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Abstract
The growth of Web of Data led to the development of dataset recommendation methodologies, which automate the discovery
of datasets that may contain same or related instances (i.e., objects), in order to be used as input for several tasks including Link
Discovery. The recommendation process takes as input one dataset (or any tripleset) and proposes other datasets which are the
most likely to contain related instances. Existing recommenders determine the relevance between datasets by comparing their
textual and structural similarity or by examining existing links among them. In this paper,we determine relevancy by comparing
the geospatial relatedness of triplesets containing instances belonging to spatial classes (that is, classes containing instances
whose locations are georeferenced by point geometries) based on the hypothesis that pairs of classes whose instances present
similar spatial distribution are likely to contain semantically related instances. The proposed methodology builds summaries
that capture the spatial distribution of classes. It utilizes the summaries, first, to rule out irrelevant (to an input class) classes
by applying spatial filters and, then, to rank the remaining classes by applying a geospatial relatedness measure, so as the top
ranked classes are more probable to contain related instances. The methodology’s evaluation contains an exploration of Web
of Data spatial classes characteristics and a discussion of the experiment results that validate our hypothesis. We show that the
spatial filtering reduces effectively and efficiently up to 99% the search space for relevant classes in Web of Data and that the
proposed geospatial relatedness measures generate ranked lists of recommended classes with 62% mean average precision,
approximately 35% higher than simple baselines.

Keywords Web of Data · Spatial information · Dataset recommendation · Geo-semantic relevance

1 Introduction

Over the last years, data providers have been publishing their
data according to the Linked Data principles [5] weaving the
Web ofData (WoD), a global data spacewhere entities across
the web are more discoverable and easier reusable [15].
A fundamental prerequisite for the realization of the WoD
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is the establishment of links between instances (dispersed
across different datasets) for which some relation exists (e.g.,
using sameAs links for instances that represent the same real
world object or seeAlso links for instances that provide addi-
tional information to a given instance). Toward the goal of
link establishment, data providers are suggested to apply to
their datasets Link Discovery methodologies, implemented
in tools such as SILK [44] or LIMES [30]. Link Discovery
refers to the process of identifying and interlinking pairs of
instances between two given triplesets for which a relation
holds [28]. A preprocessing step requires the specification of
the triplesets that will be used as input in the Link Discovery
task.

Linked Data practitioners may be unaware of triplesets
that contain related instances or may want to exploreWoD to
link their data with additional resources. For this purpose,
they, typically, look up for relevant datasets by manually
examining the LOD cloud diagram,1 which provides an
overview of the datasets domain and connectivity, or by

1 https://lod-cloud.net/.
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exploring dataset catalogs, such as datahub.io,2 which pre-
serve user submitted dataset’s metadata. However, WoD
is large: in 2019, the LOD cloud diagram3 was including
1234 datasets, and LODStats4 (in order to generate Web
of Data statistics) parsed about 3000 datasets containing
approximately 50 million entities in total. Additionally, is
continuously expanding: during the period 2011–2017 the
number of the LOD cloud datasets increased by 294% [35],
thus turning the task ofmanual searching for relevant datasets
into a challenging one. Consequently, data providers tend
to link their data with well-known datasets (such as DBpe-
dia or Geonames) and ignore less popular datasets that may
also contain related instances [3,27,31]. As Leme et al. [20]
points, linkage with popular datasets is favored because of
two main reasons: the difficulty in finding relevant datasets
and the strenuous task of discovering mappings between
datasets. Works about WoD connectivity status reveal that
44%of datasets do not contain links to other datasets [36] and
that only a small number is highly linked, while the majority
is only sparsely linked [35]. Taking the above into considera-
tion, automating the process of searching for relevant datasets
should be regarded as a crucial step in the development of
the WoD that will facilitate Linked Data practitioners in ini-
tiating tasks such as Link Discovery.

In this spirit, methodologies [4,12,20,31] and online tools
[7,8] that automatically recommend datasets for Link Dis-
covery have been recently proposed. These use as source
of evidence for determining datasets’ relevancy, informa-
tion such as datasets’ instance/schema keywords [31], graph
structure [12] and existing links between them Mountanton-
akis and Tzitzikas [27], Leme et al. [20].

