has the same com-
plexity as a normal B-tree. As proven in [BGO+96], if the total number of distinct
records in all B-trees (i.e., the total number of “changes” between consecutive trees) is
O(N), a persistent B-tree uses linear space O(N/B) and can be constructed in
O((N/B)logB(N/B)) I/Os [A94]. A range-query in any B-tree Bi (1≤i≤β) is answered in
O(logB(Ni/B)+logB(β/B)+K/B) = O(logB(N/B)+K/B) I/Os, where Ni is the number of
records in Bi, β the total number of B-trees, and K is the number of records retrieved.
Both the space and query time complexities are optimal. As shown shortly, the persis-
tent structure constitutes a powerful tool for our problem.

The partition tree [AAE00] is a popular 2D structure for the simplex range query,
which specifies a constant number of half-planes and retrieves the set of points in their
intersection (i.e., the search region). Given a set S with N points, the idea is to con-
struct a balanced simplicial partition Λ={Λ1, Λ2, ..., Λr}, where r=O(B) and all points
in Λi (1≤i≤r) are covered by a triangle ∆i. The partitions have the following properties:
(i) Λ1∪ Λ2∪ ...∪ Λr=S, (ii) for any i, j in [1,r], Λi∩Λj=∅ (i.e., the first two properties
guarantee that any data point belongs to a unique partition), (iii) each Λi (1≤i≤r) con-
tains at most 2N/r points, and (iv) the number of triangles ∆i crossed by any line l in

the data space is O(r)=O(B). ∆1, ∆2, ..., ∆r constitute the entries in the root node of
the partition tree. The next level is created by constructing balanced simplicial parti-
tions for each Λi (1≤i≤r), and this process is repeated until each partition contains
O(B) points, in which case all points in it are stored collectively as a leaf node. Since
every point appears in a unique leaf node, the whole tree consumes O(N/B) disk pages.
A simplex range query is answered by visiting those nodes whose bounding triangles
intersect its search region. Agarwal et al. [AAE+00] show that the query cost is
bounded by O((N/B)1/2+ε+K/B) I/Os, where ε is an arbitrarily small positive number.

The external priority search tree [ASV99] answers a 3-sided query q optimally.
Specifically, given a set S of N 2D points, this tree consumes O(N/B) space, and an-
swers q in O(logB(N/B)+K/B) I/Os, where K is the number of points retrieved. Interest-
ingly, it also optimally solves stabbing queries on 1D intervals. Specifically, given a
set of N 1D intervals {i1, i2, ..., iN} where ij=[isj,iej] (1≤j≤N), a stabbing query specifies
a value q and retrieves all intervals ij (1≤j≤N) such that isj≤q≤iej. To solve the problem
with the external priority search tree, each interval ij=[isj,iej] is converted to a 2D point

(isj,iej); the intervals satisfying q correspond to those points in the 3-sided rectangle
with x-projection [0, q] and y-projection [q, ∞).

3. Validity Information Retrieval for Range Search

The result of a RS query q changes (as q or data move) when the boundary of q hits a
data point p. Thus, we can retrieve, for each edge ei (1≤i≤4) of q, the first point pi that
will be hit by ei, together with the time ti when this happens. The expiry time T of the
current result then equals the smallest ti (1≤i≤4), and the result change C is due to the
point pi with ti=T (i.e., T is the influence time of pi). Therefore, a validity RS query
can be reduced to four dragging queries1 each specifying a moving horizontal/vertical
line segment (the direction of movement can be arbitrary), and finds the first point it
crosses. Consider, for example, Figure 3.1a with static data points p1, p2, ..., p7 (simi-
lar observations also hold for dynamic objects). The validity RS query q is reduced to
dragging queries e1, e2, e3, e4 as in Figure 3.1b, for which the first points hit are ∅ , p4,
∅ , p6, respectively (the result of the validity query is p4 since it is crossed earlier than
p6). In the sequel we focus on the vertical dragging query q (the same solutions apply
to horizontal queries by symmetry), whose initial position is a vertical line segment at
x=qx with y-projection [qsy,qey] (represented as qx:[qsy,qey]). A query is characterized
using two parameters: (i) query length qL=qey−qsy, and (ii) tilting angle qθ between the
query’s moving direction and the x-axis, as shown in Figure 3.1c using e4 as an exam-
ple. The subsequent sections solve vertical dragging queries in various problem set-
tings, covering both static data points (Sections 3.1-3.3) and the dynamic ones (Sec-
tions 3.4, 3.5).

20 4 6 8 10

2

4

6

8

x axis

y axis

p

q

1

p
2

p
3 p

5

p
4

p
6

p
7

20 4 6 8 10

2

4

6

8

x axis

y axis

p

e

1

p
2

p
3 p

5

p
4

p
6

p
7

1
e
4

e
3

e
2

 20 4 6 8 10

2

4

6

8

x axis

y axis

p

q
1

p
2

p
3 p

5

p
4

p
6

p
7

x ,q
ey

q
x
,q

sy

()

)(

Lq

θ
tilting angle q

query length

(a) Validity RS query q (b) Four dragging queries (c) Vertical dragging query

Figure 3.1: Reducing RS validity retrieval to dragging queries

3.1 Static data and predictable queries

We first present an optimal solution that consumes linear space O(N/B) and answers a
“predictable” dragging query q in O(logB(N/B)) I/Os, namely, the query’s length and
tilting angle (of its movement) are chosen from a constant number of combinations2.

1 The term “dragging query” was first used in [C88] for orthogonal line segments with axis-

parallel movements. Here, we use this term for queries with arbitrary moving directions.
2 Note that, in practice where query’s actual length and moving direction can be measured only

discretely, the number of such combinations is indeed constant.

Our solution consists of a set of structures, each one targeting a specific combination.
For simplicity, we use queries with length qL moving towards the positive direction of
the x-axis; the extension to the other directions is straightforward.

