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Efficient Time-Stamped Event Sequence Anonymization

REZA SHERKAT, JING LI, and NIKOS MAMOULIS, The University of Hong Kong

With the rapid growth of applications which generate timestamped sequences (click streams, GPS trajecto-
ries, RFID sequences), sequence anonymization has become an important problem, in that should such data
be published or shared. Existing trajectory anonymization techniques disregard the importance of time or
the sensitivity of events. This article is the first, to our knowledge, thorough study on time-stamped event
sequence anonymization. We propose a novel and tunable generalization framework tailored to event se-
quences. We generalize time stamps using time intervals and events using a taxonomy which models the
domain semantics. We consider two scenarios: (i) sharing the data with a single receiver (the SSR setting),
where the receiver’s background knowledge is confined to a set of time stamps and time generalization suf-
fices, and (ii) sharing the data with colluding receivers (the SCR setting), where time generalization should
be combined with event generalization. For both cases, we propose appropriate anonymization methods that
prevent both user identification and event prediction. To achieve computational efficiency and scalability, we
propose optimization techniques for both cases using a utility-based index, compact summaries, fast to com-
pute bounds for utility, and a novel taxonomy-aware distance function. Extensive experiments confirm the
effectiveness of our approach compared with state of the art, in terms of information loss, range query dis-
tortion, and preserving temporal causality patterns. Furthermore, our experiments demonstrate efficiency
and scalability on large-scale real and synthetic datasets.
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1. INTRODUCTION

Consider an Internet Service Provider (ISP) who collects logs of HTTP requests sent
by users, along with their IP addresses or any identifiers that users may provide to
authenticate and to connect to the Internet. Figure 1(a) depicts a sample of such click
streams, corresponding to the browsing history of five users in time interval [1–13].
For instance, click stream S1 visits Google at times 1 and 10. At the same time, online
stores and portals, which provide customized services (e.g., email, recommendations),
can collect all time stamps of user visits to their websites. For instance, Google can
collect the time stamps shown in Figure 1(b), which correspond to Google visits of the
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4:2 R. Sherkat et al.

Fig. 1. (a) Click streams of five users collected by an ISP, and (b) the time stamps that correspond to visits
to Google.

click streams in Figure 1(a). Gaining access to the click stream data, collected by ISPs,
enables a wide range of data analysis with social and commercial value. For instance,
sharing click streams with a search engine allows the engine to model user temporal
behavior using the aggregate frequency of visits to websites [Deshpande and Karypis
2004]. The model can be used to align services, for example, search results and ad-
vertisements, towards identified emerging trends in users’ interests [Agichtein et al.
2006; Dupret and Piwowarski 2008; Koren 2010; Matthijs and Radlinski 2011]. How-
ever, sharing click streams can lead to serious privacy breaches, such as the notorious
AOL privacy scandal [Barbaro and Zeller 2006], even if the identification information
of individuals (e.g. IP address) is removed from the published data. We consider two
practical scenarios in this article.

1.1. Motivating Examples

1.1.1. Sharing with Single Receiver (SSR). Assume that an ISP shares the click streams
of Figure 1(a) with Google. Despite masking the real identifiers with random ones, the
time stamps of Google visits can be used by Google to identify a user behind a sequence
(sequence identification) and/or successfully guess some of the remaining events of a
user’s sequence (event prediction).1 For instance, Google knows that only Sue and S1
visited Google at time 1 and 10, thus S1 can be associated to her. This association
ensures that she visited Bing at 3 and Amazon at 6 and 12. Although the time points
that Tom visited Google are not enough to associate him to one of S2 or S3, they provide
enough evidence that he certainly visited eBay during time range [7–8].

Time stamps can be used to link a click stream provided by an ISP with a user
ID held by the receiver. A privacy breach happens if the receiver matches a user ID
with less than k click streams (k-anonymity [Samarati 2001]), or infers that the user
visited a URL during any time interval of duration g with a probability over 1

�
. We call

the latter requirement (g, �)-diversity: an extension of �-diversity [Machanavajjhala
et al. 2006] to click streams. g represents the temporal aspect of sensitivity; intuitively,
it makes sense to care about the certainty of an event within only a restricted time
interval that makes this certainty statistically significant.

To prevent privacy breach by time stamp linkage, an ISP must anonymize data
by replacing time points with intervals; we term this step time generalization. An
anonymization for the click streams of Figure 1(a) is presented in Figure 2(a); only
the time points of Google visits are generalized (i.e., replaced by time intervals) (e.g.,
S1 visited Google during [1–3] and [10–11]). In addition to the uncertainty introduced
in the time points, the number of visits to Google within each interval and each

1Disclaimer. We use company names to illustrate an example of possible adversaries in this article. We do
not imply here that any real company has any malicious intentions for the use of their data.
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Efficient Time-Stamped Event Sequence Anonymization 4:3

Fig. 2. (a) Two-anonymity and (1, 3
2 )-diversity by time generalization in the SSR setting, when anonymized

data is provided to Google, (b) event and time generalization in the SCR setting, when data is provided to
Google and Bing, (c) a sample URL taxonomy, and (d) 2-anonymity by event and time generalization for an
extreme SCR setting.

sequence is lost.2 In Figure 2(a), Sue can be linked, with equal probability, to S1, S2,
and S3, as these sequences match with her regarding the time stamps of Google visits.
Tom matches three sequences, two of them visited eBay during [7–8]. Thus, we infer
that Tom visited eBay during [7–8] with probability 2

3 . Thus, Figure 2(a) satisfies
2-anonymity and (1, 3

2 )-diversity.
1.1.2. Sharing with Colluding Receivers (SCR). The time-generalization-based technique

we described is meant for a single designated receiver. If the receiver decides to share
its customized release with a third party, privacy can be threatened by the third party.
For instance, Bing can identify the user behind click stream S1 and learn all URLs
(and time) s/he visited, if Google shares the data in Figure 2(a) with Bing. An ideal
anonymization scheme must prevent attacks initiated by any subset of colluding par-
ties. To achieve this goal, we propose reducing the certainty of both time stamps and
URLs. We term this scheme time and event generalization.

The background knowledge of colluding receivers is a set of subsequences contain-
ing their common knowledge. For instance, if Google and Bing collude, the common
background knowledge is at most3 B = {Bi}5

i=1, where Bi is a sequence with all visits
by Si in Figure 1(a) to Google or Bing. Figure 2(b) demonstrates an anonymization
which is provided to Google and Bing, assuming that they share data. Not only the
time stamps of visits to Google and Bing are replaced by intervals, but also the URLs
are replaced by Search Engine from the taxonomy in Figure 2(c). Any subsequence of
Bi ∈ B matches with at least two sequences in Figure 2(b). In the extreme case, there is
a risk that all parties collude, thus all time stamps and URLs need to be generalized,
as shown in Figure 2(d). Each anonymized sequence is a set of (category, time-interval)
pairs, where categories are derived from the taxonomy in Figure 2(c). Any subsequence
of sequence Si in Figure 1(a) matches with at least two sequences in Figure 2(d).

1.2. The Current State of the Art

In this section, we briefly review previous works that are directly related to our prob-
lem. An in depth survey of other related works appear in Section 9.

2The representation might be augmented to encode click statistics.
3This is the extreme case in which the colluding parties match the time stamps they collect with user IDs.
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Recently, there has been a growing interest in anonymizing search engine query
logs and browsing histories (e.g. [Götz et al. 2009; He and Naughton 2009; Jones et al.
2007; Korolova et al. 2009; Machanavajjhala et al. 2011; Pang et al. 2010; Terrovitis
et al. 2008]). They transform queries using a taxonomy, augment queries, or suppress
some keywords to achieve privacy. Surprisingly, the time dimension of click-streams
has been totally ignored in all these works. In terms of data utility, the time stamps
are important for extracting causality patterns [Koren 2010]. For instance, from
the anonymized data in Figure 2(a), Google learns the probability that a user visits
Amazon after (or before) five minutes of visiting Google (we study such queries in
Section 8.3). Moreover, the time stamps make queries more specific. A combination of
queries and time stamps can be used by adversaries to launch stronger attacks. For
instance, in the AOL dataset (Section 8.1) an attacker can identify 56% of click streams
if the attacker knows the visited URL. An attacker who knows a (URL, time stamp)
pair can identify 68%, 93%, and 99% of click streams if the recorded time granularity
is, respectively, an hour, a minute, and a second.4 This article is the first work, to our
knowledge, which studies the anonymization of time-stamped event sequences using
both time and event generalization in order to resist against such a strong attacker.

In both SSR and SCR settings, one can find naive (legitimate) anonymizations, (e.g.,
(ALL, [1–13]) for Figure 1(a)). However, the naive solution reduces the utility of the
anonymized data because the receiver does not learn any extra information beyond the
global time interval. Our objective is to minimize the data distortion along time and
event dimensions and at the same time protect privacy. For this reason, we adapt well-
known anonymity models for microdata [Machanavajjhala et al. 2006; Sweeney 2002]
to time-stamped event sequences. Like the itemset anonymization problem [He and
Naughton 2009; Terrovitis et al. 2008; Xu et al. 2008], the key difference of anonymiz-
ing time-stamped event sequences and traditional relational data is the lack of a fixed-
length schema. While in relational data, an attribute range (e.g., Age: [20–25]) blurs
only one attribute (Age) of each tuple, in our setting there is more flexibility; an inter-
val blurs a set of attributes in terms of (event, time) pairs. For instance, (Search En-
gines, [1–3]) in Figure 2(d) generalizes two clicks of S1 (i.e., (Google, 1) and (Bing, 3)),
but only one click of S2. This, requires a tailored definition of information loss which
takes this flexibility into account. Furthermore, the notion of sensitive attributes in
our setting is defined in relation with time, whereas often an attribute (e.g., disease)
is deemed sensitive. We propose a flexible privacy model which regards the sensitivity
of event prediction along any time interval of specified length.5 This distinguishes our
work from set anonymity [He and Naughton 2009; Terrovitis et al. 2008] inspired by
k-anonymity.

Our treatment of diversity is similar to the (h, k, p)-coherence model [Xu et al. 2008]
for itemset anonymity. In fact, one may wish to augment an item taxonomy with time
stamps and then specialize the suppression-based algorithm of Xu et al. [2008]. We
review this model and explain why we did not use this approach to our problem.
The (h, k, p)-coherence model requires that any combination of p items should appear
in at least k transactions, and each sensitive item must not appear in more than h
percent of these transactions. Otherwise, systematic item suppression is applied to
achieve (h, k, p)-coherence. For a retail dataset, the Xu et al. [2008] report under 30%
suppression for a wide range of values for parameter p (see Figure 8(b) of [Xu et al.
2008]). Unfortunately, their method brings severe suppression when item distribution
is skewed. In particular, for the AOL dataset (explained in Section 8.1), even if the

4For the users that have at least one visit to Google. Many websites (e.g., [Google 2011]) record/keep visit
time stamps in the granularity of a second.
5One can customize (g, �)-diversity model to account only for the prediction probability of sensitive events.
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Efficient Time-Stamped Event Sequence Anonymization 4:5

time stamps of clicks were replaced with the corresponding month, it turns out that
68% of click streams have unique (URL, time) pairs and must be suppressed due to
Xu et al. [2008], when p is as small as one. In this article, we locally generalize time
stamp and URLs to avoid such a catastrophic information loss by global suppression.

Recently, differential privacy [Dwork et al. 2006] has received a growing interest
in the database community. This model bounds the inference of a strong adversary
who knows all records of database except one. Dwork et al. [2006] add well-designed
Laplace noise to data to bound the inference power of a strong attacker. Achieving
differential privacy by Laplace noise has become a recurring theme in many works
(e.g., [Chen et al. 2012a; Ding et al. 2011; Götz et al. 2009; Korolova et al. 2009;
Machanavajjhala et al. 2008; Xiao et al. 2010]). As shown in Section 9.5, considering
time stamps with events makes data very sparse and the problem more challenging.
Even when the time dimension is ignored, a severe data distortion is introduced, when
data is sparse, to fulfill differential privacy (e.g., [Terrovitis et al. 2012]) or a relaxed
version of it (e.g., [Götz et al. 2009]). In particular, our study of applying the algorithm
of Götz et al. [2009] for click-streams (see Section 9.5) confirms a severe degree of
suppression. Furthermore, mixing time stamps with URLs makes a large number of
n-grams extracted from click streams by Chen et al. [2012a] approach unique, even for
very small values of n. For instance, when the granularity of a recorded time stamp
is one second, 99% of (event, time) pairs (i.e., 1-grams) were unique in our dataset. In
Chen et al.’s [2012a] framework, this implies that a majority of nodes in the prefix tree
constructed from the n-grams will be of depth one. Consequently, the synthetic dataset
generated using the induced Markov model cannot preserve most of the sequential
information inherent in click streams. An interesting research problem, beyond the
scope of this article, is to extend techniques for achieving differential privacy to further
retain the utility in the case of highly sparse time-stamped event sequences.6

Several works (surveyed in Section 9.7) have been proposed for trajectory anonymi-
zation to resist sequence identification attacks. These solutions (1) ignore the time
points of sequences [Abul et al. 2008; Terrovitis and Mamoulis 2008], (2) use time
points only for grouping sequences but only generalize location [Yarovoy et al. 2009],
or (3) perform time and location generalization but apply point suppression [Nergiz
et al. 2009]. As we experimentally show in Section 8.3, suppression reduces the utility
of anonymized data in several aspects (e.g., preserving temporal causality patterns and
range query distortion) and it may be critical when false negatives are not acceptable.
Furthermore, the sensitivity with respect to the time dimension was not considered
before. This renders existing methods vulnerable to event prediction attacks. We tackle
this problem by directly including time in (g, �)-diversity, which offers a tunable privacy
model with respect to both time and events (i.e., URLs).

1.3. Contributions

We propose a measure for data distortion caused by time and event generalization
and give a polynomial time algorithm (ANONYMIZE) to find an optimal set of inter-
vals for each anonymization group. We extend traditional privacy models to event
sequences and integrate time into the event diversity (the (g, �)-diversity model). We
propose a semisupervised clustering algorithm (BASELINE) to derive anonymization
groups. This approach is akin to Utility-based Data Partitioning (UDP) [Xu et al.
2006]. UDP offers better overall utility vs. multidimensional partitioning (MP) (e.g.,
Mondrian [LeFevre et al. 2006]), as reported before [Abul et al. 2008; Ghinita et al.
2007; Xu et al. 2006].7 However, MP scales better with database size. For our problem,

6One may apply time and/or event aggregation as a preprocessing step to reduce data sparseness.
7See Sections 3 and 9.3 for two different adaptations of Mondrian to our problem.
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we propose algorithms to bridge the performance gap between MP and UDP. This way
we can efficiently derive anonymized data with better overall utility. For this, we first
focus on the SSR setting and propose an incremental pruning scheme (FASTNN) which
uses an index structure and three lower bounds of utility. We then propose a hybrid
partitioning scheme (HYBRID) and a fast grouping method based on the distribution
of time points to further improve the performance. For the SCR setting, we propose
a partition-and-refine paradigm (algorithm PR) which uses a novel taxonomy-aware
distance (eventDist) and our optimizations for the SSR setting.

Experimental evaluation on large-scale real and synthetic data from diverse do-
mains confirms the efficiency, quality, and scalability of our algorithms. In particular,
As we show experimentally in Section 8.3, our methods achieve good utility not only in
terms of our information loss measure, but two more general measures; the amount of
distortion for range queries and the ability to preserve causality patterns.

2. DATA MODEL AND PROBLEM SETTING

Let E be the set of all possible events, for example, all URLs. The database D is a col-
lection of time-stamped event sequences. Each sequence S = {(ei, ti)}|S|

i=1 in D is a set of
|S| pairs. Each pair (e, t) ∈ S denotes the participation of S in event e ∈ E at time t. The
background knowledge of a receiver is database B of time-stamped event sequences.
We assume that B is subsumed by D, that is, each Sb ∈ B must be a subsequence of (at
least) one sequence in D but corresponds to only one sequence Si ∈ D. The sequences in
B are used as quasi-identifiers (QIDs). We assume that only the time stamps of events
in Er ⊆ E are collected by the receiver. More formally, ∀(e, t) ∈ Sb ∈ B, e ∈ Er.

Example 2.1. Consider the example in Section 1.1.1, where Er = {Google}. The set
B in this setting has five sequences: {(Google, 1), (Google, 10)}, {(Google, 1), (Google,
11)}, {(Google, 1), (Google, 3), (Google, 11)}, {(Google, 4), (Google, 6)}, and {(Google, 5)}.

Example 2.2. Consider the first example of Section 1.1.2, where Er = {Google,
Bing}. The set B in this setting has five sequences: {(Google, 1), (Bing, 3), (Google, 10)},
{(Google, 1), (Google, 11)}, {(Google, 1), (Google, 3), (Google, 11)}, {(Google, 4), (Google,
6), (Bing, 10)}, and {(Google, 5), (Bing, 7)}.
2.1. Generalization Model

To anonymize D, we follow a partition-based approach [Sweeney 2002]. We divide
D into non-overlapping partitions which are called anonymization group (AG). The
set P = {S1, . . . ,S|P |} is a partitioning of D if ∪|P |

i=1Si = D and Si ∩ Sj = ∅ for any
1 ≤ i < j ≤ |P|. We generalize the sequences in each group independently and publish
the generalized sequences as D∗

P . While forming the groups depends mostly on the
privacy model (Section 2.3), the generalization step (Section 7) is often independent
from the partitioning step and mostly focuses on the indistinguishability of data in
the quasi-identifier (QID) space, and the amount of information loss in each AG. We
generalize each time stamp using a time interval and each event using a category
from a taxonomy (e.g., Figure 2(c)) only for event pairs (e, t) ∈ Sb ∈ B.8 To improve

8There are other variations of generalizations which we do not study in this article, for example, leave
(e, t) ∈ Sb ∈ B intact but generalize (e, t) pairs not collected by a receiver, or selectively generalize subset of
(e, t) pairs in D irrespective of B. In this article, though, we decided to be consistent with the data privacy
literature, where often quasi-identifier attributes are generalized and sensitive attributes remain intact.
Examining other generalizations and their impact on the privacy model and utility is an interesting research
direction.
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data utility, we opt for local recoding; we do generalizations on the granularity of each
anonymization group (AG). We represent a set of sequences S in the same AG using
a set of intervals I = {(ci, [si − ei])}|I|

i=1, where ci is a category and [si − ei] is a time
interval, si ≤ ei. We enforce the following property on S and I.

PROPERTY 2.3 (STRONG COVERAGE (SC)). Let the set of intervals IS represent the
anonymization group S. Each interval (ci, [si − ei]) ∈ IS must cover at least one (e, t)
from each sequence in S if e ∈ Er; event e is under category ci and t ∈ [si – ei]. There
is no sequence in S with a pair (e, t) which is not covered by any interval I ∈ IS if
e ∈ Er.

Example 2.4. In Figure 2(a), when the click-streams are shared with Google, we
have Er = {Google}. The interval set I1 = {(Google,[1–3]), (Google, [10–11])} covers all
Google visits to for all sequences in the anonymization group S1 = {S1, S2, S3}. When
Er = E, that is, the set of all URLs, it is assumed that all receivers can share data
with each other. For this setting, the interval set I2 = {(All, [1–2]), (Internet/Computer,
[4–8]), (All, [10–13])} covers all visits for all sequences in the anonymization group
S2 = {S4, S5}.

Violating SC has two drawbacks: (1) not generalizing (at least) one time stamp
of sequence Sb ∈ B may cause a direct identification of Sb, and (2) having an in-
terval which does not cover (at least) one time stamp of Sb indicates a fake event
participation for Sb and therefore publishing wrong data. Note that the interval set{
(All, [minS∈D start(S) − maxS∈D end(S)])

}
satisfies the SC property, where start(S) and

end(S) are, respectively, the smallest and the largest time stamp of S. Thus, there
is at least one set of intervals for each anonymization group that satisfies the SC
property.