However, a characteristic that carries rich semantics but
remains unexploited is the geographic information available
in datasets. According to Schmachtenberg et al. [36], W3C
BasicGeovocabulary,5 which is oneof themost common spa-
tial ontologies, is used for georeferencing instances in more
than 25% of LOD datasets. This paper explores the idea of
leveraging the geographical information in datasets, specif-
ically, the georeferenced location of instances expressed
as point geometries, in order to recommend relevant WoD
triplesets.

The impact of geographic information for deducing
semantic relatedness at the instance or at the schema level
has already identified in several contexts such as Link Dis-
covery [13,43] and information retrieval [16,37]. According
to the Tobler’s first law of geography, “everything is related
to everything else, but near things are more related than dis-
tant things” [40]. In Link Discovery, a common approach to

2 http://datahub.io/.
3 http://lod-cloud.net.
4 http://stats.lod2.eu.
5 https://www.w3.org/2003/01/geo/.

determine the relatedness between instances is to calculate
their geographic distance so as spatially near instances are
more likely to represent the same thing [13]. Extending this
for triplesets, we hypothesize that if a set contains instances
that tend to be nearly located with the instances of another set
(in other words, the two sets present similar spatial distribu-
tion) then the two triplesets are likely to contain semantically
related instances. In the information retrieval scope,Ballatore
et al. [2] define geo-semantic relatedness as: “Every term is
geo-semantically related to all other terms, but terms that co-
occur6 with specifiable geographic relations are more related
than other terms”, where terms are lexemes that refer to spe-
cific entities or phenomena, such as rivers, accidents and
buildings. Driven by Ballatore’s definition, we formulate our
hypothesis for triplesets containing instances that refer to
specific entities or phenomena, i.e., for triplesets containing
instances that are members of a specific conceptual category
or class (rather than triplesets containing the sum of instances
provided by a dataset, because a dataset contains instances
that belong to diverse concepts or classes). Therefore, our
hypothesis is formulated as:

Pairs of classes whose instances present similar spa-
tial distribution are more related than pairs of classes
whose instances present dissimilar spatial distribution,
in the sense that the former are more likely to contain
semantically related instances

In this paper, we propose methods to support our hypothe-
sis by computing a degree of geospatial relatedness between
classes, so as the more similar the spatial distributions of two
classes are, the more likely to contain semantically related
instances, and thus the more relevant they are to be recom-
mended for tasks such as link discovery.

Before formally expressing the problem, we clarify the
terms that we use in this paper. According to the vocabu-
lary of interlinked datasets (VoID),7 a dataset is defined as
a set of RDF triples published, maintained or aggregated by
a single provider. Datasets are accessible through SPARQL
Endpoints or RDF files and contain instances that, using the
rdf:type predicate, are declared to bemembers of one ormore
classes. A class contains a subset of the dataset’s instances
that belong to the same conceptual category such as Muse-
ums, Persons or Cities. A spatial class is a class that contains
spatial instances, that is, georeferenced instanceswhose loca-
tions are represented as vectors geometries (points, lines, or
polygons), using spatial ontologies. Since the vast majority
of instances inWoDare georeferenced as points, in thiswork,
we deal onlywith spatial classes containing point geometries.
For brevity, when we use the term classwewill actually refer

6 They refer in term co-occurrence in text corpuses.
7 http://vocab.deri.ie/void#Dataset.
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to the term spatial class. Formally, we define the problem as
follows:

Given a source class S and a set of target classes T =
{T1, T2, . . ., Tn}, rank target classes according to their
degree of geospatial relatedness, so as the top ranked
target classes aremore probable to contain semantically
related instances with S.

S can be any user-selected WoD spatial class for which
onewants to get recommendations and T consists of (ideally)
all spatial classes in the WoD.