As shown in Figure 3.2a, our goal is to divide the space into disjoint influence ar-
eas according to the data points. Specifically, the influence area A(p) of a point
p=(px,py) is a 3-sided rectangle whose projections on the x- and y- axes are (−∞, px)
and [py−qL/2, py+qL/2] respectively, where qL is the targeted query length (e.g., the
shaded area in Figure 3.2a represents A(p7)). Furthermore, for two data points pi, pj

such that pix<pjx (i.e., pix is to the “left” of pjx), A(pi) “overwrites” A(pj) if they overlap
(e.g., part of A(p6) is obstructed by A(p7)). The crucial observation is that, given a
dragging query q=qx:[qsy,qey], the first point p hit by q is the one whose influence area
A(p) covers the query center (qx,(qsy+qey)/2). As an example, the result of the query
q=5:[6,9] in Figure 3.2a is p3 because its center (the white point) at coordinates (5,7.5)
falls into A(p3). Note that, if such an influence area does not exist, the query result is
empty, namely, the dragging query will not hit any point.

20 4 6 8 10

2

4

6

8

10

x axis

y axis

p
6

p
7

p
5

p
4

p
3

p
1

p
2

L
2

2

q

Lq

Lq

inflence area of p
7

q

 20 4 6 8 10

2

4

6

8

10

x axis

y axis

p
1

p
2

tagged with p
2

tagged with

tagged with

tagged with 1
p

∅

∅

 20 4 6 8 10

2

4

6

8

10

x axis

y axis

p
3

p
1

p
2

tagged with p3

tagged with 1
p

(a) The final areas (b) After p1, p2 are inserted (c) After p3 is inserted

Figure 3.2: Computing the influence areas

We use a persistent B-tree to index the influence areas. Specifically, the persistent B-
tree contains a (logical) B-tree at each x-coordinate x, which stores the y-coordinates
of the horizontal boundaries of the influence areas spanning x. For instance, the B-tree
at x=5 stores 5 values {0.5, 3.5, 5, 8, 10}, corresponding to the (lower, upper, lower,
upper, upper) boundaries of A(p4), A(p4), A(p3), A(p3), A(p2), respectively. To con-
struct such a persistent tree, we insert the influence areas of points in descending order
of their x-coordinates. In Figure 3.2b, p1 is the first point processed, after which the
persistent tree consists of a single logical B-tree (at the x-coordinate 9 of p1) contain-
ing entries 3.5, 5.5 (i.e., the y-coordinates of the boundaries of A(p1)). Entry 5.5 is
“tagged” with p1 (using constant space), indicating that the region below it belongs to
A(p1), while entry 3.5 is tagged with ∅ , meaning that the region below it is not in any
influence area. Similarly, the next point p2 inserts two entries 7, 10 (tagged with ∅ , p2
respectively) in the B-tree at x=8 (all the B-trees in the x-range (8,10] have the same
content as the one at x=9). Handling the next point p3 is more complex since its influ-
ence area overlaps A(p1) and A(p2). In this case, two entries 5.5 and 7 are removed
from the B-tree at x=6, “terminating” the upper and lower boundaries of A(p1) and
A(p2) respectively. Then, two entries 5, 8 (for the boundaries of A(p3)) are inserted
into the same tree, after which the tree contains 4 entries 3.5, 5, 8, 10 tagged with ∅ ,
p1, p3, p2 respectively. The remaining points are inserted in the same way. A dragging

query q=qx:[qsy,qey] is directed to the B-tree at x=qx, and finds the smallest entry larger
than (qsy+qey)/2 (i.e., the y-coordinate of the query center). In Figure 3.2a, for exam-
ple, the B-tree inspected is at x=5, and the entry returned has value 8. Then, the result
(i.e., the point first hit by q) is the point tagged with the retrieved entry (p3 in the
case). The whole processing incurs O(logB(N/B)) I/Os.

Theorem 3.1: Given a dataset S of N static 2D points, we can pre-process S into a
set of persistent B-trees that occupy totally O(N/B) space and can be constructed in
O((N/B)logB(N/B)) I/Os, such that a validity RS query q can be answered in
O(logB(N/B)) I/Os, provided that the query rectangle’s size and movement direction
are decided from a constant number of combinations. ■

3.2 Static data and axis-parallel moving queries

In this section, we consider (vertical) dragging queries with arbitrary lengths but hori-
zontal movements (i.e., zero tilting angles). It suffices to discuss queries moving to-
wards the positive direction of the x-axis (by symmetry those towards the negative
side can be solved in the same way). The first point hit by such a query qx:[qsy,qey] is
the one with the smallest x-coordinate in the 3-sided rectangle [qx,∞]:[qsy,qey]. In Fig-
ure 3.3, for example, q=5:[1,8] and its 3-sided rectangle [5,∞]:[1,8] covers points p1,
p3, p4, among which p4 has the smallest x-coordinate and hence, is the result of q.
Next, we propose two solutions with different tradeoffs between query time and space.
• Using the persistent aggregate tree
We maintain an aggregate B-tree (aB-tree) at every x-coordinate x, indexing the y-
coordinates of all the points whose x-coordinates are larger than x. In addition to the
search key, each non-leaf entry of the aB-tree also stores, using O(1) space, the point
with the smallest x-coordinate among all the points in its subtree. Figure 3.3b demon-
strates the aB-tree at x=5, where the first root entry <p4, 2>, for example, indicates
that the smallest y-coordinate of all the data points (i.e., p4, p1) in its subtree is 2, and
p4 has the smallest x-coordinate. We store all the aB-trees in a persistent aB-tree,
which as shown [TPZ02]3 consumes O((N/B)logB(N/B)) space and can be constructed
in O((N/B)logB(N/B)) I/Os.