2.2. Information Loss Measure

The utility of anonymized data depends on the analysis of interest and the query work-
load. Because the query is not fixed ahead, it is impossible to find an anonymization
which provides the most accurate result for every query. Thus, as it was practiced
before [Bayardo and Agrawal 2005; LeFevre et al. 2006], we propose a data distor-
tion measure as a surrogate for query answerability and find an anonymization which
achieves the desired privacy with minimum information loss. We start by defining data
distortion of a single interval I along the time and event dimensions. Then, we expand
this measure to a set of intervals I. Finally, we define a distortion measure for an
anonymization corresponding to partitioning P of database D.

Assume that we use interval I = (ci, [si − ei]) to represent a set of (event, time) pairs
in time interval [si – ei] using the event category ci. This adds uncertainty by time and
event generalization. We use two measures ILe and ILt to quantify each loss separately.
ILe(I) is the normalized distortion due to generalizing into event category ci.

ILe(I) =
{

0, if ci is an event (not generalized),
|ci|/|E|, otherwise,

where |ci| is the number of events ej in the taxonomy under ci. ILt(I) is the normalized
distortion due to generalizing time stamps into interval [si – ei] and is defined as

ILt(I) = (ei − si)

maxS∈D end(S) − minS∈D start(S)
. (1)

ACM Transactions on the Web, Vol. 8, No. 1, Article 4, Publication date: December 2013.
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Both ILe and ILt are normalized and fall in the range [0–1], where 1 means the com-
plete distortion of corresponding value. These two measures can be unified into one
measure using a monotonically increasing function9, such as IDD.

IDD(I) = wt · ILt(I) + we · ILe(I)
wt + we

, (2)

where the weights wt and we, respectively, capture the relative importance of time
and event uncertainty.10 For instance, when the accuracy of events is more important
than time in the anonymized data, we set we > wt to penalize event distortion more
than time distortion; in the extreme case, we → ∞ and Eq. (2) simplifies to ILe(I)
and our anonymization target simplifies to the traditional query-log anonymization
[Götz et al. 2009; Jones et al. 2007; Korolova et al. 2009]. In the most compact interval
I = (ci, [si − ei]) for a sequence Sb ∈ B, we must set si = start(Sb), ei = end(Sb), and ci to
the lowest common ancestor of events {e | (e, t) ∈ Sb ∧ si ≤ t ≤ ei} in the taxonomy.

Example 2.5. Consider the dataset in Figure 1(a) and the taxonomy of Figure 2(c).
For the interval I = (Internet/Computer, [8–10]), ILe(I) = 4

8 and ILt(I) = 2
12 . The lowest

common ancestor for the event sets E1 = {Ebay, Amazon}, E2 = {Face, Myspace}, and
E1 ∪ E2 are, respectively, Shopping, Social Networks, and All.

Eq. (2) combines the distortions along time and event dimensions into one measure
in the range [0, 1] with a smaller value more desirable and indicative of a tighter rep-
resentation within the time range of I. For a set of sequences S and a set of intervals
I, we integrate IDD to quantify the distortion of generalizing sequences of S using I.

IL(S, I) =
∑

I∈I
∑

S∈S |SI| · IDD(I)∑
S∈S |S| , (3)

where SI = {(e, t) ∈ S|e ∈ Er ∧ si ≤ t ≤ ei}. The term IDD(I) does not capture the
number of (event, time) pairs that are approximated by interval I. Multiplying IDD(I)
by the term |SI| in Eq. (3) penalizes the distortion of each interval I by the number of
(event, time) pairs it approximates. Next, we define our metric of goodness (homogene-
ity) for a set of sequences grouped in the same anonymization group S. Intuitively, the
are many possible set of intervals that can represent the same anonymization group.
In order to measure the goodness of S, we consider the interval set which has the
smallest information loss to represent sequences in S. Formally,

CP(S) = min
∀I

{
IL(S, I)

}
. (4)

In other words, IL depends on a specific set of intervals I used to represent S, whereas
CP depends on the information loss for the optimal set of intervals for S. Therefore,
a zero CP indicates that all sequences in S are equal. In Section 7, we show how to
compute CP(S) and the optimal set of intervals I which minimizes IL(S, I) for an
anonymization group S. We use CP to quantify the amount of uncertainty introduced
by anonymizing database D using partitioning P as

NCP(D,P) =
∑

S∈P |S| · CP(S)

|D| , (5)

which is a normalized distortion measure in the range [0 − 1].

9f (x, y) is a monotonically increasing function, if f (x1, y) ≤ f (x2, y) for any x1 ≤ x2 and f (x, y1) ≤ f (x, y2) for
any y1 ≤ y2.
10We assume that the weights are nonnegative (wt ≥ 0 and we ≥ 0) and wt + we > 0.

ACM Transactions on the Web, Vol. 8, No. 1, Article 4, Publication date: December 2013.
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2.3. Privacy Model and Problem Setting

We consider two types of attacks, namely, sequence identification and event prediction.
For the first attack, we directly use the traditional k-anonymity [Samarati 2001].

Definition 2.6 (k-anonymity). Partitioning P of database D is k-anonymous if no
adversary that monitors events Er can associate a sequence in B with less than k
sequences in D∗

P .

In order to quantify the risk of event prediction attack, we extend the �-diversity
[Machanavajjhala et al. 2006] model, originally proposed for microdata, to event se-
quences. First, we must provide a measure for event prediction probability. For a set
of sequences S and event set Er, the probability of observing event e ∈ E − Er during
time interval T in any sequence of S is Pr(e, T |S) = |{S∈S | ∃ (e,ti)∈S, ti∈T }|

|S| . Formally, in an
event prediction attack for sequence Sb ∈ B, the adversary uses the pairs (e, t) ∈ Sb to
first find the partition in the anonymized data, which contains Sb. The adversary uses
the partition found to make inference about the participation of Sb in events in E − Er
during any time interval of interest. As an example of this attack, consider Figure 2(a)
again, where Er = {Google} and let Sb = {(Google, 1), (Google, 10)}. Here, Sb corre-
sponds to sequence S1 in Figure 1(a). An adversary can learn that Sb is a sequence
inside S = {S1, S2, S3}, thus Pr(e, T |S) = 1

3 , for e = Bing and T = [1–3].
To provide a bound on the inference power of an adversary, in terms of predict-

ing event participation time for any sequence, we extend the traditional �-diversity
[Machanavajjhala et al. 2006] into (g, �)-diversity as follows.

Definition 2.7 ((g, �)-diversity). Let Er ⊆ E be the set of events monitored by the
receiver(s) and Es = E − Er be the events not monitored by receivers, thus regarded as
sensitive events. A partitioning P of database D satisfies (g, �)-diversity if Pr(e, Tg|S) ≤
1
�

for any event e ∈ Es, any time interval Tg of length g, and any set S ∈ P.

Informally, no receiver, using the anonymized data can associate an event which
is not monitored by the receiver to any sequence with a certainty over 1/� within
any time interval of length g or shorter.11 This definition, protects against sensitive
event (URL) inference within any time interval of duration g or less. In this regard,
Definition 2.7 is flexible; as long as for any time window Tg, the adversary is confused
for the event participation of a sequence, we consider the anonymized data privacy
preserving. Thus, an event is not deemed sensitive only because it belongs to the set
of sensitive events. If an adversary finds about an event but cannot not refine its time
stamp to an interval shorter than g with a certainty more than 1

�
, we do not con-

sider this a privacy breach. Of course, if event participation is considered sensitive
regardless of its time, we can set g = ∞ and specialize (g, �)-diversity to �-diversity
[Machanavajjhala et al. 2006].12 Parameter g and � control the resolution of event
prediction. If g is set to a large value, our model is very similar to the simplified �-
diversity; the time stamps of events do not play any role on their sensitivity. If g is
set to a very small value, our model insists on the diversity of events in short time
intervals; all click-streams in an anonymization group may participate in event e ∈ Es
but the participations time are forced to spread across the time dimension. A domain
expert can help to select a suitable value for g.

11Trivially, (g, �)–diversity does not imply (g + 1, �)–diversity, as �-diversity does not imply (� + 1)–diversity,
and k–anonymity does not imply (k + 1)–anonymity.
12For instance, visiting porn URL might be considered sensitive. An alternative approach, not studied here,
is to generalize sensitive URLs.
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4:10 R. Sherkat et al.

Definition 2.7 can be slightly modified such that Es only includes a subset of events
in E − Er which are considered as sensitive. On the other hand, and in the extreme
case of the SCR setting, Er = E and Es is empty. In this case, unknown receivers
may exchange time stamps or perform matching based on the identifiers (e.g., IP ad-
dresses). In this case, there is no gain in anonymization beyond k-anonymity because
the receivers already have complete sequences, in the extreme case. Otherwise, (g, �)-
diversity ensures that the certainty of an adversary about event participation for any
event in Es is bounded by 1

�
in any time interval of duration g or less.

LEMMA 2.8 (MONOTONICITY OF (g, �)-DIVERSITY). For two non-overlapping sets
of sequences S1 and S2, any event e ∈ E − Er and any time interval Tg,

Pr(e, Tg|S1 ∪ S2) ≤ max
{

Pr(e, Tg|S1), Pr(e, Tg|S2)
}
.

PROOF. Without loss of generality let P1 ≥ P2, where

P1 = Pr(e, Tg|S1) = n1|S1| and P2 = Pr(e, Tg|S2) = n2|S2| .

Thus (n1 + n2) = (
P1 · |S1| + P2 · |S2|) ≤ (|S1| + |S2|) · P1. Because S1 and S2 are

non-overlapping, we have: Pr(e, Tg|S1 ∪ S2) = n1+n2|S1∪S2| ≤ P1 = max{P1, P2}.
PROBLEM 2.9. Given the event set Er ⊆ E and database D, find a partitioning P of

D such that the information loss measure NCP(D,P) is minimized and P satisfies the
desired privacy model (i.e., k-anonymity or (g, �)-diversity).

3. OVERVIEW OF OUR SOLUTIONS

Problem 2.9 is NP-hard; it reduces to the traditional microdata anonymity [Meyerson
and Williams 2004] when all sequences have the same length (greater than one). We
could solve this problem by adapting Mondrian [LeFevre et al. 2006], an algorithm
which was proposed to anonymize multidimensional data.13 Before this, we must
transform D into a relational database DR. For this, as suggested by Abul et al. [2008],
one column is required for each time stamp t ∈ T, the set of possible time stamps in
D. The value for column t for each record in DR is equal to the URL visited by the
corresponding sequence in D. This way, we end up with a database with extremely
large number of dimensions. Although Mondrian has a better performance, com-
pared with utility-based top-down and bottom-up partitioning (e.g., [Xu et al. 2006]),
Mondrian often produces anonymizations with larger information loss and inferior
utility, specially for high dimensional data [Abul et al. 2008; Ghinita et al. 2007;
Iwuchukwu and Naughton 2007; Xu et al. 2006]. On the other hand, utility-based
partitioning techniques, unlike Mondrian, do no scale well with database size [Nergiz
et al. 2009; Xu et al. 2006]. This is mainly because utility-based partitioning needs
O(|D|2) computations of information loss measure (i.e., utility) and O(|D|2) disk access,
which is daunting for large databases with billions of click-streams. Storing all data
in main memory can alleviate the second performance bottleneck. However, still
CPU cost is of paramount importance, because the information loss measure is often
computationally expensive in our case (see Section 7). Therefore, we propose efficient
algorithms that take advantage of the properties of our information loss measure (CP
in Eq. (4)) in order to speed up utility-based partitioning from O(|D|2) to O(|D| · log |D|).

13See Section 9.3 for an alternative adaptation of Mondrian to our problem.
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Table I. Definitions of Symbols

Symbol Definition
E The set of all events (URLs)
Er The set of events monitored by a receiver (e.g., {Google})
T The set of all possible time points
D A database of sequences with N = |D| sequences
B A database of sequences collected by a receiver who

Monitors all participations for the events in Er
S, Si Sequence S, sequence Si
start(S) (end(S)) The time stamp of the earliest (latest) event in sequence S
C, Ci Cluster of sequences C, cluster of sequences Ci
start(C) (end(C)) The smallest (largest) time stamp among all sequences in cluster C
|C| Number of sequences in cluster C
(Ci, Cj) ∈ Con�= Merging Ci and Cj violates a privacy constraint (see Def. 4.1)
S Anonymization group (AG) S, a group of sequences
P , Pi Partitioning of database D into AGs P and Pi
C A cluster extent; represents a set of clusters (see Sec. 5.2.1)
CP(S) Minimum information loss when sequences in S are generalized
NCP(D,P) Information loss of database D when AG P is applied
DLB, Dfp, Dextent Lower bounds for CP(S) for group S at 3 levels of granularity
eventDist(A, B) The loss of minimum generalization which makes the events of

Two sequences A and B the same (Sec. 6.2)
|regionA| (|regionB|) The number of sequences in region A (B) in Sec. 5.3
[s–e] The time interval starting from s and ending at e (both inclusive)

This bridges the performance gap between Mondrian and utility-based partitioning.
Our techniques are presented as follows.

— In Section 4, we propose the BASELINE algorithm which effectively finds a parti-
tioning for sharing with single receiver (SSR) or sharing with colluding receivers
(SCR), for either of the privacy models. However, BASELINE is not scalable to
large datasets. In Section 5, we propose optimizations for the SSR setting and time
generalization.

— In Section 6, we consider the SCR setting with time and event generalization. Al-
though BASELINE algorithm can be used here, but the optimizations proposed in
Section 5 cannot be used directly in the SCR setting. In view of this, we propose a
top-down iterative algorithm which integrates the optimizations for time general-
ization with a novel taxonomy-based distance function.

— In Section 7, we present our approach for computing data generalizations, after the
partitioning phase is complete. This step is common to both SSR and SCR settings
and orthogonal to the data partitioning step. The objective is to define the optimal
set of intervals for publishing the anonymized data.

4. THE BASELINE ALGORITHM

The Utility-based Data Partitioning (UDP) approach was first introduced by Xu
et al. [2006] for relational data and k-anonymity. In this section, inspired by the
COP-COBWEB clustering algorithm of Wagstaff and Cardie [2000], we first propose
a bottom-up UDP algorithm called BASELINE to achieve either (g, �)-diversity or
k-anonymity for time-stamped event sequences. While Xu et al. [2006] only consider
utility (i.e., information loss measure) as a criteria of constructing anonymization
groups (AGs), we also consider the privacy model as instance-level constraints. In
BASELINE, the term cluster refers to a set of sequences and is equivalent to an AG.
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4:12 R. Sherkat et al.

We partition the database into a set of non-overlapping clusters such that the total
information loss is minimized and each cluster satisfies the desired privacy model. To
achieve this, BASELINE has a greedy conservative grouping followed by a merge. In
each iteration of the greedy phase, it randomly selects a candidate cluster from the set
of available clusters and merges it with its closest cluster.14 Closeness is measured in
terms of the information loss (CP in Eq. (4)) of the merged cluster. Unlike the bottom-
up clustering algorithm of Xu et al. [2006], the conservative merge employs instance
level constraints, as defined in Section 4.1. This is to ensure that at the end of phase
one, only clusters with less than � sequences (under-filled clusters) violate (g, �)-
diversity. In the second phase, under-filled clusters will be iteratively merged with
their closest cluster until every cluster satisfies (g, �)-diversity. The second phase of
BASELINE always converges to a solution because of the monotonic property of (g, �)-
diversity.

4.1. Instance-Level Constraints

COP-COBWEB is a hierarchical clustering algorithm which supports instance-level
constraints. For any pair of objects o1 and o2, the constraint does not allow two clus-
ters C1 and C2 that contain these two objects to be merged. Similarly, BASELINE
verifies privacy violation using instance-level constraints. We define an instance-level
constraint for (g, �)-diversity as follows.

Definition 4.1 (Instance-Level Constraint for (g, �)-diversity). Let clusters C1 and
C2 be two non-overlapping clusters, and let |C1| < � and |C2| < �. We say that C1
and C2 violate an instance-level constraint, if there is an event e ∈ E − Er such that(

(e, t1) ∈ S1 ∈ C1

) ∧ (
(e, t2) ∈ S2 ∈ C2

) ∧ (
|t1 − t2| ≤ g

)
. (6)

The violation of an instance level constraint for C1 and C2 is denoted by (C1, C2) ∈
Con�=, following the notation originally introduced in Wagstaff and Cardie [2000].

Example 4.2. Let C1 = {S1, S2} and C2 = {S3} be two clusters, where S1, S2, and
S3 are the sequences in Figure 1(a). Then C1,2 = C1 ∪ C2 violates (g, �)-diversity when
g = 1, � = 3, and Er = {Google}, because Pr

(
ebay, [7–8] | C1,2

) = 2
3 > 1

3 = 1
�
. For

the same Er and g but when � = 3
2 , C1,2 satisfies (g, �)-diversity although Pr

(
Google,

[10–11] | C1,2
) = 1 because only the prediction probability of the events that are not in

the set Er is important in (g, �)-diversity model (see Definition 2.7).

Intuitively, one can verify that (C1, C2) ∈ Con�= by Definition 4.1 implies that
Pr

(
e, [t1 − t2] | C1 ∪ C2

) ≥ 2
|C1|+|C2| > 1

�
for at least one event e ∈ E − Er common

to both clusters. This is indeed a violation of (g, �)-diversity. However, if the condition
in Eq. (6) is evaluated as false for every event e in cluster C1,2 = C1 ∪ C2, then C1,2
always satisfies (g, �)-diversity if |C1,2| ≥ �, and violates (g, �)-diversity if |C1,2| < �.
This is why BASELINE only merges under-filled clusters in the second step.

Note that although we mainly link the instance level constraints with a privacy
model, the constraint can also incorporate a subset of domain-level requirements
which may result into a privacy breach if violated. We clarify this using an example.

Example 4.3. Let cluster C1 = {S1} and cluster C2 = {S3} for the click streams of
Figure 1(a). Assume that Er = {Google} and a domain-level constraint expressed as

14An alternative is to pick a pair of clusters with minimum pairwise distance. In our experiments, this
approach increased running time but did not result in a remarkable improvement in information loss.
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Algorithm 1: BASELINE ( Dataset D, Privacy model M )
/* Step 0) verify if a solution exists for database D and privacy model M */
1: if privacy model M is k-anonymity then
2: if (|D| ≥ k) then set τ = k else return ∅ � No anonymization exists
3: if privacy model M is (g, �)-diversity then
4: if Pr(e,Tg|D) ≥ 1

�
for an event e ∈ E − Er and time interval Tg shorter than g then

5: return ∅ � No anonymization exist
6: else set τ = �

/* Step 1) find the list of clusters → P */

7: Set Ci = {Si}|D|
i=1, set C = {Ci}|D|

i=1, and set P = {}
8: while C is not empty do
9: Let Cj = NN(Ci, C, M, TRUE) for a random cluster Ci ∈ C

10: if Cj is empty then Remove Ci from C and add it to P
11: else
12: Remove Cj from C and update Ci = Ci ∪ Cj
13: if |Ci| ≥ τ then Remove Ci from C and add it to P
/* Step 2) merging under-filled clusters */
14: for each cluster Ci ∈ P with less than τ sequences do
15: repeat
16: Cj = NN

(
Ci, P, M, FALSE

)
17: Remove Cj from P and update Ci = Ci ∪ Cj
18: until Ci satisfies the privacy model M
19: return P

20: function NN(cluster Ci, cluster set C, model M, boolean verify)
21: Set minDist = ∞ and Ck = {}
22: for each cluster Cj in C do
23: if verify=TRUE and (Ci, Cj) ∈ Con �= then
24: Skip cluster Cj � Ci ∪ Cj violates privacy model M
25: else if minDist > CP(Ci ∪ Cj) then
26: Set Ck = Cj and minDist = CP(Ci ∪ Cj)

27: return Ck

“a user visits only one URL at each time point.” Merging the two clusters into C1,2 =
C1 ∪ C2 does not provide adequate privacy level for S3; S3 visited Google at time 3, an
adversary can infer that the visit to Bing at time 3 in C1,2 belongs to S1.

