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Abstract We present a general encoding scheme for the ef-
ficient management of spatial RDF data. The scheme ap-
proximates the geometries of the RDF entities inside their
(integer) IDs and can be used, along with several operators
and optimizations we introduce, to accelerate queries with
spatial predicates and to re-encode entities dynamically in
case of updates. We implement our ideas in SRX, a system
built on top of the popular RDF-3X system. SRX extends
RDF-3X with support for three types of spatial queries: range
selections (e.g. find entities within a given polygon), spatial
joins (e.g. find pairs of entities whose locations are close to
each other), and spatial k nearest neighbors (e.g. find the
three closest entities from a given location). We evaluate
SRX on spatial queries and updates with real RDF data, and
we also compare its performance with the latest versions of
three popular RDF stores. The results show SRX’s superior
performance over the competitors; compared to RDF-3X,
SRX improves its performance for queries with spatial pred-
icates while incurring little overhead during updates.
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1 Introduction

The Resource Description Framework (RDF) has become a
standard for expressing information that does not conform
to a crisp schema. Semantic-Web applications manage large
knowledge bases and data ontologies in the form of RDF.
RDF is a simple model, where all data are in the form of
〈subject, property, object〉 (SPO) triples, also known as state-
ments. The subject of a statement models a resource (e.g., a
Web resource) and the property (a.k.a. predicate) denotes
the subject’s relationship to the object, which can be an-
other resource or a simple value (called literal). A resource
is specified by a uniform resource identifier (URI) or by a
blank node (denoting an unknown resource). An RDF knowl-
edge base can be modeled as a graph, where nodes are re-
sources or literals and edges are properties.

SPARQL is the standard query language for RDF data,
used to express query graph patterns that have to be matched
in the RDF data graph. The GeoSPARQL standard [10], de-
fined by the Open Geospatial Consortium (OGC), extends
RDF and SPARQL to represent geographic information and
support spatial queries. Geospatial filter functions are used
to express spatial predicates between entities in SPARQL
queries. stSPARQL [19] has similar features.

Despite the large volume of work on indexing and query-
ing large RDF knowledge bases [6,9,11,14,15,27,36,37,
38,39,40,41], only a few works focus on the effective han-
dling of spatial semantics in RDF data. In particular, the
current spatial extensions of RDF stores (e.g., Virtuoso [4],
GraphDB [1], Parliament [3], Strabon [20], and others [13,
34,35]) focus mainly on supporting GeoSPARQL features,
and less on performance optimization. The features and weak-
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nesses of these systems are reviewed in Sect. 3. On the other
hand, there is a large number of spatial entities (i.e., re-
sources) in RDF knowledge bases (e.g., YAGO [5]). Thus,
the power of the state-of-the-art RDF stores is limited by the
inadequate handling of spatial semantics, given that it is not
uncommon for user queries to include spatial predicates. At
the same time, spatial data management systems [16] can
only be used to index and search the spatial semantics of the
entities, but do not support graph pattern search.

In this paper, we fill this gap by presenting SRX (Spatial
RDF-3X), a system built on top of the open-source RDF-3X
store [27] to efficiently support spatial queries and updates.
SRX inherits the basic design principles of RDF-3X, which
encodes all values that appear in SPO triples by identifiers
with a help of a dictionary, and models the RDF knowl-
edge base as a single long table of ID triples. A SPARQL
query can then be modeled as a multi-way join on the triples
table. The system creates a clustered B+-tree for each of
the six SPO permutations; the query optimizer identifies an
appropriate join order, considering all the available permu-
tations and advanced statistics [26]. RDF-3X is known to
have robust performance in comparison studies on various
RDF datasets and query benchmarks [11,27,39]. Although
we have chosen RDF-3X as a basis for SRX, our techniques
are also applicable to other RDF stores, e.g. [39]. In a nut-
shell, SRX includes the following extensions over RDF-3X:

Index Support for Spatial Queries. Similar to previous
spatial extensions of RDF stores (e.g., [13]), SRX includes a
spatial index (i.e., an R-tree [17]) for the geometries associ-
ated to the spatial entities. This facilitates the efficient eval-
uation of queries with very selective spatial components.

Spatial Encoding of Entities. The identifiers given to RDF
resources in the dictionary of RDF-3X (and other RDF stores)
do not carry any semantics. Taking advantage of this fact,
we encode spatial approximations inside the IDs of entities
(i.e., resources) associated to spatial locations and geome-
tries. This mechanism has several benefits. First, for queries
that include spatial components, the IDs of resources can be
used as cheap filters and data can be pruned without having
to access the exact geometries of the involved entities. Sec-
ond, our encoding scheme does not affect the standard order-
ing (i.e., sorting) of triples used by the RDF-3X evaluation
engine, therefore it does not conflict with the RDF-3X query
optimizer; in other words, the original system’s performance
on non-spatial queries is not compromised. Finally, our en-
coding scheme adopts a flexible hierarchical space decom-
position so that it can easily handle spatially skewed datasets
and updates without the need to re-assign IDs for all entities.

Spatial Join Algorithms. We design spatial join algorithms
tailored to our encoding scheme. Our Spatial Merge Join
(SMJ) algorithm extends the traditional merge join algo-
rithm to process the filter step of a spatial join at the ap-

proximation level of our encoding, while (i) preserving in-
teresting orders of the qualifying triples that can be used
by succeeding operators, and (ii) not breaking the pipeline
within the operator tree. In typical SPARQL queries which
usually involve a large number of joins, the last two aspects
are crucial for the overall performance of the system. Our
Spatial Hash Join (SHJ-ID) operates with unordered inputs,
using their encodings to identify fast candidate join pairs.

Spatial kNN Algorithms. We design two k nearest neigh-
bors (kNN) algorithms that make use of our encoding scheme.
Both are based on previous work on grid-based kNN query
evaluation. The first one operates on unordered input whereas
the second exploits interesting orders and can be combined
with other order-preserving operators to improve performance
and further reduce the memory footprint.

Spatial Query Optimization. In addition to including stan-
dard selectivity estimation models and techniques for spatial
queries, we extend the query optimizer of RDF-3X to con-
sider spatial filtering operations that can be applied on the
spatially encoded entities. For this purpose, we augment the
original join query graph of a SPARQL expression to in-
clude binding of spatial variables via spatial join conditions.

Dynamic Spatial Re-encoding. Changes in real RDF data-
sets are the rule rather than the exception. Such changes oc-
cur as new triples are added and old ones are removed or
updated, and the need for re-encoding spatial entities arises
naturally. To tackle this problem with a low overhead in
performance, we carefully integrate a dynamic re-encoding
technique with the original update mechanism of RDF-3X.

An earlier version of SRX without support for kNN and
dynamic re-encoding in case of updates has been presented
in [21]. In this paper, we evaluate SRX by comparing it with
the latest versions of two commercial spatial RDF manage-
ment systems: Virtuoso [4] and Graph-DB [1], and a popular
free RDF management system: Strabon [20]. For query eval-
uation, we use two real datasets: LinkedGeoData (LGD) [2]
and YAGO [5]. To evaluate dynamic re-encoding, we gen-
erated a realistic update benchmark — the first one using
real data — based on the deltas we collected between dif-
ferent versions of LGD and YAGO. The results demonstrate
the superior performance and robustness of SRX over the
competitors; SRX improves the performance of the original
RDF-3X for queries with spatial predicates, while incurring
insignificant overhead when performing updates.

2 Preliminaries

The SPARQL queries we consider follow the format:

Select [projection clause]
Where [graph pattern]
Filter [condition]
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subject property object
Dresden cityOf Germany
Prague cityOf CzechRepublic
Leipzig cityOf Germany

Wrocław cityOf Poland
Ostrava cityOf CzechRepublic

Hannover cityOf Germany
Dresden sisterCityOf Wrocław
Dresden sisterCityOf Ostrava
Leipzig sisterCityOf Hannover
Dresden hosted Wagner
Leipzig hosted Bach
Wagner hasName “Richard Wagner”
Wagner performedIn Leipzig
Wagner performedIn Prague
Wagner performedIn Ostrava

Bach performedIn Leipzig
Mozart performedIn Hannover
Mozart performedIn Dresden
Dresden hasGeometry “POINT (13.6, 51)”
Prague hasGeometry “POINT (14.3, 50)”
Leipzig hasGeometry “POINT (12.3, 51.3)”

Wrocław hasGeometry “POINT (16.9, 51.1)”
Ostrava hasGeometry “POINT (18.2, 49.8)”

Hannover hasGeometry “POINT (9.7, 52.4)”
. . . . . . . . .

   
?s

 cityOf
Germany 

 ?o

 ?g

 hasGeometry
spatial     
within 
filter

  hosted

(b) Spatial Within query

 cityOf
Germany 

?g1

 hasGeometry spatial     
distance 

join sisterCityOf

?s2

?s1

 hasGeometry
?g2

(c) Spatial Join query

 ?p

  hasName
“Richard Wagner”  ?s

  performedIn
 ci

tyO
f  

 ?g   ?c
 hasGeometry

spatial     
kNN 
filter

(d) Spatial kNN query
(a) RDF triples

Fig. 1: Example of RDF data and three spatial queries

The Select clause includes a set of variables that should
be instantiated from the RDF knowledge base (variables in
SPARQL are denoted by a ? prefix). A graph pattern in the
Where clause consists of triple patterns in the form of s p o
where any of the s, p and o can be either a constant or a
variable. Finally, the Filter clause includes one or more spa-
tial predicates. For the ease of presentation, in our discus-
sion and examples, we consider only WITHIN range pred-
icates (for spatial selections), DISTANCE predicates (for
spatial joins), and kNN predicates (for k nearest neighbors).
However, we emphasize that the results of our work are
directly applicable to all spatial predicates defined in the
GeoSPARQL standard [10]. In addition, we use a simpli-
fied syntax for expressing queries and not the one of the
GeoSPARQL standard because the latter is verbose.

As an example, consider the RDF knowledge base par-
tially listed in Fig. 1a. Literals and spatial literals (i.e., ge-
ometries) are in quotes. An exemplary query with a range
predicate is:

Select ?s ?o
Where ?s cityOf Germany . ?s hosted ?o .

?s hasGeometry ?g .
Filter WITHIN(?g, “POLYGON(...)”);

This query finds the cities of Germany within a specified
polygonal range together with the persons they hosted. Note
that there are three variables involved (?s, ?o, and ?g) con-
nected via a set of triple patterns which also include con-
stants, i.e., Germany. For example, if POLYGON(...) covers
the area of East Germany, (Dresden, Wagner) and (Leipzig,
Bach) are results of this query. The query is represented by
the pattern graph of Fig. 1b. In general, queries can be rep-

resented as graphs with chain (e.g., ?s1 hosted ?s2. ?s2 per-
formedIn ?s3.) and star (e.g., ?s cityOf ?o. ?s hosted Wag-
ner.) components.

Another exemplary query, which includes a spatial join
predicate, represented by the pattern graph of Fig. 1c, is:

Select ?s1 ?s2
Where ?s1 cityOf Germany . ?s1 sisterCityOf ?s2 .

?s1 hasGeometry ?g1 . ?s2 hasGeometry ?g2 .
Filter DISTANCE(?g1, ?g2) < “300km”;

This query asks for pairs of sister cities (i.e., ?s1 and ?s2)
such that the first city (i.e., ?s1) is in Germany and the dis-
tance between them does not exceed 300km. In the exem-
plary RDF base of Fig. 1a, (Dresden, Wrocław) and (Lei-
pzig, Hannover) are results of this query while (Dresden,
Ostrava) is not returned as the distance between Dresden and
Ostrava is around 500km.

Finally, an examplary query with a kNN predicate, rep-
resented by the pattern graph of Fig. 1d, is the next:

Select ?s ?c
Where ?p hasName “Richard Wagner” . ?p performedIn ?s .

?s cityOf ?c . ?s hasGeometry ?g .
Filter kNN(?g, “POINT(...)”, 2);

This query asks for the two closest to the specified point
cities where Richard Wagner has performed, together with
their respective countries. For example, if POINT(...) refers
to the city of Chemnitz (12.8, 50.8), then the result of the
query in the RDF base of Fig. 1a consists of the tuples (Leipzig,
Germany) and (Prague, CzechRepublic).

Besides queries, we also consider delete, insert, and up-
date operations on RDF data. Updates in SPARQL (and Geo-
SPARQL) are expressed via DELETE and INSERT state-
ments following the format:

Delete|Insert [triples]

For example, to update the name of the entity Wagner in
the RDF base of Fig. 1a, one can simply apply the following
two statements:

Delete Wagner hasName “Richard Wagner”
Insert Wagner hasName “Wilhelm Richard Wagner”

3 Related Work

RDF Storage and Query Engines. There have been many
efforts toward the efficient storage and indexing of RDF
data. The most intuitive method is to store all 〈subject, prop-
erty, object〉 (SPO) statements in a single, very large triples
table. The RDF-3X system [27] is based on this simple ar-
chitecture. RDF-3X (following an idea from previous work)
uses a dictionary to encode URIs and literals as IDs. Index-
ing is then applied on the ID-encoded SPO triples. Fig. 2
illustrates a dictionary and the ID-encoded triples for the
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ID URI/literal
1 Dresden
2 cityOf
3 Germany
4 Prague
5 CzechRepublic
6 Leipzig

. . . . . .

subject property object
1 2 3
4 2 5
6 2 3

. . . . . . . . .

(a) Dictionary (b) ID-encoded SPO triples

Fig. 2: Use of Dictiorary

RDF base of Fig. 1a. RDF-3X creates a clustered B+-tree
index for each of the six SPO permutations (i.e., SPO, SOP,
PSO, POS, OSP, OPS). A SPARQL query is transformed to
a multi-way self-join query on the triples table; the query
engine binds the query variables to SPO values and joins
them (if the query contains literals or filter conditions, these
are included as selection conditions). A query is first trans-
lated by replacing URIs or literals by the respective IDs and
then evaluated using the six indices; finally, the query results
(in the form of ID-triples) are translated back to their orig-
inal form. The six indices offer different ways for access-
ing and joining the triples; RDF-3X includes a query opti-
mizer to identify a good query evaluation plan. The system
favors plans that produce interesting orders, where merge
joins are pipelined without intermediate sorts. In addition,
a run-time sideways information passing (SIP) mechanism
[28] reduces the cost of long join chains. RDF-3X main-
tains nine additional aggregate indices, corresponding to the
nine projections of the SPO table (i.e., SP, SO, PS, PO, OS,
OP, S, P, O), which provide statistics to the query optimizer
and are also useful for evaluating specialized queries. The
query optimizer was extended in [26] to use more accurate
statistics for star-pattern queries. RDF-3X employs a com-
pression scheme to reduce the size of the indices by differ-
ential storage of consecutive triples in them. Hexastore [36]
is a contemporary to RDF-3X proposal, which also indexes
SPO permutations on top of a triples table. An earlier imple-
mentation of a triples table by Oracle [15] uses materialized
join views to improve performance.

An alternative storage scheme is to decompose the RDF
data into property tables: one binary table is defined per dis-
tinct property, storing the SO pairs that are linked via this
property. In order to avoid the case of having a huge num-
ber of property tables, this extreme approach was refined
to a clustered-property tables approach (used by early RDF
stores, like Jena [37] and Sesame [14]), where correlated
tables are clustered into the same table and triples with in-
frequent properties are placed into a left-over table. Abadi
et al. [6] use a column-store database engine to manage one
SO table for each property, sorted by subject and optionally
indexed on object.

A common drawback of the column-store approach and
RDF-3X is the potentially large number of joins that have to

be evaluated, together with the potentially large intermedi-
ate results they generate. Atre et al. [9] alleviate this prob-
lem by introducing a 3D compressed bitmap index, which
reduces the intermediate results before joining them. A sim-
ilar idea was recently proposed in [39]; the participation of
subjects and objects in property tables is represented as a
sparse 3D matrix, which is compressed. Yet another storage
architecture was proposed in [11]. The idea is to first clus-
ter the triples by subject and then combine multiple triples
about the same subject into a single row. Thus, the system
saves join cost for star-pattern queries, however, it may suf-
fer from redundancy due to repetitions and null values.

Trinity [40] is a distributed memory-based RDF data
store, which focuses on graph query operations such as ran-
dom walk distance, reachability, etc. RDF data are repre-
sented as a huge (distributed) graph and query evaluation
is done in an exploration-based manner; starting from the
most selective predicates, query variables are bound pro-
gressively, while the RDF graph is browsed. Trinity’s power
lies on the fact that memory storage eliminates the other-
wise very high random access cost for graph exploration.
gStore [41] is an earlier, graph-based approach, which mod-
els SPARQL queries as graph pattern matching queries on
the RDF graph. More recently, EmptyHeaded [7,8] employ-
ed novel worst-case optimal join algorithms to accelerate
pattern matching queries on RDF graphs.