Given a query qx:[qsy,qey], the aB-tree at x=qx allows us to answer it in O(logB(N/B))
I/Os. To illustrate this, consider the query (5:[1,8]) in Figure 3.3a and the tree in Fig-
ure 3.3b. The algorithm starts from the root and descends a non-leaf entry if its “y-
range” (enclosing the y-coordinates of points in its subtree) intersects, but is not to-
tally contained in, that of the query ([1,8] in this case). For example, the y-range
[2,6.5] of the first root entry in Figure 3.3b (where 6.5 is obtained from the second
entry) is contained in [1,8], in which case we simply take point p4 (stored in this entry)
as the candidate result. The subtree of the second entry must be explored because its
y-range [6.5,∞] partially intersects [1,8]. In its child node, we examine every data
point and update our candidate result accordingly. In this case, p3 has larger x-
coordinate than p4 (our current candidate) while p2 does not fall in the 3-sided rectan-
gle [5,∞]:[1,8] of the query; hence, no result update is necessary and the algorithm

3 The structure in [TPZ02] is slightly different from the aB-tree in our case, but the complexity

analysis still applies.

terminates by returning p4. At each level of the aB-tree, the query y-range partially
intersects those of at most two entries (notice that the y-ranges of the entries at the
same level are disjoint); thus, the algorithm accesses (at most) two complete paths of
the tree, i.e., incurring the same complexity as the tree height O(logB(N/B)).

20 4 6 8 10

2

4

6

8

10

x axis

y axis

p
6

p
7

p
5

p
4

p
3

p
1

p
2

q

p
2

p
3

p
1

p
4

6.5

2p
4

p
3

root

the smallest y-coordinate
of the points in the subtree

the point with the smallest
x-coordinate in the subtree

(a) A dragging query (b) The aggregate B-tree at x=5
Figure 3.3: Dragging queries with arbitrary lengths

Theorem 3.2: Given a dataset S of N static 2D points, we can pre-process S into a set
of persistent aB-trees that consume totally O((N/B)logB(N/B)) space, and can be con-
structed in O((N/B)logB(N/B)) I/Os, such that a validity RS query can be answered in
O(logB(N/B)) time, provided that the moving direction of the query rectangle is axis-
parallel. ■
• Using the external range tree
To decrease the space complexity, we present another solution based on a simplified
version of the external range tree. Specifically, as shown in Figure 3.4 (for the data
points in Figure 3.3a), the primary structure is a B-tree with fanout O(logB(N/B)) built
on the y-coordinates of the data points (the height of the tree is thus
O(logB(N/B)/loglogB(N/B))). Let v1, v2, …, vr (r=3 in Figure 3.4) be the subtrees of an
intermediate node v of the tree (e.g., the root of the B-tree). For each branch vi
(1≤i≤r), let |vi| be the number of points it contains, and pi1

, pi2
, ..., pi|vi| be these points

sorted in ascending order of their x-coordinates pi1x, pi2x, ..., pi|vi|x. In Figure 3.4, the
sorted lists for the root entries 2, 4, 7.5 are {p5, p4}, {p7, p3, p1}, {p6, p2}, respectively.
We define the interval set of vi as {[−∞,pi1x], [pi1x,pi2x], …, [pi|vi|x,∞]}, namely, the
intervals produced by the projections of points in vi on the x-axis.

p
7

p
1

p
5

p
4

4

2

p
2

p
6

p
3

7.5

]

priority search tree indexing

[- , 2], [2, 6], [6, 9], [9,
[- , 2.5], [2.5, 8], [8,]
the following intervals

[- , 3.5], [3.5, 5.5], [5.5,]interval set of entry 2 --
interval set of entry 4 --

interval set of entry 7.5 --

the primary B-tree

Figure 3.4: A simplified external range tree (for the dataset in Figure 3.3a)

For example, the interval sets for root entries 2, 4, 7.5 in Figure 3.4 are, {[−∞,3.5],
[3.5,5.5], [5.5,∞]}, {[−∞,2], [2,6] [6,9], [9,∞]} and {[−∞,2.5], [2.5,8], [8,∞]}. The
intervals in the interval sets of all vi are indexed using a priority search tree associated
with v. Note that, for the non-leaf nodes at the same level of the B-tree, their priority
search trees index disjoint sets of intervals, the total number of which is O(N). Given
that the height of the primary B-tree is O(logB(N/B)/loglogB(N/B)), the total size of the
priority search trees (at all B-tree levels) is O((N/B)logB(N/B)/loglogB(N/B)), which
dominates the B-tree size O(N/B) and constitutes the overall space complexity. This
simplified external range tree can be constructed with O((N/B)logB(N/B)) I/Os, same
as the complete external range tree [ASV99].

A right-moving dragging query q=qx:[qsy,qey] is answered as follows. At the root of
the B-tree, we search its associated priority search tree for all the 1D intervals contain-
ing value qx, which is a stabbing query as reviewed in Section 2. Given the query
q=5:[1,8] (Figure 3.3a), for example, this search in the tree of Figure 3.4 returns inter-
vals [3.5,5.5], [2,6], [2.5,8] (containing qx=5). It is important to note that, each of
these intervals comes from the interval sets of distinct subtrees ([3.5,5.5], [2,6],
[2.5,8] are from root entries 2, 4, 7.5, respectively). Now, let us consider the data
points corresponding to the second numbers of these intervals, namely, p4, p3, and p2
(5.5, for example, is the x-coordinate of p4). It is safe to conclude that p3 is the point
first hit by q, among all the points in the subtree of entry 4, whose y-range [4,7.5) is
contained in that [1,8] of q. Similar conclusions, however, cannot be made for p4 (p2),
originating from the subtree of root entry 2 (7.5), because its y-range [2,4) ([7.5,∞))
partially intersects [1,8]. In this case, we must visit the child nodes of these entries,
where we discover point p4 that is hit earlier than p3, and becomes the final result.