4.2. The Algorithm

BASELINE, presented in Algorithm 1, regards all instance level constraints and makes
a greedy decision to merge clusters based on the information loss incurred. First it ex-
amines the database to ensure that it can be anonymized to fulfill the desired privacy
level (lines 1–6). Then, in the first step (Lines 7–13), each sequence is assigned to a sin-
gle cluster inside clusters group C. While C is not empty, we pick a random cluster Ci
from C. One of two possible cases can happen to Ci: if Ci violates an instance-level con-
straint with all other clusters in C, we move Ci to the set P to be processed later by a
merge which ignores the instance-level constraints. Otherwise, we find a cluster Cj ∈ C
such that CP(Ci ∪ Cj) is minimum and Cj does not violate an instance-level constraint
with Ci. This is in fact a nearest-neighbor search for Ci on C or NN(Ci, C,M, verify) for
short; where verify indicates whether an instance-level constraint for privacy model M
must be enforced. In the first step of BASELINE, the instance-level constraint is en-
forced. If merging Ci with Cj creates a cluster with at least � sequences, we move the
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merged cluster to P. Otherwise, we put the merged cluster back into C and continue
until C becomes empty and we move to the second phase (Lines 14–19). At this point,
the clusters in P with less than � sequences (the under-filled clusters) definitely vio-
late (g, �)-diversity. We resolve the under-filled clusters by merging them in a way to
minimize the increase in the total information loss. Each under-filled cluster Ci is iter-
atively merged with its nearest clusters in P until Ci meets (g, �)-diversity. In this step,
the instance-level constraint is not enforced to ensure convergence. The monotonicity
of (g, �)-diversity ensures that the second phase always finds a legitimate partitioning.
If only grouping all sequences into a single group fulfills (g, �)-diversity, this extreme
grouping is found in the second phase.

4.2.1. Baseline for k-Anonymity. We need to replace the instance level constraint of (g, �)-
diversity with a proper definition. In k-anonymity, merging any two clusters creates a
legitimate cluster which does not violate privacy. BASELINE achieves k-anonymity by
setting verify=FALSE in Lines 9 and 16 of Algorithm 1. Because k-anonymity is monotone
[Sweeney 2002], BASELINE always converges to a valid partitioning.

4.2.2. Time Complexity. Searching for the closest cluster to Ci is the bottleneck of BASE-
LINE; an exhaustive search needs O(|D|) I/O costs for loading the (sequences to com-
pute the information loss for merging with Ci. Thus, the total I/O complexity is O(|D|2).
However, computing information loss for a cluster is quadratic in the number of time
points of the cluster and increases linearly with both the length of the shortest se-
quence and the height of taxonomy (Section 7 for a detailed analysis). As for CPU Cost,
BASELINE needs O(|D|2) computations of CP in either k-anonymity or (g, �)-diversity.

5. OPTIMIZING BASELINE FOR THE SSR SETTING

In this section, we focus on the SSR setting which requires time generalization. Be-
cause NN is the bottleneck of BASELINE, we investigate two directions for performance
improvement: (1) to speed up NN using an index, and (2) to reduce the number of NN
calls using a heuristic. In the first direction, in Section 5.1, we propose summaries for
clusters and fast-to-compute lower bounds for information loss. We then illustrate how
the summaries and the lower bounds are used to boost NN in Section 5.2 using an
index-based incremental pruning. In the second direction, in Section 5.3, we propose
a heuristic method which uses the distribution of time points as a clue to (indirectly)
reduce the number of NN calls. Because we consider the SSR setting in this section,
only the time stamps of events monitored by the receiver(s) contribute to information
loss. Thus, we extract summaries only from these time stamps. Naturally, for each
sequence, the time stamps appear in ascending order, from the first (smallest) time
stamp to the last (largest) one. The algorithms we propose in this section all take ad-
vantage of this order in connection with the information loss measure (i.e., CP). In
Section 6, we use the techniques that we develop in this section as a module for the
SCR setting.

5.1. Cluster Summaries and Lower Bounds

The direct approach to speed up NN in BASELINE is to reduce the number of times the
information loss is computed. Naturally, in line 25 of Algorithm 1, if the lower bound
of the information loss for Ci ∪ Cj is greater than minDist, evaluating the information
loss for Ci ∪ Cj becomes redundant. In this section, we propose two fast-to-compute
lower bounds; namely, DLB and Dfp. The first one is more accurate but requires ac-
cess to all sequences of the two clusters under comparison. The second lower bound
relies on compact fingerprints that can be stored in main memory. Thus, besides re-
ducing the number of information loss computations, it takes advantage of compact
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in-memory fingerprints to reduce the number disk accesses required for reading se-
quences of clusters to be pruned.

5.1.1. A Simple Lower Bound for Information Loss. Let C be a cluster of sequences. We
want to find a lower bound for the information loss caused by anonymizing C using
time generalization. First, assume that C has only two sequences S and R. For time
stamp t and sequence R let nearest(t, R, Er) be the time stamp of the closest event pair
(er, tr) ∈ R to t such that er ∈ Er. Intuitively, the distortion for time stamp t in S is not
less than |t − nearest(t, R, Er)|. By induction, this idea can be applied when C has more
than two sequences to find a lower bound of time generalization.

minLoss(t, S, C) = max
R ∈ C−{S}

∣∣t − nearest(t, R, Er)
∣∣,

where C−{S} denotes all sequences in cluster C except for S. Aggregating minLoss over
the time stamps of cluster C that are generalized yields our first lower bound.

LEMMA 5.1. For event set Er and cluster C, DLB defined as

DLB(C) =
∑

S∈C
∑

(e,t)∈S∧e∈Er
minLoss(t, S, C)(

max
S∈D

end(S) − min
S∈D

start(S)
)

·
∑
S∈C

|S|
,

provides a lower bound for information loss CP(C) under time generalization, in O(ns ·
nt) time, where ns is the number of sequences in cluster C and nt is the total number of
(e, t) pairs in all sequences of C such that e ∈ Er.

PROOF. (LOWER BOUNDING) For event pair (e, t) in sequence S, where e ∈ Er,
let It = (ct, [st − et]) be the interval in the set I that covers time stamp t. Clearly,
(et − st) ≥ minLoss(t, S, C) by the definition of minLoss. Also, there is no other interval
that covers time stamp t due to the strong coverage property. Thus, replacing minLoss
for ILt provides a lower bound for IDD, for IL, and finally for CP.

(Time complexity) DLB can be computed using a sliding window over O(nt) event
pairs in C to be generalized. The window must keep two time stamps for each sequence,
one which has been visited already and the next one to be visited. Because time stamps
are ordered in each sequence, minLoss can be computed in O(ns) time for each time
stamp by probing the next time stamp of ns sequences. Thus, the overall computational
complexity is O(ns · nt), linear in the number of time stamps to generalize.

Example 5.2. Let C1 = {S1, S2, S3} and C2 = {S4, S5} be two clusters of sequences
in Figure 1(a). Let Er = {Google}; only the time stamps of Google visits need generaliza-
tion. We can verify that minLoss(1, S1, C1) = 2 and minLoss(4, S4, C2) = 1. The amount
of data distortion for time points 1 and 4 are both equal to two since the former is
generalized to the range [1–3] and the latter to [4–6] as shown in Figure 2(a). From
the optimal time generalization for these two clusters shown in Figure 2(a), we can
compute CP(C1) = 4×2+3×1

12×14 = 0.065 = DLB(C1). Similarly, CP(C2) = 3×2
12×10 = 0.05 but

DLB(C2) = 3×1
12×10 = 0.025.

DLB can be used effectively in BASELINE to reduce few (costly) information loss
computations as follows. In Line 25 of Algorithm 1, we compute CP(Ci ∪ Cj) only if
DLB(Ci ∪ Cj) is less than minDist. This pruning is effective but requires to read the
sequences of Cj. Next, we propose our second lower bound which is designed to reduce
disk access.

5.1.2. A Lower Bound for Information Loss Using Fingerprints. Each call to NN in BASELINE
reads all clusters to find the nearest neighbor of Ci. We propose a compact structure,
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to store fingerprint of clusters in main memory and a lower bound for information loss.
Our goal is to prune loading clusters and computing information loss (or DLB).

Definition 5.3 (Fingerprint). A fingerprint is a bitmap which maps the time stamps
of pairs (e, t) in sequences of a cluster, such that e ∈ Er, to a binary bit-string with b
buckets.

To derive the fingerprint of a cluster, we first divide the domain time span into b
buckets of equal length. Let |b| be the length of each time span. Let Bc be the finger-
print corresponding to cluster C. We use Bc[r], 1 ≤ r ≤ b, to refer to the bit at index r
of Bc, we set this bit to one if there exists at least one pair (e, t) in any sequence of C
such that e ∈ Er and r · |b| > t ≥ (r − 1) · |b|; otherwise, we set Bc[r] to zero. At least one
bit of each fingerprint must be set to one if the corresponding cluster is nonempty.

Example 5.4. Let C = {S1, S2, S3} be a cluster of sequences in Figure 1(a). Let b =
12 and Er = {Google}. The domain time span is [1–13] and the length of each bucket is
one and Bc = 101111000110; because there are three visits to Google in range [1–2),
Bc[1] = 1 but there is no visit to Google during [2–3) in cluster C thus Bc[2] = 0.

Each bucket represents a time interval, and parameter b determines the resolution
of each bucket in terms of the number and the distribution of time stamps that a
bucket can capture. But each bucket does not capture frequency. An alternative and
less compact representation, which we do not consider here, would store the frequency
of time points in each bucket. We want to define a lower bound for information loss
due to time generalization using the bucket that represents a cluster. The minimum
generalization of each time stamp in a cluster can be estimated from the relative posi-
tion of the bits that are set to one in the fingerprint corresponding to the cluster. For
fingerprint B, we define the minimum generalization of the time stamps falling into
bucket r as

mg(B, r) =
⎧⎨
⎩

0, if B[r] is set to one,
arg min

1≤s≤b , B[s]=1
|r − s| − 1, otherwise.

Intuitively, mg yields the number of bits set to zero between location r and the closest
location s in B, which is also set to one. When B[r] is set to one, the closest location
to r is itself, and therefore the number of 0-bits is zero. The information loss of a time
stamp mapped to location r can be estimated from mg and the bucket length as follows.

LEMMA 5.5. Let B1 and B2 be, respectively, the fingerprints for clusters C1 and C2.
For bucket B[r], let B[r] = 1 if the bucket is zero and B[r] = 0 otherwise. Dfp defined as∑

r,B1[r]
∧

B2[r] mg(B2, r) + ∑
r,B1[r]

∧
B2[r] mg(B1, r)

b · ∑
S∈C1∪C2

|S|
provides a lower bound for CP(C1 ∪ C2) in O(b) time.

We give an example to motivate the idea, then we provide the proof of Lemma 5.5.

Example 5.6. In the click streams of Figure 1(a), let C1 = {S1} and C2 = {S2, S3}
be two clusters, Er = {Google}, and b = 12. The fingerprints are B1 = 100000000100
and B2 = 101000000010, respectively. To find the information loss of C1 ∪ C2, we must
aggregate the generalizations of time stamps of Google visits. Because both clusters
have Google visits at t = 1, the minimum generalization for this time stamp is zero.
For t = 3, we find the closest time stamp to t in C1, which is t′ = 1. The minimum
generalization is |t− t′| = 2. We estimate this difference using fingerprints. B1[1] is the
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closest bucket to t = 3 which is set to one. We use the number of empty buckets between
B1[1] and B1[3], which is one, to estimate the minimum generalization as 1× (|b| = 1).
For time points 10 and 11, the number of empty buckets between B1[10] and B2[11]
is zero. Thus, we estimate the minimum time generalization for these time points as
zero. In total, Dfp(C1 ∪ C2) = 1

12×14 = 0.0059 which is less than CP(C1 ∪ C2) = 0.065.

PROOF. Let time stamp t1 for an event pair in sequence S ∈ C1 be mapped to bucket
B1[r1]. Let time stamp t2 be the closest time stamp to t1 in sequence R ∈ C2. We assume
that the events corresponding to these time stamps are both in Er. Let t2 be mapped to
bucket B2[r2] and that there are mg(B2, r1) zero bits in B2 between t1 and the bucket
of its closest time stamp. By the definition of minLoss,

minLoss(t1, R, C1,2) = |t2 − t1| ≥ |b| · mg(B2, r1), (7)

where C1,2 = C1 ∪ C2. To find the minimum information loss for generalizing t2, we
need to find the closest time stamp to t2, which might be different from t1 but still the
same argument applies. If both B1[r] and B2[r] are set to one, the smallest general-
ization happens when t1 = t2 and thus minLoss(t1, S, C1,2) = minLoss(t2, R, C1,2) = 0.
There are two possible cases when r1 = r2 = r. First, if both B1[r] and B2[r] are zero,
there is not time stamp in these buckets to generalize. Second, when they are equal
to one, the minimum generalization is zero. Only when the mapped buckets are dif-
ferent the information loss can be nonzero. Replacing mg(.) in the definition of Dfp
with its upper bound from the left hand side of Eq. (7) produces an upper bound for
Dfp(B1, B2). ∑

S∈C1,2

∑
(e,t)∈S∧e∈Er

minLoss(t, S, C1,2)

b · |b| · ∑
S∈C1,2

|S| = DLB(C1,2),

because b · |b| = maxS∈D end(S) − minS∈D start(S). Since DLB is a lower bound of CP,
and Dfp is a lower bound for CP by transitivity. Dfp can be computed by one pass over
the two fingerprints, thus O(b) time complexity.

Fingerprints can be stored in the main memory. To use the fingerprints and Dfp in
BASELINE, Line 25 of Algorithm 1 needs to be modified as follows; we read sequences
of cluster Cj and compute CP only if Dfp(Ci, Cj) ≤ minDist. Meanwhile, we can benefit
from pruning extra CP computations using DLB. In the next section, we propose an
effective technique to prune a group of clusters using an index.

5.2. Indexing Clusters for Effective Pruning

One approach to speed up nearest-neighbor search in BASELINE is to index clusters.
However, the information loss measure does not satisfy the triangle inequality. This
is mainly due to two factors: (1) the constraint imposed by the strong coverage (SC)
(Property 2.3), and (2) multiplying IDD in Eq. (3) by |SI|. Unfortunately, relaxing the
SC property by exempting a subset of sequences would have implications on either se-
quence identifications or publishing truthful data, whereas the term |SI| is important
to make IL, and consequently CP, sensitive to not only the information loss of each
interval per sequence, but also the number of (event, time) pairs blurred by each in-
terval. Note that other utility-based partitioning algorithms (e.g., [Nergiz et al. 2009])
also have a nonmetric information loss measure. In this case, we cannot take advan-
tage of algorithms for similarity search in metric space (e.g., [Ciaccia et al. 1997]) for
the sake of performance. Instead, we extend the multistep nearest-neighbor search
framework of Seidl and Kriegel [1998] to index clusters. First, we propose a new sum-
mary for clusters, which we term cluster extent. The summary records high-level in-
formation regarding the distribution of time points in the sequences of each cluster.
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Then, we derive a proper lower bounds of information loss. Finally, we integrate all
summaries and lower bounds that we have proposed by far in order to organize clus-
ters inside an index structure and to support nearest neighbor search by incremental
pruning.

5.2.1. Cluster Extent - A Summary for a Group of Clusters. A cluster extent extracts four
dimensions from a set of clusters and represent them using a minimum bounding rect-
angle (MBR). The extent summarizes the distribution of time points in sequences of a
cluster using four dimensions.

— s. The earliest time that any event in Er is visited.
— e. The latest time that any event in Er is visited.
— c. The total number of events visited in the cluster.
— l. The number of events visited after the latest start time and before the earliest end

time by all sequences in the cluster.

For the cluster extent corresponding to a group of clusters, we keep the minimum
and the maximum of each dimension in the extent. We use subindexes to refer to the
minimum and the maximum of each dimension along all clusters represented by the
extent. This way, s1 (s2) refers to the minimum (maximum) of earliest time along a
set of clusters, e1 (e2) refers to the minimum (maximum) of latest time along a set
of clusters, and so on. If an extent contains only one cluster, the minimum and the
maximum of each dimension becomes the same.

Example 5.7. Consider Figure 1(a) and let Er = {Google}. Consider two clusters
C1 = {S1, S2, S3} and C2 = {S4, S5}. Then, for an extent that represents both C1 and C2.

— s1 = 1, s2 = 5. The minimum and maximum earliest visit to Google happen,
respectively, in sequences S1 ∈ C1 and S5 ∈ C2.

— e1 = 5, e2 = 11. The minimum and maximum latest visit to Google happen,
respectively, in sequences S5 ∈ C1 and S2 ∈ C2.

— c1 = 3, c2 = 7. The minimum and maximum number of visits to Google happen,
respectively, in clusters C2 and C1.

— l1 = 0, l2 = 1. The minimum and maximum is computed for two clusters C1 and C2.
For C1, the number of visits to Google after its latest start time (i.e., 1) and before its
earliest end time (i.e., 10) is 1. For C2, this number is zero because both latest start
visit to Google and earliest last visit to Google happen at the same time (i.e., 5).

In comparison with fingerprints, a cluster extent stores the boundaries of a cluster
along with the number of time stamps in the range [s2, e1]. An interesting property
of cluster extents is that they can be used for batch pruning; to skip information loss
computation for a group of clusters represented by an extent. For this purpose, we next
define a distance measure between a cluster and an extent. Then, we use this property
to index clusters in Section 5.2.3.

5.2.2. A Lower Bound for Information Loss Using Extents. Let Ci be a cluster and the set of
clusters C be represented by the extent

(
(s1, s2), (e1, e2), (c1, c2), (l1, l2)

)
. In this section,

we derive DExtent(Ci, C) and show that it lower bounds CP(Ci ∪ Cj) for any Cj ∈ C. We
define DExtent based on the overlap of the range of time stamps of Ci with the time span
of the extent of C. We consider two possible cases.

(1) No overlap if l2 = 0. Finding the minimum generalization of each time stamp in Ci
and any cluster covered by the extent is straightforward. Let start(C) and end(C) denote
the time stamp for the first and the last visit of a sequence in cluster C to an event in
Er. If end(Ci) ≤ s1, since each time stamp in Ci must be included in one interval that
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covers a time stamp of a sequence in Cj ∈ C, because of the strong coverage property,
then the information loss of each time stamp in Ci is at least s1-start(Ci) when all time
stamps of Cj are at start(Cj). But the last time stamp of Cj is not before e1. Thus, the
smallest interval which covers all time points of Ci and Cj is the range [start(Ci), e1]. By
symmetry, a similar argument applies to the case where start(Ci) ≥ e2, in which case,
the smallest interval is [s2, end(Ci)].

LEMMA 5.8. For a set of clusters C represented by the extent
(
(s1, s2), (e1, e2),

(c1, c2), (l1, l2)
)

and cluster Ci, when l2 = 0,

DExtent(Ci, C) = minLoss

maxS∈D end(S) − minS∈D start(S)

provides a lower bound for CP(Ci ∪ Cj) for any cluster Cj ∈ C in constant time, where
minLoss is defined as

minLoss =
{

e1 − start(Ci), end(Ci) ≤ s1,
end(Ci) − s2, start(Ci) ≥ e2.

PROOF. We consider the case where end(Ci) ≤ s1; the other case is symmetric. All
time stamps in Ci ∪ Cj are generalized to range [start(Ci), e1]. The distortion of each
time stamp is at least minLoss and at most e2 − start(Ci). DExtent uses the minimum
value for all points, and the rest is normalization by global time span. When l2 = 0,
DExtent(Ci, C) can be computed in constant time.