Spatial Extensions of RDF Stores. Parliament [10], built
on top of Jena [37], implements most of the features of Geo-
SPARQL. Strabon [20], developed contemporarily with Par-
liament, extends Sesame [14] to manage spatial RDF data
stored in PostGIS. Strabon adopts a column-store approach,
implementing two SO and OS indices for each property ta-
ble. Spatial literals (e.g., points, polygons) are given an iden-
tifier and are stored in a separate table, which is indexed
by an R-tree [17]. Strabon extends the query optimizer of
Sesame to consider spatial predicates and indices. The opti-
mizer applies simple heuristics to push down (spatial) filters
or literal binding expressions in order to minimize interme-
diate results. Strabon and Parliament are based on old RDF
stores (i.e., Jena and Sesame) and lack sophisticated query
optimization techniques.

Brodt et al. [13] extend RDF-3X [27] to support spatial
data. The extension is limited, since range selection is the
only supported spatial operation. Furthermore, query evalu-
ation is restricted to either processing the non-spatial query
components first and then verifying the spatial ones or the
other way around. Finally, the opportunity of producing an
interesting order from a spatial index (in order to facilitate
subsequent joins) is not explored.

Geo-Store [34] is another spatial extension of RDF-3X.
Geo-Store divides the space by a grid and orders the cells
using a Hilbert space-filling curve. Each geometry literal g
(e.g. “POINT (...)”) is approximated by the Hilbert order
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g.ID of the cell that includes it. Then, for all triples of the
form s hasGeometry g, a triple s hasPos g.ID is added
to the data. During query evaluation, an extra join with the
hasPos triples is applied to perform the filter step of spatial
queries. Geo-Store supports only spatial range and k nearest
neighbor queries, but not spatial joins. In addition, it does
not extend the query optimizer of RDF-3X to consider spa-
tial query components. Finally, besides increasing the size
of the original database with the introduction of hasPos
triples, it is not clear how its encoding can handle complex
spatial literals, such as “POLYGON (...)”, which may span
multiple cells of the grid.

S-Store [35] is a spatial extension of gStore [41]. Al-
though S-Store was shown to outperform gStore for spatial
queries, it handles spatial information only at a high level
(i.e., the data are primarily indexed based on their structure).
Spatial RDF queries are also supported by many commer-
cial systems, such as Oracle, Virtuoso [4], and GraphDB [1],
however, details about their internal design are not public.

Finally, [31] recently introduced DiStRDF that adapts
our encoding scheme [21] to support RDF queries with spatio-
temporal filters on top of Spark.

4 A Basic Spatial Extension

In the remainder of the paper, we present the steps of extend-
ing a standard query evaluation framework for triple stores
(i.e., the framework of RDF-3X) to efficiently handle the
spatial components of RDF queries. In RDF-3X, a query
evaluation plan is a tree of operators applied on the base data
(i.e., the set of RDF-triples). The leaves of the tree are any
of the 6 SPO clustered indices. The operators apply either
selections or joins. Each operator addresses a triple of the
query pattern and instantiates the corresponding variables;
the instantiated triples (or query subgraphs) are passed to
the next operator, until they reach the root operator, which
computes instances for the entire query graph.

This section outlines the basic (but essential) spatial ex-
tension to RDF-3X, which improves the spatial RDF-3X ex-
tension of Brodt et al. [13] to support spatial join and kNN
query evaluation. We also discuss drawbacks of the basic
extension that motivated us to design the spatial encoding
scheme described in Sect. 5 and the query evaluation algo-
rithms that use it in Sect. 6.

Spatial Indexing. Spatial entities i.e., resources associated
to spatial literals like POINT and POLYGON, are indexed
by an R-tree [17]. For each entity associated to a polygon,
there is an entry at a leaf of the R-tree of the form (mbr, ID),
where mbr is the minimum bounding rectangle (MBR) of
the polygon. For each entry associated to a point pt, there is
a (pt, ID) entry.

Spatial Selections. Given a query with a spatial selection
Filter condition, the optimizer may opt to use the R-tree to

join (?s = ?sˡ ˡ )  

join (?s = ?sˡ )  search PSO index  
 ?sˡ ˡ         ?o  hosted  

search OPS index  
 ?sˡ cityOf  Germany  

search R-tree  
 ?s ?g  hasGeometry  
WITHIN(?g,“POLYGON(...)”)  

search PSO index  
 ?s ?o  hosted  search OPS index  

 ?sˡ cityOf  Germany  

verify WITHIN(?g,“POLYGON(...)”)  

look-up ?g = geometry(?s)   

merge-join (?s = ?sˡ )    

(a) spatial selection (b) spatial selection (alt.)

join (?s1 = ?s1
ˡ ˡ  AND ?s2 = ?s2

ˡ )  

join (?s1 = ?s1
ˡ )  search PSO index  

 ?s1
ˡ ˡ sisterCityOf

search OPS index  
cityOf  Germany  

DISTANCE(?g1,?g2) < “300km”  

 ?s2
ˡ

 ?s1
ˡ

R-tree join  
?g1  

hasGeometry  
?g2  

hasGeometry  ?s2  
?s1  

  ?s1
ˡ sisterCityOf  ?s2

 ?s1  
search OPS index  search PSO index  

cityOf  Germany  

merge-join (?s1 = ?s1
ˡ )    

DISTANCE(?g1,?g2) < “300km”  
spatial hash join  

look-up ?g1 = geometry(?s1)   
look-up ?g2 = geometry(?s2)   

(c) spatial join (d) spatial join (alt.)

join (?s = ?sˡ ˡ )  

join (?s = ?sˡ )  search PSO index  
 ?p ?sˡ ˡ   performedIn  

search OPS index  
 ?sˡ cityOf  

 “Richard  

search R-tree  
?g  hasGeometry  

inc-kNN(?g,“POINT(...)”,2)  
?c  

join (?p = ?pˡ )  

  hasName  
search OSP index  

 ?pˡ 

 ?s  

 Wagner”  

search OPS index  
 ?sˡ cityOf  

 “Richard  

verify kNN(?g,“POINT(...)”,2)  

?c  

look-up ?g = geometry(?s)  

  hasName  
search OSP index  

 ?pˡ  Wagner”  
merge-join (?s = ?sˡ )  

search PSO index  
performedIn ?s   ?p  

merge-join (?p = ?pˡ )  

(e) spatial kNN (f) spatial kNN (alt.)

Fig. 3: Possible query plans in the basic extension

evaluate this condition first and retrieve the IDs of all enti-
ties that satisfy it.1 However, the output fed to the operators
that follow (i.e., those that process non-spatial query com-
ponents) is in a random order. Thus, query evaluation algo-
rithms that rely on the input being in an interesting order
(such as merge-join) are inapplicable. On the other hand,
if the spatial selection is evaluated after another (i.e., non-
spatial) operator, the R-tree cannot be used because the input
is no longer indexed. Therefore, in this case, the system must
look up the geometries of the entities that qualify the pre-
ceding operator at the dictionary, incurring significant cost.
Fig. 3a and Fig. 3b illustrate two alternative plans for the
spatial selection query of Fig. 1b. The plan of Fig. 3a uses
the R-tree to perform the spatial selection and joins the re-
sult with the instances of triple ?s cityOf Germany. Finally,
the join results are joined with the results of ?s hosted ?o.
The plan of Fig. 3b first evaluates the non-spatial part of the
query and then looks up and verifies the geometries of all ?s
instances in it (i.e., the R-tree is not used here).

Spatial Joins. The R-tree can also be used to evaluate spatial
join Filter conditions, by applying join algorithms based on

1 For entities that have point geometries, the spatial selection can
be evaluated using only the R-tree. If the entities have non-point ge-
ometries, the R-tree search may result in false positives, thus, the final
results of the spatial filter are confirmed by retrieving the exact geome-
tries from the dictionary.
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R-trees. We implemented three algorithms for this purpose.
First, the R-tree join algorithm [12] can be used in the case
where both spatially joined variables involved in the Filter
condition are instantiated directly from the base data and do
not come as outputs of other query operators. Second, we
use the SISJ algorithm [24] for the case where the R-tree
can be used only for one variable. Finally, we implemented
a spatial hash join (SHJ) algorithm [22] for the case where
both inputs of the spatial join filter condition are output by
other operators.2 As in the case of spatial selections, spatial
join algorithms do not produce interesting orders and for
spatial join inputs that are instantiated by preceding query
operators, the system has to perform dictionary look-ups in
order to retrieve the geometries of the entities before the
join. Fig. 3c and Fig. 3d illustrate two alternative plans for
the spatial join query of Fig. 1c. The plan of Fig. 3c applies
an R-tree self-join [12] to retrieve nearby (?s1, ?s2) pairs
and then binds ?s1 with the result of ?s1 cityOf Germany.
The output is then joined with the result of ?s1 sisterCityOf
?s2. The plan of Fig. 3d first evaluates the non-spatial part of
the query and then looks up the geometries of all (?s1, ?s2)
pairs, and joins them using SHJ. In the following, we briefly
describe SISJ and SHJ for completeness.

SISJ joins a spatial input A which is not indexed, with
an R-tree B. Assuming that we want to use H hash buckets,
SISJ first divides the entries at the uppermost level of B that
contains at least H entries into H groups based on their spa-
tial proximity. The i-th group has as spatial extent the MBR
of all entries in group i. Bucket Bi contains all objects in
the subtrees of B pointed by the entries in the i-th group.
The objects from A are hashed to buckets such that bucket
Ai contains all objects that intersect the spatial extent of the
i-th group. Finally, each Ai is spatially joined in memory
with Bi (e.g., using plane sweep). Our SHJ implementation
pulls the smallest of the two join inputs (based on the query
optimizer’s estimation) and constructs from it a spatial hash
table in memory. Each hash bucket corresponds to a cell in a
2D grid with side equal to the distance join threshold ε . Each
entity from the hashed join input is assigned to all buckets
(cells) that it spatially overlaps. Then, SHJ pulls the records
from the other input one by one and, for each spatial en-
tity e, (i) it retrieves e’s geometry from the dictionary, (ii)
identifies the cell c whereto e belongs, and (iii) accesses the
buckets that correspond to c and its neighboring cells to find
candidate entities that can match with e based on their spa-
tial approximations. For each such candidate entity e′, the
operator computes the exact distance between e and e′, and
outputs the join pair (e,e′) if the distance is at most ε .

Spatial kNN. The R-tree can also be used to evaluate a spa-
tial kNN predicate in the Filter clause. In this case, the near-

2 If the spatial join inputs are very small, we simply fetch the ge-
ometries of the input entity sets and do a nested-loops spatial join.

(a)

(b)

Fig. 4: Spatial encoding of entity IDs

est entities are fetched from the R-tree and fed to the op-
erators that follow. Since some of these entities might be
filtered out by subsequent operators, we should use an in-
cremental NN algorithm for R-trees [23] (an operation often
referred to as distance browsing). As in the case of spatial
selections, the drawback of using this algorithm is that the
IDs of the fetched entities are in random order, preventing
the use of efficient operators that rely on interesting orders.
On the other hand, when the R-tree is not used, the kNN
evaluation needs to perform dictionary lookups to fetch the
geometries of all entities that qualify the RDF part of the
query and keep track using a heap, the k nearest entities.
Fig. 3e and Fig. 3f depict two possible plans that correspond
to the two options above for the query pattern of Fig. 1d.

5 Encoding the Spatial Dimension

We observe that in most RDF engines, the IDs given to re-
sources or literals at the dictionary mapping do not carry any
semantics. Instead of assigning random IDs to resources, we
propose to encode into the ID of a resource an approxima-
tion of the resource’s location and geometry that can be used
to (i) apply spatial Filter conditions on-the-fly in a query
evaluation plan, and (ii) define spatial operators that apply
on the approximations.

Fig. 4b illustrates the Hilbert space filling curve, a clas-
sic encoding scheme of spatial locations into one-dimensional
values. We partition the space using a grid, and order the
cells based on the curve. We then divide the ID given to a
spatial resource r into two components: (i) the Hilbert or-
der of the cell where r spatially resides occupies the m most
significant bits (where 2m/2× 2m/2 is the resolution of the
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grid), and (ii) a local identifier which distinguishes r from
other resources that reside in the same cell as r. Since the
RDF data may also contain resources or literals, which are
not spatial, we use a different range of ID values for non-
spatial resources with the help of the least significant bit as
a flag. In the toy example of Fig. 4a, the least significant bit
(b0) indicates whether the entity modeled by the ID is spatial
(b0 = 1) or non-spatial (b0 = 0), the next 4 bits are used for
the local identifier, and the 6 most significant bits encode the
Hilbert order of the cell. For example, in Fig. 4b, entity e1961
is spatial (b0 is set) and it is located in the cell with Hilbert
order 111101 (cell with ID 61), having local code 0100. For
a non-spatial resource, bit b0 would be 0 and the remain-
ing ones would not have any spatial interpretation. Fig. 4c
illustrates which IDs encode the cities of Fig. 1a.

In the case of a skewed dataset, a cell may overflow, i.e.,
there could be too many entities falling inside it rendering
the available bits for the local codes of entities in it insuf-
ficient. In this case, entities that do not fit in a full cell are
assigned to the parent of the cell in the hierarchical space de-
composition. For instance, consider the data in Fig. 4b and
assume that the cell with ID 61 is full and that the entity
e1931 cannot be assigned to it. e1931 will be assigned to the
parent cell, i.e., the square that consists of the cells 60, 61,
62, and 63. This cell’s encoding has 4 bits, that is, 2 bits less
than its children cells. These 2 bits are now used for the local
encoding of entities in it. Intuitively, as we go up in the hier-
archy of the grid, each cell can accommodate more entities.
An entity that must be assigned to an overflown cell ends
in the first non-full ancestor of that cell as we go up in the
hierarchy. The dlog2(m/2)e least significant bits of the local
code area are reserved to encode the level of the spatially-
encoded cell in the ID (the most detailed level being 0). In
our example, m = 6, hence, 2 bits of the local code are used
to denote the level of the cell that approximates each entity.

The encoding we described is also used for arbitrary ge-
ometries that may overlap with more than one cells of the
bottom level. For example, the polygon at the lower left cor-
ner of the grid of Fig. 4b spans across cells with IDs 1 and 2,
thus, it will be assigned to their parent cell, which has a spa-
tial encoding 0000. Due to the variable number of bits given
to the spatial approximations, the encoding is also suitable
for dynamic data (i.e., inserted entities that fall into over-
flown cells are given less accurate approximations).

The most important benefit of the spatial encoding is
that the (approximate) evaluation of spatial predicates can
be seamlessly combined with the evaluation of non-spatial
patterns in SPARQL. For example, spatial Filter conditions
included in a query which are bound to entity variables (for
example, ?s hasGeometry ?g, Filter WITHIN (?g, “POLY-
GON(...)”) can be evaluated on-the-fly at any place in the
evaluation plan where the entity variable (e.g., ?s) has been
instantiated, by decoding the IDs of the instances. Note that

the spatial mapping is only approximate (based on the con-
servative grid approximation of the spatial locations); by ap-
plying a spatial predicate on the approximations (i.e., cells)
of the entities, false hits may be included in the results, which
need to be verified. Still, for many entities, the spatial ap-
proximation suffices to confirm that they are definitely in-
cluded (or not) in the query result. This way, random ac-
cesses for retrieving their exact geometries are avoided.

A side-benefit of using a Hilbert-encoded grid to approx-
imate the object geometries is that by counting the number
of resources in each cell (counting is already performed by
the mapping scheme), we can have a spatial histogram to
be used for selectivity estimation in query optimization (this
issue will be discussed in detail in Sect. 7). SRX uses the en-
coding we described to accelerate queries with spatial pred-
icates as shown in the next section.

6 Query Evaluation

We now show how the encoding scheme of SRX further ex-
tends the basic framework presented in Sect. 4 to apply ef-
ficient spatial filters directly on the entities IDs and reduce
the number of dictionary lookups as well as the number of
expensive spatial operations on the actual geometries.

All operators we describe in this section evaluate the
spatial predicates in two phases: first, by applying the spatial
predicate on the IDs of the entities (filtering phase) and, sec-
ond, by fetching the actual geometries only for the results
that could not be verified in the first phase. In general, the
sooner we apply the on-the-fly filtering the better because it
does not incur any I/O cost and its CPU cost is negligible3.
For spatial range and join predicates, the on-the-fly filtering
can be done early: after each non-spatial operator that in-
stantiates entity variables, which also appear in a WITHIN
or DISTANCE predicate, the condition is applied to the spa-
tially encoded IDs of the entities. In such cases, after apply-
ing the filter, we also append a verification bit (or vbit) to the
tuples that pass the filter. This bit is used in the second phase
as follows: if, for a tuple, the verification bit is 1, the tuple
is guaranteed to qualify the corresponding spatial predicate
(no verification is required). On the other hand, if the bit is
0, this means that it is unknown at this point whether the
exact geometries of the entities in the tuple qualify the spa-
tial predicate (however, they cannot be pruned based on their
spatial approximations encoded in their IDs). By the end of
processing all non-spatial query components, for tuples hav-
ing their vbits 0, the system fetches the exact geometries of
the involved entities and perform verification of the spatial
Filter conditions.