The posed problem raises the following questions: (a) how
to compute a geospatial relatedness score for classes? and
(b) how this score can be computed efficiently so as to sup-
port recommendations among thousands of WoD classes?
A naïve implementation to score classes according to their
spatial distributions similarity, would require calculations on
the exact locations of instances, i.e., pairwise calculations
of Euclidean distances between instances locations, which
is impractical for recommendations at web scale. Thus, we
adopt an approach that first summarizes classes’ spatial char-
acteristics and then, based on these summaries, calculates
a geospatial relatedness score between classes. We sum-
marize two spatial characteristics of classes, namely their
spatial extent and the spatial distribution of their instances
locations. The spatial extent of a class is summarized by
geometric approaches such as minimum bounding rectan-
gles (MBR) and ConvexHulls. The spatial distribution of a
class is summarized by a set of a QuadTree cell IDs that cor-
respond to the cells containing class instances. TheQuadTree
covers the whole earth and consists of different-sized cells
reflecting the spatial distribution of all WoD instances. The
geospatial relatedness measures calculate the similarity of
the classes’ summaries, thus eliminating the need for cal-
culating distances between the exact locations of instances.
Specifically, we adapt and evaluate seven measures: num-
ber of common cells IDs, Jaccard Index, overlap coefficient,
Poisson distribution probability, phi coefficient, pointwise
mutual information, and mutual information. In the evalua-
tion section, we show that the proposed approach provides
high quality recommendations and that it generates ranked
lists of relevant classes with approximately 35% highermean
average precision than simple baselines based on the tex-
tual and semantic similarity of class names. In addition, we
propose a spatial filtering step that rules out “obviously” irrel-
evant (to the source class) target classes from subsequent
calculations and from the ranked lists. Our experiments show
that the proposed spatial filters reduce effectively the search
space for relevant classes by 99%.

The rest of the paper is organized as follows: In Sect. 2,
we present the related work in the dataset recommendation
for link discovery domain and previous works on point sets
similarity. In Sect. 3, we present our approach,which consists

of methods that summarize spatial classes and measures that
compute their geospatial relatedness. An implementation of
our approach is presented inSect. 4, includingdetails onWoD
“crawling” for the identification of available spatial classes,
the construction of the QuadTree, class summarization and
the recommendation algorithm. We evaluate our approach
in Sect. 5, which includes an exploration of WoD spatial
classes’ characteristics; the formation of the ground truth;
the baselines and the experiments setup; and the results of the
experiments. In Sect. 6, we discuss the evaluation findings,
and in Sect. 7, we indicate next steps and conclude.

2 RelatedWork

2.1 Dataset Recommendation for Link Discovery

This paper addresses the dataset recommendation for Link
Discovery problem, which aims at the discovery of Web of
Data datasets that may contain related instances so as to be
suggested for the link discovery task. Typically, the input is a
source dataset that is compared against a set of target datasets
and the outcome is a (usually ranked) list of relevant (to the
source dataset) target datasets. (In Link Discovery a source
dataset is compared against a target dataset to return pairs
of related instances.) We identify three main approaches in
the existing literature, based on the “source of evidence” for
determining dataset relevancy: (a) keyword-based (b) graph-
based, and (c) linkage-based approaches.

Keyword-based approaches measure the textual similarity
of instance or schema information between datasets. Nikolov
and d’Aquin [31] and Nikolov et al. [32] identify an ini-
tial set of target datasets by issuing, to the Sig.ma semantic
web index [41], keyword queries consisting of random labels
extracted from the source dataset’s entities. Then, they rank
this initial set of target datasets by applying ontology match-
ing techniques that assess the semantic similarity between
classes (such as string similarity of labels and semantic
relations defined in WordNet). Similarly to our work, they
also recommend relevant classes among datasets. Ben Ellefi
et al. [4] adopt dataset profiling techniques for characteriz-
ing datasets through a set of class labels and descriptions and
they use these profiles to identify schema overlap between
datasets. Initially, they identify a cluster of datasets that share
schemaclasseswith a givendataset by calculating a similarity
measure based on term co-occurrence andWordNet semantic
distance. Then, for each dataset in the identified cluster, they
compute a dataset relevancy score based on cosine similarity
of td*idf representations of dataset profiles to generate ranked
lists of relevant datasets. As an additional contribution, they
also return mappings between dataset’s classes. A dataset
recommendation tool, called DRX, which is also based on
dataset profiles, was proposed by Caraballo et al. [8]. Other
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keyword-based approaches apply topic modelling methods
[3,33] based on the assumption that similar datasets should
have similar topics. For example, in TAPIOCA [33], a cor-
pus of documents, where a document characterizes a dataset
by its schema metadata (class and properties labels), is used
as input to the latent dirichlet allocation (LDA) algorithm to
create a topic model. The topic model preserves the distri-
bution over topics for each dataset and the ranking order of
the recommended datasets is determined by their topic distri-
bution similarity. Keyword-based methodologies were also
proposed by Mehdi et al. [26] and Martins et al. [25] and
applied in the life sciences domain.