(2) Possible overlap if l1 > 0. For this case, we identify five ranges, two of which
have a minimum of zero time generalization, while the other three ranges may pro-
duce nonzero distortion. Thus, we aggregate the loss over those three ranges to de-
rive a lower bound for information loss. Before introducing the ranges, recall that
for any time stamp t, the notation nearest(t, S, Er) stands for the time stamp of a
visit to an event in Er by sequence S. We identify five ranges from the extent(
(s1, s2), (e1, e2), (c1, c2), (l1, l2)

)
, namely, range0 = [−∞,s1], range1 = [s1,s2], range2 =

[s2,e1], range3 = [e1,e2], and range4 = [e2,+∞]. If timestamp t in a sequence of clus-
ter Ci is in range1, then nearest(t, S, Er) could be the same as t for sequence S inside
cluster Cj ∈ C. This means that the minimum information loss in this range could
be zero. The same argument holds for range3. The ranges with possibly nonzero time
generalizations are range0, range2, and range4; we next derive the minimum total time
generalization as, respectively, minLoss0, minLoss2, and minLoss4. In range0, intuitively,
every time stamp of Ci for events in Er, will be generalized to s1. Therefore,

minLoss0 = ∣∣{t | t ∈ S ∈ Ci, t < s1}∣∣ · (
s1 − start(Ci)

)
,

and by symmetry, the minimum total loss for range4 is

minLoss4 = ∣∣{t | t ∈ S ∈ Ci, t > e2}∣∣ · (
end(Ci) − e2

)
.

In range2, there are two possibilities for the overlap of timestamps of visit to Er for
cluster Ci and any cluster Cj in C. When the overlap is not empty (i.e., e1 = 0), the
minimum loss is zero in the worst case. Otherwise, there is a nonzero information loss.
However, the loss depends on the distribution of the time stamps relative to s2 and e1.
Let T∩

i,2 denote the set of time stamp of cluster Ci (for visits to Er) which falls in range
range2 if s2 < e1. Intuitively, a fraction of the time stamps in T∩

i,2 will be generalized
to s2, and the rest will be generalized to e1. The fractions depend on the closeness of
the time stamps in T∩

i,2 to these two end points. Because our goal is to find a lower
bound for minLoss2, we take a conservative approach and find the distortion which
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corresponds to minimum possible information loss. For this purpose, for time stamps
tr ∈ T∩

i,2, we first define the amount of losses before and after tr as follows.

minLossb
2(tr) = |{t | t ∈ T∩

i,2 ∧ t ≤ tr|} · (tr − s2),

minLossa
2(tr) = |{t | t ∈ T∩

i,2 ∧ t ≥ tr|} · (e1 − tr).

Intuitively, each loss multiplies minimum loss by the number of generalized times-
tamp. With these two losses, we set minLoss2 = 0 if e1 = 0, otherwise,

minLoss2 = min
tr∈T∩

i,2

{
minLossb

2(tr) + minLossa
2(tr+1)

}
,

assuming that the set T∩
i,2 is sorted. Using the minimum time generalization for all

ranges, we can finally define the lower bound of information loss for l2 > 0 case.

LEMMA 5.9. For a set of clusters C represented by the extent
(
(s1, s2), (e1, e2),

(c1, c2), (l1, l2)
)

and cluster Ci if l2 > 0, then DExtent(Ci, C) defined as

minLoss0 + minLoss2 + minLoss4(
max
S∈D

end(S) − min
S∈D

start(S)
)(

c2 +
∑
S∈Ci

|S|) (8)

lower bounds CP(Ci ∪ Cj) for any cluster Cj ∈ C.

PROOF. We have already shown that the numerator of Eq. (8) is less than the to-
tal distortion due to time generalization (before normalization). Two terms appear in
the denominator of Eq. (8). The first term (left) is to normalize time generalization.
The second term (right) is an upper bound of the number of time stamps in Ci ∪ Cj,
since

∑
S∈Ci∪Cj

|S| ≤ (
c2 +∑

S∈Ci
|S|). Replacing the numerator and the denominator of

Eq. (3) with, respectively, the lower bound of total loss and upper bound of number of
time points establishes the proof. minLoss2 can be computed in O(ni) time, where ni is
the number of events in Er for cluster Ci. Both minLoss0 and minLoss4 can be computed
in constant time. Thus, the total time complexity DExtent is O(ni).

A key property of cluster extents is that they can be organized using an index for
incremental batch pruning. Next, we use extents and the lower bounds and summaries
we proposed in Section 5.1 in a single algorithm to speed up NN search in BASELINE.

5.2.3. Indexing Clusters to Boost NN. We organize clusters using an R-Tree [Guttman
1984]. The internal nodes of the tree are cluster extents. The cluster extent for the
root node represents the extent for all clusters organized by the index. A leaf node
keeps the extents of clusters along with the list of identifiers of clusters covered by
that node. We store compact cluster fingerprints in the main memory. We observed a
negligible space overhead for fingerprints in our experiments (see Section 8.4.4). The
overhead can be tuned to available memory by adjusting parameter b.

We extend the multistep nearest-neighbor search [Seidl and Kriegel 1998] as
FASTNN. We maintain objects (clusters or summaries) using a priority queue. The
priority of an object is determined by the information loss or the lower bound com-
puted for the object when it is pushed into the queue. Until we find the closest cluster
to a query, or the queue gets empty, we keep fetching objects from the queue. If the
fetched object is a summary, we enqueue every object covered by the summary along
with their distance. FASTNN is presented in Algorithm 2. A cluster Ci is provided as
query and the goal is to find the closest cluster to Ci. It initializes an empty heap and
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Algorithm 2: FASTNN( cluster Ci, cluster index R)
1: Initialize an empty heap H
2: Push

(
H, root, DExtent(Ci, root), Extent

) � root of the index
3: while H is not empty do
4: Pop an object from H into p � Pruning by clusters’ start/end points
5: if type of object p is Extent then
6: for each entry q in cluster extent p do
7: if p is a leaf node then Push(H, q, Dfp(Ci, q), FP)
8: else Push

(
H, q, DExtent(Ci, q), Extent

)
9: else if type of object p is FP then � Pruning by clusters’ internal time-points
10: Load time sequences for cluster p into Cp
11: if (Ci, Cp) /∈ Con �= then
12: Push

(
H, Cp, DLB(Ci, Cp), LB

) � More refined pruning than Extent and FP

13: else if cluster p is de-heaped for the 1st time then
14: Push

(
H, p, CP(Ci ∪ p), CP

)
15: else return p � cluster p is de-heaped for the 2nd time

16: return { } � (Ci, Ck) ∈ Con �= for all clusters Ck

pushes the extent of the root node of index with DExtent(Ci, root) as distance. While the
heap is not empty, an object p is deheaped to be processed.

— If p is a cluster extent, we push to the heap every cluster extent q covered by the
node p with DExtent(Ci, q).

— If p is a leaf node, we push to the heap every fingerprint q covered by the node p
with Dfp(p, q).

— If p is a fingerprint, we load the sequences of cluster p into Cp. If merging Ci and Cp
does not violate a privacy constraint, we push to the heap Cp with DLB(Ci ∪ Cp).

— If p is deheaped as a cluster for the first time, we push it back to the heap, this time
with CP(Ci ∪ p) as distance.

— If this is the second time that p is deheaped as an object of type cluster, it is returned
as the closest cluster to Ci.

FASTNN can speed up BASELINE by reducing the number of computations of infor-
mation loss inside NN in Algorithm 1 from O(|C|) to O(log |C|). We should mention
that FASTNN benefits from pruning at three resolutions: (1) start and end time points
of clusters via extents and DExtent, (2) blurred internal time points of clusters via fin-
gerprints and Dfp, and (3) internal time point of clusters via DLB. Next, we take a data
oriented approach aiming at reducing the number of NN invocations in BASELINE.

5.3. Hybrid Partitioning to Reduce NN Calls

Indexing improves BASELINE by boosting NN search. We take an orthogonal approach
in this section and propose a data-driven heuristic to reduce the number of NN calls.
This approach trades quality for performance. However, we did not observe a signif-
icant increase in total information loss in our experiments (Section 8.4). The main
idea, demonstrated in Algorithm 3, is to partition data into two independent regions,
namely, region A and region B. We apply a fast partitioning method on region A and
apply BASELINE (with FASTNN) on region B. We then integrate the resulting parti-
tions to form anonymization groups. We need two properties to ensure that the utility
of this approach, the HYBRID method in Algorithm 3, stays very close to BASELINE.
(1) For each region, time sequences must be grouped with the time sequences in the
same region, when either BASELINE or HYBRID is applied. (2) The fast partitioning
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method, used in region A, must produce anonymization groups with the same quality
BASELINE.

Our approach is demonstrated in Algorithm 3 and is based on observations on real
datasets, as described in Section 5.3.1. We use Figure 3 (top) to motivate the main idea.
In this figure, we use BASELINE to assign 1,000 time sequences into anonymization
groups, when we = 0. In this figure, each time sequence is shown as a point in 2D space,
the horizontal and vertical axis corresponds to, respectively, the first and the last time
stamp of each sequence. For instance, time sequence S : 1,2,7,12 will be mapped to
(1,12) in this space. We assigned the same color and marker to time sequences that fall
in the same group. There are two regions we observe in Figure 3 (top). Region A is the
area which is close to the diagonal line and region B is the area close to the upper-left
corner (we describe how to assign time sequences to regions later). From Figure 3 (top),
we observed that often, sequences in region A (region B) are assigned to groups with
mostly sequences in the same region. One can verify this, for instance, by considering
the sequences in Area 1 and Area 2 which belong to, respectively, region A and region
B. Another property holds between the time sequences in region A and the Hilbert
index assigned to each sequence (described later). We explain this property using a
simpler example in Figure 3 with seven time sequences and two anonymization groups.

5.3.1. Data Partitioning in Hilbert Space. Figure 3 shows a mapping of time sequences into
points in 2D space (recall that our focus is the SSR setting and time generalization).
The coordinates correspond to the first and the last time stamp of each sequence. A
Hilbert index (hIndex) is assigned to each sequence as follows: the space is divided into
cells using a regular grid. The index of each cell on the Hilbert space filling curve [Moon
et al. 2001] is assigned as hIndex(S) for any sequence S that has its end timestamps in the
cell. A 2-anonymous grouping of sequences using BASELINE is shown in Figure 3 (left).
We refer to the area close to the diagonal line in the 2D space as region A and the top-
left corner of the 2D space as region B. We describe shortly how to assign sequences to
regions. We made two observations through experiments on real and synthetic data.

OBSERVATION 5.10. For sequences in region A (e.g., S1, S2, and S3 in Figure 3),
the difference between hIndex of two sequences is correlated with the information loss of
the corresponding anonymization group. This is intuitive, because sequences in region
A tend to have close start and end time points and a relatively small variance in time
point values. As we get into region B, the end points of sequences get far apart, the vari-
ance of sequence length grows, and the diversity of time stamps increases. No consistent
correlation is observed between the closeness of hIndex of two sequences and the infor-
mation loss in region B. E.g., |hIndex(S4)-hIndex(S5)| < |hIndex(S4)-hIndex(S7)|, but S4 is
grouped with S7. Therefore, we can use a partitioning algorithm based on Hilbert index
(and not BASELINE on complete time sequences) to efficiently and accurately assign the
sequences in region A into anonymization groups.

OBSERVATION 5.11. A majority of sequences in region A are clustered with other
sequences that are in the same region. Thus, an ordering of sequences in region A based
on hIndex should bring closer all sequences that fall in the same cluster. Furthermore,
partitioning sequences in region A independently from those time sequences in region B
is not expected to significantly degrade the quality of produced anonymization groups.

We propose HYBRID (Algorithm 3); it runs BASELINE (with FASTNN) for sequences
in region B and cluster region A using a fast heuristic [Ghinita et al. 2007]. The key
advantage of HYBRID is to avoid running BASELINE for time sequences that can be
anonymized using an efficient technique which only considers the Hilbert index of
sequences. In this regard, only short sequences actually favor from HYBRID. For long
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Fig. 3. Mapping sequences to 2D (start, end) space.

Algorithm 3: HYBRID( Dataset D, Privacy model M)
1: (DA,DB) = ASSIGNREGIONS(D) � (Sec. 5.3)
2: PA = FASTCLUSTER(DA) � Using E.g. [Ghinita et al. 2007]
3: for any cluster C in PA that violates model M do
4: Remove C from PA and add all its sequences to DB
5: PB = BASELINE(DB, M) � Algorithm 1
6: return PA ∪ PB � Merge PA and PB

sequences, however, HYBRID directly inherits the performance improvements of BASE-
LINE using FASTNN. We next describe two main components of HYBRID.

5.3.2. ASSIGNREGIONS - Assigning Sequences to Regions. We first sort sequences by their
hIndex. For two consecutive sequences Si−1 and Si in the ordered list, we compute
the information loss of cluster {Si−1, Si} as CP({Si−1, Si}), and for S1, we compute
CP({S1, S2}). We assign sequence Si to region A if CP({Si−1, Si}) <

∑D
i=1

CP({Si−1,Si})
D or
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Fig. 4. Pairwise DLB and CP for 100 time sequences sorted by their Hilbert index, the sequences assigned
to region B are marked by *.

|Si| = 1. Otherwise, Si is assigned to region B. This heuristic needs O(|D|) evaluations
of information loss, which is computationally expensive specially when the average
length of sequences is large. Figure 4 shows CP and DLB evaluated for 100 sequences
in a real dataset, sorted by hIndex. The sequences which are assigned to region B are
marked by star. We observe that not only CP is correlated with DLB, but also the region
assignment based on DLB in Figure 4 seems to be correlated with the region assign-
ment based on CP. Thus, we can use DLB to speed up region assignment.

5.3.3. FASTCLUSTER - Clustering Sequences in Region A. We need to find a grouping of
sequences such that each group has at least τ and at most 2τ − 1 members and the
information loss for each group is minimized. Recall that τ = k in k-anonymity and τ =
� in (g, �)-diversity. Due to the correlation observed between the difference in the hIndex
of sequences and the information loss in region A, we use a dynamic programming
algorithm [Ghinita et al. 2007] to find an optimal grouping in region A in O(τ · |DA|)
time, where DA is the sequences of D assigned to region A. In k-anonymity, all clusters
found by dynamic programming can be finalized unless |DA| < k. In this case, we
process all sequences of DA with the sequences in region B (DB). Since during dynamic
programming of [Ghinita et al. 2007], we only check the QID part of sequences, and
not the sensitive part, (g, �)-diversity may not hold for some clusters. For each cluster,
the violation can be checked by moving a sliding window over all time and event pairs
in the cluster. For each window there must be only one participation for each event
type. This probe can be done in O(g · ne) time, where ne is the number of event pairs
of the cluster under examination. If the cluster satisfies (g, �)-diversity, it is finalized.
Otherwise, the sequences of this cluster will be reassigned to region B to be handled
with sequences in B by BASELINE (with FASTNN).

6. ANONYMIZATION IN THE SCR SETTING

Our algorithms in Section 5 focused on the SSR setting and time generalization.
Our optimizations in Section 5 took advantage of the natural order between the time
stamps of each sequence. In the SCR setting, sequences available to an adversary con-
tain (event, time) pairs. In each sequence, time stamps are still sorted but events (i.e.,
URLs) are not visited by any prespecified order. The optimizations for the SSR setting
can be used in the SCR setting when we = 0; in this case, any generalization of events
(i.e., URLs) is acceptable. However, when wt > 0 and we > 0, our optimizations for
the SSR setting cannot be directly extended, because events in each sequence are not
ordered.

In Section 6.1, for the SCR setting and we = wt, we propose a top-down partition-
ing algorithm (PR) based on the construction step of kd-trees [Friedman et al. 1977].
PR is a round-robin divide and conquer method which recursively partitions data to
reduce information loss along either the time dimension or the event dimension. For
performance improvement, we use optimizations for the SSR setting (Section 5) as a
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Algorithm 4: PR( Dataset D, Privacy model M)
1: Set τ to k if M is k-anonymity and to � if M is (g, �)-diversity
2: Set C to one cluster containing all sequences of D
3: P = PARTITION( C, τ ) � start the recursive drill down
/* resolve privacy violations of clusters */
4: for each cluster Ci ∈ P that violates privacy model M do
5: repeat
6: Find cluster Cj ∈ P with smallest CP(Ci ∪ Cj)
7: Remove Cj from P and merge it into Ci
8: until Ci satisfies privacy constraints
9: return P

10: function PARTITION( cluster C, τ )
11: if C has less than 2τ sequences then return {C}
12: Pick a random sequence S1 from C
13: Find sequence S2 ∈ C with the largest distance from S1 � distance: in terms of eventDist
14: Set cluster C1 = {S1} and cluster C2 = {S2}
15: for each sequence Si in C do
16: if Si is closer to S1 than to S2 then add Si to C1 � closer: in terms of eventDist
17: else Add Si to C2
18: return REFINE(C1, τ ) ∪ REFINE(C2, τ )

19: function REFINE( cluster C, τ )
20: if C has less than 2τ sequences then return {C}
21: Set κ = �|C|/2�
22: {C1, C2} = BASELINE( C, κ-anonymity ) � use FASTNN or HYBRID to speed up
23: return PARTITION(C1, τ ) ∪ PARTITION(C2, τ )

module in PR while reducing the distortion along the time dimension. We introduce
a fast-to-compute distance in Section 6.2 to efficiently partition data along the event
dimension. In Section 6.3 we propose an extension of PR for more general SCR setting
where we �= wt.

6.1. Top-Down Partition and Refinement

We give an overview of our approach (Algorithm 4). First, all sequences are assigned
to a single cluster. This cluster is passed to PARTITION, which consequently triggers a
series of recursive calls. (1) PARTITION splits the cluster into two smaller ones based on
the similarity of events (described in Section 6.2), ignoring the time stamps. Each of the
split clusters is then passed for further processing to REFINE. (2) REFINE splits each
cluster into two smaller ones based on the similarity of time stamps, ignoring their
events. Then, it calls PARTITION for each split cluster. We stop further partitioning
(refinement) of a cluster if it has less than 2τ sequences, where τ = k in k-anonymity
and � in (g, �)-diversity. In this case, we add the cluster to the set of clusters waiting to
be finalized. We use the same heuristic as the second step of BASELINE to resolve the
privacy violations of clusters, if any, by merge to finalize anonymization groups.

Intuitively, REFINE reduces information loss along the time dimension only. To
achieve this goal, we use the BASELINE algorithm and the optimizations for the SSR
setting. REFINE uses the time stamps to split clusters. To split cluster C into smaller
clusters, we use a heuristic; we set κ = �|C|

2 � and use BASELINE (with FASTNN) to find
κ-anonymous partitions (line 22 of Algorithm 4). The main benefit is that the number
of distance computations for this step reduces from O

(|C|2)
to O

(|C| · log |C|). We then
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pass each smaller cluster for further refinements to PARTITION. PARTITION focuses on
the event dimension. It splits a cluster C into two smaller ones C1 and C2 as follows.
First, it picks a random sequence S1 ∈ C and finds sequence S2 ∈ C with the largest
distance to S1. Every sequence in C which is closer to S1 (to S2) is inserted into C1 (to
C2). As a distance metric, we can use CP with wt = 0 (our focus is event similarity).
However, CP is expensive to compute (Section 7). Thus, we propose a fast to compute
alternative which regards event taxonomy (Section 6.2). We invoke PARTITION or RE-
FINE for each cluster only if it has at least 2τ sequences. At the end of partition and
refinement, we examine each cluster regarding the desired privacy model. We use the
same heuristic as the second step of BASELINE to resolve privacy violations.

6.2. eventDist - A Fast-to-Compute Taxonomy-Based Distance

In this section, we propose eventDist as a fast-to-compute estimation for information
loss of a cluster along the event dimension. eventDist will be used to measure distance
and closeness in lines 13 and 16 of Algorithm 4, respectively. To formally define
eventDist, we first transform sequences into multisets and measure the cost of matching
multisets.