3 Most spatial predicates, when translated to the grid-based approx-
imations of the encoding, involve distance computations and/or cheap
geometry intersection tests.
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Fig. 5: Plan for the query of Fig. 1b

6.1 Spatial Range Filtering

Spatial range queries bind a pattern variable to geometries
that are spatially restricted by a range. As an example, con-
sider again the query depicted in Fig. 1b. Our encoding sche-
me allows the filtering phase of the spatial range query to
be performed on-the-fly while scanning the indices, as illus-
trated by the evaluation plan of Fig. 5. The plan searches the
OPS and PSO indexes in order to fetch and merge-join (?s =
?s′) the two lists that qualify patterns ?s cityOf Germany, ?s′

hosted ?o, i.e., the plan follows the logic of the plan shown
in Fig. 3b. Taking advantage of the spatial encoding, before
the merge-join, the plan of Fig. 5 applies the spatial filter
for (?s hasGeometry ?g, WITHIN(?g,“POLYGON (...)”))
on the instances of ?s that arrive from scanning the OPS and
PSO indexes; a vbit is appended to each survived tuple, to be
used by the next operators. In this example, assume that the
spatial entities and the spatial range (i.e., “POLYGON (...)”)
are the points and the shadowed range, respectively, shown
in Fig. 4b. Entities e809 and e841 are filtered out from the
left scan, because they are not within the cells that intersect
the query spatial range. Entity e969 survives spatial filtering,
but we cannot ensure that it qualifies the spatial range predi-
cate either, because its cell-ID is not completely covered by
the spatial query range; therefore the vbit for the tuples that
involve e969 is 0. On the other hand, the vbit for tuples con-
taining e585 or e593 is 1 as their cell-ID is completely covered
by the spatial range. Therefore, after the merge-join, we only
have to fetch and verify the geometry of e969. Range filter-
ing is applied at the bottom of query plans, after each index
scan that contains a respective spatial variable.

6.2 Spatial Join Filtering

Similar to spatial range selections, the filtering phase for bi-
nary spatial join predicates can also be applied on-the-fly, as
soon as the IDs of candidate entity pairs are available. As
an example, consider the join query depicted in Fig. 1c. A
possible query evaluation subplan is given in Fig. 6, which

Fig. 6: Plan for the query of Fig. 1c

follows the flow of the plan shown in Fig. 3d; however, the
plan of Fig. 6 applies the spatial join filter (i.e., the distance
filter) early. By the time the candidate pairs (?s′1, ?s2) are
fetched by the index scan on PSO, the filter is applied so
that only the pairs of entities that cannot be spatially pruned
are passed to the next operator. Assume that the pairs that
qualify ?s′1 sisterCityOf ?s2 are as shown at the right-bottom
side of Fig. 6, above the search PSO index operator. Assume
that the distance threshold (i.e., 300km) corresponds to the
length of the diagonal of each cell in Fig. 4. After applying
the distance spatial filter on all (?s′1, ?s2) pairs produced by
the PSO index scan, the pairs that survive are (e585, e593),
(e969, e1001) and (e969, e329). However, only entities e585 and
e593 are guaranteed to be within ε distance as they belong to
same cell; thus, the vbit for pair (e585, e593) is 1. When the
pairs are merge-joined (?s1 =?s′1) with the results of the OPS
index-scan on the left (for ?s1 cityOf Germany), the vbits of
qualifying tuples are carried forward.

In contrast to the range filter that always appears at the
bottom level of the operator tree, distance join filtering can
be applied on any intermediate relation that contains two
joined spatial variables. This case is possible when two re-
lations are first joined on attributes other than the spatial en-
tities. In Sect. 7.1, we show how the query optimizer can
identify all pairs of spatially joined variables in a query, for
which distance join filtering can be applied; here, we only
gave an example with a pair coming from an index scan.

6.3 Spatial Merge Join on Encoded Entities

In this section, we propose a spatial merge join (SMJ) op-
erator that applies directly on the spatial encodings (i.e., the
IDs) of the entities from the two join inputs. SMJ assumes
that both its inputs are sorted by the IDs of the spatial en-
tities to be joined. Like the spatial filters discussed above,
this algorithm only produces pairs of entities for which the
exact geometries are likely to qualify the spatial join predi-
cate (typically, a DISTANCE filter). Again, a verification bit
is used to indicate whether the join condition is definitely
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Fig. 7: Example of SMJ

qualified by a pair. Besides using the spatially encoded IDs
of the entities, SMJ takes advantage of and preserves the
ID-based sorting of its inputs. Thus, the algorithm does not
break the pipeline within the operator tree, as any other spa-
tial join algorithm would. Note that SMJ is a binary join
algorithm that takes two inputs, while the filtering technique
discussed in Sect. 6.2 takes a single input of candidate join
pairs and merely applies the join condition on the entity-ID
pairs on-the-fly.

Similarly to a classic merge join algorithm, SMJ uses a
buffer BR to cache the streaming tuples from its right input
R. For each entity el read from the left input L, SMJ uses
the ID of el to compute the minimum and maximum cell-
IDs that could include entities er from R, which could pos-
sibly pair with el in the join result, based on the given DIS-
TANCE filter. SMJ then keeps reading tuples from input R
and buffering them into BR, as long as they are likely to join
with el . As soon as BR is guaranteed to contain all possible
entities that may pair with el , SMJ computes all join results
for el and discards el (and potentially tuples from BR).

We now provide the details of SMJ. The algorithm is
based on the (on-the-fly and on-demand) computation of
four cell IDs for each entity e based on e’s ID. First, min-
NeighborID and maxNeighborID are the minimum and max-
imum cell-IDs that could include entities that pair with e in
the join result, respectively. To compute these cells, we have
to expand e’s cell based on the distance join threshold and
find the minimum and maximum cell-ID that intersects the
resulting range. For example, consider entity e841 contained
in cell with ID 26 in Fig. 4b and assume that the join distance
threshold equals the diagonal length of a cell. For this entity,
minNeighborID=18 and maxNeighborID=39. Second, min-
ChildID and maxChildID correspond to the minimum and
maximum cell-IDs that have a common non-empty ancestor
(in the hierarchical Hilbert space decomposition) with the
cell of e. For entity e841 which has only empty ancestors, the
minChildID and maxChildID are both 26, that is, the cell ID
of e841. For e1931, the minChildID and maxChildID are 60
and 63 respectively because e1931 is assigned to a cell at the
first level of the grid.

At each step, the distance join is performed between the
current entity el from the left input and all entries in BR. Af-
ter reading el , SMJ reads entries er and buffers them into
BR and stops as soon as er’s minChildID is greater than the

maxNeighborID of el ; then we know that we can join el and
all entities in BR and then discard el , because any unseen
tuples from R cannot be included within the required dis-
tance from el .4 For example, consider the buffered inputs
of Fig. 7 that have to be joined. The maxNeighborID of the
first entity e585 on the left is smaller than the minChildID
of entry e1931, therefore e585 cannot be paired with entries
after e1931 (that are guaranteed to have minChildID greater
than the maxNeighborID of e585).5 Thus, for any el , we only
need to consider all entities in R before the first entity having
minChildID greater than the maxNeighborID of el .

After el has been joined, it is discarded. At that point we
also check if buffered tuples in BR can also be removed. In
order to decide this, we use maxNeighborID of each entity
on the right. In case this is smaller than the minChildID of
the next entity in L, then the right entry can be safely re-
moved from the buffer without losing any qualifying pairs.
Below, we give a pseudocode for SMJ.

Algorithm: SMJ
Input : Two join inputs L and R; a distance threshold ε

Output : Grid-based spatial distance join of L and R

1 Initialize (empty) buffer BR;
2 er = R.get next(); add er to BR;
3 while el = L.get next() do
4 Prune from BR all tuples er such that er .maxNeighborID <

el .minChildID;
5 while el .maxNeighborID ≥er .maxChildID do
6 er = R.get next(); add er to BR;

7 join el with all tuples in BR and output results to the next
operator;

We now discuss some implementation details. First, the
required min/maxNeighborID and min/maxChildID for the
entries are computed fast on-the-fly by simple operations. In
particular, min/maxChildIDs are computed by shifting (or
masking) bits to keep only those most significant bits that
encode the cell ID at a particular level of the grid (cf. Sect.5).
For the neighbor IDs, we rely on the id-to-offset and offset-
to-id Hilbert transformations as follows. First, we use e’s ID
and the (normalized) distance threshold ε to identify the off-
sets of the bottom-level cells that must be examined. Then,
we transform the offsets back to the corresponding cell IDs,
and we use the latter to compute the minimum and maxi-
mum entity IDs by masking bits in the local code (i.e., the
least significant bits - cf. Sect.5). Second, for joining an en-
tity el from L, we scan through the qualifying entities of
BR and compute their grid-based distances to el , but only
for entities whose minChildID-maxChildID range overlaps

4 Recall that the inputs are sorted by ID and that entities may be
encoded at different granularities due to data skew or geometry extents.
Therefore, using the cell-ID of er alone is not sufficient and we have to
use the minChildID of er .

5 The fact that the entities arrive from the inputs sorted by their IDs
guarantees that they are also sorted based on their minChildIDs.
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with the minNeighborID-maxNeighborID range of el ; this
is a cheap filter used to avoid grid-based distance computa-
tions. Finally, we buffer all tuples that have the same entity
ID (in either input). For such a buffer, we perform the join
only once but generate all join pairs.

6.4 Spatial Hash Join on Encoded Entities

If either of the two inputs of a spatial join is not ordered with
respect to the joined entities, SMJ is not applicable. In this
case we can still use the IDs of the joined entities to perform
the filter step of the spatial join. The idea is to apply a spatial
hash join (SHJ-ID) algorithm (similar to that proposed in
[22]) using the approximate geometries of the entities taken
from their IDs.6 SHJ-ID simply uses the existing assignment
of the entities to the cells of the grid (as encoded in their IDs)
and considers each such cell as a distinct bucket. The only
difference from a typical spatial hash join algorithm is that
in the bucket-to-bucket join phase, we have to consider all
levels of the encoding scheme. Therefore, each bucket from
the left input, corresponding to a cell c, is joined with all
buckets from the right input which correspond to all cells
that satisfy the DISTANCE filter with c. The output of SHJ-
ID is verified as soon as the geometries of the candidate pairs
are retrieved from disk.

6.5 Spatial kNN on Encoded Entities

kNN predicates are evaluated differently from WITHIN and
DISTANCE predicates in that no early spatial filtering or
verification bits are utilized. We introduce two kNN opera-
tors that make use of the encoding: one for handling entities
whose IDs come from the previous operator in a random
order (Sect. 6.5.1), and a second one that exploits ordering
(Sect. 6.5.2) and, thus, can be used efficiently in combina-
tion with other order-preserving operators. Both operators
are applied in a pipelined fashion at the root of the opera-
tor tree (i.e., on the output of the previous operators) and
are inspired by the work in [25]. The difference compared
to previous kNN operators is the integration with the multi-
level encoding scheme of Sec. 5. This integration enables us
to (i) compute approximate distances using arithmetic oper-
ations on the entity IDs, and (ii) leverage the interesting or-
ders preserved by previous operators in the query plan to re-
duce random I/Os and improve performance. Random I/Os
are common in index-based kNN algorithms from Sect. 4,
which we compare with our approach in Sec. 9.2.

6.5.1 kNN on Unsorted Entity IDs

The logic of first kNN operator is given in Algorithm KNN-
UNSORTED-INPUT. The operator takes as input a point p

6 Recall that the actual geometries of the entities have not been re-
trieved yet; otherwise, SHJ [22] would be used (see Sect. 4).

Algorithm: KNN-UNSORTED-INPUT
Input : Input I from the previous operator; a point p
Output : k tuples from I that satisfy the kNN predicate
Param. : The number k

1 let Q1, Q2 be two priority queues;
2 lastDist = ∞;
3 while t = I.get next() do
4 POPULATE Q1(t, p);

5 while Q1 is not empty do
6 (t,minDist) = Q1.pop();
7 if minDist ≥ lastDist then
8 break;

9 POPULATE Q2(t, p, lastDist,k);

10 return all t tuples in Q2;

Function: POPULATE Q1(t: TUPLE, p: POINT)
1 let e be the ID of the spatial entity in tuple t;
2 let c be the grid cell e belongs to; //extracted from e
3 if c is the last-level cell then
4 minDist = 0;

5 else if c is an upper-level cell then
6 find the bottom-level child cell of c, let cb, which is the

nearest to the given point p;
7 set minDist to the minimum distance of cb from p;

8 else
//c is a bottom-level cell

9 set minDist to the minimum distance of c from p;

10 Q1.push((t,minDist)); //keep in ascending minDist

Function: POPULATE Q2(t: TUPLE, p: POINT, lastDist:
FLOAT, k: INTEGER)

1 let e be the ID of the spatial entity in tuple t;
2 retrieve e’s geometry from dictionary and compute the exact

distance between e and p, let exactDist;
3 Q2.push((t,exactDist)); //keep in ascending exactDist
4 if |Q2| = k then
5 set lastDist equal to exactDist of the k-th entry in Q2;

(the one specified in the Filter clause of the query) along
with an iterator I on the tuples coming from the previous
operator in the query plan. Let t be a tuple in I and e be the
ID of the spatial entity in t that is used in the evaluation of
the kNN predicate. The operator uses two priority queues
Q1 and Q2 to keep tuples ordered in ascending Euclidean
distance of e from p’s actual geometry: in the former queue,
the distance has been calculated based on e’s cell whereas in
the latter based on e’s actual geometry.

The evaluation proceeds in two phases. First, the oper-
ator pulls all tuples from the previous operator in the query
plan and populates Q1 (lines 3-4). The function POPULATE Q1
uses the multi-level encoding scheme to compute the mini-
mum distance between e’s cell and p (minDist) and keeps
entries in ascending minDist. Note that minDist is an ap-
proximation of the exact distance between the entity e and
the point p; the latter is computed only in the second phase
of the algorithm (lines 5-9) where the operator starts drain-
ing Q1 to populate Q2. Specifically, each time an entry is
popped from Q1, the exact geometry of e is retrieved via a
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Algorithm: KNN-SORTED-INPUT
Input : Input I from the previous operator; a point p
Output : k tuples from I that satisfy the kNN predicate
Param. : The number k

1 let Q1, Q2 be two priority queues;
2 lastDist = ∞;
3 let cp be the bottom-level cell that contains p;
4 limit = prevLimit = COMPUTE LIMIT(cp);
//load first round of input data into Q1

5 READ NEXT(I, limit, p);
6 for each rectangle r in the first zone around cp do
7 compute the minimum distance of r from p, let minDist;
8 Q1.push((r,minDist)); //keep in ascending minDist

9 while Q1 is not empty do
10 (entry,minDist) = Q1.pop();
11 if minDist ≥ lastDist then
12 break;

13 if entry is a tuple t with a spatial entity then
14 POPULATE Q2(t, p, lastDist,k);

15 else
//entry is a rectangle r

16 find the maximum bottom-level cell ID cm falling in r;
17 limit = COMPUTE LIMIT(cm);
18 if limit > prevLimit then
19 prevLimit = limit;

//load next round of input data
20 READ NEXT(I, limit, p);

21 let r′ be the next zone rectangle in the direction of r;
22 set minDist to the minimum distance of r′ from p;
23 Q1.push((r′,minDist)); //in ascending minDist

24 return all t tuples in Q2;

dictionary lookup and the tuple t is pushed into Q2 using
now the exact distance between e and p (exactDist in func-
tion POPULATE Q2). The draining of Q1 stops when the al-
gorithm pops an entity e whose minimum possible distance
from p is at least equal to the current exact distance of the
k-th element in Q2 (lines 7-8 in KNN-UNSORTED-INPUT).

In contrast to Q2 that holds at most k tuples from the in-
put I, Q1 is populated with all tuples from I in the first phase
of KNN-UNSORTED-INPUT. The intuition behind this strat-
egy is to sort the entities based on their cells and use this
ordering to minimize the expensive geometry lookups in the
second phase. Since the IDs of the spatial entities come out
of order and each next entity may fall anywhere in the grid,
Q1 must store all input tuples from I. This increases the
memory footprint (and the latency) of KNN-UNSORTED-
INPUT significantly when the RDF part of the query is not
selective. When the spatial entities come in order, we can
tackle this problem with the kNN operator we describe next.