In general, the above algorithm visits the nodes of the B-tree whose y-ranges par-
tially intersect that of the query. Similar to the case of Figure 3.3b, the number of such
nodes has the same complexity as the tree height, i.e., O(logB(N/B)/loglogB(N/B)). At
each node visited, a stabbing query is performed in its associated priority search tree,
which returns as many intervals as the node fanout, i.e., O(logB(N/B)), incurring
O(logB(N/B)+logB(N/B)/B)=O(logB(N/B)) I/Os (see the performance of the priority
search tree in Section 2). As a result, the total query cost is bounded by
O(logB

2(N/B)/loglogB(N/B)) I/Os.
Theorem 3.3: Given a dataset S of N static 2D points, we can pre-process S into a

set of simplified external search trees that consume O((N/B)logB(N/B)/loglogB(N/B))
space and can be constructed in O((N/B)logB(N/B)) I/Os, such that a validity RS query
q can be answered in O(logB

2(N/B)/loglogB(N/B)) time, provided that the moving di-
rection of the query rectangle is axis-parallel. ■

3.3 Static data and arbitrary queries

This section focuses on dragging queries with arbitrary lengths and tilting angles qθ.
Figure 3.5 shows an example query qx:[qsy,qey] whose moving direction has slope4
qs=tg(qθ). Similar to Figure 3.3a, the goal is to find the point (i.e., p3) with the smallest

4 The slope is not defined for tilting angle qθ=π/2 and 3π/2, namely, the movement of the query

is vertical. This special case is solved in Section 3.2.

x-coordinate among the points in the shaded 3-sided parallelogram. In the sequel, we
present two solutions with different characteristics. It is worth mentioning that, these
solutions also apply to the problems in the previous two sections, which are special
instances of the queries discussed here.

q
x
,qey

q
x

,q
sy

20 4 6 8 10

2

4

6

8

y axis

p
6

p
7

p
5

p
4

p
3

p
1

p
2

ql
u

ql
l

q
sslope

x axis

qx ,qey

q
x
,q

sy

20 4 6 8 10

2

4

6

8

y axis

p
6

p
7

p
5

p
4

p
3

p
1

p
2

x axis

∆ 1

∆2

∆3

(a) Dragging query and 3-sided parallelogram (b) The simplicial partitions

Figure 3.5: Handling dragging queries with non-axis-parallel movement

• Using the partition tree
As mentioned in Section 2, given a set of N data points, the partition tree answers a
simplex query in O((N/B)1/2+ε+K/B) I/Os (where ε is an arbitrary positive number, and
K is the number of points retrieved). Note that, the parallelogram produced by the
dragging query (Figure 3.5a) is indeed a “simplex” shape, i.e., the intersection of three
half planes. Applying the partition tree in this case, however, requires solving the
following problem: since the goal is to find only one point in the parallelogram, we
should avoid paying the extra cost K/B of reporting the other points.

We solve this problem with a slight modification to the partition tree. In each non-
leaf node Λ of the tree, we store, using O(1) space for each child Λi (which, as de-
scribed in Section 2, corresponds to a triangular simplicial partition ∆i), the point with
the smallest x-coordinate in its subtree. Figure 3.5b shows an example where the data
points are divided into three simplicial partitions ∆1, ∆2, ∆3, whose extents are stored
in the root of the tree. The points stored for these partitions are p7, p3, p5, respectively.
This modification does not affect the space and building time complexities of the tree,
which, however, can now solve the dragging query in O((N/B)1/2+ε) I/Os. Specifically,
the search starts from the root, and visits the subtrees whose simplicial partitions par-
tially intersect the 3-sided parallelogram decided by the query. In Figure 3.5b, for
example, ∆1 is not accessed because it lies completely in the parallelogram, in which
case the data point p7 with the smallest x-coordinate is obtained directly from the
corresponding root entry. ∆2, on the other hand, must be visited because it partially
intersects the shaded region (even though it does not contain any data point inside the
parallelogram). Following an analysis similar to that in [AAE+00], we can derive the
following theorem.

Theorem 3.4: Given a dataset S consisting of N 2D points, we can pre-process S
into a modified partition tree that consumes O(N/B) space such that a validity RS
query can be answered in O((N/B)1/2+ε) I/Os, for arbitrarily small ε>0. The partition
tree can be constructed in O((N/B)logB(N/B)) expected I/Os. ■

• Using the dual transformation
We present another solution that reduces general dragging queries (with arbitrary
tilting angles) to those with axis-parallel movements, using the dual transformation
which converts (i) a point (px,py) in the original space to a line y=px·x−py in the dual
space, and (ii) a line y=a·x−b to a dual point (a,b). Figure 3.6a illustrates the dual data
lines for the points in Figure 3.5a. Given a dragging query q, let qll and qlu be the lines
representing the movements of the query segment’s upper and lower end-points, re-
spectively (see Figure 3.5a). Since they have the same slope qs, their dual points qpl
and qpu have the same x-coordinate qs. The vertical line segment (we also refer to it as
the query segment) in the dual space qs:[qply,qpuy] connecting qpl and qpu has the fol-
lowing important property: it intersects a dual data line (in Figure 3.6a, the intersected
lines are l2, l3, l6, l7) if and only if the corresponding data point (i.e., p2, p3, p6, p7) lies
between qll and qlu in the original space.