Graph-based approaches compare the similarity of datasets
ontology graphs to determine whether two datasets are likely
to contain related instances. Emaldi et al. [12] built on
the assumption that “similar datasets should have a similar
structure and include semantically similar resources and rela-
tionships” and exploit frequent subgraph mining techniques
to find graph similarities among datasets. They extract fre-
quent subgraphs from datasets and then they evaluate their
similarity by computing the cost of transforming one graph
to another. The lower the transformation cost, the higher the
probability that two datasets are relevant.

Linkage-based approaches recommend relevant datasets
by using as source of evidence existing links between
datasets. Leme et al. [20] and Lopes et al. [23] build a
LinkedData network, a graphwhere nodes represent datasets
and edges denote the existence of links between them; the
evidence about the existence of links between datasets is
extracted from metadata in datahub. Based on this graph,
Leme et al. [20] develop a measure based on Bayesian clas-
sifiers and Lopes et al. [23] adapts link prediction measures
used in the Social Networks domain, such as the Jaccard
and the Adamic–Adar coefficient, that rank target datasets
according to the probability to be linked with the source
dataset. The above works lay the ground for the develop-
ment of TRTML, an online dataset recommendation tool [7].
Similarly to Lopes et al. [23], Liu et al. [22] construct a
graph of linked datasets and apply link prediction measures.
To increase the accuracy of the recommendations, they com-
bine them with supervised classifiers, specifically bagging
andRandomForests. In anotherwork,Liu et al. [21] approach
the problem from a recommender system’s perspective; they
construct a user–item matrix where both users and items are
datasets and the rating values depend on the numbers of exist-
ing sameAs links between datasets, extracted by the Linked
Open Data Cloud 2014 dump. Then, they predict the rating
values, that is, the number of possible links, for new datasets
by taking into account the corresponding ratings of similar
datasets. The similarity of datasets is computed by the cosine
distance on tf*idf-weighted vector model representations
that contain datasets’ schema terms (vocabularies, classes
and properties). We note that dataset recommenders often

combine more than one of the above described approaches
[3,21,32]. For example, Nikolov et al. [32], additionally
to keyword-based similarity measures, they also consider
existing sameAs links between classes to determine their rel-
evancy.

A fundamental difference of our approach to the afore-
mentioned dataset recommendation for Link Discovery
approaches is that we use as source of evidence for determin-
ing dataset relevancy the geographic information available in
datasets. Since our approach is based on the topological sim-
ilarity of classes, it can reveal relevant classes that cannot be
identified by the other recommendation approaches, such as
multilingual classes containing related instances (a limitation
of the keyword-based approaches identified by Ben Ellefi
et al. [4]) or topologically similar classes containing not
only equivalent, but also not equivalently related instances.
For example, the similarity of the spatial distributions of a
Universities and a CampusLibraries class, or between an
Airports and a MeteorologicalStations class (airports usu-
ally have in-premises meteorological stations) reveals their
semantic relation. Indeed, a data provider might find it useful
to interlink instances from the two classes by, say, a affiliate-
dOrganization8 or a partOf 9 relation.

2.2 Point-Set Similarity

Several works propose summarizations of point-sets and
metrics for computing their similarity but none of them
focuses on the dataset recommendation for Link Discovery
problem. Addressing Peer-to-Peer environments, Kufer and
Henrich [18] combine geometric (e.g., minimum bounding
rectangles) and space-partitioning (e.g., grids) summaries
for point-sets, where a point-set is a collection of the geo-
referenced items of a peer. The proposed summaries are
developed for queries like “Find peers that intersect with
a query polygon” (range queries) or “Rank the top-k nearest
peers to a query location” (kNN queries), which are irrel-
evant to the dataset recommendation for Link Discovery
scenario because they do not measure the similarity of the
spatial distributions of the sets. Zhu et al. [46] apply 27 spa-
tial statistics on point-sets, where a point-set contains the
locations of Gazetteers’ feature types instances, in order to
generate spatial semantic signatures for each feature type and
evaluate their discriminative power for the identification of
similar (or dissimilar) feature types so as to support ontology
alignment. The proposed statistics are based on spatial point
patterns (e.g., local intensity, Ripley’sK), spatial autocorrela-
tion (e.g.,Moran’s I, semivariograms) and spatial interactions