6.5.2 kNN on Sorted Entity IDs

The second kNN operator we introduce uses an adaptation
of the CPM technique from [25] and its logic is given in
Algorithm KNN-SORTED-INPUT. The core idea here is to
exploit the ordering of entities and avoid draining the iter-

Function: READ NEXT(I: ITERATOR, limit: INTEGER, p:
POINT)

1 while t = I.peek() do
2 let e be the ID of the spatial entity in tuple t;
3 if e 6 limit then
4 t = I.get next(); //Pull happens at this point

5 POPULATE Q1(t, p);

6 else break;

Function: COMPUTE LIMIT(cid : BOTTOM-LEVEL CELL)
1 let ci be the parent cell of cid at the i-th grid level; //c0 ≡ cid

2 let mi be the maximum encoded spatial entity ID in ci;
3 return max

0≤i≤13
mi; //14 grid levels with 32-bit IDs

ator I, i.e., pulling the whole output from the pervious op-
erator in the query plan. To do so, the evaluation proceeds
in “zones” starting from the (bottom-level) cell of the point
p in the Filter condition. Each such zone consists of four
rectangles (up, down, le f t, right), which in turn consist of
bottom-level grid cells and form a “circular” area around
p’s cell, as shown in Fig. 8a. The operator follows the same
steps as in CPM and extends the original technique to (i)
work with our multi-level encoding scheme, and (ii) pull tu-
ples from the input gradually, as it examines the zones.

First, the operator identifies the bottom-level cell cp that
contains the given point p (line 3). It then computes the max-
imum ID among all spatial entities that might fall in cp (line
4). This is done in function COMPUTE LIMIT, which sim-
ply returns the maximum spatially encoded ID that exists
in the database and falls either in cp or in a parent cell of
cp

7. COMPUTE LIMIT is a very cheap function that requires
only a few lookups in the grid statistics kept in memory.
The returned ID serves as an upper limit to bound the num-
ber of tuples pulled from I when populating Q1 in function
READ NEXT. The intuition here is that, at each step of the
algorithm, only the tuples of the current examined zone (ini-
tially p’s cell) must be pulled from the input. To do so, the
operator first peeks into I (line 1 in READ NEXT) to check
the entity ID e of the next tuple and decide if this ID is
at most equal to the limit; if so, this means that e’s actual
geometry might fall in the examined zone, thus, the tuple
is pulled from I (line 4 in READ NEXT) and the algorithm
continues with peeking the next tuple; otherwise none of the
following entities fall in the examined zone, thus, the algo-
rithm exits the loop (line 6 in READ NEXT), computes the
distance of each rectangle in the first zone from p, as in orig-
inal CPM, and adds the respective entry to Q1 (lines 6-8 in
KNN-SORTED-INPUT).

Then, the operator continues similarly to KNN-UNSORT

ED-INPUT, i.e. it starts pulling from Q1 (line 9) to populate
Q2 with the exact distances. The termination condition in

7 In case there are no spatial entities in the database falling in cp
or one of its parent cells, then as limit we use the first free (i.e. the
minimum) spatial ID for an entity in cp.
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   b1

L1 entity ID (binary) - (decimal) 

a1 000101|0000|1 - 161

a2 010011|0000|1 - 609

a3 011011|0000|1 - 865

a4 011100|0000|1 - 897

a5 100011|0000|1 - 1121

a6 100011|0100|1 - 1129

a7 100100|0000|1 - 1153

b1 0111|000001|1 - 899

b2 0111|000101|1 - 907

b3 1001|000001|1 - 1155

(a) (b)

   ●

   ●

For k = 2, grey cells are 
not examined by 
KNN-Sorted-Input.
E.g., some pruned 
entities are: a8 a9 a10 a11   

   ●

   a8●

   a10●

   ● a9

   ● a11

Fig. 8: An example grid (a) with 64 cells at the bottom level
(11-bit encoding) ordered according to the Hilbert curve and
organized in CPM zones (Li, Ri, Ui, Di) around a query point
p in cell 28. The entity IDs are shown on the right (b) in
binary and decimal format

lines 11-12 is the same as in KNN-UNSORTED-INPUT. The
only difference here is that, whenever the algorithm encoun-
ters a new rectangle r in Q1, the latter is used to update (i.e.
increase) the limit and pull the required additional tuples
(if any) from the input I (lines 16-20). After that, the algo-
rithm also expands the search space to the next zone (lines
21-23) by adding to Q1 the rectangle of the next zone that
is in the same direction (up, down, le f t, right) as r with
respect to p’s cell. This is CPM’s actual control flow and
the correctness of the computation relies on the correctness
of the original method (cf. Lemma 3.1 in [25]). As a final
comment, KNN-SORTED-INPUT is designed to pull as few
tuples from I as possible (it exhausts I only in the worst
case, i.e. when limit is greater than all spatial IDs in I) and,
thus, tends to perform much better than KNN-UNSORTED-
INPUT, as we show in Sect. 9.

Example. Consider the grid of Fig. 8 where ai denotes a
spatial entity encoded at the bottom level and bi denotes a
spatial entity encoded at the exact next level. For simplicity,
assume that there are no entities at higher levels. Assume
also that each bottom-level cell has a side of 1 metric unit.
Consider a query point p falling in cell 28 and let k = 2. Al-
gorithm KNN-SORTED-INPUT first pulls from the input I
and inserts into Q1 all tuples with spatial entities that may
fall in p’s bottom-level cell, i.e. all tuples from I before a tu-
ple with a spatial entity ID greater than b2 = 907 (recall that
tuples in I are in ascending spatial entity ID order). Then,
the algorithm proceeds with the insertion of the first zone
rectangles L1,R1,U1,D1 resulting in a priority queue Q1 =

{(a4,0),(b1,0),(b2,0),(a3,0.1),(U1,0.1),(R1,0.2),(L1,0.8),
(D1,0.9),(a2,2.8),(a1,4.9)}. Numbers in Q1 depict the Eu-
clidean distance of the respective entry (grid cell or zone

rectangle) from p’s geometry. At the next step, the algo-
rithm starts pulling entries from Q1 to populate Q2. When
it reaches the first rectangle entry U1, it computes the new
limit = b3 = 1155. At that point, we have Q1 = {(R1,0.2),
(a5,0.2),(a6,0.2),(a7,

√
0.05),(b3,

√
0.05),(L1,0.8),(D1,

0.9),(U2,1.1),(a2,2.8),(a1,4.9)} and Q2 = {(a3,0.12),
(a4,0.21)}. Distances in Q2 have now been computed us-
ing the Euclidean distance between the entry’s actual ge-
ometry and the point p. The algorithm then pops entry R1,
which results in updating Q1 only with (R2,1.2), and termi-
nates when it pops a7 whose minDist =

√
0.05 is less than

the lastDist = 0.21 of the previous entry a4 popped from
Q1. Eventually, Q2 = {(a3,0.12), (a4,0.21)} and the entries
a3,a4 are returned.

7 Query Optimization

In this section we describe our extensions to the query op-
timizer of RDF-3X, in order to take into consideration (i)
the R-tree index and the query evaluation plans that involve
it (see Sect. 4) and (ii) the query evaluation techniques de-
scribed in Sect. 6 for spatial range and join queries. The
encoding-based kNN operators (Sect. 6) do not affect query
optimization as they are always applied after the RDF part.

7.1 Augmenting the Query Graph

Consider the query depicted in Fig. 9a. This query includes
a spatial distance join between the geometries ?g1 and ?g2.
The filtering phase of the spatial distance join can also be
applied on the variables ?s1 and ?s2, using their IDs, as ex-
plained in Sect. 6.3. We call such variables spatial variables:

Definition 1 (SPATIAL VARIABLE) A variable ?si at the sub-
ject position of a triple pattern ?si hasGeometry ?gi that
appears in the Where clause of a query Q is called a spa-
tial variable. We say that two spatial variables ?si, ?s j (i 6= j)
are joined iff ?gi and ?g j appear in the same DISTANCE
predicate in the Filter clause of Q.

Spatial variables are identified in the beginning of the
optimization process and they are used to augment the initial
join query graph GQ with additional join edges that corre-
spond to the filtering step of the spatial operation. For exam-
ple, the initial GQ for the RDF query of Fig. 9a is the graph
shown in Fig. 9b, considering solid lines only as edges; the
nodes of GQ are the triples of the RDF query graph and there
is an edge between every pair of nodes that have at least one
common variable. An ordering of the edges of GQ corre-
sponds to a join order evaluation plan.

The procedure of augmenting GQ is given in Algorithm
AUGMENT. First, we identify all spatial variables in the query
Q; in our example, ?s1 and ?s2. Note that a spatial variable
?si may also appear either as subject or object in triple pat-
terns, other than ?si hasGeometry ?gi. The second step is to
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(a) RDF query

(b) Join graph GQ

Fig. 9: Augmenting a query graph

collect all pairs of nodes in GQ that include at least one spa-
tial variable. In the example of Fig. 9b, all nodes include one
of ?s1 and ?s2. Then, for each pair of nodes (ni, n j), where
ni 6= n j, such that ni includes ?s1 and n j includes ?s2, we
either add a new edge (if no edge exists between ni and n j)
or we add the spatial join predicate (e.g., DISTANCE(ni.si,
n j.s j) < “200km”) in the set of predicates modeled by the
edge between these two nodes (these are equality predicates
for their common variables). For instance, n4 and n5 in the
initial GQ are connected by an edge with predicate n4.x =

n5.x, but after the augmentation the predicates on this edge
are n4.x = n5.x and DISTANCE(n4.s2,n5.s1) < “200km”.
This implies that the optimizer will consider two possible
subplans for joining n4 with n5. The first one will first per-
form the equality join on x and then evaluate the distance
predicate whereas the second subplan will first perform the
filtering phase of the spatial join on (s1,s2) and then apply
the equality on x. In the augmented GQ for our example
(Fig. 9b) the additional edges are denoted with dashed lines.

If a query Q also includes WITHIN predicates, in the end
of the augmentation procedure and for each spatial variable
?s whose geometry ?g participates in a WITHIN predicate,
we add a condition of the form WITHIN(?s,GEOMETRY)

to the set of filters of Q, so that this filter can be applied in
any (intermediate) relation that contains the spatial variable
?s. Note that this condition differs from the existing spatial
condition WITHIN(?g,GEOMETRY) in that it includes the
spatial variable ?s and not the geometry variable ?g. Simi-
larly, for each pair (si,s j) of joined spatial variables, we add
the corresponding spatial join condition to Q’s existing fil-
ters, so that this filter can be applied on every (intermedi-
ate) relation that includes both the spatial variables si and s j.
Overall, the final augmented GQ may include more edges
than the initial GQ, additional predicates in the edges, and a
set of general spatial filters for variables or pairs of variables
that can be applied on intermediate results of subplans.

Algorithm: AUGMENT
Input : A query Q and its initial join query graph GQ
Output : An augmented query graph GQ for Q

1 Identify all triples in Q that include at least one spatial variable
in as subject or object. Each such triple corresponds to a node
of GQ;

2 for each pair ?si, ?s j of joined spatial variables do
3 for each pair of nodes (ni, n j) ∈ GQ, such that ni includes

?si and n2 includes ?s j do
4 if there is no edge in GQ between ni and n j then
5 Add a new edge denoting the filtering phase of

the spatial join of ?si and ?s j;

6 else
7 Add the filtering phase of the spatial join

predicate of ?si and ?s j in the predicate list of
edge between ni and n j;

8 For each spatial variable ?s appearing in a WITHIN predicate,
add WITHIN(?s,GEOMETRY) to filtering conditions of Q;

9 For each pair of spatial variables ?si, ?s j (i 6= j) joined in Q,
add DISTANCE(?si,?s j) Op ε to filtering conditions of Q;

10 return GQ;

7.2 Spatial Join Operators

Our plan generator can place a spatial join operation at every
level of the operator tree. Table 1 summarizes all possible
cases of the L and R inputs of a spatial join (if L and R are
swapped there is no difference because the join is symmet-
ric). The right column includes the join algorithms, which
the plan generator of the optimizer considers in each case.

Depending on whether the inputs of the join are indexed,
sorted, or unsorted, there are different algorithms to be con-
sidered. If both join inputs come ordered by the IDs of the
spatial entities to be joined, then SMJ (Sect. 6.3) is the al-
gorithm of choice. In the special case where both inputs are
the results of ?si hasGeometry ?gi patterns applied on the
entire set of triples, besides of applying SMJ on the SPO (or
SOP) index, we can apply an R-tree self-join [12] on the R-
tree index. When just one of the inputs, e.g., R, is a result of
a ?si hasGeometry ?gi pattern, besides SMJ, we can also
apply the SISJ algorithm [24]. In this case, we also consider
Index Nested Loops join using the R-tree, by applying one
spatial range query for each tuple of the other input, e.g., L.
This is expected to be cheap only when L is very small. Fi-
nally, when either L or R are unsorted, SMJ is not applicable
and we can use SHJ-ID on the entity IDs (Sect. 6.4), or ei-
ther SISJ or SHJ depending on whether one of the inputs is
a direct result of a ?si hasGeometry ?gi pattern or not. We
also consider Index Nested Loops or Nested Loops, if one
of the inputs is too small.

7.3 Spatial Query Optimization

We extend the query optimizer of RDF-3X to consider all
possible spatial join cases and algorithms outlined in Sect. 7.2.
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Table 1: Spatial Join Scenarios in Optimal Plan Build

Case Algorithm(s) to Consider
L and R sorted on entity IDs SMJ (Sect. 6.3)
L and R results of (?si hasGeometry ?gi) SMJ or R-tree Join [12]
L sorted on entity IDs SMJ (Sect. 6.3), SISJ [24],
R result of a pattern (?s2 hasGeometry ?g2) or Index Nested Loops
L unsorted SHJ-ID (Sect. 6.4), SISJ [24]
R result of a pattern (?s2 hasGeometry ?g2) or Index Nested Loops
L and R unsorted SHJ-ID, SHJ [22] or Nested Loops

In addition, the optimizer considers the case of performing
a spatial selection Filter using the R-tree (see Sect. 4). The
optimizer also considers any spatial selection and join filter
conditions that are applied on-the-fly; i.e., in plans where the
non-spatial query pattern components are evaluated first, our
optimizer uses spatial query selectivity statistics to estimate
the output size of these components after the spatial filter is
applied on them. Consider for example, the plan of Fig. 5.
The estimated output of the ?s hosted ?o pattern is further
refined to consider the spatial WITHIN filter that follows. In
other words, the cardinality of the right input to the merge-
join algorithm that follows is estimated using both RDF-3X
statistics on the selectivity of ?s hosted ?o and spatial statis-
tics for the selectivity of WITHIN(?g,“POLYGON (...)”).

7.4 Selectivity Estimation

For estimating the selectivity of spatial query components,
we use grid-based statistics, similar to previous work on spa-
tial query optimization (e.g., see [24]). Specifically, we take
advantage of statistics that are obtained by the spatial en-
coding phase of the entity IDs. For each cell of the grid,
defined by the Hilbert order, we keep track of the number
of spatial entities that fall inside. The spatial join or selec-
tion is then applied at the level of the grid, based on unifor-
mity assumptions about the spatial distributions inside the
cells. In addition, we assume independence with respect to
the other query components. For example, for estimating the
input cardinality of the right merge-join input at the plan of
Fig. 5, we multiply the selectivity of the ?s hosted ?o pat-
tern with that of the WITHIN(?g,“POLYGON (...)”) filter.
In practice, this gives good estimates if the spatial distribu-
tion of the entities that instantiate ?s is independent to the
spatial distribution of all entities.

7.5 Runtime Optimizations

RDF-3X uses a lightweight Sideways Information Passing
(SIP) mechanism for skipping redundant values when scan-
ning the indexes [28]. Consider a merge join, which binds
the values of a variable ?s coming from two inputs. If the
join result is fed to another (upper) merge join operator that
binds ?s, then the upper operator can use the next value v of
its other input to notify the lower operator that ?s values less
than v need not be computed.

In the case of spatial joins where at least one side comes
from a scan in the R-tree (e.g., consider the plan shown in
Fig. 3a), SIP is not applicable since there is no global order
for the geometries in the 2D space. On the other hand, the
SMJ algorithm proposed in Sect. 6.3 can use SIP to notify
the operators below its left input which is the minimum ID
value for the next entity el to pair with any entity buffered in
BR. For the spatial hash join, we can also use SIP, by creat-
ing a bloom filter for one input, similar to the one RDF-3X
constructs for the traditional hash join, and use it to prune tu-
ples from its other input, while scanning the B+-tree index.
A value is pruned if it is not included in the bloom filter.