6.2.1. From Sequences to Multisets. We modify each sequence by removing the order of
events. This produces a summary from the sequence which captures the diversity of
events with respect to domain taxonomy, and the frequency distribution of events. For-
mally, from sequence S, we derive the multiset MS = {(ei, fi)}|MS|

i=1 , where ei ∈ Er and fi =
|{t|(ei, t) ∈ S}| is the frequency of the appearance of event ei in sequence S. For in-
stance, the multiset of sequence S1 in Figure 1(a) is {(Google,2), (Bing,1), (Amazon,2)}.
To measure the similarity of two multisets, one option is to use measures proposed in
the literature for sets (e.g., the Jaccard coefficient and the cosine measure). However,
these measures ignore the semantics of an application domain modeled by a taxon-
omy. For instance, consider two multisets M1 = {(Facebook,1), (Myspace,1), (Google,1),
(eBay,1), (Seenit,1)} and M2 = {(Bing,1), (Facebook,2),(Amazon,1)}. The similarity of M1
and M2 must capture not only the number of common events (i.e., Facebook) but also
the number of events under the same category (i.e., Google and Bing which are both
under category Search Engines in the taxonomy of Figure 2(c)). Therefore, motivated
by edit distance, which is defined to compare two strings, we propose eventDist. As a dis-
tance measure between multisets, eventDist computes the minimum distortion caused
by using the categories in the taxonomy to make the events of the two multisets equal.

Notations. Let n(M, ci) be the sum of the frequency of events in multiset M that are
covered by category ci. We set n(M, ci) = ∞ if M has no event under category ci. Let
|ci| be the number of events under category ci in the taxonomy.

Definition 6.1 (Cost of Match). The cost of matching multisets A and B, given the
set of categories C = {ci}|C|

i=1 is

cost(A, B,C) =
∑

ci∈C |ci| · (
n(A, ci) + n(B, ci)

)
|E| · ( ∑

(e, f )∈A f + ∑
(e, f )∈B f

) .

Example 6.2. Let c1 = Social Networks, c2 = Search Engines, c3 = Shopping, and
c4 = Amazon for the taxonomy of Figure 2(c). For the multisets M1 and M2 mentioned
earlier in this section, we have: n(M1, c1) = 2, n(M1, c3) = 2, n(M1, c4) = ∞, and
n(M2, c1) = 2. Let C1 = {ci}3

i=1 and Let C2 = {ci}4
i=1. Then, cost(M1, M2,C1) = 25

72 , and
cost(M1, M2,C2) = ∞.
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Algorithm 5: eventDist( Multiset A, Multiset B, Node π )
1: if both A and B are empty then return 0 � Equal multisets
2: if either A or B is empty then return ∞ � Either one (not both)
3: if π is a leaf node then return cost(A, B, π) � Case 1 (Definition 6.1)

4: Set split point sp = maximum event Id in LeftSubTree(π)
5: Split A using sp into two non-overlapping multisets A1 and A2
6: Split B using sp into two non-overlapping multisets B1 and B2
7: if both A1 and B1 are empty then � Case 2.a
8: return eventDist

(
A2, B2, RightSubTree(π)

)
9: if both A2 and B2 are empty then � Case 2.b
10: return eventDist

(
A1, B1, LeftSubTree(π)

)
11: if any one of A1, A2, B1, or B2 is empty then � Case 3
12: return cost(A, B, π) � Using Definition 6.1

13: c1 = eventDist
(
A1, B1, LeftSubTreeleft(π)

)
14: c2 = eventDist

(
A2, B2, RightSubTree(π)

)
15: return (c1 + c2) � Case 4

Definition 6.3 (Event Distance). Let R and S be sequences and MR and MS be the
multisets derived from R and S, respectively. The event distance between R and S is

eventDist(R, S) = min
∀C∈2H

{
cost

(
MR, MS,C

)}
,

where 2H is the space of possible matchings from taxonomy H.

Computing eventDist is in fact an optimization problem. An exhaustive approach re-
quires 2nodes(H) examination for all possible subset of nodes in taxonomy H to find
the best C. However, some checkings are redundant and can be pruned by branch
and bound. We first consider a binary event taxonomy (e.g., Figure 2(c)) and propose
Algorithm 5 to compute eventDist. We then extend our algorithm to arbitrary event
taxonomies.

6.2.2. Computing eventDist (Binary Taxonomy). Algorithm 5 reduces the search space
for optimal C using (1) an ordered list of events in multisets, and (2) the structure
imposed by taxonomy H. To compute eventDist, we first assign an id to each event by
performing a depth-first traversal on H. The assignment of ids for the taxonomy of
Figure 2(c) is demonstrated in Figure 5, in which the ids are the numbers in brackets
in the leaf nodes (e.g., ID 7 is assigned to Amazon). We then re-present each multiset
using an ordered list of IDs and frequencies. For instance, the multisets M1 and M2
introduced earlier in this section become {(1,1), (2,1), (3,1), (5,1), (6,1)} and {(1,2), (4,1),
(7,1)}, respectively. We use Algorithm 5 to prune the search space for optimal set of
nodes using the taxonomy and the order of event as a yardstick. We use a running
example to convey the intuition:

Example 6.4. Figure 5 reproduces the same taxonomy of Figure 2(c), with node la-
bels replaced by πi, j for brevity. The frequency of events are not shown for brevity. To
find the distance of multisets M1 and M2, we start from the root node π4,1 and split
M1 into M1,1 = {1, 2, 3} and M1,2 = {5, 6} using sp = 4 as the split point of π4,1. This
is because only the nodes in the left subtree of π4,1 can be applied to both M1,1 and
M2,1. Also, only the nodes in the right subtree of π4,1 can be applied to both M1,2 and
M2,2 = {7}. Thus, we recursively call eventDist (Case 4 of Algorithm 5); once with M1,1,
M2,1, and π3,1 and once with M1,2, M2,2, and π3,2.
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Fig. 5. Pruning taxonomy nodes for computing eventDist.

The first recursive call, has two branches. The first branch evaluates the distance
between {1, 2} and {1, 1}. There are two nodes under π2,1. π1,1 applies to splits {1} and
{1, 1}. Applying π1,2 does not unify {1, 2} and {1, 1}. Thus, we roll back and try the next
closest map (i.e., π2,1) which makes {1, 2} and {1, 1} equal. Thus, we commit the cost of
applying π2,1 in the total cost (Case 3) and roll back again. The second branch passes
{3} and {4} to node π2,2. Again, the split at π2,2 level creates empty multisets (Case 3).
Thus, we include the cost of applying π2,2 on {3} and {4} and return.

The second recursive call considers the node π3,2 and multisets M1,2 and M2,2 men-
tioned earlier. The split point of π3,2 is 6 and splitting M1,2 and M2,2 at π3,2 would
generate at least one empty multiset on each branch. This means considering the
branch under π3,2 will not find any node which makes M1,2 and M2,2 equal and indeed
π3,2 is the best node. This ends the second round of recursive calls and returns with
cost(M2,1, M2,2, π3,2), which consequently returns 25

72 as eventDist(M1, M2). In summary,
to find the optimal set of nodes π∗ = {π2,1, π2,2, π3,2}, we examined π∗ ∪ {π4,1, π3,1} and
pruned other redundant nodes (under the line in Figure 5). We return cost(M1, M2, π∗)
as the eventDist of sequences corresponding to M1 and M2.

6.2.3. Computing eventDist (Arbitrary Taxonomy). Algorithm 5 can be extended when the
taxonomy is not a binary tree and the fan-out of each node ni is d(ni). Each node has
d(ni) − 1 ordered split points. We split A and B, respectively, into Ai|d(ni)

i=1 and Bi|d(ni)
i=1

splits. If for every 1 ≤ i ≤ d(πi), either Ai and Bi are both empty or Ai and Bi are
both nonempty, A and B must be split recursively (similar to Case 4 of Algorithm 5)
and the total cost must be returned. In this case, if both Ai and Bi are not empty, the
cost is evaluated by passing Ai, Bi, and the node corresponding to the ith child. Else,
this is similar to Case 3, we use mapping ni for A and B and return its cost (Line 12).
For a leaf node, we return the cost of applying the leaf node (Case 1 of Algorithm 5).
Algorithm 5 computes the distance in a time linear to the number of events of the
multisets. In AOL dataset (Section 8), the taxonomy of URLs has only four levels and
fits in main memory.

LEMMA 6.5 (COMPLEXITY OF eventDist). For two sequences A and B, a taxonomy of
height h with maximum fan-out d, eventDist(A, B) has O(|A|+|B|+nhd) time complexity,
where n is the maximum number of distinct events in A, B.

PROOF. Algorithm 5 splits multisets using binary search. In the extreme case, it
makes a recursive call at each step (Case 4) except for the last one. The length of each
multiset is divided by two on average in each call. Thus, the number of binary search
is

∑�log2 |A|�
i=1 2i · log2

|A|
2i ≈ 2|A|− log2(|A|)−2 which makes the search time O

(|A|+ |B|).
Let n be the maximum number of distinct events in A or B. In the extreme case,
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Algorithm 6: BIASEDPR (Cluster C, Privacy model M)
1: Set τ to k if M is k-anonymity and to � if M is (g, �)-diversity
2: P = C
3: repeat
4: Pb = P and Pa = ∅
5: rnd = random number generated from uniform distribution in range [0–1]
6: for each cluster C in the set P do
7: P = P − C
8: if rnd ≤ we

we+wt
then Pa = Pa∪ PARTITION( C, τ ) � PARTITION in Algorithm 4

9: elsePa = Pa∪ REFINE( C, τ ) � REFINE in Algorithm 4
10: P = Pa
11: until |Pa| = |Pb|
12: return P

Algorithm 5 assigns a leaf category (at height h) to each event, making the cost of
traversing to O(hdn); at each step, for a balanced taxonomy of height h and a maxi-
mum fan-out d, a loop is required to split A(B) into d(πi) ≤ d splits. The time complex-
ity is O(|A| + |B| + hdn).

6.3. Extension of PR when wt �= we

Algorithm PR switches between partitioning along the time and the event dimensions.
However, if wt �= we, the round-robin switch in PR would not account for relative im-
portance of time over events or vice versa. One heuristic, to address this issue, is to
invoke PARTITION (which refines events) more often than REFINE (which refines time)
when we is larger than wt. This policy is chosen to provide an increased chance to par-
tition data along the event (i.e., URL) dimension in comparison with time, thus we
expect it to find an anonymization with a better event generalization. Likewise, when
wt is larger we perform REFINE more often than REFINE to produce more compact
time intervals. This approach, can be implemented by replacing the call to Partition at
Line 3 of PR with BIASEDPR. BIASEDRR is depicted in Algorithm 6. During each it-
eration of the biased round-robin loop, PARTITION is invoked with probability we

we+wt
and REFINE is invoked with probability wt

we+wt
. Trivially, BIASEDPR simplifies to one

of PARTITION or REFINE, respectively, when wt = 0 or we = 0. In each iteration,
BIASEDPR splits clusters in P to refine it along either time or event dimension. Even-
tually, when none of the clusters of P could be split, BIASEDPR terminates and returns
a partitioning which is biased to the weights wt and we. As we mentioned, BIASEDPR
replaces Line 3 of Algorithm 4 when wt �= we. Those clusters, found by BIASEDPR,
that violate a privacy constraint are merged, in Lines 4–9 of Algorithm 4, with other
clusters to resolve privacy violations.

7. COMPUTING GENERALIZATIONS

In this section, we focus on each anonymization group and explain how the optimal
time intervals and event generalizations are derived for each group. Recall that in both
SSR and SCR setting, each group is represented by a set of intervals. In Section 7.1, we
explain how to derive an optimal set of intervals. The Appendix discusses vulnerability
issues of anonymized data in SSR and SCR settings.

7.1. Finding the Optimal Set of Intervals

Given a group of sequences G and the event set Er, we find the optimal anonymization
of sequences in G for release in three steps using ANONYMIZE (Algorithm 7). First, the
group is divided into two sets L and R. In the second step, we generalize event and time
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pairs in L only because these pairs can be used as quasi-identifiers in either the SSR
or the SCR setting. In the third step, we combine the generalized sequences of L with
the original sequences of R to produce the published anonymized data. The first step
of ANONYMIZE (Lines 1–4) divides G into two groups, L and R. Intuitively, R contains
event participations that are not monitored by any potential receiver. Naturally, R
is empty in the extreme setting of SCR. The set L contains all sequences which are
available to the receiver and thus we focus on anonymizing L in the second step.

Notations. Let TS be the set of time stamps in sequence S and let TL = ∪S∈LTS be
the set of all time stamps in L and n = |TL|. Assume a total order on the set of time
stamps TL, that is, for each ti and tj in TL, ti < tj ⇔ i < j. For any sequence S, let S[ti,tj]
be a sequence derived from S by removing every time stamp (and its corresponding
event) of S which is not included in time interval ti, j = [ti − tj]. When S has no time
stamp in interval ti, j, then S[ti,tj] is empty.

Definition 7.1 (Feasible Interval). Given sequence S, interval I = (c, [t1 − t2]) is a
feasible interval for S if S[t1,t2] is not empty and for any pair (e, t) ∈ S[t1,t2], event e is
generalized by category c in the taxonomy. Interval I is a feasible interval for group
L if I is feasible for every sequence in L. Similarly, a set of intervals I is feasible for
sequence S (group L) if every interval I ∈ I is feasible for S (L), resp.

Our goal is to find the set of feasible intervals I∗ which is feasible for L and mini-
mizes IL (Eq. (3)). The reason that we only consider feasible intervals is because they
satisfy the strong coverage property; each (event, time) pair will be covered by exactly
one feasible interval. We find I∗ by induction as follows. Let Opt(i, j) be the minimum
information loss when all sequences in L before (including) ti is approximated by an
interval set with j intervals. For instance, Opt(n, 1) denotes the minimum information
loss when all sequences of L are approximated by an interval set with only one in-
terval (recall, n = TL). Our quest for optimal set of feasible intervals ends when we
find Opt(n , m∗), where m∗ is the cardinality of the largest set of feasible intervals on
L. Intuitively, when t1, j = [t1 − tj] is divided into two non-overlapping subintervals
t1,r and tr+1, j, the minimum distortion during t1, j is smaller than if the two intervals
are generalized individually during any one of the two subintervals provided that both
subintervals are feasible. Formally, Opt(i, 1) = IL(L, I∗

1,i), and

Opt(i, m) = min
1≤r<i−1

{
Opt(r, m − 1) + IL(L, I∗

r+1,i)
}
,

where I∗
r, i = (cr, i, [tr − ti]) is the optimal feasible interval on L and cr,i is the lowest

common ancestor (LCA) category in the taxonomy for all events of L during [tr − ti]. If
there is no feasible interval on L during [tr − ti], IL(L, I∗

r, i) = ∞. This property (the def-
inition of Opt) is due to the strong coverage property which imposes a constraint on the
feasibility of intervals and implies that Opt satisfies the principle of optimality. Thus,
Opt and the optimum set of intervals can be computed by dynamic programming (step
2 of ANONYMIZE). The last step creates the anonymized data. Because sequences in G
must be indistinguishable regarding their events in Er, we concatenate each sequence
in R with the optimal set of intervals of L (step 3 of ANONYMIZE).

Time Complexity. The information loss for single interval generalizations are con-
structed in Lines 6–7. The maximum number of feasible intervals m∗ is bounded by
lmin, the length of the shortest sequence in L. If constructing m non-overlapping feasi-
ble intervals is impossible for the set of time stamps {t1, . . . , tfm−1}, then it is impossi-
ble to construct m + 1 feasible intervals for the set of time stamps {t1, . . . , tfm} as well.
ANONYMIZE uses this heuristic to prune Opt computations for ti ≤ tfm−1 . The algorithm
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Algorithm 7: ANONYMIZE (Partition G, Event set Er)
/* step 1) divide G using Er into 2 parts */
1: Set L = {} and R = {}
2: for each sequence S in G do
3: Set SL = {(e, t) ∈ S|e ∈ Er}, SR = {(e, t) ∈ S|e /∈ Er}
4: Add SL to L and SR to R
/* step 2) find optimal set of intervals I */
5: Set TL = {t1}|ni=1 to the set of timestamps in L, i < j ⇔ ti < tj
6: for i = 1 to n do
7: Opt(i, 1) = IL

(
L, (c1,i, [ t1 − ti])

)
8: for m = 2 to lmin do � lmin = minS∈L |S|
9: Opt(i, m)|ni=1 = ∞
10: fm−1 = arg minj Opt( j, m − 1)

11: for i = fm−1 + 1 to n do
12: for r = fm−1 to i − 1 do
13: Opt(i, m) = minr

{
Opt(r, m − 1) + IL

(
L, I∗

r+1,i
)}

14: prev(i, m) = r that minimizes Opt(i, m)

15: if Opt(n, m) = ∞ then
16: m∗ = m
17: Set I = {}, e = n, and m = m∗
18: while m > 1 do
19: b = prev(e, m)
20: I = I ∪ {(cb+1,e, [ tb+1 − te])} � add feasible interval to I
21: e = b � end for the next feasible interval (if exists)
22: m = m − 1
23: I = I ∪ {(c1,e, [ t1 − te])}
/* step 3) anonymize G to publish */

24: for each sequence S in R do
25: Publish I and S � same generalizations for all sequences in L

computes at most n × lmin entries of Opt array. The computation of each entry involves
at most n evaluations of IL. Computing IL(L, I∗

i, j) requires two steps. First, checking
the feasibility of ti, j for every sequence in L and then compute LCA of events of L in
this interval. Because time stamps are ordered, each check needs O(log lavg) time for a
sequence of average length lavg, or O(nL log lavg) in average for all nL sequences in L.
Computing LCA requires O(h) for any two pair of events, h is the height of the taxon-
omy, or O(h log n) for all n events if LCA is computed by tournament selection. For any
t ∈ TL, let cf (t) = ∑

S∈L |S[t1,t]| be the cumulative frequency of time stamps. The infor-
mation loss for a feasible interval Ii, j can be computed in O(log n) time by searching
for cf (ti) and cf (tj) in a sorted array with n pairs of (t, cf (t)). Thus, computing IL(L, Ii, j)
has O(nL log lavg + h log n) time complexity and the time complexity of ANONYMIZE is
O

(
n2lmin(nL log lavg+h log n)

)
. The total space requirement is O(lminn): (i) O(n) to keep

n pairs of (t, cf (t)) and two consecutive rows of Opt array, and (ii) O(lminn) to keep the
path in prev array which is used to find the optimal set of intervals in O(lmin) time.

Example 7.2. Assume the SCR setting, where Er = {Google, Bing}. Table II shows
a database divided into the sets L and R by the first step of ANONYMIZE. For brevity,
sequences are summarized (e.g., Bing: [1, 11] stands for (Bing, 1) and (Bing, 11)). Run-
ning BASELINE to achieve 2-anonymity creates three partitions; P1 = {S1, S2, S3},
P2 = {S4, S5}, and P3 = {S6, S7}. We call ANONYMIZE on P1 to create the anonymized
version of sequences in P1. Intuitively, the optimal set of intervals have at most two
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Table II. A Click-Stream Database

ID L R
S1 Google: [3], Bing[7,10] Ebay: [1]
S2 Google: [2], Bing:[9] Myspace: [6]
S3 Google: [3], Bing: [1,11] Ebay: [5]
S4 Google: [7] Facebook: [9]
S5 Bing: [8] Amazon: [10]
S6 Twitter: [1]
S7 Youtube: [10]

Table III. 2-Anonymous Published Data

Search Engine: [1-3], Bing: [7-11], Ebay: [1]
Search Engine: [1-3], Bing: [7-11], Myspace: [6]
Search Engine: [1-3], Bing: [7-11], Ebay: [5]
Search Engine: [7-8], Facebook: [9]
Search Engine: [7-8], Amazon: [10]
Twitter: [1]
Youtube: [10]

feasible intervals, as limited by the length of the shortest sequence in L for P1 which
is two (the section of S2 in L). The end point of the first feasible interval must be at
least at time stamp 3, before this time point the strong coverage property does not
hold. Similarly, the last time point of the first feasible interval cannot be at or after 9.
Within time range [1–3], we next compute the information loss at each time point in
Opt(i, 1). We assume wt = we = 1. The distortion for optimal interval during [1–3] is
Opt(3, 1) = 0.5∗ (

(3−1)
10 + 2

8 ) using Eq. (2); the first term is for generalizing time interval
to [1–3] and the second term is to replace Google and Bing by their lowest common
ancestor in Figure 2(c) (Search Engine) which covers two out of |E| = 8 URLs. In sum-
mary, the optimal set of feasible intervals for P1 is I∗ = { (Search Engine, [1–3]), (Bing,
7–11) } with an information loss equal to Opt(3, 1) + 0.5 ∗ (11−7)

10 ; no event generaliza-
tion is required in the second interval of I∗. Table III presents the anonymized data
after applying ANONYMIZE on partitions P1, P2, and P3.