8 University Ontology (https://www.cs.umd.edu/projects/plus/SHOE/
onts/univ1.0.html).
9 Dublin Core Metadata Initiative (http://www.dublincore.org/
specifications/dublin-core/dcmi-terms/).
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with other geographic feature types (e.g., count of distinct
nearest feature types). However, as they state, these statis-
tics are mostly descriptive and cannot be used alone (without
combining them with feature type string and structural sim-
ilarity approaches) for effective ontology alignment.

Sherif andNgomo [38] compare various point-set distance
measures, including Mean, Max, Average, Link and Haus-
dorff distance, for effective and efficient Link Discovery. In
their work, a point-set represents the polygon geometry of an
instance and the distance measures (which act on the exact
locations of the points and not on point-sets summaries) are
used to identify similar polygons in order to aid the Link
Discovery process. To reduce the number of exact Haus-
dorff Distance calculations for large collections of point-sets,
Adelfio et al. [1] propose the computation of an enhanced
lower bound approximation (called ENHLB) of the exact
Hausdorff distance value, which acts on minimum bound
rectangle (MBR)-based point-set summarizations. The above
point-set distance functions (except from the mean distance)
perform pairwise distance calculations between the exact
location of the points included in the point-sets, which is
inefficient for the dataset recommendation for Link Discov-
ery scenario.Moreover, their effectiveness on recommending
datasets for Link Discovery is not tested and have been
proved to be ineffective in some contexts such as geo-social
similarity [17].

Geo-social similarity refers to the problem of finding
similar social network users and some works approach the
problem by measuring the distance of point-sets, where a
point-set consists of the locations of a user activities. Kanza
et al. [17] propose and evaluate two novel distance measures
for finding the k-most similar users to a given user: the mutu-
ally nearest distance and theQuadTree distance.Compared to
our approach, their QuadTree distance requires the construc-
tion of a QuadTree for every user (in our case, we construct a
single QuadTree, based on which we summarize the spatial
distribution of class instances), which explodes the storage
costs and the complexity of the similarity algorithm. Efs-
tathiades et al. [11] introduces the spatio-textual point-set
similarity join (STPSJoin) query, which seeks for users with
similar sets of spatio-textual items (e.g., geolocated photos
or tweets). The similarity between two users is calculated as
the ratio of their matched items to the sum of their items. Two
itemsmatch, if their spatial location is closer than a given dis-
tance and the textual similarity is above a given threshold. To
reduce the comparisons only for items that satisfy the spatial
condition they employ in their algorithms Grid and R-Trees
indexes. In their experiments, they evaluate the execution
time of the proposed algorithms and not the effectiveness in
correctly identifying similar users.

None of the above described works on point-set similar-
ity can be directly applied to the dataset recommendation for
LinkDiscovery problem:Kufer andHenrich [18] target a dif-

ferent type of queries; Zhu et al. [46] do not provide enough
discriminative power; Sherif and Ngomo [38] and Adelfio
et al. [1] require distance calculations between the exact point
locations;Kanza et al. [17] andEfstathiades et al. [11] involve
increased storage or complexity costs. Here we present a
novel point-sets similarity approach, where a point-set con-
sists of the locations of a class instances, and we apply it
in the dataset recommendation for Link Discovery prob-
lem. Our proposed approach can be useful in other problems
that employ point-set similarity, such as geo-social similarity
[17], dataset search [9], web tables extension [10,19], or data
source selection for federated queries [14,34,42].

3 Geospatial Relatedness of Classes

As already noted, we compute a score of geospatial relat-
edness based on class summaries that capture spatial char-
acteristics of classes, namely their spatial extent and the
spatial distribution of their instances. In the following, we
present the summarization methods for the spatial extent
(Sect. 3.1) and the spatial distribution of classes (Sect. 3.2),
and the summary-based measures of geospatial relatedness
(Sect. 3.3).