8 Updates

The proposed encoding scheme requires significant changes
in the update mechanism of RDF-3X [27,29]. Inserting a
new spatial entity is straight-forward and requires generat-
ing the appropriate ID based on the entity’s geometry and
the occupancy of the grid. On the other hand, removing or
updating the geometry of a spatial entity requires additional
care as it might trigger the re-encoding of other spatial enti-
ties besides the one being updated. Such re-encodings tend
to improve the latency of spatial queries, since entities are
“moved” to lower levels of the grid, but incur an overhead
during updates because they result in additional triples to be
removed and re-inserted with new IDs.

Insert and delete commands in RDF-3X (cf. Sect. 2) are
given in batches and are processed in two phases. In the first
phase, the triples to insert or delete are resolved via lookups
in the dictionary, i.e. they are translated into triples of integer
IDs used internally by the system. Updates are not applied
directly to the database; instead, the affected triples are first
resolved in memory for all updates in the batch using dif-
ferential indexes, which are then synchronized with the base
indexes in the second phase. This is a common technique
in bulk update processing that aims to minimize I/Os and
increase the system throughput. RDF-3X maintains six dif-
ferential indexes (SPO, SOP, OPS, OSP, PSO, POS), one for
each full base index, which are synchronized with both the
full and the aggregated base indexes. For example, the SPO
differential index is synchronized with the base SPO index,
the binary aggregated index SP, and the unary aggregated
index S.

SRX integrates the original update mechanism of RDF-
3X with the encoding scheme of Section 5. For this purpose,
it suffices to change only the first update phase, whereas the
index synchronization can be used as is. To simplify the pre-
sentation, we distinguish two cases: a) only inserts of new
triples, i.e., the subject entity s of the input triple 〈s, p,o〉
does not exist in the dictionary, b) inserts and deletes of
triples whose subject entity already exists in the data. The
update process takes as input a batch B of triples annotated
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with insert or delete, and updates two in-memory sets of
triples tI (to insert) and tD (to delete), which are used to
build the differential indexes.

Inserts of new entities. The insertion to the triples set tI is
performed similarly to the original RDF-3X update process,
but IDs are generated using the modified function GENER-
ATE ID. GENERATE ID takes as input the entity’s URI and
a boolean value, which indicates whether the new ID should
be spatial (true) or not ( f alse), i.e., whether the input triple
introduces a geometry for the subject entity. GENERATE ID
is also responsible for updating the dictionary and for track-
ing the set of new IDs for the current batch B. The set new
(initially empty for a batch) contains all IDs that do not exist
in the database and is used in the second part of the update
algorithm to avoid expensive lookups in the base indexes, as
we explain later on. Since, the insertion of new triples only
differs from the original RDF-3X process in the creation of
the ID, we omit the pseudocode for the sake of brevity.

Updates on existing entities. The pseudocode for the up-
dates on existing entities is given in Algorithm UPDATES

ON EXISTING ENTITIES. This part handles triples with ex-
isting spatial and non-spatial subject entities, and is further
split into three sub-parts: one for inserting triples that intro-
duce a geometry for the non-spatial subject (lines 5-16), one
for inserting triples that do not introduce a geometry (lines
17-23), and a last one for deleting triples (lines 24-34).

In the first sub-part, when a geometry is introduced for
a non-spatial entity, the algorithm generates a new spatial
ID snew (line 8) and proceeds with updating the in-memory
sets tI and tD accordingly. To do so, it first checks if the
old subject ID (sid) exists in the set of new IDs for the cur-
rent batch; if yes, it simply updates the set new along with tI
(lines 15-16), otherwise it retrieves all affected triples from
the database and updates both tI and tD (lines 11-14 and
16). The update algorithm also ensures in this case that each
entity is associated with at most one geometry but these ad-
ditional checks are omitted here for the sake of brevity.

The last two sub-parts of UPDATES ON EXISTING EN-
TITIES follow the original RDF-3X update logic and differ
only in the use of new in lines 20 and 28 to avoid expen-
sive lookups in the base indexes; these lookups are only per-
formed as last steps in lines 22 and 30.

Spatial re-encoding is the task of re-assigning spatial IDs
that get released (after geometry deletions) to spatial enti-
ties encoded at higher levels of the grid due to overflow. It
is an iterative bottom-up process, from lower to higher lev-
els of the grid, which takes place in line 34 of UPDATES ON

EXISTING ENTITIES. The re-encoding function receives the
spatial ID of an entity whose geometry is being deleted, re-
places this ID with a non-spatial one (the next free even ID),
and checks if there is a spatial entity from a higher level that
can be re-encoded using the recently released spatial ID. If

Algorithm: UPDATES ON EXISTING ENTITIES
Input : Batch B of triples annotated with

op = {insert,delete}
Output : Sets of triples tI (to insert) and tD (to delete)

1 let new be the set of new entity IDs for the current batch B;
2 while t = 〈s, p,o,op〉= B.get next() do
3 if s ∈ dictionary then
4 let sid be the ID of s as found in the dictionary;
5 if sid is not spatial and op = insert and p =

“hasGeometry” then
//A geometry is given for s

6 let pid = FETCH OR GEN ID(p, f alse);
7 let oid = FETCH OR GEN ID(o, f alse);
8 let snew = GENERATE ID(s, true);
9 tI = tI∪{〈snew, pid ,oid〉};

10 if sid /∈ new then
11 let a f f ected be the set of triples in the

database containing sid as subject or object;
12 let replace = a f f ected \ tD;
13 tI = tI∪ replace;
14 tD = tD∪ replace;

15 else new = new\{sid};
16 change sid to snew in all triples of tI;

17 else if op = insert and p 6= “hasGeometry” then
//Both for spatial and non spatial sid

18 let pid = FETCH OR GEN ID(p, f alse);
19 let oid = FETCH OR GEN ID(o, f alse);
20 if {sid , pid ,oid}∩new 6= /0 then
21 tI = tI∪{〈sid , pid ,oid〉};
22 else if 〈sid , pid ,oid〉 /∈ database then
23 tI = tI∪{〈sid , pid ,oid〉};

24 else if op = delete and (sid is spatial or p 6=
“hasGeometry”) then

//For any valid delete operation
25 if p ∈ dictionary and o ∈ dictionary then
26 let pid be the ID of p as found in the

dictionary;
27 let oid be the ID of o as found in the

dictionary;
28 if {sid , pid ,oid}∩new 6= /0 then
29 tI = tI \{〈sid , pid ,oid〉};
30 else if 〈sid , pid ,oid〉 ∈ database then
31 tD = tD∪{〈sid , pid ,oid〉};
32 else continue;
33 if sid is spatial and p = “hasGeometry”

then
34 re-encode spatial entities;

so, the re-encoding of the spatial entity releases another spa-
tial ID, and the process cascades until no more re-encodings
are possible.

The overall process relies on two thresholds h1, h2 ∈
[0,1], which define a range [h1,h2] on the ratio of assigned
to total spatial IDs that a cell can accommodate (fill factor).
In particular, a re-encoding process starts when the fill fac-
tor of a cell c drops below h1, and continues as long as (i)
there are entities from higher levels to re-encode in c, and (ii)
c’s fill factor remains below h2. By the time at least one of
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these two conditions does not hold, the algorithm continues
with examining the parent cells of c (at the next level), and
so forth, until it reaches the top level. In the end, all spatial
entities have been re-encoded at the lowest possible level
such that each cell’s fill factor is smaller than h2. The two
thresholds h1 and h2 are used to trade off the frequency of
re-encodings with the overhead in processing updates, and
we discuss the choice of their values in Sect. 9.

9 Experimental Evaluation

We compare SRX with the original RDF-3X system [27],
the latest version of Strabon [20]; version 3.3.2, and the
latest versions of two commercial triple stores with spatial
data support, Virtuoso 7.2.5-rc1.3217-pthreads [4]
and GraphDB Free 8.6 [1] (the successor of OWLIM-SE
that we used in [21]). We implemented SRX in C++ (g++
8.2.0) and conducted all experiments on a machine with an
i7-4930K CPU at 3.40 GHz, a 3.6Tb 7.2K rpm SATA-3
hard disk, and 64GB RAM running Linux Debian (4.18.0-
1-amd64). For the Strabon database, we used PostgreSQL
11.2 and PostGIS 2.5 versions, while for the R-tree im-
plementation, we used the open-source SaIL library [18],
which we also extended with support for incremental kNN
computation (cf. Sect. 4).

9.1 Queries Setup

Datasets. We evaluate our system using two real datasets:
LinkedGeoData8 (LGD) and YAGO2s9 (YAGO). LGD con-
tains user-contributed content from OpenStreetMap project.
YAGO is an RDF knowledge base, derived from Wikipedia,
WordNet and Geonames. Table 2 shows statistics about the
sizes of the datasets (including the dictionary and indexes)
and the number of entities and geometries in them. The sizes
of the input triple files are 2.4GB (LGD) and 18.1GB (YAGO).
The R-trees (using 4KB nodes) occupy 160MB and 221MB,
respectively. The size of the grid in both datasets is 1.5GB
(89M cells in total for all levels). Note that, despite the ag-
gressive indexing, in both cases, we end up with a database
size having around double the size of the input files. Regard-
ing the spatial distribution of the entities they include, both
datasets are highly skewed, as shown in the supplementary
material of this paper (Online Resource 1).

Encoding. We used a grid of 8,192 × 8,192 cells at the bot-
tom level, hence, the maximum number of bits used in an
entity’s ID to encode its cell-ID is 26. This means that we
can have up to 14 levels of spatial approximation. This is
the maximum granularity we can achieve when the IDs of
the entities are 32-bit integers. Using 64-bit IDs for better

8 https://tinyurl.com/yc4lxqdv
9 https://tinyurl.com/y7ukhge3

Table 2: Characteristics of the real datasets

Dataset Triples Entities Points Polygons Linestrings Multipoints

LGD (5.1 GB) 15.4M 10.6M 590K 264K 2.6M 0
YAGO (29.8 GB) 205.3M 108.5M 4M 0 0 780K

Table 3: Percentage (%) of geometries per grid level

Level 0 (bottom) 1 2 3 4 5 6 ≥ 7

LGD 28.5 21.6 16.9 12.7 8.7 5.4 3.0 3.2
YAGO 50.3 19.2 8.1 4.5 3.0 2.4 1.9 10.6

spatial approximation is possible, but significantly increases
the size of the triple indexes, thus, one should do this only
when the total number of entities is greater than 232. Be-
sides, the grid must be relatively small so that it resides in
memory (for selectivity estimation purposes). In our case,
the grid size is less than 2GB for both datasets. As shown
in Table 3, all levels of the grid are used in the encoding,
due to data skew and several geometry extents (polygons,
linestrings, multipoints). Note that in YAGO many multi-
points are not cleaned and have very large MBRs.

Queries. All queries used in our experiments have two parts:
(i) an RDF part that can be evaluated by a traditional SPARQL
engine and (ii) a spatial part, i.e., a FILTER condition that
includes a WITHIN predicate (for spatial range queries), a
DISTANCE predicate (for spatial distance joins) or a kNN
predicate (for spatial nearest neighbors). The range queries
have similar structure to those depicted in Fig. 1b; we di-
vide them into four classes based on the selectivities of the
two parts. Queries belonging to class SL have their RDF
part more selective compared to their spatial part and the
opposite holds for queries in class LS (S stands for small
result, L for large). For queries in classes SS and LL, both
parts roughly have the same selectivity. The characteristics
of the spatial join queries (denoted by J) and the spatial kNN
queries will be discussed in Sect. 9.2. All queries can be
found in the supplementary material (Online Resource 1).

Comparison Measures. We evaluated each query 5 times
(both with cold and warm cache) and report their average
response times. The reported runtimes include the query op-
timization cost (i.e., the time spent by the optimizer to apply
the techniques of Sect. 7) and the time spent in the ID-to-
string dictionary lookups for the output variables.

System Parameters. RDF-3X does not have its own data
cache for the query results; instead, it relies entirely on the
OS caching mechanism. The same architectural principle is
also adopted in our implementation.10 When a query is ex-
ecuted for a second time, its optimization and evaluation is
performed from scratch, since there are no logs or cached re-
sults as in a typical database system. To illustrate the effect
of OS caching in the overall response time of the system,

10 We only included a small separate cache of 40Kb for the R-tree.
Since the OS caches R-tree pages, we used a small cache size in order
to reduce the effect of double caching by the SaIL library.

https://tinyurl.com/yc4lxqdv
https://tinyurl.com/y7ukhge3


SRX: Efficient Management of Spatial RDF Data 17

Table 4: Spatial range queries on LGD (total response time in ms - optimizer time in parentheses)

Query Number of results Strabon GraphDB Virtuoso SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding

RDF Spatial Combined Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm
LGD.SL1 524 2,537,757 411 64,581 12,791 6,960 136 74,645 83 3,880 (99) 35 (1) 3,333 (148) 54 (20) 2,334 (107) 78 (1)
LGD.SL2 215,355 2,943,209 186,302 168,099 20,129 20,957 14,045 78,568 76 4,495 (97) 272 (1) 3,644 (178) 330 (58) 3,009 (100) 323 (1)
LGD.SL3* 13,090 2,537,757 9,814 160,591 18,081 8,496 822 72,624 36 11,554 (97) 82 (1) 9,891 (147) 104 (20) 3,983 (100) 177 (1)
LGD.LS1 25,617 9,002 86 63,614 12,866 9,568 2,338 58,757 81 1,913 (95) 84 (1) 856 (124) 62 (15) 222 (109) 14 (1)
LGD.LS2 191,976 908 3 63,065 12,785 24,702 17,159 46,066 167 2,257 (97) 176 (2) 429 (117) 21 (15) 183 (91) 12 (2)
LGD.LS3* 5,791 908 9 63,251 12,694 16,065 410 45,317 183 14,305 (107) 52 (1) 484 (127) 20 (14) 174 (89) 2 (1)
LGD.SS1 8,621 9,002 69 63,403 13,271 8,118 829 58,658 51 1,696 (98) 65 (1) 932 (131) 63 (16) 211 (92) 14 (1)
LGD.SS2* 13,090 9,002 120 66,370 12,708 8,488 949 57,745 35 8,181 (97) 75 (1) 1,167 (137) 61 (15) 450 (100) 5 (1)
LGD.SS3* 5,791 9,002 7 66,275 12,750 16,479 410 57,251 22 14,308 (107) 53 (1) 934 (142) 53 (16) 350 (100) 3 (1)
LGD.LL1 191,976 350,405 13,416 89,097 13,900 24,868 17,178 53,714 120 2,694 (95) 183 (1) 2,562 (142) 200 (17) 815 (117) 55 (2)

Table 5: Spatial range queries on YAGO (total response time in ms - optimizer time in parentheses)

Query Number of results GraphDB Virtuoso SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding

RDF Spatial Combined Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm
YAGO.SL1* 11,547 364,992 891 23,689 2,823 66,017 9,053 10,610 (61) 61 (1) 10,342 (62) 61 (1) 6,119 (46) 48 (1)
YAGO.SL2* 6,030 31,260 69 32,091 1,816 59,802 1,318 8,984 (173) 70 (1) 8,654 (175) 70 (1) 3,783 (168) 43 (1)
YAGO.LS1* 2,226 138 0 4,817 232 19,276 19 2,769 (60) 61 (1) 2,661 (79) 64 (15) 772 (56) 37 (1)
YAGO.LS2* 285,613 41,945 4,471 182,118 9,657 77,759 1,274 17,590 (183) 696 (1) 16,471 (178) 697 (1) 8,692 (181) 161 (1)
YAGO.SS1* 6,030 8,440 3 30,249 1,853 51,155 459 8,375 (175) 70 (1) 12,019 (173) 275 (17) 3,201 (170) 41 (1)
YAGO.SS2* 7,074 7,042 2 11,131 547 36,008 325 4,641 (61) 62 (1) 11,286 (85) 245 (15) 2,319 (56) 46 (1)
YAGO.LL1* 285,613 184,743 10,454 188,015 13,465 66,381 5,040 19,882 (184) 701 (1) 18,688 (182) 699 (1) 10,978 (179) 173 (1)
YAGO.LL2* 152,693 107,625 88 82,420 10,880 55,230 3,123 6,262 (61) 2,971 (1) 5,999 (62) 2,993 (1) 5,302 (56) 1,921 (1)

we report query evaluation times on warm and cold caches
separately.