As shown in Figure 3.5a, the result (i.e., p3) of the original dragging query
qx:[qsy,qey] is the point with the smallest x-coordinate among those (i) that lie between
lines qll and qlu, and (ii) whose x-coordinates are larger than qx. In the dual space, this
is equivalent to finding the dual data line with the smallest slope among those (i) that
intersect the vertical segment qs:[qply, qpuy], and (ii) whose slopes are larger than qx.
For this purpose, we perform yet another transformation, which converts a dual data
line to a point in the slope-rank space. Specifically, the ranks of dual lines are defined
according to their topological ordering at certain x-coordinate (lines may have differ-
ent ranks at different x-coordinates). In Figure 3.6a, for example, the rank of l2 (with
slope 8) at x=qs is 1, because its intersection with x=qs is the lowest among the inter-
section points of all the lines; thus, it is mapped to (8,1) in the slope-rank space. Fol-
lowing the same idea, Figure 3.6b shows the converted points in the slope-rank space
of all the lines (with respect to x=qs) in Figure 3.6a.

l
1 l

2

l
3

l
4

l
5

l
6

l
7

qp
l

qp
u

q
sx=

qr
u

qr
l

20 4 6 8 10

2

4

6

8

rank

slope

p
1

p
2

p
7

p
6

p
4

p
5

p
3

x= qx

(a) Dual space (b) Slope-rank space

Figure 3.6: Using two transformations to solve queries with non-axis-parallel movement

Accordingly, the query segment qs:[qply,qpuy] in the dual space is converted into an
other vertical line segment qx:[qrl,qru] in the slope-rank space, where qx is the x-
coordinate of the original dragging query (in Figure 3.5a, qx=3.5), and qrl (qru) is the
rank of point qpl (qpu) at x=qs in the dual space. In Figure 3.6, qrl is set to 0.5, indicat-
ing that qpl is below all lines at x=qs; similarly qru is assigned to 4.5, meaning that qpu
is between l4 and l3 at this x-coordinate. Note that, the values of qrl and qru are not

unique; for example, qrl can be any number between 4 (the rank of l4) and 5 (the rank
of l3), while qru can be any number below 1 (the rank of l2). The merit of this trans-
formation is that, now it remains to find, in the slope-rank space, the point first hit by
the right-moving vertical dragging query qs:[qrl,qru] (i.e., p3, which as in Figure 3.5a is
the correct answer to the original dragging query). This problem was solved in Sec-
tion 3.2; we use the solution based on the simplified external range tree (Figure 3.4).

We have shown that a dragging query whose moving direction has specific slope qs,
can be solved using an external range tree at x=qs in the dual space. In order to sup-
port all slopes, we must maintain such a tree at every x-coordinate. Fortunately, since
we only care about the topological ordering of the dual lines, a new tree is necessary
only when the ranks of two lines change. Motivated by this, we adopt the persistent
version of the (simplified) external range tree, where a new tree is created at the x-
coordinates where two dual lines cross each other. Towards this, the first step is to
obtain the intersection points of all pairs of dual lines, using an I/O optimal algorithm
for line arrangement computation [GTVV93]. Then the second step constructs the
persistent tree in the ascending order of the intersections’ x-coordinates. Since there
are totally O(N2) intersections, the space occupied by the persistent tree is
O((N2/B)logB(N/B)/loglogB(N/B)) and its construction incurs O((N2/B)logB(N/B)) I/Os.

Further, in order to efficiently assign ranks to the end points of the query segment
in the dual space (see Figure 3.6a), we maintain another persistent B-tree where each
logical B-tree indexes the ranks of the lines at each x-coordinate in the dual space.
This tree consumes O(N2/B) space, and can be built in O((N2/B)logB(N/B)) I/Os. The
query ranks can be assigned in O(logB(N/B)) I/Os, by searching the B-tree at x=qs (i.e.,
the query slope). The total query cost, however, is dominated by that of searching the
external range tree, which, as shown in Theorem 3.3, has complexity
O(logB

2(N/B)/loglogB(N/B)).
Theorem 3.5: Given a dataset S of N static 2D points, we can pre-process S into a

set of index structures that consume O((N2/B)logB(N/B)/loglogB(N/B)) space and can
be constructed in O((N2/B)logB(N/B)) expected I/Os, such that a validity RS query q
(with arbitrary window size and moving direction) can be answered in
O(logB

2(N/B)/loglogB(N/B)) time. ■

3.4 Dynamic data and static queries

Having solved dragging queries on static objects, in this section, we discuss dynamic
data points assuming, however, static queries. As before, the goal is to find the first
point that crosses the (static) query segment q=qx:[qsy,qey]. For this purpose, we sepa-
rate points moving towards the positive/negative direction of the x-axis, and process
them independently. Due to the symmetry, it suffices to elaborate our solution for
right-moving points. Figure 3.7a shows an example with 5 points p1, p2, ..., p5 whose
trajectories are represented as rays l1, l2, ..., l5. For simplicity, assume that all points
move at the same speed. Consider two dragging queries q1, q2 in Figure 3.7a, both of
which intersect rays l2 and l3, but in different order. Specifically, for q1, the first point
hit is p3, while for q2 the first point is p2. Such ordering determines the corresponding
query result, and can be described using the concept of “arrival time”. Specifically, for
each data point p with x-coordinate px, its arrival time atp(x) for any x≥px is the future

timestamp such that px=x. Then, a dragging query q=qx:[qsy,qey] is reduced to finding
the point p with the smallest arrival time atp(qx), among those whose trajectories inter-
sect the query line segment. As an example, q1 intersects p2 and p3, while p3 is the
final result since atp3

(q1x)<atp2
(q1x).

p
1

p
2

p
3

p
5p

4

20 4 6 8 10

2

4

6

8

y axis

x axis

q
1

q
2

l
1

l
2

l
3

l
4

l
5

p
3

p
2

p
5

p
1

p
5

p
2

root

p
4

l
4

l
2

the trajectory of the point

the point with the smallest
arrival time at x=9

l
3

l
5

with the lowest rank

the trajectory of the point
with the highest rank

p
1

p
2

p
3

p
5p

4

20 4 6 8 10

2

4

6

8

y axis

x axis

e
x

(a) Object trajectories (b) The agg. B-tree at x=9 (c) x-coord. for new logical tree

Figure 3.7: Handling dynamic data

Based on this idea, we solve a dragging query using a persistent aggregate tree in
logarithmic query cost. Specifically, the persistent tree maintains a logical aggregate
B-tree at every x-coordinate x indexing all the data trajectories spanning x (e.g., in
Figure 3.7 the logical tree at x=9 stores all rays), which are sorted according to their
ranks (i.e., the topological ordering, similar to Figure 3.6) at x (e.g., at x=9, l4, l3 have
ranks 1, 5 respectively). Furthermore, in each non-leaf entry (of the aggregate tree at
x) we store the ray with the smallest arrival time at x among those in its subtree. In
Figure 3.7b, the first root entry <p5,l4,l5>, for example, indicates that at x=9, the point
with the lowest (highest) rank in its subtree has trajectory l4 (l5), and the point with the
minimal arrival time is p5. Given a query qx:[qsy,qey], the problem now is reduced to
finding the point, in the aggregate tree at x=qx, with the minimal arrival time among
those intersecting the query segment which, using the same algorithm given in Section
3.2, can be solved in O(logB(N/B)) I/Os.