3.1 Spatial Extent Summaries

The similarity of two classes’ spatial distributions is affected
by the existence of nearly located pairs of instances between
the two classes. An efficient way to determine if two classes
do not contain any pairs of nearly located instances is to
examine their spatial extents. The spatial extent of a class
is an area that encloses the location of all instances of the
class. If the spatial extents of two classes are not overlapping,
then these classes will not contain any pair of nearly located
instances so their spatial distribution is dissimilar. For exam-
ple, the classes AirportsInFrance and AirportsInChina are
spatially extending in non-overlapping parts of the world,
there is no possibility for them to contain nearly located
instances, and thus they are not a good pair to recommend
for Link Discovery.

Typically, the spatial extent of a point-set is represented
by the minimum rectangle or the minimum polygon that
encloses all the points of a set, i.e., the Minimum Bound-
ing Rectangle (MBR) or the ConvexHull respectively (Fig.
1). MBR is a simpler geometry than ConvexHull, and thus it
requires less storage and computation, but ConvexHull cap-
tures the spatial extent of a class more precisely. Compared
to spatial distribution summaries (presented in Sect. 3.2),
spatial extent summaries are much more “lightweight”, and
therefore they are suitable for the filtering phase of the rec-
ommendation algorithm (Sect. 4.4) for efficiently excluding
non-related classes, i.e., classes with non-intersecting spa-
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Fig. 1 Capturing the spatial extent of a class with MBR (horizontal
lines) and ConvexHull (vertical lines). Points represent the locations of
the class instances

tial extent. On the other side, spatial extent summaries are
not “rich” enough for effectively calculating the similarity of
two classes’ spatial distribution.

3.2 Spatial Distribution Summaries

Next, we examine methods that summarize the spatial dis-
tribution of the class’ instances by approximating their
locations. Specifically, we employ space-partitioning tech-
niques that discretize the earth’s surface into disjoint cells
where each cell is identified by a unique ID. Using the dis-
cretized view of the world as the underlying structure, we
summarize each class spatial distribution by generating a set
of cell IDs that correspond to the cells in which the class has
instances.

A simple space partitioning technique, the Regular Grid,
segments the space in equally sized cells. Since Web of Data
instances can be located anywhere in the world, the grid
should cover the whole earth. A Regular Grid with large-
sized cells requires few cells to cover the earth’s surface but
each cell covers a large geographic area, which results in high
information loss when approximating instances’ locations.
For example, a Regular Grid that consists of 10 km × 10 km
cells, needs about five million cells to cover the earth’s sur-
face and each cell covers an area of 100 km2 (approximately
equal to the area of a big city like Barcelona), clearly a large
area for approximating the location of an instance, such as
a museum. A Regular Grid with small-sized cells approxi-
mates instance locations more precisely but needs more cells
to cover earth surface which explodes the associated storage
and the computational cost. For example, a 100 m × 100 m
cell size Regular Grid where each cell covers an area of
0.01 km2 (approximately equal to the area of a football sta-
dium) is more suitable for approximating the location of a
museum but it needs about 50 billion cells to cover earth.

At this point, we highlight two observations regarding
instances’ characteristics that should be taken into account
for choosing among appropriate space partitioning struc-
tures. First, points represent zero-area instances but in reality
instances correspond to objects that cover small or large
areas. For example, a point instance about a museum in real
word covers an area of few hundred m2 and a point instance
about a city covers an area of few (tens) of km2 (even though
representing large-area objects, such as cities, as points is not
accurate, many data providers prefer to represent instances
using points instead of polygons to gain in storage costs).
After the examination of 100 randomly chosen WoD classes
we roughly estimated the area size of the real world objects
that their instances correspond: about 75% of classes contain
instances that refer to “small-area” objects, covering areas
ranging from some hundreds of m2 to few km2 (such as
Churches, Airports and Neighborhoods), and about 25% to
“large-area” objects, covering areas of tens to thousands km2

(such as Cities, Mountains and Countries). Based on this
observation, we deduce that a possible selection of space
partitioning structures cell sizes for the precise and effi-
cient summarization of instance locations should range from
a few thousand m2 to few thousand km2. Large cells that
cover areas of thousands km2 cannot summarize instances
precisely enough (leading to high information loss) while
small cells that cover areas of few m2 are too “pulverized”
for approximating instance locations (leading to unnecessary
explosion of storage and computational costs).