9.2 Queries Comparison

Results on Range Queries. Table 4 shows response times
for range queries on the LGD dataset. The first three columns
of the table show the number of results of the RDF query
component only, the spatial component only and the com-
plete query (combined). We first focus on comparing our
approach (Encoding) with the basic extension presented in
Sect. 4 (Basic) and the original RDF-3X system (Baseline).
Basic uses the R-tree to retrieve the entities falling in the
given range only for queries where the spatial component is
selective enough (LS, SS); in all other cases, it applies the
same plan as Baseline, i.e. it evaluates the RDF part first
and then applies the WITHIN filter to the tuples that qualify
it. On the other hand, Encoding always chooses to evaluate
the RDF part of the queries first and uses the spatial range
filtering technique (see Sect. 6.1) to reduce the number of
entities that have to be spatially verified. Encoding is supe-
rior in all queries. In specific, we avoid fetching a large per-
centage of exact geometries (96% on average for all range
queries in both datasets), which Baseline obtains by random
accesses to the dictionary. The cost differences between En-
coding and Baseline is small only for SL queries, where the
spatial filtering has little effect. In all other cases, Encoding
is significantly faster than Baseline and Basic, especially in
LS and SS queries and in queries involving entities with non-
point geometries, denoted by a star (*), where the difference
is up to one order of magnitude. In the case of warm caches,
all runtimes are very low, so the cost of Encoding may ex-
ceed the cost of Baseline sometimes (e.g., see SL queries)

due to the overhead of applying the spatial filter on all ac-
cessed entities in the evaluation of the RDF part of the query.

The difference in the optimization times (in parentheses)
between warm and cold caches in all alternatives is because
the reported numbers include the time spent for parsing the
query, resolving the IDs of the URIs/strings in it, and finally
building the optimal plan. Hence, when a query is issued for
the first time, it requires some dictionary lookups for resolv-
ing the IDs of the entities. With warm caches, the respective
dictionary pages are already cached by the OS, thus, query
optimization is always cheaper. Note that, in most cases, the
time spent for query optimization by Encoding is similar
to that of Baseline, meaning that the overhead of augment-
ing the query graph and using spatial statistics is negligible
compared to the query optimization overhead of the original
RDF-3X system. With warm caches, the overhead in query
optimization by Encoding and Basic compared to Baseline
(due to the use of spatial statistics) is more profound.

Similar results are observed for range queries on the YA-
GO dataset (see Table 5). All queries in this case involve
entities that may have multipoint geometries (therefore they
are marked by a star). Encoding always chooses to evaluate
the RDF part of the queries first, as in LGD. Basic chooses
the same plan as Baseline in all cases, except for LS1 and SS
queries, where it opts to evaluate the spatial selection using
the R-tree; on the other hand, the spatial part of LS2 is not
considered very selective by the optimizer, preventing the
use of R-tree for that query. Note that for YAGO the cost
of Basic is high enough (even higher than Baseline for SS
queries). After analysis, we found that this is due to the bad
performance of the R-tree on this dataset; the range queries
access roughly half of the R-tree nodes. The reason is that
many multipoints in YAGO are dirty and have huge MBRs
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that cover most of the data space. Thus, the non-leaf R-tree
entries have extremely large MBRs, causing a random query
to access a large percentage of tree nodes.

Overall, with cold caches, the median speedup of En-
coding over Baseline (resp. Basic) across all queries is 8.3×
(resp. 2.6×) for LGD, and 2× (resp. 2×) for YAGO. When
warm caches are used, the median speedups are 5.3× (resp.
4×) for LGD, and 1.6× (resp. 2.8×) for YAGO.

Results on Spatial Joins. Table 6 and Table 7 show the costs
of spatial distance join queries on LGD and YAGO, respec-
tively. The threshold 0.1 shown in the tables corresponds to a
distance around 10km. In LGD, all queries have thresholds
greater than the diagonal of a cell in our encoding except
queries LGD.J6.1 and LGD.J6.2. In YAGO, threshold 0.1 is
greater than the cell diagonal, but 0.01 is not. After perform-
ing experiments with various types of queries, we found that
the SMJ and SHJ-ID algorithms should only be used when
the spatial distance threshold is greater than the diagonal of
the grid cell at the bottom level. Otherwise, they do not pro-
duce any verified results and, hence, they have similar or
slightly worse performance compared to directly applying
SHJ (as Basic would). We have added this simple rule of
thumb in the optimizer of our system, hence, in all spatial
join queries that have a distance threshold less than the cell
diagonal, Encoding applies the same plans as Basic using
the SHJ operator. In LGD, these queries are J6.1 and J6.2,
while in YAGO, the respective queries are J8.1 and J8.2. For
this reason, we focus mostly on queries where the distance
threshold is greater than the cell diagonal.

All spatial join queries on the LGD dataset (Table 6)
have a similar pattern: they include two disjoint RDF star-
shaped parts with a spatial distance predicate between the
geometries of their center nodes. This is the only type of
queries we could define here since the LGD dataset includes
a rather poor RDF part; besides the POI type, there are very
few properties such as “label” and “name” which link the
POIs with text attributes. For this type of queries, Baseline
can only execute a bushy plan where the two stars are eval-
uated separately and then joined in a nested-loop fashion,
applying the spatial distance filter. On the other hand, Ba-
sic may choose to apply an R-tree join first for retrieving the
candidate pairs within distance ε or to first evaluate the RDF
part of the query and follow-up with a spatial hash join (SHJ)
in the end (e.g., see the plans of Fig. 3c and Fig. 3d). In all
queries we tested, Basic chose the SHJ algorithm and this
is quite reasonable; in large datasets, the optimizer would
prefer not to perform an expensive spatial self-join over the
whole set of points. Encoding can choose between one of the
previously mentioned methods and also try the algorithms
of Sect. 6.3 and Sect. 6.4 on the augmented query graph.
Since we have star-shaped queries and the IDs of the cen-
ter nodes are coming sorted, SMJ was favored in all queries
we present. Although Encoding is much faster than Base-

line, we observe that for the case of warm caches, the for-
mer does not bring much benefit over Basic for most join
queries on LGD. The main reason is that Encoding does not
save any geometry lookups due to the particular data distri-
bution; every entity from either of the two spatial join inputs
participates in at least one non-verified spatial join pair and
therefore it cannot be pruned without fetching its geometry.
In addition, Basic benefits from the fact that it buffers the
complete join inputs before hashing them into the buckets
of SHJ, thus, the geometry of each entity is processed only
once. On the other hand, SMJ (used by Encoding) produces
and verifies the join pair candidates on-the-fly, resulting in
the processing of a given geometry multiple times. However,
if the size of inputs is very large, Basic can become signifi-
cantly slower than Encoding (see LGD.J4) because SHJ re-
quires the allocation of a large hash table to accommodate a
huge number of buffered geometries. Recall that SHJ, used
by Basic, is a blocking operator which requires both inputs
to be read as a whole before processing the join and, thus,
can become a bottleneck if the inputs are too large.

The results for queries with spatial join components in
YAGO are shown in Table 7. Depending on the type of the
query and the selectivities of the two parts, our encoding-
based approach uses either SMJ or SHJ-ID. Specifically, SMJ
is used in queries J1 and J8.3, whereas SHJ-ID is used in J2,
J6, and J7. In queries J8.1 and J8.2, Encoding follows the
same plans as Basic. In the remaining queries (J3, J4 and
J5), Basic and our encoding-based approach produced the
same plans as Baseline; these queries include a single con-
nected RDF graph pattern with a rather selective RDF part.
As a result, the performance of Basic is similar to that of
Encoding for queries J3, J4, J5, J8.1, and J8.2. For the re-
maining queries, Encoding is slightly faster than Basic with
cold caches (the two techniques are comparable for warm
caches), because Encoding selects a different plan based on
the augmented query graph. A notable exception is YAGO.J7,
where Encoding performs much better than Basic, because
the spatial join inputs have a different spatial distribution
and Encoding can prune many tuples using SHJ-ID.

Note that, for large inputs, SHJ might be slower than
SMJ. This is reflected in the performance difference between
queries LGD.J6.1, LGD.J6.2 (resp. YAGO.J8.1, YAGO.J8.2),
where SRX applies the same plan as Basic using SHJ, and
queries LGD.J6.3 (resp. YAGO.J8.3), where SMJ is used.

Overall, with cold caches, the median speedup of En-
coding over Baseline across all queries we used is 10.3×
and 8.4× for LGD and YAGO respectively. When warm
caches are used, the respective median speedup is 136.5×
for LGD and 82.1× for YAGO. Regarding spatial distance
joins, Encoding and Basic have similar median performance
for YAGO. For LGD with cold caches, Encoding has a me-
dian 1.3 speedup over Basic, whereas with warm caches En-
coding shows a median 0.7 slowdown over Basic.
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Table 6: Spatial distance join queries on LGD (total response time in ms - optimizer time in parentheses)

Query Spatial join Number of results Strabon GraphDB SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding

threshold ε RDF Final Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm
LGD.J1 0.003 12,145,200 6,831 > 5 min > 5 min > 5 min > 5 min 111,208 (123) 109,295 (1) 3,936 (280) 188 (128) 2,854 (246) 566 (130)
LGD.J2 0.01 274,576 538 > 5 min 27,194 > 5 min 101,756 21,796 (133) 18,476 (2) 4,497 (326) 256 (188) 2,229 (314) 273 (196)
LGD.J3 0.02 13,423,300 8,742 > 5 min > 5 min > 5 min > 5 min > 5 min > 5 min 5,412 (417) 433 (267) 3,952 (401) 712 (275)
LGD.J4* 0.05 171,348,000 795,322 > 5 min > 5 min > 5 min > 5 min > 5 min > 5 min 106,856 (613) 97,426 (474) 30,841 (589) 21,593 (475)
LGD.J5* 0.01 15,564,000 2,782 > 5 min > 5 min > 5 min > 5 min 59,468 (142) 49,528 (2) 13,530 (334) 355 (186) 10,976 (310) 1,161 (189)

LGD.J6.1* 0.0005 20,181,600 7 > 5 min > 5 min > 5 min > 5 min 133,685 (141) 119,677 (2) 15,291 (243) 199 (88) 12,943 (208) 204 (91)
LGD.J6.2* 0.001 20,181,600 22 > 5 min > 5 min > 5 min > 5 min 133,693 (139) 120,059 (2) 15,372 (240) 195 (89) 12,970 (208) 198 (91)
LGD.J6.3* 0.01 20,181,600 743 > 5 min > 5 min > 5 min > 5 min 134,433 (137) 119,668 (2) 17,036 (341) 308 (187) 8,533 (297) 1,497 (189)

Table 7: Spatial distance join queries on YAGO (total response time in ms - optimizer time in parentheses)

Query Spatial join Number of results GraphDB SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding

threshold ε RDF Final Cold Warm Cold Warm Cold Warm Cold Warm
YAGO.J1* 0.1 6,245,000 2,635 - - 118,992 (44) 103,626 (1) 14,738 (204) 445 (129) 11,795 (199) 684 (130)
YAGO.J2* 0.1 523,815,000 6,799,189 > 5 min > 5 min > 5 min > 5 min 137,147 (205) 112,954 (129) 136,114 (275) 115,226 (204)
YAGO.J3* 0.1 16,528 832 142,545 9,732 8,994 (57) 162 (1) 10,547 (220) 264 (129) 9,425 (203) 279 (131)
YAGO.J4* 0.1 3,165 451 69,923 1,477 7,990 (52) 124 (1) 8,796 (209) 219 (128) 8,139 (204) 228 (130)
YAGO.J5* 0.1 565 113 - - 2,836 (48) 95 (1) 3,547 (199) 164 (129) 3,406 (194) 168 (130)
YAGO.J6* 0.1 19,814,600 664,613 > 5 min > 5 min > 5 min 292,119 (2) 45,004 (375) 21,696 (130) 43,679 (356) 22,945 (205)
YAGO.J7* 0.1 544,771,000 4,204,184 > 5 min > 5 min > 5 min > 5 min 40,454 (195) 21,169 (129) 16,721 (267) 1,831 (201)

YAGO.J8.1* 0.001 3,519,380 85,188 - - 86,075 (48) 77,085 (1) 8,889 (185) 150 (115) 8,381 (189) 150 (115)
YAGO.J8.2* 0.01 3,519,380 86,222 - - 87,701 (48) 77,093 (1) 9,117 (190) 201 (115) 8,535 (186) 202 (115)
YAGO.J8.3* 0.1 3,519,380 131,828 - - 86,068 (48) 77,152 (1) 9,471 (205) 383 (128) 8,066 (206) 461 (130)

Results on Spatial kNN Queries. All kNN queries in Ta-
bles 8-17 have been constructed from (and have the same
names with) the range queries used in Tables 4-5. In partic-
ular, each kNN query has the same RDF part with the re-
spective range query along with a Filter kNN
(?g, “POINT (...)”) clause, where “POINT (...)” is the mid-
dle point of “RECTANGLE (...)” in the Filter WITHIN(?g,
“RECTANGLE (...)”) clause of the range query. Tables 8-17
provide results for k = 5,10,20,50 and 100.

In both datasets, Basic follows the same plan as Base-
line with only exceptions LGD.SL1 and YAGO.LS1, where
Basic uses the R-tree. In these two queries, Basic employs
the incremental kNN operator (cf. Sect. 4) followed by hash
joins, which are favored by the optimizer because the RDF
part of the query is selective enough and, as a result, the cost
of the building phase of the respective hash tables is low.
Such a plan achieves much better performance over Base-
line in some cases (e.g. for LGD.SL1 and k = 5 with cold
caches), however, our experiments demonstrate that Base-
line is usually a better option than Basic, especially for k >

20. We attribute this behavior to the following reasons: (i)
Baseline evaluates the RDF part of the query by leveraging
efficient sequential scans over the compressed B+-trees in
combination with very fast merge joins, and (ii) LGD.SL1
and YAGO.LS1 have very selective RDF parts (the most se-
lective for each dataset), therefore, the cost of the final dic-
tionary lookups to fetch the geometries of the entities, as
performed by Baseline, is low.

When cold caches are used, Unsorted and Sorted are sig-
nificantly faster (due to filtering and fewer geometry lookups)
than Baseline for all kNN queries except YAGO.LL2; in this
case, Baseline is superior to both Unsorted and Sorted but
for different reasons. First, Unsorted and Baseline use ex-

actly the same plan to evaluate the RDF part of the query,
and their only difference lies in the final verification phase
where they must retrieve the actual geometries from the dic-
tionary. We found that the result set of the RDF part of
YAGO.LL2 contains many tuples carrying the same geome-
try, which amplifies the effects of caching and significantly
reduces the cost of dictionary lookups. As a result, Baseline
outperforms Unsorted due to the CPU overhead of the lat-
ter to maintain its priority queues. On the other hand, when
Sorted is an option, the optimizer chooses a different plan
for the RDF part, which leverages merge joins and outputs
tuples in ascending order of their spatial IDs but shows poor
performance.

When warm caches are used, Unsorted performs better
than Baseline for all kNN queries on LGD except LGD.SL1.
This is reasonable since the Unsorted method tends to per-
form fewer dictionary lookups than Baseline and, in queries
with very selective RDF part, such as LGD.SL1, the bene-
fits of Unsorted over Baseline are negligible. In YAGO with
warm caches, Unsorted performs similarly or slightly worse
(e.g. for YAGO.LS2, YAGO.LL1, and YAGO.LL2) than Base-
line for the same reason we mentioned before: many en-
tities in the result of the RDF part of these queries have
the same geometry, and the cost of the additional geome-
try lookups in Baseline is mitigated by caching. The only
LGD queries where Baseline is slightly better than Sorted
are LGD.SL1 for k = 100 and LGD.SS3 for all k values
except k = 5. Note that, although LGD.LS3 has the same
RDF part with LGD.SS3, Sorted is constantly better than
Baseline for LGD.LS3 because its kNN predicate is differ-
ent. Regarding YAGO, Sorted is better than Baseline in all
queries apart from YAGO.LS1 for k = 100.
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Finally, Sorted is superior to Unsorted in most cases. For
LGD and warm caches, the only queries where Unsorted
is better than Sorted are LGD.LS3, LGD.SS1 for k = 100,
and LGD.SS3 for all k values except k = 5. Still, under
cold caches, Sorted is better even in these cases. For YAGO,
Sorted is better than Unsorted in all queries but YAGO.LS1
for k = 100, where Unsorted is superior under both warm
and cold caches. As a general comment, Sorted is preferable
over Unsorted and Baseline, as it tends to avoid a significant
number of geometry retrievals. Yet, Unsorted is a good al-
ternative since it can overcome the deficiencies of Sorted in
the few cases where Baseline is better: LGD.SS3 for all k
values except k = 5, and YAGO.LS1 for k = 100.

Overall, for LGD and with cold caches, Encoding Un-
sorted (resp. Sorted) has a median 2.9× (resp. 7.9×) speedup
over Baseline whereas, for YAGO, the median speedup over
Baseline is 2.2× for Unsorted and 2.3× for Sorted. For LGD
queries with warm caches, the median speedups of Unsorted
and Sorted over Baseline are 1.1× and 1.5× respectively.
Last, for YAGO with warm caches, Unsorted and Baseline
perform similarly whereas Sorted has a median 1.3× speedup
over Baseline.