8. EXPERIMENTAL EVALUATION

We present the result of an empirical evaluation of our algorithms. Table IV summa-
rizes the methods and Table V summarizes the datasets. We only present a representa-
tive subset of our results. Sections 8.1 and 8.2 present datasets used and the settings.
Section 8.3 compares our algorithms with related work. Sections 8.4 and 8.5 inves-
tigate the usefulness of our optimizations for SSR and SCR settings. Section 8.4.4
studies the scalability of our methods and measures the resource overhead of our
optimizations.

8.1. Datasets

8.1.1. AOL. Contains the query log of users during three months in 2006. This dataset
has been mainly used to study the anonymization of query logs using keyword general-
ization [He and Naughton 2009]. Each record indicates either a search or a URL visit.
After data cleaning, there were 521,692 click streams. We considered two scenarios:
First, AOL shares data with a search engine or a website (SSR setting). We picked
Yahoo and Flickr as candidates because the average number of visits to these web-
sites per sequence is among the largest and the smallest values, respectively. Thus,
Er = {Yahoo} and Er = {Flickr}, respectively, in datasets Yahoo and Flickr. Second, AOL
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Table IV. Methods Used in Experimental Study

Method Description

TA Trajectory Anonymization algorithm [Nergiz et al. 2009]
SA Symmetric Anonymization algorithm [Yarovoy et al. 2009]
HN BASELINE

HI BASELINE using FASTNN
HY HYBRID using BASELINE with FASTNN
HL HY with all sequences are assigned to region A
ET PR

Table V. Summary of Datasets Used for Evaluations

Property Flickr Yahoo Google Mixed Oldenburg Worldcup

|D| 6,919 33.4K 84.5K 243.4K 11,571 19.4K
|regionA| 6,074 25.4K 63.8K 159.1K 8,060 15.6K
Max. len. 54 867 1,895 8.6K 186 685
Avg. len. 1.2 3.8 3.1 4.9 7.0 14.3
(e, t) pairs 1.5M 2.5M 5.6M 14.8M 0.5M 6.2M
|E| 37.6K 451.8K 812K 1.4M 635 19K

Note: |regionA| is the number of sequences in region A, see Figure 3 for a demonstrative
example.

shares data with colluding receivers (i.e. SCR). We extract the Mixed dataset from
AOL for Er = {Google, Yahoo, MySpace, eBay, Amazon, Wikipedia}. We use Mixed for
evaluating the SCR setting (Section 8.5) and for scalability evaluations (Section 8.4.4).

8.1.2. Worldcup98. Contains the access log to WorldCup 1998 website15 with 2,140,622
click streams. We considered sharing click streams with a party that collects time
stamps of visiting one random URL in the last week of the tournament during which
the site experienced a large number of visits. We excluded URLs visited by almost all
users, as these pages may correspond to the homepage or navigational links and we
did not regard them as sensitive. We used this dataset for evaluation of SSR.

8.1.3. Oldenburg. Contains synthetic data generated using Brinkhoff ’s traffic data
generator [Brinkhoff 2003] for the city of Oldenburg with parameters set to their de-
fault values. We discretized the city map using a uniform grid with 1,024 cells and
assigned an identifier to each cell. If a trajectory contains a point in a grid cell we
consider a visit to the corresponding cell at the time stamp of visit. For each cell, we
compute the number of trajectory visits to the cell and consider the scenario where a
store, with several branches in the city, records visit times of customers. We considered
a controller that monitored the top 10 locations in terms of the number of visits. Out of
25K trajectories created by the data generator, we picked the trajectories that visited
any of the monitored locations. We used this dataset for evaluation of SSR setting.

8.2. Settings

We implemented algorithms in C and conducted experiments on a machine with a dual
core 3Ghz CPU, 2GB RAM, running Linux Fedora 12. The index for clusters was imple-
mented using R-Tree16 with a fan-out of 100 and 4K pages. We stored sequences in a B-
Tree index with sequence ID as key. Each fingerprint was 4 bytes. In SSR experiments,
we set we = 0 and in SCR experiments, we set we = wt = 1. We extracted URL categories

15http://ita.ee.lbl.gov/html/contrib/WorldCup.html
16http://www2.research.att.com/∼marioh/spatialindex/
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in AOL dataset by sending queries to Alexa17 in October 2009. One of the three cases
happened for each URL: (1) Alexa had the category of the URL18, (2) Alexa returned
a list of similar URLs, and (3) Alexa had no entry. We only consider the first four
categories from the longest category returned by Alexa for each URL. We organized
URLs, based on their categories, into a taxonomy. In case 2, the URL was assigned
to the category which is shared among its similar URLs. In case 3, the URL was as-
signed to the Miscellaneous category, which contains typos and un-popular URLs. This
way, we could build a taxonomy of height four, 45,383 nodes, maximum fan-out of 128
(avg. 3), and 884K categorized URLs (case 1 or 2) from over 1.6M URLs. We only used
the Mixed dataset for the evaluation of the SCR setting and for scalability experiments.

8.3. Comparison with Related Work

We compared HN (i.e., the BASELINE algorithm) with the two comparable state-
of-the-art syntactic anonymization methods for sequence databases; the Trajectory
Anonymization [Nergiz et al. 2009] and the Symmetric Anonymization [Yarovoy et al.
2009], which we refer to in the rest, respectively, as TA and SA.

— TA clusters sequences into groups of size at least k to achieve k-anonymity. This is
similar to our approach. However, TA does not enforce Strong Coverage (Property
2.3). Instead, TA applies suppression, when sequences that fall in the same group
are of different length. Like HN, TA applies location and time generalization.

— SA requires a prespecified set of quasi-identifiers (QIDs). It optimizes a time inde-
pendent distortion measure. For each trajectory, if performs an approximate nearest
neighbor search, based on the location of the trajectory at its QIDs. The closeness is
measured in terms of the aggregate difference of the Hilbert index extracted from
locations. Finally, SA enforces a symmetric property over the attack graph, which
may result into generating anonymization groups with more than 2k trajectories.

Several other works studied syntactic anonymization of sequence data. However, the
problem setting of SA and TA are the most similar to ours, thus we compared our ap-
proach with them. Following TA and SA, syntactic sequence anonymization has been
studied in different settings. Huo et al. [2012] extend Abul et al. [2008] by general-
izing only the stay points (check-in places, credit card transaction places, etc.). It is
not clear how to define stay points for our problem. Monreale et al. [2010] extend SA
by finding a tessellation of geographical data into sub-areas. It is not clear how this
technique can be applied on non-geographical data. Mahdavifar et al. [2012] consider
publishing moving objects, where each has a different privacy requirements. No sys-
tematic approach was proposed to elicit each trajectory’s privacy requirement. When
a sensitive attribute is attached to each trajectory (e.g., patient’s trajectory and their
disease), Chen et al. [2013] propose (K,C)L privacy model. In our setting, there is no
separation between sensitive and nonsensitive (event, time stamp) pairs.

We stress that the anonymized data produced by HN conforms with the symmet-
ric requirement of SA; each anonymization group (AG) of HN is a complete bipartite
graph, thus the induced attack graph [Yarovoy et al. 2009] by HN is symmetric. To
assure the fairness of our comparisons, we compare TA, SA, and HN in the following
setting. We set Er = E, the set of all possible events. Thus, HN generalizes all (event,
time) pairs, TA clusters complete sequences, and SA assumes all (event, time) pairs

17http://www.alexa.com
18E.g., for Facebook Alexa returned Computers/Internet/On the Web/Online Communities/Social Network-
ing as the longest category.
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Fig. 6. k-anonymity in Oldenburg dataset, varying k.

as quasi-identifiers.19 Thus, HN, SA, and TA all anonymize complete sequences in this
experiment. Except TA and SA, our approach is not comparable to previous works (e.g.,
[Abul et al. 2008] and [Terrovitis and Mamoulis 2008]) mainly because they all ignore
time points of trajectories, both in forming AGs and during generalization.

We compare running time and the quality of the anonymized data generated by
these methods with respect to data distortion and workload based utility measures.
Because SA requires a predefined set of quasi-identifiers (QIDs) for trajectories, we
picked the set of all time points as QIDs. This is to provide a common ground for fair
comparison. This setting provides an equivalent privacy level for the three methods.
Furthermore, to make the information loss independent from the employed taxonomy,
we slightly changed the definition of data distortion in Eq. (2) by setting ILe to the
sum of distortion along the spatial coordinates of trajectories. This was motivated
by the observation of Sherkat and Rafiei [2008] that minimizing the sum was shown
to be superior to minimizing the volume in terms of preserving quality. Finally, we
picked Oldenburg dataset as TA and SA perform geometric transformations on spatial
coordinates.

8.3.1. Information Loss. Figure 6(a) shows that information loss increases monotoni-
cally with k for all three methods. This is because the anonymization groups get larger
in order to fulfill the desired privacy level. HN incurs the smallest distortion and there
is no winner between SA and TA; for k = 2, 20 the former has a smaller distortion
but TA performs better when k = 5 and 10. A key reason behind high information
loss of TA is that each group is biased by the selection of the first trajectory in each
group. The group is formed in TA by finding k-1 nearest neighbor to the seed, each
time merged with a new sequence to create a new seed. While SA benefits from pre-
serving the exact value of time points (it only generalizes location) but from the other
side, it may group more than 2k points to ensure that attack graph is symmetric. Natu-
rally, since HN targets optimizing the information loss, a smaller distortion is observed
in HN.

8.3.2. Running Time. The running time for all three methods increases with k
(Figure 6(b)); the amount of increase is smallest in SA compared to the other two
methods (from 479 sec. to 541 sec). Although both TA and HN do hierarchical clus-
tering, but at each step TA merges a cluster with a sequence whereas HN merges
clusters. Thus, HN may require, in total, a smaller number of cluster comparisons
and information loss computations, specially when k is large. TA and HN evaluate
computationally expensive information loss measures to form clusters but SA uses a

19SA [Yarovoy et al. 2009] requires that the set of quasi-identifiers (as time points) to be known ahead of
time. But no method was proposed by the authors to find the set of quasi-identifiers.
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Table VI. Range Query Distortion Changing k (Oldenburg)

TA [Nergiz et al. 2009] HN SA [Yarovoy et al. 2009]
k Suppression fn fp fp fp

2 6.29 % 0.03 0.18 0.23 0.37
5 25.76 % 0.07 0.25 0.54 0.66

10 32.74 % 0.09 0.25 0.55 0.73
20 37.56 % 0.09 0.27 0.74 0.74

score which is linear in length of sequences. Thus, its running time is less than the
other two methods except at k = 2, where the overhead of maintaining the symmetric
attack graph is larger than the saving from computing information loss.

8.3.3. Range Query Distortion. We report false positive (fp) and false negative (fn) ra-
tios for range queries as a metric for utility of the anonymized data. Such queries can
be modules of complex spatiotemporal pattern queries [Hadjieleftheriou et al. 2005].
Each query q has a spatial range sq and a temporal range tq. Let nHits(q,D) be the
number of trajectories in dataset D that pass over the region sq during time tq. For
anonymized dataset D∗, the locations and time points are generalized to intervals.
The intervals may overlap partially or completely with sq and tq. Let nHits(q,D∗)
be the number of trajectories in D∗ that overlap with query q. If there is no sup-
pression, nHits(q,D∗) overestimates nHits(q,D). For query workload Q, we define the
ratios as

fp(D∗) =
∣∣ {q | q ∈ Q, nHits(q,D∗) > nHits(q,D)} ∣∣

| Q | ,

fn(D∗) =
∣∣ {q | q ∈ Q, nHits(q,D∗) < nHits(q,D)} ∣∣∣∣{q | q ∈ Q, nHits(q,D) > 0}∣∣ .

Both fp and fn are in range [0, 1] and a smaller value is favorable for both ratios. In
our evaluation, we divided the time, x, and y coordinates into 100 intervals of equal
length. A combination of temporal and spatial dimensions provided the query work-
load Q which has 100 × 100 × 100 queries. We observed that fn = 0 for both HN and
SA. In Table VI, we observe that TA has the smallest fp ratio, because it has compact
intervals; each interval has one time point from each sequence. Still, TA has the draw-
back of false negatives due to suppression. SA has the largest fp ratio even though it
does not perform time generalization for two reasons. (1) In SA, each AG is formed
initially by finding k − 1 closest sequences to a single sequence in QID space. The AG
can get biased towards a single sequence. In HN each AG is found iteratively: it is ini-
tialized to a single sequence and in an iterative process, it is merged with the clusters
closest to the current AG. (2) The symmetric merging in SA generates larger AGs in
an attempt to maintain the attack graph symmetric. This results into more data dis-
tortion, reflected in part as larger fp ratio compared to HN. HN is the best approach,
among the three, when false negatives are not acceptable.

8.3.4. Preserving Causality Patterns. We next evaluate the utility of anonymized data
for causality queries. Unlike range queries in the previous section, which consider
hits within a time interval and spatial region, causality queries measure how well
the anonymized data can preserve causality patterns. In this work, we consider spa-
tiotemporal prediction queries, as a case of causality queries. The goal (i.e., utility) is
to predict the location of a trajectory at time t + w given its location at time t. These
queries are useful for mining temporal causality patterns (e.g., [Mannila et al. 1997]).
Assume a relational schema as (tid, loc, time) for the Oldenburg dataset, where each
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Fig. 7. KL Divergence, varying k and w.

tuple records the location loc at time stamp time for trajectory with identifier tid. A
causality query can be written using the following SQL statement.

SELECT A.loc, B.loc, COUNT(DISTINCT A.tid)
FROM Oldenburg A, Oldenburg B
WHERE A.tid = B.tid
AND A.time <= B.time <= A.time + w
GROUP BY A.loc, B.loc;

Intuitively, for each location pair (x, y) the query finds the number of trajectories
that make a visit to these two locations (in order) during a time interval of length w.
Normalizing the count in this query induces a probability distribution Pw

x,y, which is
similar to the transition probability of a Markovian process model [Papoulis and Pillai
2002]. We can derive Qw

x,y as an estimate of Pw
x,y using the anonymized dataset. Let

LOC be the set of all locations20 and let Oldenburg* be the anonymized data with the
schema (tid, [loc1-loc2], [time1-time2]). The causality query can be written as

SELECT A.loc, B.loc,
(SELECT count(Distinct C.tid)
FROM Oldenburg* C, Oldenburg* D
WHERE C.tid = D.tid
AND C.loc1 <= A.loc <= C.loc2
AND D.loc1 <= B.loc <= D.loc2
AND C.time2 <= D.time1 <= C.time2 + w)

FROM LOC A, LOC B;

We use the Kullback-Leibler Divergence [Kullback and Leibler 1951] to measure the
closeness of Pw

x,y and Qw
x,y, as it was used before as a representative metric in the data

anonymization literature [Kifer and Gehrke 2006].

DKL(Qw
x,y, Pw

x,y) =
∑

∀x,y∈LOC

Pw(x, y) log Pw(x,y)

Qw(x,y)
.

DKL is zero for identical distributions and a smaller value denotes a more distribu-
tion preserving anonymization. Figure 7 shows DKL for SA, TA, and HN when k and
w increases. We set w to 1%, 5%, and 10% of the entire time span. We notice that
for all methods, DKL increases monotonically with k, which is expected because the
anonymization groups get larger and it becomes harder to predict trajectory locations
in each group. We also observe that the distribution of Qw

x, y gets closer to Pw
x, y when

w increases; this is because the amount of time generalization does not increase with
w but the sensitivity of DKL to anonymization decreases with w. We consistently ob-
serve a smaller (better) DKL for HN. A large percentage of point suppression for TA in

20In this experiment, we divided the map into 1, 024 × 1, 024 cells of equal area to derive the set of all
locations LOC.
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Fig. 8. k-anonymity changing k.

Fig. 9. Computations and disk accesses, k-anonymity (k = 16).

Fig. 10. (g, �)-diversity changing � (g=1 hour) in (a), (b) and changing g (�=16) in (c), (d).

Table VI appears as large DKL when k is large; although the suppression in TA does
not produce a significant amount of false negatives (less that 10%), it has a relatively
large impact (up to 30%) on the accuracy of causality queries when k = 20.

8.4. Evaluation of the SSR Setting

8.4.1. k-Anonymity. As we observe in Figure 8, the information loss is very small for all
methods (less than 6%).21 The running time increases monotonically with k as more
comparisons and disk accesses are needed to form larger anonymization groups. In
Flickr, HL is very close to HN in terms of information loss as the average length of
QIDs is relatively small (1.2 clicks/user) and the percentage of sequences that fall into
region A is high. Thus, a fast heuristic in 2D space produces results with the same
quality as HN. HY (in Flickr) benefits from partitioning and runs ten times faster
than HI (Figure 8(c)) without a significant drop in information loss. In Yahoo, HL runs
significantly faster than other methods. The average length of QIDs in Yahoo is larger
than Flickr. We observe a large difference between information loss of HL and HN in
Yahoo. However, HY makes a balance; it provides an improvement in running time
over HI and the information loss of HY is very close to HN. In both Flickr and Yahoo,
HI runs up to an order of magnitude faster than HN as the index and FASTNN reduce
the number of computations by almost four orders of magnitude and the number of
disk accesses by more than one order of magnitude (Figure 9), which explains the
observed improvement of running time for HY (Figures 8(c) and 8(d)). HI and HY have
two overheads: creating index (I/O) and evaluating lower bounds (CPU). The lower
bounds are very efficient to compute and both HI and HY benefit from the index. HL

21Since the global time-span is 91 days, an information loss of 6% is equal to a time distortion of five days
(in average) for each time stamp.
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Fig. 11. Computations and disk accesses, (g, �)-diversity, � = 16, g = 1 hour.

scans the data once for sorting and once for finding AGs at an I/O cost which is three
to four orders of magnitude smaller than HN. Overall, the index and our heuristics are
effective to reduce the anonymization time. HI has the same distortion as BASELINE
but HY reduces the time for HI with a small increase in data distortion.

8.4.2. (g, �)-Diversity. The information loss is very small for all datasets (Figure 10).
The anonymization cost grows with � due to an increase in group size, which is di-
rectly related to the increase of information loss. We observed a very similar pattern
that we had observed before in k-anonymity, in terms of information loss and relative
performance of HN, HY, and HL, in all datasets except for Oldenburg in which we see
a unification of HI, HL, and HY (Figure 10(a) and Figure 10(b)). We noticed that the
distribution of locations is dense in Oldenburg. Many locations, mostly in the center
of the map, were visited by a large number of sequences during a small time interval.
These sequences are candidates for (g, �)-diversity violations as they visited the same
location during a close time interval. In HL and HY, these sequences are handled by
HI. Figure 11 confirms this pattern; HL and HY make the same number of computa-
tions as HI.