Constructing the persistent aggregate tree deserves further discussion. We deploy a
plane-sweep that creates the logical trees from left to right. Specifically, a new logical
tree is necessary at the x-coordinates where one of the following events occurs: (i) a
new data point appears, (ii) the rays of two points intersect (i.e., the ranks of the rays
change), and (iii) the arrival time of two points becomes equal. Figure 3.7c (i.e., the
dashed lines) demonstrates all the events for the example of Figure 3.7a. Notice that
the x-coordinate ex of the last event (i.e., the right-most dashed line) is due to the fact
that the arrival time of p2 equals that of p3, i.e., atp2

(ex)= atp3
(ex). In general, any pair

of points (pi, pj) defines an event (based on their arrival time), if pix>pjx and the speed
of pi is larger than that of pj. It is easy to see that the number of all events is bounded
by O(N2), and they can be obtained using an algorithm similar to the line arrangement
computation given in [GTVV93].

Theorem 3.6: Given a dataset S of N moving 2D points (with arbitrary velocity),
we can pre-process S into a set of aggregate B-trees that consume O((N2/B)logB(N/B))
space and can be constructed in O((N2/B)logB(N/B)) expected I/Os, such that a static
validity RS query q (with arbitrary window size) is answered in O(logB(N/B)). ■

3.5 Dynamic data and dynamic queries

We discuss the general case where both the data and query are dynamic in the 1D
space, and leave the 2D case for future work. Figure 3.8 shows the trajectories (l1, l2,
..., l5) of 5 points p1, p2, ..., p5 in the x-time space, and an RS query q with interval
[qsx,qex] at the current time tc moving as indicated by the arrows. In this case, the cor-
responding (1D) dragging queries are two “rays” (i.e., qls and qle the figure) shooting
from the end points of q, and each of them finds the point that is first encountered (p2
and p3 respectively). The final answer is the one hit earlier (i.e., p3).

0

time

x axis

qsx qex

l
1

l
2

l
3 l

4
l

5

t c

qls qle

t u

p
4

p
1

p
3

p
5

p
2

c1

c2

c3 c4

c5

c6

l
5

l
2 l

3
l

4 l
1

l
5

l
3

edges of c
1 edges of c

2 edges of c
3

edges of c
4

edges of c
5

edges of c
6

(a) An example (b) The zone B-tree at t=tc
Figure 3.8: Handling moving data and queries

To solve the 1D dragging query, we only need to maintain the zone at the current time
tc, which consists of all the cells, intersecting line t=tc, in the arrangement of the data
points’ trajectories. Figure 3.8 demonstrates the zone with shaded polygons c1, c2, ...,
c5. The zone has complexity O(N) [BKOS97], meaning that the polygons that generate
it have O(N) edges (although a single polygon can have O(N) edges in the worst case,
the number of such polygons is O(1)). To answer a dragging query (e.g., qls in Figure
3.8), we first find the cell c1 of the zone that covers the source (qsx, qt=tc) of the query
ray, which can be achieved in O(logB(N/B)) I/Os, by searching, with value qsx, a B-tree
(called the zone B-tree in the sequel) that indexes the topological ordering of the data
trajectories at t=tc. In Figure 3.8b, for example, the zone B-tree stores lines l2, l1, l3, l5,
l4, whose ranks at time tc are in this order. Each trajectory is associated with a pointer
to the cell (of the zone) to its left. In this example, the cell c1 containing (qsx,qt) is
identified through the pointer stored in l2. Then, a second search is performed to iden-
tify the (unique) edge in c1 that is hit by qls. Since c1 contains O(N) edges, this can be
accomplished in O(logB(N/B)) I/Os through, for example, a binary search. Thus, the
total query time is O(logB(N/B)) I/Os.

The zone at the current time may become useless as the time progresses. Particu-
larly, the zone changes at discrete timestamps (i.e., events) when the trajectories of
two data points cross each other. Following the kinetic approach [BGH97], we man-
age these events in an event queue, and dynamically maintain the zone at the next
event removed from the queue. In Figure 3.8, the next event is at timestamp tu, at
which time lines l5 and l1 change their ranks (i.e., ordering). To reflect this, we per-
form two deletions from the zone B-tree, corresponding to the old ranks of l5 and l1,
and then two insertions for their new ranks. Furthermore, we also need to maintain the
cells in the zone, specifically as shown in the figure, removing cell c3 that is no longer
in the zone, and inserting a new one which is enclosed only by l5 and l1. Finally, we

must insert two new events in the event queue, which correspond to the (future) inter-
section time of l2 and l5, l1 and l3, respectively. In general, a new event is created as a
pair of lines become adjacent in the zone B-tree for the first time. Using an external
priority queue [A94] as the event queue, handling an event incurs totally logB(N/B)
I/Os.