Comparison with Existing Systems. We compared SRX
against three popular RDF stores with geospatial data sup-
port, namely Strabon, GraphDB and Virtuoso. For Strabon,
we only present results with LGD, as it could not load YAGO
even after three days (and even when using the bulk loader
we obtained from the authors of [20]; this issue is also re-
ported in [33]).

We allowed each system to allocate the whole available
memory of the machine and performed the experiments with
cold and warm caches just like for our system. Since these
systems have their own data caches, experiments with cold
caches were conducted by clearing the OS cache and restart-
ing the system. The symbol ‘-’ in Tables 7, and 13-17 de-
notes empty or incorrect results. N/A (not applicable) is used
in Tables 8-12, and 18 for Virtuoso because its internal func-
tion bif:st distance, which is used in spatial join and
kNN queries (cf. Appendix), works only for point geome-
tries. In fact, this is why there are no Virtuoso results in Ta-
bles 6-7 and Tables 13-17. Although queries J1, J2, and J3
in Table 6 involve only points, they are also not supported
by Virtuoso, presumably because it tries to apply the DIS-
TANCE predicate first between all types of geometries. Note
that both GraphDB and Virtuoso compute the great-circle
distance, whereas Strabon, Encoding, Baseline, and Basic
compute the Euclidean distance. This does not prevent us
from a fair comparison among GraphDB and Virtuoso since
both distance functions have similar CPU cost.

Table 18 summarizes the median speedups of SRX over
Strabon, GraphDB, and Virtuoso across all queries we used
on both datasets. SRX is 8.5× faster (in the worst case) than
the competitors in all cases except for the case of Virtuoso

on LGD with warm caches, where SRX median speedups
are lower. We cannot comment further on the performance
of GraphDB and Virtuoso as they are not open-source sys-
tems. On the contrary, the performance of Strabon for range
(Table 4), and kNN (Tables 8-12) queries is dominated by
the time needed to fetch data from disk: 60s (resp. 12s) with
cold (resp. warm) caches on average in both range and kNN
queries. We also observe that for these types of queries, the
query time tends to increase with the size of the result for
the RDF part of the query. Finally, distance join query times
(Table 6) in Strabon are dominated by the CPU rather than
the I/O time due to the large number of candidate pairs that
need to be examined.

9.3 Updates Setup

In the experiments for updates we used the same encod-
ing and R-tree configurations as for queries (cf. Sect. 9.1).
Thresholds h1 and h2 used to trigger re-encodings (cf. Sect. 8)
were set to 0.5 and 0.7 respectively. We also experimented
with other thresholds (e.g. 0.35 and 0.5) but we did not no-
tice any significant performance difference.

Datasets. The update benchmark relies on Deltas that we
are extracted by calculating the difference of two versions
of LGD and YAGO: LGD 2013 04 29 to 2015 11 0211,
and YAGO 2.5.3 to 3.0.212. Details are presented in
the supplementary material (Online Resource 1). In both
datasets, each delta consists of a delete, an update, and an
insert workload, all measured in number of triples. The col-
umn ‘HasGeo’ shows the number of 〈s, p,o〉 triples with
p = “hasGeometry” whereas the numbers for the rest of the
triples are given in column ‘Other’. For the YAGO dataset,
we encountered a small number of ‘HasGeo’ deltas between
versions 2.5.3 and 3.0.2; thus, only for this type of triples,
we extracted the deltas using the last version of YAGO (3.1)
instead of 3.0.2. YAGO 3.1 contains many more ‘Other’
triples we did not consider here since they are not related to
any spatial entities and, hence, they do not affect the perfor-
mance of re-encoding. Finally, LGD and YAGO deltas have
been extracted using only types of triples that appear in both
the initial and final versions.

Update Workloads. To generate realistic update workloads
we split deltas in batches of varying size (in number of triples).
For the smaller LGD dataset, we present experiments for
batch sizes of 1M, 2M, 4M, and 8M triples whereas, for
YAGO, we use batch sizes of 1M, 16M, 32M, and 64M
triples. Each batch is marked as delete, update or insert and
contains randomly selected triples from the respective delta.
For instance, to form the delete batches of a specific batch
size b, we first collect all delete triples (‘hasGeometry’ and

11 https://tinyurl.com/ydbscsxf
12 https://tinyurl.com/y7ukhge3

https://tinyurl.com/ydbscsxf
https://tinyurl.com/y7ukhge3
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Table 8: Spatial kNN queries on LGD for k = 5 (total response time in ms - optimizer time in parentheses)

Query Number of Strabon GraphDB Virtuoso SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm
LGD.SL1 524 64,581 12,968 7,336 78 108,284 10 1,173 (86) 33 (1) 548 (121) 47 (12) 466 (69) 57 (1) 380 (89) 18 (1)
LGD.SL2 215,355 95,637 44,738 23,353 16,527 91,761 1,001 1,345 (77) 208 (1) 1,342 (76) 208 (1) 449 (69) 100 (1) 177 (79) 8 (1)
LGD.SL3* 13,090 69,479 15,453 9,070 1,289 N/A N/A 7,122 (85) 77 (1) 7,103 (83) 77 (1) 701 (69) 65 (1) 564 (83) 31 (1)
LGD.LS1 25,617 68,845 16,722 10,099 2,682 98,572 85 1,296 (77) 87 (1) 1,283 (76) 87 (1) 525 (70) 74 (1) 426 (84) 60 (1)
LGD.LS2 191,976 93,550 41,670 26,857 20,171 95,581 325 1,542 (77) 195 (2) 1,541 (77) 191 (1) 530 (70) 102 (1) 185 (73) 25 (1)
LGD.LS3* 5,791 75,161 14,249 16,138 512 N/A N/A 12,483 (83) 53 (1) 12,471 (79) 53 (1) 464 (69) 48 (1) 188 (73) 12 (1)
LGD.SS1 8,621 66,576 14,342 8,461 941 99,445 33 1,233 (88) 66 (1) 1,266 (87) 66 (1) 502 (70) 63 (2) 487 (90) 50 (1)
LGD.SS2* 13,090 69,496 15,540 9,015 1,248 N/A N/A 7,174 (87) 77 (1) 7,122 (87) 77 (1) 599 (69) 65 (1) 511 (73) 52 (1)
LGD.SS3* 5,791 75,341 14,061 16,288 519 N/A N/A 12,375 (87) 53 (1) 12,509 (87) 53 (1) 525 (68) 48 (1) 447 (82) 40 (1)
LGD.LL1 191,976 94,509 42,433 26,931 20,142 97,280 321 1,570 (77) 192 (1) 1,608 (76) 192 (1) 546 (68) 101 (1) 235 (72) 18 (1)

Table 9: Spatial kNN queries on LGD for k = 10 (total response time in ms - optimizer time in parentheses)

Query Number of Strabon GraphDB Virtuoso SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm
LGD.SL1 524 64,720 12,941 7,340 80 108,416 12 1,174 (88) 33 (1) 876 (121) 72 (12) 504 (70) 57 (2) 504 (90) 27 (1)
LGD.SL2 215,355 95,608 45,125 23,354 16,536 92,213 1,001 1,327 (77) 208 (1) 1,329 (76) 212 (1) 452 (70) 100 (1) 176 (77) 8 (1)
LGD.SL3* 13,090 69,437 15,487 9,149 1,292 N/A N/A 7,140 (87) 77 (1) 7,115 (74) 77 (1) 749 (69) 65 (1) 612 (92) 31 (1)
LGD.LS1 25,617 68,666 16,665 10,118 2,711 98,710 85 1,306 (77) 87 (1) 1,273 (76) 87 (1) 509 (70) 74 (1) 470 (84) 60 (1)
LGD.LS2 191,976 93,902 42,130 27,158 20,179 95,801 325 1,577 (77) 192 (1) 1,588 (77) 192 (1) 525 (70) 102 (1) 184 (73) 25 (1)
LGD.LS3* 5,791 75,219 14,073 16,200 519 N/A N/A 12,483 (87) 53 (1) 12,461 (87) 53 (1) 485 (69) 49 (1) 223 (70) 23 (1)
LGD.SS1 8,621 66,535 14,388 8,473 942 99,528 33 1,217 (87) 66 (1) 1,240 (87) 66 (1) 492 (69) 62 (1) 472 (94) 50 (1)
LGD.SS2* 13,090 69,405 15,523 9,082 1,288 N/A N/A 7,178 (87) 77 (1) 7,055 (87) 77 (1) 618 (73) 65 (1) 543 (92) 52 (1)
LGD.SS3* 5,791 75,315 13,970 16,302 544 N/A N/A 12,421 (87) 54 (1) 12,475 (87) 53 (1) 667 (69) 49 (1) 575 (95) 56 (1)
LGD.LL1 191,976 94,205 42,670 27,043 20,148 97,809 322 1,620 (78) 192 (1) 1,634 (77) 192 (1) 544 (73) 101 (1) 252 (73) 19 (1)

Table 10: Spatial kNN queries on LGD for k = 20 (total response time in ms - optimizer time in parentheses)

Query Number of Strabon GraphDB Virtuoso SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm
LGD.SL1 524 64,510 12,954 7,376 87 108,909 12 1,133 (88) 33 (1) 1,269 (121) 116 (12) 545 (70) 56 (1) 532 (92) 28 (1)
LGD.SL2 215,355 95,644 45,126 23,356 16,540 93,970 1,004 1,363 (79) 209 (1) 1,330 (77) 209 (1) 453 (69) 100 (1) 178 (75) 8 (1)
LGD.SL3* 13,090 69,274 15,584 9,150 1,306 N/A N/A 7,164 (87) 77 (1) 7,168 (82) 77 (1) 750 (69) 65 (1) 608 (92) 30 (1)
LGD.LS1 25,617 68,805 16,686 10,214 2,725 99,406 85 1,302 (77) 88 (1) 1,281 (77) 87 (1) 519 (70) 74 (1) 472 (92) 60 (1)
LGD.LS2 191,976 93,585 41,657 27,164 20,180 95,925 327 1,598 (77) 192 (1) 1,615 (77) 192 (1) 528 (70) 102 (1) 182 (72) 26 (1)
LGD.LS3* 5,791 75,127 14,025 16,284 546 N/A N/A 12,437 (87) 54 (1) 12,434 (86) 54 (1) 542 (69) 48 (1) 312 (78) 34 (1)
LGD.SS1 8,621 66,618 14,380 8,533 950 100,382 34 1,223 (88) 66 (1) 1,204 (86) 65 (1) 515 (70) 62 (1) 515 (94) 50 (1)
LGD.SS2* 13,090 69,536 15,699 9,094 1,300 N/A N/A 7,170 (87) 77 (1) 7,149 (86) 77 (1) 608 (69) 65 (1) 551 (88) 52 (1)
LGD.SS3* 5,791 75,403 14,025 16,306 545 N/A N/A 12,457 (87) 54 (1) 12,467 (87) 54 (1) 667 (69) 48 (1) 560 (83) 55 (1)
LGD.LL1 191,976 94,252 42,573 27,223 20,150 98,285 322 1,590 (77) 192 (1) 1,646 (77) 192 (1) 588 (69) 101 (1) 266 (72) 19 (1)

Table 11: Spatial kNN queries on LGD for k = 50 (total response time in ms - optimizer time in parentheses)

Query Number of Strabon GraphDB Virtuoso SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm
LGD.SL1 524 64,803 13,097 7,399 110 110,023 13 1,139 (85) 33 (1) 3,686 (129) 265 (12) 668 (70) 56 (1) 653 (92) 32 (1)
LGD.SL2 215,355 95,515 44,992 23,359 16,584 94,177 1,005 1,335 (77) 208 (1) 1,324 (76) 210 (1) 459 (69) 100 (1) 177 (76) 9 (1)
LGD.SL3* 13,090 69,473 15,580 9,298 1,399 N/A N/A 7,096 (87) 77 (1) 7,091 (87) 77 (1) 883 (69) 65 (1) 851 (94) 33 (1)
LGD.LS1 25,617 68,860 16,667 10,255 2,729 99,767 86 1,315 (77) 87 (1) 1,304 (77) 88 (2) 564 (71) 75 (1) 501 (84) 61 (1)
LGD.LS2 191,976 93,740 41,659 27,320 20,257 96,761 328 1,611 (77) 193 (2) 1,639 (78) 191 (1) 528 (69) 102 (1) 223 (82) 27 (1)
LGD.LS3* 5,791 75,280 13,946 16,333 592 N/A N/A 12,423 (87) 54 (1) 12,463 (87) 54 (1) 617 (69) 49 (1) 388 (82) 41 (1)
LGD.SS1 8,621 66,514 14,341 8,556 973 100,768 34 1,222 (87) 66 (1) 1,159 (87) 65 (1) 534 (70) 62 (1) 523 (91) 50 (1)
LGD.SS2* 13,090 69,224 15,513 9,269 1,367 N/A N/A 7,163 (87) 77 (1) 7,170 (86) 77 (1) 688 (69) 65 (1) 629 (85) 52 (1)
LGD.SS3* 5,791 75,301 14,037 16,517 574 N/A N/A 12,479 (87) 54 (1) 12,351 (87) 54 (1) 791 (69) 48 (1) 752 (82) 60 (1)
LGD.LL1 191,976 93,971 42,339 27,360 20,280 98,525 323 1,633 (77) 192 (1) 1,573 (77) 192 (1) 638 (70) 101 (1) 303 (80) 22 (2)

Table 12: Spatial kNN queries on LGD for k = 100 (total response time in ms - optimizer time in parentheses)

Query Number of Strabon GraphDB Virtuoso SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm
LGD.SL1 524 64,623 13,252 7,644 116 110,171 13 1,118 (87) 33 (1) 7,683 (127) 506 (12) 739 (70) 57 (1) 751 (92) 38 (1)
LGD.SL2 215,355 95,492 44,878 23,361 16,676 94,825 1,014 1,324 (77) 208 (1) 1,346 (77) 208 (1) 451 (69) 100 (1) 180 (76) 9 (1)
LGD.SL3* 13,090 69,496 15,557 9,455 1,470 N/A N/A 7,156 (87) 77 (1) 6,981 (86) 77 (1) 1,059 (69) 65 (1) 1,109 (93) 50 (1)
LGD.LS1 25,617 68,781 16,618 10,342 2,759 101,913 87 1,298 (77) 87 (1) 1,300 (77) 87 (1) 630 (69) 75 (1) 578 (68) 73 (1)
LGD.LS2 191,976 93,874 41,536 27,716 20,369 96,912 330 1,562 (77) 192 (1) 1,583 (76) 191 (1) 540 (69) 102 (1) 233 (86) 27 (1)
LGD.LS3* 5,791 75,184 13,970 16,678 632 N/A N/A 12,469 (87) 54 (1) 12,493 (87) 53 (1) 795 (69) 48 (1) 602 (83) 52 (1)
LGD.SS1 8,621 66,668 14,667 8,774 1,048 101,206 35 1,251 (87) 66 (1) 1,224 (87) 66 (1) 655 (70) 63 (2) 613 (91) 65 (1)
LGD.SS2* 13,090 69,620 15,798 9,332 1,484 N/A N/A 7,183 (87) 77 (1) 7,170 (86) 77 (1) 764 (77) 65 (1) 734 (93) 53 (1)
LGD.SS3* 5,791 75,234 14,030 16,713 625 N/A N/A 12,459 (87) 53 (1) 12,425 (87) 54 (1) 1,127 (69) 49 (1) 1,080 (82) 69 (1)
LGD.LL1 191,976 94,626 42,383 27,424 20,281 99,163 324 1,598 (79) 192 (1) 1,609 (77) 192 (1) 623 (69) 101 (1) 309 (84) 22 (1)
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Table 13: Spatial kNN queries on YAGO for k = 5 (total response time in ms - optimizer time in parentheses)