Increasing g adds more grouping constraints. This has two impacts in Figure 10(b):
(1) in HN and HI, the number of candidate sequences to merge with a cluster reduces
when g increases. This reduces the number of required computations and hence the
running time. (2) For HY and HL, there will be more (g, �)-diversity violations in larger
intervals; more clusters become infeasible and will be passed to HI. Thus, the running
time of HL and HY converge to HI. In terms of information loss (Figure 10(c)), it seems
hat greedily checking constraints locally (as in HN and HI) does not always yield the
best anonymization group. The index and optimizations are effective and reduce the
number of disk accesses and computations, as shown in Figure 11, which results into
reduction of the running time; HI has the same distortion of HN whereas HL and HY
have improved running time with a small increase in data distortion.

8.4.3. Utility. To measure the usefulness from the perspective of data receiver, we
considered the accuracy of causality queries. Inline with the queries and the accuracy
measure (i.e., DKL) introduced earlier in Section 8.3 for causality patterns, we assume
that a receiver that collects time stamps of URL A wants to compute the distribution
of visits for click streams within w time units of visits to URL A. For instance,
Google may want to know the probability that one visits Amazon after five minutes of
visiting Google, or conversely, the probability that one visits Bing five minutes before
visiting Google. In Figure 12, we observe that DKL is relatively small for AOL dataset,
compared to that reported in Figure 7. The reason is that here we generalize only the
section of each sequence that are collected by the corresponding receiver (i.e., the set
L in Section 7). DKL monotonically increases with �; this is expected because AGs get
larger and it becomes harder to predict the event participation—(url,time) pair—for
each user in a group due to the added diversity. These trends are consistent with the
trend observed for information loss (e.g., Figure 10(a)). Again, HL has the largest DKL
among other methods and DKL is the same for HN and HI. As shown in Table VII,
increasing w reduces DKL; this implies that the anonymized data is more useful for
predicting long term trends.

ACM Transactions on the Web, Vol. 8, No. 1, Article 4, Publication date: December 2013.



�

�

�

�

�

�

�

�

4:40 R. Sherkat et al.

Fig. 12. KL-Divergence changing �.

Table VII. KL-Divergence Changing w

Dataset 1 minute 1 hour 1 day 1 week 1 month

Flickr 1.680 0.670 0.327 0.147 0.049
Yahoo 2.100 0.628 0.316 0.102 0.027
Oldenburg 1.179 0.018 0.017 0.017 0.017
Worldcup 0.407 0.058 0.010 0.002 0.002

Fig. 13. Scalability of k-anonymity in Mixed (k = 16).

8.4.4. Scalability. Figure 13 reports scalability evaluations for k-anonymity on Mixed
dataset. All our algorithms scale better than HN (Figure 13(a)), which has a quadratic
scalability. Except for HL, the information loss is relatively small (under 10%) for all
methods (Figure 13(b)). HL is the fastest but it has a larger information loss. HI is an
order of magnitude faster than HN and HY is 10%–20% faster than HI with a slightly
larger information loss but almost equal DKL (Figure 13(c)). HI offers the same quality
as HN but runs significantly faster. Data density increases with the number of se-
quences. Thus, the sequences in each group become more similar and the information
loss decreases monotonically for all methods (Figure 13(b)). This trend is consistent
with the trend in DKL; the distribution of events in anonymized data gets closer to the
general distribution. HL is the fastest method, but has a larger information loss. HY
and HI have the same data distortion as HN in Figure 13(b). We next measure the
overhead of HI and HY (Figure 13(d)). HI and HY both require an index for clusters
and memory to store the fingerprints. In Figure 13(d), we use HI-IN and HY-IN to
refer to the size of index (on disk) for HI and HY, respectively. Similarly HI-FP and
HY-FP refer to the storage space (in main memory) for fingerprints for HI and HY,
respectively. HY has a smaller space requirement than HI, because HY only indexes
sequences in region B. The space for fingerprints is under 1MB for 240K sequences
with over 14M (event,time) pairs. This shows that HI and HY are practical for large
datasets with a small overhead.

8.5. Evaluation of the SCR Setting

8.5.1. Time Generalization vs. (Event, Time) Generalization. We compared HI with ET (PR
in Algorithm 4) on a sample of AOL dataset with 5K sequences. We set Er to the set
of all URLs to simulate the extreme setting of the SCR model, where all receivers may
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Table VIII. Time Generalization (HI) vs. Event and Time Generalization (ET) for a
Sample of AOL, wt = we = 1

Time (Sec) Information loss
k = 2 k = 5 k = 10 k = 20 k = 2 k = 5 k = 10 k = 20

HI 63.7 145.5 234.3 372.7 0.72 0.84 0.88 0.90
ET (PR) 121.1 263.8 398.5 565.9 0.81 0.89 0.92 0.94

collude. In this case, there is no gain beyond k-anonymity, because the receivers al-
ready have complete sequences. Thus, we do not consider (g, �)-diversity in this experi-
ment. The average length of sequences is 72 and we generalize URLs and time points.
Table VIII reports information loss and running time for k-anonymity. Note that time
generalization (HI) does not provide the same privacy level as ET because events can
be used as QIDs to breach privacy. We include HI in Table VIII only to compare the
information loss and running time of the two approaches. Since ET provides a more
strong privacy coverage, it naturally incurs a larger information loss. Besides, it takes
longer to anonymize data using ET. As ET generalizes every (time, event) pair of se-
quences, we observe a relatively larger information loss vs. HI (compare information
loss with Flickr/Yahoo in Figure 8). Another factor for the large information loss in
ET is the sporadic nature of click times combined with the large diversity of URLs.
Even though ET uses progressive clustering, its running time is higher than HI due to
PARTITION. Because ET is comparable with HN, in terms of the privacy of anonymized
data, we next perform an in-depth comparison of HN and ET.

8.5.2. k-Anonymity. Figure 14 compares HN as our baseline approach (Algorithm 1)
with Partition and Refine (PR) approach proposed in Algorithm 4. When k increases
(Figure 14(a)), the overall running time of both methods grow for two reasons. First,
the time complexity of calculating information loss grows linearly with the average
number of sequences in each anonymization group (Section 7.1), which is correlated
with k. Second, the number of under-filled clusters grows with k, which demands
for more time to resolve under-filled clusters in both HN and PR. PR has a better
running time, compared to HN, because not only computing eventDist is more effi-
cient than NCP, but also refining over the time dimension (REFINE) is effective and
takes advantage of the optimizations of HN for time dimension. The information loss
of HN and PR are very close (Figure 14(b)); both grow with k. This is because as
the size of each anonymization group grows, so does the number of (url, timestamp)
pairs that need to be generalized together. This translates into larger distortion on
both time and event dimensions. Using heuristics in PR does not have a great im-
pact on the total running time of PR for a wide range of k. In the next experiment,
we compared HN and PR by limiting the length of sequences in the dataset (varying
maxLen) from 2 to 20 (Figures 14(c), (d)). For this experiment, each time we only used
the first (i.e., earliest) maxLen (url, time stamp) pairs of each sequence. When maxLen
is small, the difference between total information loss of the two methods is negligible
(Figure 14(d)). This is mainly because the eventDist is not sensitive to the order of
events, and as the sequence length grows, the partitioning places sequences with very
similar events but possibly visited in different order in the same group. This, at the
same time, reduces the running time of PR (Figure 14(c)) because partitioning across
the event dimension is effective, and refining over the time dimension can take advan-
tage of SSR optimizations.

8.5.3. Changing Weights wt and we. We next compare HN and PR with the biased
version of PR (Algorithm 6) when the relative importance of time (wt) over event (we)
decides the number of times REFINE or PARTITION is invoked. In this experiment,
we start with a small wt

we
, which means preserving information about events is more
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Fig. 14. k-anonymity HN (-�-) (Algorithm 1) and PR (-x-) (Algorithm 4). Setting: Er = E and |D| = 1K.

Table IX. Impact of Changing the Weights on Information Loss of Event and Time
Stamp. Setting: Er = E and |D| = 1k

Avg. information loss (event) Avg. information loss (time)
wt / we PR HN Biased PR PR HN Biased PR

0.01 0.9749 0.8557 0.9790 0.9668 0.8493 0.9724
0.1 0.9768 0.8551 0.9748 0.9012 0.7964 0.9078

1 0.9739 0.8714 0.9748 0.5537 0.4871 0.5602
10 0.9849 0.9352 0.9909 0.2105 0.1392 0.1660

100 0.9852 0.9858 0.9877 0.1350 0.0604 0.0937

Fig. 15. (a, b) k-anonymity with time generalization. Methods: PR (-x-) (Algorithm 4) and HI (-•-) with our
optimizations for time dimension. Settings: we = 0, wt = 1, and |D| = 1K. (c, d) Scalability of k-anonymity
with increasing the number of sequences. Methods: HN (-�-) (Algorithm 1) and PR (-x-) (Algorithm 4).
Setting: Er = E and k = 8.

important than time stamps. We increase wt
we

up to a point where preserving temporal
information is more preferred. For each value of wt

we
we report the average information

loss, once projected on the time dimension and once projected on the event dimension
in Table IX. In HN, the amount of event distortion increases monotonically when wt

we
grows and the average temporal distortion decreases. A similar pattern is observed
in PR and Biased PR. We observe the main advantage of Biased PR over PR when wt

we
is large (≥ 10). In this range, the former method has smaller information loss across
the time dimension. In the same region, Biased PR has a larger loss across the event
dimension. In Table IX, the information loss projected on the event dimension is larger
than that on the time dimension. This is attributed to a relatively small cardinality
of event sets, compared to the space of possible time stamps. Because the domain
taxonomy in our experiments was four levels, event generalization on such a shallow
taxonomy turns out to be more coarse-grained, compared with time generalization.

Next, we compare our top-down PR algorithm with the bottom-up HI in a different
setting; we = 0 and wt = 1. In this setting, PR only performs time generalization and
therefore it becomes comparable with HI in terms of the privacy level of the published
data. As Figure 15(a), (b) present, HI is faster than PR and offers anonymized data
with smaller information loss. This is mainly because PR produces several partition-
ing of the dataset until it forms groupings with 2k or less sequences. In each iteration,
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PR invokes Baseline optimized for the time dimension for partition sizes which are
often greater than k (κ in Line 21 of Algorithm 4). Therefore, for the SSR setting, the
algorithms optimized for time dimension are more effective than adapting the algo-
rithm for SCR (i.e., PR, both considering the total running time and the utility).

8.5.4. Scalability. We set k = 8 and compared HN and PR when the size of database
(|D|) grows (Figure 15(c) and 15(d)). The total information loss decreases for both meth-
ods (Figure 15(d)) because the data density grows with the size of database. While the
information loss of HN remain very close to PR as size increases, the difference be-
tween the running time grows rapidly with size (Figure 15(c)). The difference is mainly
attributed to the optimizations of SSR setting during REFINE in PR and the efficiency
of computing eventDist, instead of performing O(|D|2) computations of information loss
in HN.

8.6. Time and Event Generalization for the SSR Setting

Our algorithms for the SSR setting are based on time generalizations for events
in Er. We next investigate the idea of reducing information loss by generalizing
events. As a motivating example, let Er = {Google}, and consider two sequences
S1 = {(Google,1), (eBay,5), (Google,10)} and S2 = {(Bing,1), (Bing,2), (Google,10)}. The
SSR setting would publish the sequences as {(Google, [1–10]), (eBay, 5)} and {(Bing,1),
(Bing, 2), (Google,[1–10])}, resp. An alternative approach to achieve 2-anonymity
publishes

{(Search engine, 1), (eBay, 5), (Google, 10)} and {(Search engine, 1), (Bing, 2), (Google, 10)},

to preserve more of temporal content (in the above example, the original temporal
information) by selectively generalizing some events in E − Er. Note that this general-
ization is different from the SCR setting, because SCR does not generalize any event
in E − Er. To derive this new generalization, we have to modify Algorithm 7 as fol-
lows. Instead of considering the sequences in L for computing IL(L, I∗

i, j) in Line 13,
we need to consider a subset of (event, time stamp) pairs in R as well. Therefore, the
computational complexity of finding IL(L, I∗

i, j) is multiplied by the number of possible
subsets of (event, time stamp) pairs in R that appear in range [ti −tj]. Thus, computing
NCP and finding the optimal generalization of a set of sequences become more expen-
sive compared to applying time-generalization only (i.e., the traditional SSR setting).
Table X compares the results achieved by the modified algorithm (ET) with the SSR
setting with and without our performance optimizations (THI and THN , respectively).
We ran experiments once for Er = {Google} and once for Er = {Yahoo}. For each setting,
we used different dataset sizes and values of k for k-anonymity. Each time that NCP
is computed in ET, we also compute NCP in the traditional SSR setting, and report
the number of times that generalizing events improves (i.e., reduces) information loss.
As we observe, for a very small number of cases (e.g., 34 in 10.3 million NCP compu-
tation for |D| = 5K and k = 2) generalizing events in the SSR setting improves NCP.
However, in the great majority of cases the NCP does not improved under the new
policy. This is due to the fact that the cardinality of the temporal dimension is much
larger than the number of events, in our experiments where the taxonomy of events
has four levels. In this setting, one level of event generalization causes a large drop
in utility, compared to generalizing time stamps to a wide time interval. On the other
hand, the computational cost of ET is one to two order of magnitudes higher than THN
and THI. This is due to the computational complexity injected by the subset selection
problem.
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Table X. SSR; time (T) vs. event and time (ET) generalization. Setting: maxLen = 20

Er = {Google} Er = {Yahoo}
#better NCP
#total NCP

time #better NCP
#total NCP

time
|D| k method NCP (sec.) NCP (sec.)

5K

2
ET 0.014 34 / 10.3M 183.4 0.011 2 / 10.3M 396.4

THN 0.014 - 12.3 0.011 - 11.0
THI 0.014 - 5.6 0.011 - 5.8

8
ET 0.068 111 / 12.4M 1,010.5 0.055 1 / 12.4M 1,144.2

THN 0.068 - 28.5 0.055 - 24.8
THI 0.068 - 11.9 0.055 - 11.4

10K

2
ET 0.011 120 / 41.5M 1,415.1 0.009 6 / 41.6M 1,561.7

THN 0.011 - 50.2 0.009 - 42.6
THI 0.011 - 25.4 0.009 - 23.0

8
ET 0.054 258 / 49.6M 4,080.7 0.044 2 / 49.6M 4,630.6

THN 0.054 - 117.8 0.044 - 95.8
THI 0.054 - 54.2 0.044 - 46.2

9. RELATED WORK

9.1. Relational Data Anonymization

It has been shown that removing key identifiers from published data does not provide
a comprehensive privacy protection [Sweeney 2002]. An attacker can join a subset
of the attributes of data, termed as quasi-identifiers, with published data to reveal
the existence of an individual in the published database or to find the value of sensi-
tive attributes (SA) for an individual. An attacker can gain access to quasi-identifiers
from public databases (e.g., voters registration list) or other sources of information. To
protect privacy, a data provider transforms a database before making it available to
third parties. The transformation step might generalize values into less specific val-
ues [Samarati 2001; Sweeney 2002], suppress some records [Sweeney 2002], perform
perturbation by adding noise [Agrawal and Srikant 2000], or obfuscate the associa-
tion between quasi-identifiers and SA [Xiao and Tao 2006]. In k-anonymity [Samarati
2001], a tuple must be indistinguishable in quasi-identifier space, among a set of k (or
more) tuples called anonymization group (AG). In �-diversity [Machanavajjhala et al.
2006], the values of the SA must be well-represented in each AG.

Partition-based anonymization may suffer from attribute inference attack if ma-
chine learning is used to learn associations between quasi-identifiers and SA [Kifer
2009]. To bound the probability of attribute inference attacks, in t-closeness [Li
et al. 2007] the distribution of SA in each anonymization group must be close to the
distribution of the SA in the original data. In minimality attack [Wong et al. 2007],
it is assumed that the adversary knows about the privacy model, the anonymization
algorithm, and the criterion being optimized (e.g., information loss). Wong et al. show
that this adversary can breach privacy for a number of models including �-diversity,
t-closeness. For sensitive attributes which encodes either a “positive” or “negative”
value, they propose a randomized algorithm to mitigate method based attacks (for
binary �−diversity) by randomized grouping and sensitive value generalization.
Cormode et al. [2010] analyze method-based attacks and define three properties that
can make an anonymization algorithm vulnerable to minimality attacks: “being de-
terministic in operation, making asymmetric grouping choices, and jointly identifying
the identifying and sensitive attributes.” They show that symmetric partitioning (e.g.,
k-anonymity) and algorithms that only consider sensitive attributes (e.g., Anatomy
[Xiao and Tao 2006]), can resist minimality attacks. For an algorithm designed
deliberately to be vulnerable to minimality attacks, they show analytically that an
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attacker’s confidence for the sensitive attribute of an individual may increase by a
small constant. They conclude that the impact of such attacks can be minimized in
practice.

9.2. Itemset Anonymization

The concept of k-anonymity has been also extended to set-valued data [He and
Naughton 2009; Terrovitis et al. 2008, 2012]. An adversary’s background knowledge
in km-anonymity [Terrovitis et al. 2008] is confined to at most m items but no such
limit is imposed in set k-anonymity [He and Naughton 2009]. Because a click-stream
is a set of (URL, time) pairs, one can directly use km-anonymity [Terrovitis et al. 2008]
(similarly k-anonymity [He and Naughton 2009]) to our problem by using an aug-
mented taxonomy. The new taxonomy is a combination of the original event hierarchy
with a time generalization tree. However, the common goal of Terrovitis et al. [2008]
and He and Naughton [2009] is to ensure that after item generalizations any itemset
known to an adversary is supported by at least k itemsets in the published data. The
supporting itemsets may lack diversity, which makes Terrovitis et al. [2008] and He
and Naughton [2009] vulnerable to SA inference attack.

To offer diversity, Xu et al. [2008] have proposed (h, k, p)-coherence. In this model,
the itemsets which contain up to p public items, must have cardinality k (or more) and
at most h percent of these itemsets contains a common private item. Our approach
is different from Xu et al. [2008], due to two main properties of browsing histories: (1)
temporal sensitivity, and (2) high data sparsity. First, each itemset can have more than
one sensitive attribute, each corresponding to a different visit time. We define sensi-
tivity not just in terms of visited URLs, but also visit time relative to other sequences
that visited the same URL. Second, Xu et al. [2008] apply global item suppression to
achieve (h, k, p)-coherence. However, unlike the Retail dataset used in Xu et al. [2008],
the AOL dataset which contains browsing histories is very sparse; 68% of sequences
have at least one unique (URL, time) pair, if we generalize time to the granularity
of a month. Applying suppression to achieve (h, k, p)-coherence on browsing histories
causes severe information loss, even when p = 1. We locally generalize time stamp and
URLs to avoid catastrophic data distortion.

9.3. Multidimensional Anonymization

Multidimensional partitioning is the main impetus for Mondrian [LeFevre et al. 2006]
and spatial partitioning [Iwuchukwu and Naughton 2007]. These greedy algorithms
find a data transformations which supports k-anonymity by data partitioning. They
start with one partition that contains the database as d-dimensional objects. They
iteratively select a partition and divide it into two (or more) subpartitions, such
that each subpartition has k or more objects. The algorithms end when there is no
partition to split. LeFevre et al. [2006] provide a bound on the quality of anonymized
data regarding the size of generated equivalence classes. To apply these works to our
problem, we must first represent our dataset as multidimensional vectors. We map
each click-stream into (|E| · |T|)m-dimensional binary vector, m being the maximum
number of (event, time) pairs in each click-stream. Thus, the database is transformed
into a binary matrix. There are two issues when Mondrian is applied to anonymize
the binary matrix. First, it is difficult to find a criteria to select a dimension to split
(choose-dimension in [LeFevre et al. 2006]) because each dimension gets a value of
one for a single record and zero for all other records. This is mainly due to the large
sparsity of the click-stream datasets. Second, even if a criteria were defined to form
anonymization groups, all that would be left after local-recoding each partition is a set
of zeros (negative associations) and suppressed dimensions (i.e., 0 and 1 generalized
to *) which poses a large amount of data distortion. Iwuchukwu and Naughton [2007]
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uses a spatial index structure (R-Tree) to maintain partitions. This approach suffers
from the curse of dimensionality as |E| and |T| are very large in practice.