Theorem 3.7: Given a dataset S of N moving 1D points, we can pre-process S into
an index structure that consumes O(N/B) space and can be constructed in
O((N/B)logB(N/B)) expected I/Os, such that a moving validity RS query q (with arbi-
trary window sizes and velocities) can be answered in O(logB(N/B)) I/Os. This struc-
ture can be updated in logB(N/B) I/Os for each kinetic event. ■

4. Validity Information Retrieval for Nearest Neighbor

If the data points are static, validity information retrieval is simple using the Voronoi
diagram defined by the objects. Specifically, given a moving query point q, we first
find the Voronoi cell that contains q (i.e., a point location problem), and then identify
the edge of the cell hit by the movement of q (discussed in Section 3.5). The point
location problem in the secondary memory can be solved in O(logB(N/B)) I/Os, using
a persistent B-tree, which (given that the Voronoi cell has complexity O(N)) consumes
O(N/B) space, and can be constructed in O((N/B)logB(N/B)) I/Os [ADT03].

Theorem 4.1: Given a dataset S of N static 2D points and its Voronoi diagram, we
can pre-process S into an index structure that consumes O(N/B) space and can be
constructed in O((N/B)logB(N/B)) expected I/Os, such that a moving validity NN
query q (with arbitrary moving direction) can be answered in O(logB(N/B)) I/Os. ■

Next, we consider the problem with moving objects in the 1D space (the 2D prob-
lem is left for future work). Figure 4.1a shows the trajectories l1, l2, l3, l4, l5 of 5 points
and a moving query q, whose current nearest neighbor is p3. In order to find the point
that will become the next nearest neighbor of q, we mirror l3 to l3' (i.e., the dotted
line) such that the horizontal distance between l3', q is the same as that between l3, q
for any future time t. In this example, the first points crossed by p3 and p3' (after the
query time) are p1 and p5 respectively, among which p5 is the next NN of q. Figure
4.1b shows another example, where the trajectories of q and its current NN p3 do not
intersect. We mirror l3 to l3' in the same way, and the first point hit by these two lines
is p1, the next NN of q. The following lemma states that the next NN of q always come
from the first points hit by its current NN and its mirror.

Lemma 4.1: Given a set S of 1D moving points, let q be the query point whose
nearest neighbor is ρ∈ S. Let ρ' be the mirror of ρ with respect to q, such that ∀ t>0,
dist(ρ(t),q(t))= dist(ρ′(t),q(t)), where x(t) denotes the position of point x at time t. As-
sume that p1, p2 are the first points in S that are crossed by ρ and ρ' respectively, and
let t1, t2 be the time when these “crossings” occur. Then the next nearest neighbor of q
is p1 if t1<t2, or p2 otherwise. ■

This lemma permits answering a validity NN query using logarithmic time in the
same way as we solved the (1D) dragging query on dynamic data. Specifically, we
maintain the zone B-tree as in Figure 3.8b so that, given a query point q at the current
time, we can efficiently find the cell (in the zone of the current time) that contains q

(the shaded polygons in Figures 4.1a, 4.1b). Then, its current NN is decided from its
neighboring points in the zone B-tree (in both examples of Figure 4.1, p2, p3 are the
neighboring points, among which p3 is the NN). Then, deciding the first points hit by
the NN and its mirror involves inspecting at most two cells, e.g., two (one) cells in
Figure 4.1a (4.1b) (note that the cell containing q is always visited). The zone B-tree
and the cells of the zone at the current time can be updated using the kinetic approach
as discussed in Section 3.5, with the same query time and space complexities.

0

time

x axis

qp
1

p
2 p

3
p

4 p
5

l
3 '

l
1l

2 l
3 l

4

l5

 0

time

x axis

q

l
1

l
2

l
3

l
4

l
5l

3 '

p
1

p
2

p
3 p

4
p

5
(a) q intersects its NN (b) q does not intersect its NN

Figure 4.1: Validity NN query

Theorem 4.2: Given a dataset S of N moving 1D points, we can pre-process S into an
index structure that consumes O(N/B) space and can be constructed in
O((N/B)logB(N/B)) I/Os, such that a moving validity RS query q (with arbitrary mov-
ing direction) can be answered in O(logB(N/B)) I/Os. This structure can be updated in
logB(N/B) I/Os for each kinetic event. ■

5. Summary and Open Problems

Validity information retrieval aims at accompanying with expiry information the result
of a traditional spatial query in a dynamic environment. Therefore, a validity query is
usually executed together with the corresponding spatial query and the overall com-
plexity is dominated by the more expensive of these two queries. Table 6.1 summa-
rizes the results in this paper and illustrates the best performance for the correspond-
ing traditional queries. Each cell includes the space complexity, followed by the query
time. Using this table, we identify the following open problems:
• For validity RS queries on static data, is there a method which consumes linear

space and answers a query in O((N/B)1/2) I/Os? This would eliminate the extra
O((N/B)ε) query overhead and make the validity query as expensive as the tradi-
tional RS, achieving optimal performance using linear space.

• For validity RS queries on static data, is there a method which consumes space
O((N/B)logB(N/B)/loglogB(N/B)) and answers an axis-parallel-moving query in
O(logB(N/B)) I/Os? Such a method would achieve logarithmic query time using
the minimal space.

• For static validity RS queries on dynamic data, devise a method which achieves
logarithmic query cost with less space consumption than the current solution.

• Develop index structures for dynamic validity RS queries on dynamic 2D data
with good worst case bounds.