Query Number of GraphDB SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm
YAGO.SL1* 11,547 86,349 3,054 6,108 (51) 59 (1) 6,170 (51) 58 (1) 2,411 (72) 57 (1) 2,111 (86) 43 (1)
YAGO.SL2* 6,030 102,461 1,977 7,553 (120) 69 (1) 7,537 (124) 69 (1) 3,068 (169) 66 (1) 2,864 (228) 43 (1)
YAGO.LS1* 2,226 - - 2,432 (53) 58 (1) 3,943 (110) 98 (16) 1,349 (80) 60 (1) 1,158 (82) 43 (1)
YAGO.LS2* 285,613 >5 min 137,117 13,340 (129) 715 (1) 13,253 (129) 717 (1) 6,009 (193) 720 (1) 5,567 (211) 676 (1)
YAGO.SS1* 6,030 101,674 1,977 7,530 (111) 69 (1) 7,526 (115) 69 (1) 3,096 (192) 66 (1) 2,803 (210) 40 (1)
YAGO.SS2* 7,074 52,999 683 4,100 (51) 60 (1) 4,106 (50) 60 (1) 2,305 (82) 59 (1) 1,850 (70) 21 (1)
YAGO.LL1* 285,613 >5 min 138,160 13,248 (139) 715 (1) 13,220 (127) 718 (1) 6,071 (185) 719 (1) 5,654 (226) 689 (1)
YAGO.LL2* 152,693 169,217 15,148 4,709 (50) 2,992 (1) 4,721 (51) 2,987 (1) 5,750 (75) 3,016 (1) 13,118 (83) 2,273 (1)

Table 14: Spatial kNN queries on YAGO for k = 10 (total response time in ms - optimizer time in parentheses)

Query Number of GraphDB SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm
YAGO.SL1* 11,547 86,351 3,055 6,045 (50) 58 (1) 6,097 (50) 58 (1) 2,395 (66) 57 (1) 2,115 (86) 43 (1)
YAGO.SL2* 6,030 102,464 1,979 7,560 (115) 69 (1) 7,548 (121) 69 (1) 3,117 (190) 66 (1) 2,850 (228) 43 (1)
YAGO.LS1* 2,226 - - 2,431 (51) 58 (1) 3,922 (91) 97 (16) 1,304 (77) 61 (1) 1,152 (82) 43 (1)
YAGO.LS2* 285,613 >5 min 137,120 13,284 (127) 716 (1) 13,208 (137) 716 (1) 5,983 (185) 721 (1) 5,547 (209) 674 (1)
YAGO.SS1* 6,030 101,675 1,979 7,544 (109) 69 (1) 7,574 (121) 69 (1) 3,112 (195) 67 (1) 2,804 (208) 40 (1)
YAGO.SS2* 7,074 53,002 684 4,117 (53) 59 (1) 4,111 (51) 60 (1) 2,327 (77) 59 (1) 1,844 (66) 22 (1)
YAGO.LL1* 285,613 >5 min 138,161 13,343 (127) 716 (1) 13,347 (131) 714 (1) 6,030 (179) 723 (1) 5,713 (227) 690 (1)
YAGO.LL2* 152,693 169,219 15,149 4,726 (51) 2,987 (1) 4,711 (50) 2,990 (1) 5,811 (82) 3,019 (1) 13,114 (86) 2,275 (1)

Table 15: Spatial kNN queries on YAGO for k = 20 (total response time in ms - optimizer time in parentheses)

Query Number of GraphDB SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm
YAGO.SL1* 11,547 86,354 3,057 6,073 (50) 59 (1) 6,117 (50) 59 (1) 2,415 (72) 57 (1) 2,096 (68) 43 (1)
YAGO.SL2* 6,030 102,468 1,982 7,549 (114) 69 (1) 7,577 (122) 68 (1) 3,103 (195) 66 (1) 2,854 (228) 43 (1)
YAGO.LS1* 2,226 - - 2,449 (51) 57 (1) 3,946 (105) 97 (16) 1,335 (80) 61 (1) 1,141 (78) 43 (1)
YAGO.LS2* 285,613 >5 min 137,122 13,345 (127) 718 (1) 13,308 (125) 716 (1) 6,017 (185) 722 (1) 5,589 (211) 676 (1)
YAGO.SS1* 6,030 101,678 1,980 7,543 (114) 69 (1) 7,542 (113) 69 (1) 3,092 (191) 67 (1) 2,829 (214) 40 (1)
YAGO.SS2* 7,074 53,006 686 4,098 (50) 60 (1) 4,098 (50) 59 (1) 2,293 (82) 59 (1) 1,838 (70) 23 (1)
YAGO.LL1* 285,613 >5 min 138,165 13,261 (123) 718 (1) 13,313 (129) 717 (1) 6,055 (191) 721 (1) 5,657 (226) 688 (1)
YAGO.LL2* 152,693 170,222 15,251 4,720 (55) 2,990 (1) 4,720 (51) 2,983 (1) 5,820 (77) 3,017 (1) 13,084 (86) 2,280 (1)

Table 16: Spatial kNN queries on YAGO for k = 50 (total response time in ms - optimizer time in parentheses)

Query Number of GraphDB SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm
YAGO.SL1* 11,547 88,397 3,189 6,088 (51) 59 (1) 6,089 (50) 59 (1) 2,417 (74) 57 (1) 2,111 (72) 43 (1)
YAGO.SL2* 6,030 104,512 2,104 7,552 (115) 69 (1) 7,540 (113) 69 (1) 3,114 (194) 66 (1) 2,879 (230) 44 (1)
YAGO.LS1* 2,226 - - 2,475 (51) 58 (1) 3,884 (89) 97 (16) 1,371 (82) 61 (1) 1,155 (82) 43 (1)
YAGO.LS2* 285,613 >5 min 137,227 13,337 (125) 716 (1) 13,245 (129) 715 (1) 5,993 (187) 725 (1) 5,589 (208) 677 (1)
YAGO.SS1* 6,030 104,722 1,996 7,543 (116) 69 (1) 7,536 (115) 69 (1) 3,084 (181) 67 (1) 2,831 (210) 40 (1)
YAGO.SS2* 7,074 54,011 753 4,096 (50) 60 (1) 4,096 (50) 60 (1) 2,311 (77) 59 (1) 1,876 (66) 23 (1)
YAGO.LL1* 285,613 >5 min 139,201 13,307 (123) 716 (1) 13,351 (131) 716 (1) 6,029 (177) 725 (1) 5,667 (204) 689 (1)
YAGO.LL2* 152,693 171,984 15,305 4,701 (51) 2,989 (1) 4,728 (51) 2,990 (1) 5,804 (79) 3,012 (1) 13,122 (86) 2,275 (1)

Table 17: Spatial kNN queries on YAGO for k = 100 (total response time in ms - optimizer time in parentheses)

Query Number of GraphDB SRX
Baseline (RDF-3X) Basic extension (Sec. 4) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm
YAGO.SL1* 11,547 91,800 3,308 6,085 (50) 59 (1) 6,109 (58) 59 (1) 2,429 (74) 57 (1) 2,146 (70) 43 (1)
YAGO.SL2* 6,030 107,319 2,261 7,552 (115) 69 (1) 7,520 (113) 69 (1) 3,149 (195) 66 (1) 2,871 (228) 44 (1)
YAGO.LS1* 2,226 - - 2,447 (51) 57 (1) 10,788 (98) 320 (16) 1,367 (78) 60 (1) 1,590 (70) 147 (1)
YAGO.LS2* 285,613 >5 min 137,529 13,344 (129) 715 (1) 13,258 (127) 717 (1) 6,009 (189) 725 (1) 5,557 (201) 680 (1)
YAGO.SS1* 6,030 107,657 2,211 7,545 (120) 69 (1) 7,541 (114) 69 (1) 3,135 (193) 66 (1) 2,850 (208) 40 (1)
YAGO.SS2* 7,074 55,145 878 4,118 (50) 59 (1) 4,096 (50) 60 (1) 2,363 (80) 59 (1) 1,879 (68) 24 (1)
YAGO.LL1* 285,613 >5 min 142,926 13,252 (129) 713 (1) 13,374 (137) 718 (1) 6,077 (185) 727 (1) 5,729 (227) 691 (1)
YAGO.LL2* 152,693 175,855 15,543 4,718 (53) 2,989 (1) 4,729 (50) 2,987 (1) 5,783 (80) 3,017 (1) 13,135 (86) 2,274 (1)

Table 18: Median speedups of SRX over Strabon, GraphDB, Virtuoso for LGD and YAGO across all queries of each type

Query Type Strabon (LGD) GraphDB (LGD) GraphDB (YAGO) Virtuoso (LGD) Virtuoso (YAGO)
Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

range 168.4 933.4 34.4 151.8 8.9 43.7 145.9 4.7 13.1 9.5
distance 31.2 339.8 31.2 397 8.5 13 N/A N/A N/A N/A

unsorted kNN 130.9 264.6 22 20 33.3 30 192.9 2.1 N/A N/A
sorted kNN 140.2 437.5 24.9 34.2 36.2 49.5 290 6.9 N/A N/A
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‘Other’) included in the delete delta, we shuffle them, and
group them in batches of size b each. In all experiments of
the next section, the batches are applied in a particular order,
simulating the transition from the initial to the final version
of the dataset: first all deletions, then all updates, and finally
all insertions. The update benchmark can be found in the
supplementary material (Online Resource 1).

9.4 Updates Comparison

We compare SRX with Strabon, GraphDB, and Virtuoso.
Results are given in Fig. 10 and Fig. 11 for LGD and YAGO
respectively. Update experiments with Strabon (Fig. 12) were
feasible only on small subsets of LGD and are discussed
later on. All reported times for SRX and RDF-3X reflect the
total time needed to construct the in-memory differential in-
dexes and synchronize them with the base indexes (i.e. the
B+-trees on disk).

Deletes. As shown in Fig. 10 and Fig. 11, the latency of
processing a delete batch with RDF-3X and SRX shows a
slight improvement across consecutive batches of the same
size (left-most part of each plot) and tends to increase on av-
erage with the batch size. The slight improvement of delete
latency over time is more apparent with YAGO and is rea-
sonable since the overall database tends to get smaller. SRX
latencies are in general higher than those of RDF-3X, and
this is because SRX performs additional dictionary lookups
and base index scans when trying to re-encode entities at
lower levels of the grid. Overall, the median slowdown of
SRX over RDF-3X accross all delete batches is small: 0.5×
for LGD, and 0.8× for YAGO. The slowdown is smaller
for YAGO because the geometries in the delete batches of
YAGO are almost half on average compared to LGD, hence,
re-encoding is triggered less frequently. Note that the high
processing latencies in the first delete batches of each exper-
iment are due to some warm-up issues.

Inserts. The right-most part of each plot in Fig. 10 and Fig. 11
(labeled with “inserts”) shows the performance of SRX and
RDF-3X for inserts. In contrast to deletes, the latency of
processing an insert batch tends to increase over time for
both SRX and RDF-3X, although it appears more stable for
larger batches, especially for LGD (Fig. 10d). We attribute
this both to the differential index construction and to the in-
dex synchronization phases (cf. Sect. 8).

During the differential index construction, SRX and RDF-
3X perform a number of database scans to check whether an
input triple is new or old13. Hence, when the database in-
creases in size as more insert batches are processed, the cost
of these scans tends to increase. Second, and most impor-
tant, whenever an index synchronization is performed and

13 This check was not included in the version of RDF-3X we had but
we added it for consistency.

a leaf page of a base B+-tree overflows, the system gen-
erates a new page for the additional triples but avoids tree
compaction. This is a common technique that tries to mini-
mize the update latency at the cost of redundant leaf pages,
which are expected to be filled by subsequent updates or
compacted periodically when the system is idle. The tech-
nique achieves better leaf page utilization when used for
bulk inserts of large size but does not perform well for small
frequent inserts like those in Fig. 10a-b and Fig. 11b-c. Ap-
plying many small insert batches one after the other results
in a large number of almost empty leaf pages (hence, a large
increase in I/Os), and the performance of the system de-
grades significantly. This is in fact the reason we do not
present times for insert batches in Fig. 11a; after some point
in this experiment, the processing of each single insert batch
started taking almost double the time of the previous batch
and we had to stop it. The problem we described is exac-
erbated due to the extensive use of indexes in RDF-3X (all
of which have to be updated with the new triples) and be-
comes even more profound in SRX due to the additional re-
assigment of IDs when new geometries are introduced for
existing entities (lines 6-16 in UPDATES ON EXISTING EN-
TITIES). The latter also explains why the difference in per-
formance of inserts between SRX and RDF-3X is amplified
over time in Fig. 10a-c. Overall, the median slowdown of
SRX over RDF-3X across all insert batches is 0.6× for both
LGD and YAGO.

It should be noted, that SRX inherits its design from the
last version of RDF-3X which targets read-intensive work-
loads and performs well under bulk inserts, but does not fo-
cus on Online transaction processing. There is some prelim-
inary work on OLTP in [30], but it has not been integrated
to the current RDF-3X. We leave the efficient management
of single triples and very small insert as future work.

Updates. The middle part of each plot in Fig. 10 and Fig. 11
(labeled with “updates”) shows the performance of SRX and
RDF-3X in processing update batches. Here, the latency fluc-
tuates slightly but tends to remain stable in the long term.
Since an update in SRX and RDF-3X is implemented as a
delete followed by an insert, we attribute the reasons behind
this behavior to the combined performance of delete and in-
sert batches, as explained before. Overall, the median slow-
down of SRX over RDF-3X is 0.7× for LGD and 0.3× for
YAGO.

Comparison with Existing Systems. We also performed
experiments with Strabon, GraphDB, and Virtuoso, which
we allowed to use the whole available memory of our ma-
chine, as for queries. Results are shown in Fig. 10 for LGD,
in Fig. 11 for YAGO, and in Fig. 12 for the LGD subsets.
In YAGO, both GraphDB and Virtuoso were quite slow and,
for this reason, we stopped the respective experiment at the
point where each system had been running for as long as
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Fig. 10: Latency (ms) of processing batches of size b on LGD
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Fig. 11: Latency (ms) of processing batches of size b on YAGO
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Fig. 12: Latency (ms) of processing batches of size 1K
triples on two different subsets (a) and (b) of LGD; the for-
mer dataset is a subset of the latter

SRX took to apply all delete, update, and insert batches.
Moreover, GraphDB did not perform updates for batch sizes
4M and 8M in LGD, and 16M, 32M, and 64M in YAGO,
due to memory overflow. In the following, we first discuss
the update results on LGD and YAGO, and we then explain
the results on the LGD subsets that we generated specifically
for Strabon.

For LGD and YAGO, SRX performs significantly better
compared to GraphDB and Virtuoso in both datasets, espe-
cially for deletes and updates, even though it also applies
spatial re-encoding of entities. For inserts, SRX is almost
an order of magnitude faster (in the worst case) with large
batches, and gets worse than GraphDB and Virtuoso only
when using batch sizes of 1M and 2M in LGD. We have
already explained the reasons behind SRX’s performance
degradation for inserts in the previous. Overall, the median
speedup of SRX over GraphDB (resp. Virtuoso) for deletes,

inserts, and updates is: 35.3×, 8.9×, and 22.6× (resp. 5.9×,
2.4×, and 4.1×) for LGD. For YAGO, the respective median
speedup of SRX over Virtuoso is: 41.2×, 82.9×, and 9.2×
(GraphDB was slow for YAGO and managed to apply only
the first delete batch in Fig. 11a).

The two datasets of Fig. 12 are selected subsets from
LGD, which we describe in the supplementary material of
this paper (Online Resource 1). Overall, the median speedup
of SRX over GraphDB (resp. Virtuoso) for deletes, inserts,
and updates on both these datasets is: 12.4×, 16.2×, and
22.6× (resp. 132.1×, 91.9×, and 79.8×), while SRX per-
forms very close to RDF-3X. Compared to results we get
with LGD and YAGO, it is worth noticing that GraphDB
performs better than Virtuoso with smaller datasets. Still, as
for the case of queries, we cannot further comment on the
performance of GraphDB and Virtuoso over all update ex-
periments because they are not open-source systems.

Strabon is orders of magnitude slower than SRX, and at
least two orders of magnitude slower than Virtuoso. Strabon
performs poorly because it does not support bulk updates;
instead, each record in the update batch is treated as an indi-
vidual database transaction. This approach has a high over-
head in performance and cannot scale with frequent updates.
As a side note, Strabon builds on the Sesame RDF store [14]
and extends Sesame’s query engine and optimizer, but not its
transaction processing module.

10 Conclusion and Future Work

In this paper we presented SRX, a system for spatial RDF
data management built on top of the popular RDF-3X sys-
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tem. SRX employs a flexible scheme that encodes approx-
imations of the geometries of the RDF entities into the en-
tities’ IDs. The encoding is based on a hierarchical decom-
position of the 2D space and can be effectively exploited
in the evaluation of SPARQL queries with various types of
spatial filters (ranges, distance joins, kNNs). We did exper-
iments with real datasets showing that our approach min-
imizes the evaluation cost of the spatial component in all
RDF queries, while incurring a small overhead during up-
dates. In the future, we plan to extend our update mecha-
nism to support online updates in the spirit of [30] and ex-
tend our query optimizer to consider the spatial distribution
of entities that support a characteristic set [26]. A promising
research direction that we also plan to pursue is to investi-
gate how our encoding-based techniques can be adapted to
distributed spatial analytics systems, such as those in [32],
to improve their performance.
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