9.4. String Anonymization

Aggarwal and Yu [2007a] propose a condensation based method: they group similar
strings and extract a statistical model for each group. The model captures the first and
the second order distribution of characters in original data and it is used to produce—
and publish—pseudodata with the same statistical distribution as the original strings.
This property is desirable for aggregate data analysis (e.g., forming classifiers), but the
published strings are not truthful to the original strings. Sketch based techniques have
been used by Aggarwal and Yu [2007b] for privacy preserving data mining on text and
itemsets. Sketches [Alon et al. 1996] have been applied to anonymize data [Aggarwal
and Yu 2007b]. A number of primitive data mining operations (e.g., dot product and
Euclidean distance can be estimated using sketches). But, estimating other general
causality predicates can be quite complex over sketches.

9.5. Differential Privacy for Private Release of Query Logs

One way to anonymize click-streams is to represent them using a histogram and
apply random perturbation techniques (e.g., [Götz et al. 2009; Korolova et al. 2009;
Machanavajjhala et al. 2008; Xiao et al. 2010]). These techniques stem from the origi-
nal work of Dwork et al. [2006]. To achieve provable privacy against a strong adversary,
Dwork et al. [2006] add random noise to the cells in the histogram which is extracted
from microdata. It is assumed that the adversary knows all records except one that be-
longs to a victim. The goal is to ensure that the adversary cannot make inference about
the victim record with high confidence. Formally, for any two tables T1 and T2 that dif-
fer in one tuple and for any output O of randomized algorithm A, the ε−differential
privacy (ε−DP for short) requires that Pr{A(T1) = O} ≤ eε · Pr{A(T2) = O}. Here,
following Ref. [Dwork et al. 2006], we replace A by a transformation that maps the
click-stream database into a histogram and adds random noise to the cells of the his-
togram. The noise is often generated using the Laplace distribution [Dwork et al. 2006;
Götz et al. 2009; Korolova et al. 2009; Xiao et al. 2010] but other distributions can be
used (e.g., the Multinomial distribution with a Dirichlet prior [Machanavajjhala et al.
2008]).

Rigorous privacy guaranty and analytical bounds on accuracy, for a specific measure
of accuracy defined in Götz et al. [2009], are two desirable properties of perturbation
based techniques that offer ε−DP. To apply these techniques for our problem, we first
simplify our data model and assume for now that each click-stream contains at most m
(event, time) pairs. This model is in fact the click model of Götz et al. [2009] augmented
with time stamp of events. We map the database D of click-streams into a histogram
Hm with (|E| · |T|)m cells. Each click-stream in D contributes to exactly one cell of Hm.
It is straightforward to show that one can reconstruct D from Hm and that Hm can be
used to answer all queries that can be answered by D. Thus, the problem of private
publication of D is equivalent to the private publication of Hm.

As proposed in Korolova et al. [2009] and Götz et al. [2009], we add random noise
to the cells of Hm to create a private release that offers privacy guarantees close to
ε-DP. In fact, Götz et al. [2009] proves the infeasibility of ε-DP in search log publi-
cation; an algorithm that provides ε-DP is inferior to a naive algorithm that always
outputs an empty set in two aspects: (1) the ability to retain very frequent terms
and (2) the ability to filter-out very infrequent terms. Refs. [Machanavajjhala et al.
2008] and [Korolova et al. 2009] offer probabilistic variants of ε-DP, namely (ε, δ)-DP
and (ε, δ)-Indistinguishability. Götz et al. [2009] prove that (ε, δ)-DP implies (ε, δ)-
Indistinguishability but the converse is not true. They conclude that (ε, δ)-DP offers a
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Table XI. Probability of Suppressing (i.e., Removing)
a (URL,Time) Pair from a Click-Stream, when

(ε, δ)-Differential Privacy is Applied to Anonymize
AOL Dataset

ε δ λ τ ′ Pr(suppression)

2 3.2 ∗ 10−3 4.0 80.28 0.999
10 1.3 ∗ 10−37 0.8 80.20 1.000

stronger privacy compared to (ε, δ)-Indistinguishability. For this reason, in the rest of
this section, we focus on (ε, δ)-DP and the threshold-based algorithm termed ZEAL-
OUS [Götz et al. 2009]. The algorithm has three parameters: the thresholds τ , τ ′ and
the variance of Laplace additive noise (λ). Given the histogram Hm, ZEALOUS first
filters (i.e., suppresses) each cell of Hm which is supported by less than τ records in D.
Then, it adds a Laplace noise to the support of each of the remaining cells of Hm. Only
cells with a noisy support of at least τ ′ are published (other cells are suppressed). For
τ = 1, an optimal setting for λ and τ ′ was proposed in Götz et al. [2009].

We present the result achieved by applying ZEALOUS to AOL dataset (refer to
Section 8.1 for specification of this dataset). First, we built the histogram Hm for
m = 2. Let χ = maxi(Hm[i]) be a random variable that denotes the maximum
count in the histogram. Because D is not empty, it must hold that χ ≥ 1. Clearly,
Pr(χ = 1) = 1 − Pr(χ > 1), where Pr(χ > 1) is the probability that at least two
click-streams are exactly equal. In practical settings, not all possible click-streams
appear in a dataset and |D| � (|E| · |T|)m. Therefore Pr(χ > 1) is very small. For
instance, in AOL dataset, |E| = 812, 031, and |T| = 2, 906, 507, but |D| = 650, 000.
When we set m = 2 (less than the average length of click-streams which is 4), we have
Pr(χ > 1) = 1.7 ∗ 10−25. Thus, a large fraction of entries in the histogram is either
zero or one and τ = 1 seems to be a reasonable choice. Table XI shows the probabil-
ity that a click-stream is suppressed to support (ε, δ)-DP in the AOL dataset, where
the probability of suppression is computed as follows: for each histogram cell Hm[i],
1 ≤ i < (|E| · |T|)m, with nonzero support, we compute the suppression probability
Pr(η < τ ′ − Hm[i]) directly, since η is generated by a Laplace kernel with variance λ.
The high probability of suppression is the result of the inevitable uniqueness of click-
streams in the AOL dataset.

A remedy, proposed in Machanavajjhala et al. [2008] for a similar problem is to
shrink the domain using a privacy-preserving clustering algorithm that is compati-
ble with differential privacy. However, this does not typically yield a bound on qual-
ity which is in fact a desirable property of the differential privacy framework. Ref.
[Machanavajjhala et al. 2008] suggests to select initial partitions for shrinking from a
publicly available data or a previous similar release. This data can reduce the sparsity
problem for synthetic data generation problem, which is different from our problem.

Recently, Chen et al. [2012a] propose a variant of Götz et al. [2009], which instead
of adding noise to the frequency of fixed length sequences, considers variable length
subsequences. They use a prefix tree (similar to [Chen et al. 2012b]) for bookkeeping
substrings and their frequencies. If a substring is not frequent enough, it is marked as
leaf node and further expanding of it is terminated. Substrings induced from leaf nodes
of the prefix tree suggest a Markov model to construct synthetic data. This work, while
novel because of considering variable length substrings, has two limitations. First, for
sparse data, a very large fraction of tree nodes, in the first level, could be marked as leaf
nodes when time stamp comes into the picture. The MSNBC dataset which was used in
Chen et al. [2012a] is not sparse for subsequences of length 5 (or less) for two reasons:
(1) it has URL “category” instead of actual URLs, and (2) it does not have time stamps.
Because 99% of (URL,time stamps) are unique in AOL dataset (see Section 1.2), except

ACM Transactions on the Web, Vol. 8, No. 1, Article 4, Publication date: December 2013.



�

�

�

�

�

�

�

�

4:48 R. Sherkat et al.

for the root node, a large fraction of the nodes of the prefix tree could be marked as leaf
node in depth one. Sequential information will be lost in a synthetic dataset produced
by the proposed algorithm of Chen et al. [2012a] when a large fraction of the nodes
in prefix tree contains depth-1 leaf nodes. This issue may be avoided by employing a
preprocessing step, similar to the method proposed in Machanavajjhala et al. [2008],
to shrink the domain of events and time stamps, and consequently reduce data spar-
sity. Furthermore, the error measures used in Chen et al. [2012a] are not sensitive
to the suppression of a relatively large number of not-so-frequent substrings, and the
reported utility measure does not capture the suppressed subsequences that fall into
the long tail of subsequence distribution. From an application point of view, publishing
frequent substrings and itemsets is essential for index caching and query substitution
(e.g., [Korolova et al. 2009; Zeng et al. 2012]). However, there are other applications
(e.g., studying customer’s purchase behavior [Goel et al. 2010]), with sparse not-so-
frequent high dimensional data that fall in the long tail of distribution. An interesting
problem, beyond the scope of this article, is to extend techniques for differential pri-
vacy (or at least relax the privacy model) to these domains to reduce the amount of
suppression.

9.6. Privacy Preserving of Location-Based Services (LBS)

Our problem is loosely related to privacy protection in LBS, where the location of each
user is required to offer personalized service (reply) to their request. To prevent user
identification by location, several techniques have been proposed ([Chow and Mokbel
2011]). Existing solutions can be classified into three categories: (1) those that augment
each request with fake (locations, requests) pairs (e.g., [Kido et al. 2005]), (2) those that
cloak locations (e.g., [Cheng et al. 2006; Mokbel et al. 2006]), and (3) those that encrypt
locations and rely on private information retrieval (e.g., [Ghinita et al. 2008]). Unlike
our setting, these algorithms are applied in an online setting to protect privacy at the
time of submitting requests. In contrast, our focus in this article is the offline setting;
to protect privacy when sequences of requests are published.

9.7. Trajectory Anonymization

Anonymizing event sequences is a relatively new topic and has been mostly studied
for trajectories (see [Ghinita 2009] and [Bonchi et al. 2011] for surveys). Ref. [Terrovi-
tis and Mamoulis 2008] studies trajectory anonymization when the adversaries have
disjoint and controlled (and known ahead) subtrajectories of the trajectories in the
database to publish. One release is provided to all receivers. A privacy breach occurs
if an adversary infers the location for a trajectory with a certainty above a threshold.
This is similar to our (g, �)-diversity model when the time gap g takes an infinitely
large value. For RFID sequences, Fung et al. [2009] applied global suppression to pro-
duce anonymization with larger utility when a taxonomy is not available or using the
taxonomy incurs a large information loss.

The main focus of trajectory anonymization [Abul et al. 2008; Nergiz et al. 2009;
Yarovoy et al. 2009] is to protect published data against sequence identification at-
tacks. Ref. [Abul et al. 2008] clusters trajectories that are similar along their entire
time span. A regular sampling rate is assumed for all trajectories, which are gener-
alized by spatial translation. Since all points of trajectories are regarded as quasi-
identifiers, there is no notion of sensitive location in Abul et al. [2008]. Thus, there
is no protection against event prediction attack. In Yarovoy et al. [2009], the quasi-
identifiers of trajectories are a set of time points for each trajectory and each trajectory
can have a different set of quasi-identifiers (QIDs). The adversary may have any subset
of time points designated as QID for each trajectory. Anonymization groups (AGs) are
formed by imposing a symmetric constraint on the attack graph to prevent sequence
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identification attack using location generalization. However, the trajectories in the
same group may pass via the same location at close time stamps, which makes this
approach vulnerable to event prediction attacks.

A combination of point generalization and suppression is practiced in Nergiz et al.
[2009]. Each AG is generalized as a set of spatial and temporal intervals. Multiple se-
quence alignment is employed to find the optimal set of intervals for each AG. There
are two limitations to this approach. First, each interval, extracted from a set of tra-
jectories in the same AG, must cover exactly one point of each trajectory in the group.
Thus, point suppression is inevitable if trajectories in the same group are of different
length. Second, finding the optimal generalization for each anonymization group re-
quires multiple sequence alignment which is NP-complete [Wang and Jiang 1994] and
impractical even for small anonymization groups with long trajectories. To address
these two limitations, we relaxed the exactly one requirement of Ref. [Nergiz et al.
2009] into at least one (Strong Coverage in Property 2.3). We achieve two important
benefits from this relaxation, with no impact on privacy. (1) The optimal set of inter-
vals for each anonymization group can be found in polynomial time (Lemma 1), and
(2) the generalization does not suffer from point suppression.

10. CONCLUSIONS AND FUTURE WORK

We extended traditional privacy models to event sequences and proposed a framework
based on time and event generalization. For the SSR setting, we proposed incremental
index-based algorithms, in-memory summaries, and effective lower bounds. We also
proposed a hybrid approach that takes advantage of sequence distribution to achieve
a better performance without a significant drop in utility. For the SCR setting, we pro-
posed a natural distance function for multisets which uses domain semantics modeled
by a taxonomy. Our experiments on real and synthetic data show the efficiency of our
algorithms, the scalability of our algorithms to large datasets, as well as the quality
of our generated anonymizations compared to state-of-the-art methods for syntactic
anonymization of sequence databases, in terms of our proposed information loss mea-
sure, range query distortion, and preserving causality patterns.

Previous results [Ghinita et al. 2007; Xu et al. 2006] show that Utility-based Data
Partitioning (UDP) offer anonymizations with better quality vs. Multidimensional Par-
titioning (MP), such as Mondrian [LeFevre et al. 2006]. However, MP scales better
with database size; O(|D| · log |D|) vs. O(|D|2) in UDP. In this article, for the first
time, we took advantage of the properties of the utility measure and proposed algo-
rithms to bridge the performance gap between UDP and MP. Given the rich literature
of distance-based indexing techniques, our results suggest that UDP anonymization
can be implemented as efficiently as MP for data types other than time-stamped se-
quences. As observed in our experiments, the performance improvement comes from
two sources; reduced disk access and CPU cost; even if data is completely stored in
main memory, still our optimizations remain effective as it reduces the number of ex-
pensive computations.

There are a lot of promising research directions left as future work. First, we plan
to study event inference in a setting where an association between time and sensitive
events can be learned from published data. Second, since generalization can retain
data utility but suppression removes utility due to the skewness of data distribution,
future work can investigate applying our methods as a preprocessing step for dif-
ferential privacy and suppression-based algorithms (e.g., [Xu et al. 2008] and [Chen
et al. 2012a]). Third, evaluating the utility of the anonymized data for applications
(e.g., personalizing web search [Matthijs and Radlinski 2011]) is another interesting
research direction. Finally, there are many challenging issues when user browsing
histories are anonymized in a streaming scenario. A naive approach would be to slide
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a window over the browsing histories and run our algorithms on each split of data
corresponding to each window. Data privacy and the utility for queries on causality
patterns are important issues that depend on the size of the window and their possible
overlap.

APPENDIX: VULNERABILITY OF ANONYMIZED DATA

We now investigate the vulnerability of anonymized data in the SCR setting to attacks
aimed at recovering the (e, t) pairs for e ∈ Er. For instance, let Er = {Google, Bing}
and the Google and Bing share the original time stamps of their visits with each other.
Having access to published data in Figure 2(b), Google learns that a user in the first
partition visited Bing at 1, but does not know the user that makes this visit, nor (ex-
actly) other events visited by that user. We do not consider learning about (e, t) pairs
for e ∈ Er a privacy breach in the SCR settings. This is because in the extreme (and
inevitable) setting, the colluding receivers may exchange the time stamps they collect
along with users’ identifiers (e.g., IP address). Even in this case, our anonymization
guaranty in the SCR setting holds; the receivers cannot identify sequences using (e, t)
pairs they exchange for e ∈ Er. Sharing can lead to privacy breach in the SSR setting,
as discussed in Section 1. Both sequence identification and event prediction attacks
are possible if the main assumption of the SSR setting (i.e., not sharing time stamp) is
violated by receiver(s) that engages in sharing data. However, this breach is not unique
to click-streams and is inline with the general practice of privacy preserving data pub-
lications. Often, reasonable assumptions are made on the data generation process or
the knowledge of an adversary, and there is a privacy risk if these assumptions are
violated (e.g., [Ganta et al. 2008] studies the risk of privacy breach when data from
multiple sources are shared). The impossibility of providing privacy and utility with-
out making any assumption about the data generation process has been reported for
differential privacy [Kifer and Machanavajjhala 2011].
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Nergiz, M. E., Atzori, M., Saygin, Y., and Güç, B. 2009. Towards trajectory anonymization: A generalization-
based approach. Trans. Data Privacy 2, 1, 47–75.

Pang, H., Ding, X., and Xiao, X. 2010. Embellishing text search queries to protect user privacy. Proc. VLDB
Endow. 3, 1–2, 598–607.

Papoulis, A. and Pillai, S. U. 2002. Probability, Random Variables and Stochastic Processes. McGraw Hill.
Samarati, P. 2001. Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data

Eng. 13, 6, 1010–1027.
Seidl, T. and Kriegel, H.-P. 1998. Optimal multi-step k-nearest neighbor search. In Proceedings of the ACM

SIGMOD International Conference on Management of Data (SIGMOD).
Sherkat, R. and Rafiei, D. 2008. On efficiently searching trajectories and archival data for historical simi-

larities. Proc. VLDB Endow. 1, 1, 896–908.
Sweeney, L. 2002. K-anonymity: A model for protecting privacy. Int. J. Uncertainty, Fuzziness Knowl.-Based

Syst, 10, 5, 557–570.
Terrovitis, M. and Mamoulis, N. 2008. Privacy preservation in the publication of trajectories. In Proceedings

of the 9th International Conference on Mobile Data Management (MDM).

ACM Transactions on the Web, Vol. 8, No. 1, Article 4, Publication date: December 2013.



�

�

�

�

�

�

�

�

Efficient Time-Stamped Event Sequence Anonymization 4:53

Terrovitis, M., Mamoulis, N., and Kalnis, P. 2008. Privacy-preserving anonymization of set-valued data.
Proc. VLDB Endow. 1, 1, 115–125.

Terrovitis, M., Liagouris, J., Mamoulis, N., and Skiadopoulos, S. 2012. Privacy preservation by disassocia-
tion. Proc. VLDB Endow. 5, 10, 944–955.

Wagstaff, K. and Cardie, C. 2000. Clustering with instance-level constraints. In Proceedings of the 17th
International Conference on Machine Learning (ICML).

Wang, L. and Jiang, T. 1994. On the complexity of multiple sequence alignment. J. Comput. Biol. 1, 4, 337–
348.

Wong, R. C.-W., Fu, A. W., Wang, K., and Pei, J. 2007. Minimality attack in privacy preserving data publish-
ing. In Proceedings of the 29th International Conference on VLDB (VLDB).

Xiao, X. and Tao, Y. 2006. Anatomy: Simple and effective privacy preservation. In Proceedings of the 28th
International Conference on VLDB (VLDB).

Xiao, X., Wang, G., and Gehrke, J. 2010. Differential privacy via wavelet transforms. In Proceedings of the
26th International Conference on Data Engineering (ICDE).

Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., and Fu, A. W.-C. 2006. Utility-based anonymization using local
recoding. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (SIGKDD).

Xu, Y., Wang, K., Fu, A. W.-C., and Yu, P. S. 2008. Anonymizing transaction databases for publication.
In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (SIGKDD).

Yarovoy, R., Bonchi, F., Lakshmanan, L. V. S., and Wang, W. H. 2009. Anonymizing moving objects: How to
hide a MOB in a crowd? In Proceedings of the 12th International Conference on Expanding Database
Technology: Advances in Database Technology (EDBT).

Zeng, C., Naughton, J. F., and Cai, J.-Y. 2012. On differentially private frequent itemset mining. Proc. VLDB
Endow. 6, 1, 25–36.

Received September 2012; revised April 2013, July 2013; accepted September 2013

ACM Transactions on the Web, Vol. 8, No. 1, Article 4, Publication date: December 2013.