• Design a solution that answers NN, and validity NN queries on dynamic 2D data.
• Determine the lower (space/query cost) bounds for the above problems.

query traditional queries validity queries
O(N/B), O(logB(N/B)) for constant query

size and velocities linear
space

O(N/B), O((N/B)1/2+K/B) [KS99, GI99]
O(N/B), O((N/B)1/2+ε)

O((N/B)logB(N/B)), O(logB(N/B)) for APM*

O((N/B)logB(N/B)/loglogB(N/B)),
O(logB

2(N/B)/loglogB(N/B)) for APM

range search
on static data non-

linear
space

O((N/B)logB(N/B)/loglogB(N/B)),
O(logB(N/B)+K/B) [ASV99]

O((N2/B)logB(N/B)/loglogB(N/B)),
O(logB

2(N/B)/loglogB(N/B))
linear
space

O(N/B), O((N/B)1/2+K/B) [ASV99] NA

O((N2/B)logB(N/B)), O(logB(N/B)) for static
queries

O(N/B), O(logB(N/B)) for 1D data

range search
on dynamic

data
non-
linear
space

O((N/B)logB(N/B)/loglogB(N/B)),
O(logB(N/B)+K/B) [ASV99]

NA for 2D data
NN on static

data
O(N/B), O(logB(N/B)) (Voronoi diagram plus

point location queries)
O(N/B), O(logB(N/B))

O(N/B), O(logB(N/B)) for 1D O(N/B), O(logB(N/B)) for 1D
NN on dy-
namic data

NA for 2D NA for 2D

*APM= axis-parallel-moving queries
Table 6.1: Summary of the results

Acknowledgements

This work was supported from grants HKUST 6081/01E, HKUST 6197/02E and
HKU 7380/02E from Hong Kong RGC.

References

[A94] Arge, L. The Buffer Tree: A New Technique for Optimal I/O Algorithms.
WADS, 1994.

[AAE+00] Agarwal, P., Arge, L., Erickson, J., Franciosa, P., Vitter, J. Efficient Searching
with Linear Constraints. Journal of Computer and System Sciences, 61(2): 194-
216, 2000.

[AAE00] Agarwal, P., Arge, L., Erickson, J. Indexing Moving Points. ACM PODS, 2000.
[AAV01] Agarwal, P., Arge, L., Vahrenhold, J. A Time Responsive Indexing Scheme for

Moving Points. Workshop on Algorithms and Data Structures, 2001.
[ADT03] Arge, L., Danner, A., Teh, S. I/O Efficient Point Location Using Persistent B-

Trees. ALENEX, 2003.
[ASV99] Arge, L., Samoladas, V., Vitter, J. On Two-Dimensional Indexability and Opti-

mal Range Search Index. ACM PODS, 1999.

[BGH97] Basch, J., Guibas, L., Hershberger, J. Data Structures for Mobile Data. ACM
SODA, 1997.

[BGO+96] Becker, B., Gschwind, S., Ohler, T., Seeger, B. Widmayer, P. An Asymptoti-
cally Optimal Multiversion B-trees. VLDB Journal, 5(4): 264-275, 1996.

[BJKS02] Benetis, R., Jensen, C., Karciauskas, G., Saltenis, S. Nearest Neighbor and
Reverse Nearest Neighbor Queries for Moving Objects. IDEAS, 2002.

[BKOS97] de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O. Computational
Geometry. Springer, 1997.

[BKSS90] Beckmann, N., Kriegel, H., Schneider, R., Seeger, B. The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles. ACM SIGMOD, 1990.

[C88] Chazelle, B. An algorithm for segment-dragging and its implementation. Algo-
rithmica, 3: 305-221, 1988.

[CGR95] Callahan, P., Goodrich, G., Ramaiyer, K. Topology B-Trees and Their Applica-
tions. Workshop on Algorithms and Data Structures, 1995.

[GBE+00] Guting, R., Böhlen, M., Erwig, M., Jensen, C., Lorentzos, N., Schneider, M.,
Vazirgiannis, M. A Foundation for Representing and Querying Moving Objects.
ACM TODS, 25(1): 1-42, 2000.

[GI99] Grossi, R., Italiano, G. Efficient Splitting and Merging Algorithms for Order
Decomposable Problems. Information and Computation, 154(1): 1-33, 1999.

[GLM00] Govindarajan, S., Lukovszki, T., Maheshwari, A., Zeh, N. I/O-Efficient Well-
Separated Pair Decomposition and Its Applications. Annual European Sympo-
sium on Algorithms, 2000.

[GTVV93] Goodrich, M., Tsay, J., Vengroff, D., Vitter, J. External Memory Computational
Geometry. IEEE FOCS, 1993.

[HKP97] Hellerstein, J., Koutsoupias, E., Papadimitriou, C. On the Analysis of Indexing
Schemes. ACM PODS, 1997.

[IKO87] Icking, C., Klein, R., Ottmann, T. Priority Search Trees in Secondary Memory.
GTCCS, 1987.

[KGT99a] Kollios, G., Gunopulos, D., Tsotras, V. On Indexing Mobile Objects. ACM
PODS, 1999.

[KGT99b] Kollios, G., Gunopulos, D., Tsotras, V. Nearest Neighbor Queries in Mobile
Environment. STDBM, 1999.

[KRVV96] Kanellakis, P., Ramaswamy, S., Vengroff, D., Vitter, J. Indexing for Data Mod-
els with Constraints and Classes. Journal of Computer and System Sciences,
52(3): 589-612, 1996.

[KS99] Kanth, K., Singh, A. Optimal Dynamic Range Searching in Non-Replicating
Index Structures. ICDT, 1999.

[RS94] Ramaswamy, S., Subramanian, S. Path Caching: A Technique for Optimal Ex-
ternal Searching. ACM PODS, 1994.

[SJLL00] Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M. Indexing the Positions of
Continuously Moving Objects. ACM SIGMOD, 2000.

[SR01] Song, Z., Roussopoulos, N. K-Nearest Neighbor Search for Moving Query
Point. SSTD, 2001.

[SR95] Subramanian, S., Ramaswamy, S. The P-Range Tree: A New Data Structure for
Range Searching in Secondary Memory. ACM SODA, 1995.

[TPZ02] Tao, Y., Papadias, D., Zhang, J. Aggregate Processing of Planar Points. EDBT,
2002.

[TP02] Tao, Y., Papadias, D. Time-Parameterized Queries for Spatio-Temporal Data-
bases. ACM SIGMOD, 2002.

[TPS02] Tao, Y., Papadias, D., Shen, Q. Continuous Nearest Neighbor Search. VLDB,
2002.