The second observation is that instances are not uniformly
distributed in the earth’s surface. Instances tend to concen-
trate in places where human activity is intense, such as city
centers, and there are areas, such as oceans,where there are no
instances at all. For high density areas, wheremany instances
are located, small-sized cells would be a better choice for
space discretization, while in low density areas, where few
or no instances are located, space can be discretized using
large-sized cells. For example, a cell that covers an area of
100 km2 and overlaps with the city of London will contain
toomany instances frommany different classes and therefore
the summarization at the city of London will be too coarse.
On the contrary, a cell that covers an area of 100 m2 in the
PacificOcean, provides no real value for class summarization
and it just adds to storage and computational costs.

The latter observation leads us to examine another space-
partitioning technique: the QuadTree index which segments
space in not equally-sized cells. A QuadTree is an initially
Regular Grid but each cell is split recursively in 4 sub-cells
when a criterion is met. Using a QuadTree we can discretize
earth surface unevenly, where high-density areas (high con-
centration ofWoD instances) are covered by small-sized cells
and low-density areas (low concentration of WoD instances)
are covered by large-sized cells. To capture the spatial distri-
bution ofWoD instances, we specify as the cell split criterion
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the total number of WoD classes that contain instances in a
cell. If a cell contains instances from many classes it means
that the underlying area is dense, and the cell should be split
so that the particular area to be covered by smaller cells. This
process is executed recursively until a specified QuadTree
depth (i.e., number of times that an initial cell can be split) is
reached. The algorithm for the construction of the QuadTree
is presented below. A possible QuadTree generation along
with a discussion about parameter setting is described in
Sect. 4.2.

Algorithm 1: QuadTree Construction
Input: A Regular Grid R that consists of ν equally-sized cells,

the set of the sample classes that will be used for the
QuadTree construction C , the number of classes that
triggers a cell split n, and the maximum QuadTree depth
D

Output: The final QuadTree Q
1 begin

/* Copy Regular grid R to Q */
2 Q = R;

/* Initialize a list N that holds the
number of classes that contain
instances in each Q cell where ni
refer to a Q cell */

3 N = {n1 : 0, n2 : 0, . . . , nv : 0} ;
/* Set current depth level */

4 d = 1;
5 while d <= D do
6 foreach ci ∈ C do
7 Parse the location of c j instances;

/* Add 1 to cells (ni) if they
contain instances of c j */

8 ni = ni + 1;

9 foreach ni ∈ N do
10 if ni >= n then
11 Split ni cell in 4 equally sized subcells;

12 Replace the split cells with their new subcells in Q;
/* Initialize N including the new

cells */
13 N = {n1 : 0, n2 : 0, . . . , nv : 0};

/* Increase current depth level */
14 d = d + 1;

15 return Q;

After the creation of a space partitioning structure, say, a
QuadTree, we summarize the spatial distribution of a class by
generating a set of cell IDs that correspond to the QuadTree
cells that contain class instances. Figure 2 presents the sum-
marization process for a fictional class S, containing 12
georeferenced instances (Fig. 2b), on a hypothetical global
QuadTree index consisting of 25 cells (Fig. 2a). By over-
laying the class instances on the QuadTree we generate the
class’s summary, that is, the set of the QuadTree cell IDs that
contain class’ instances (Fig. 2c). We follow the same proce-

dure (using the same global QuadTree index) to summarize
all WoD classes’ spatial distribution.

In the next section, we propose measures that, based
on these summaries, calculate the geospatial relatedness of
classes. Thus, we turn the problem of comparing the spatial
distribution of classes into comparing sets of cell IDs, which
correspond to summaries of classes’ spatial distribution.

3.3 Geospatial Relatedness Measures

To compare the similarity of the spatial distributions of
two classes, we focus on their common geographical area,
because in areas not covered by both classes, according to our
methodology,we cannot compute similarity. So, for example,
the comparison of the BanksInEurope and BanksInGreece
classes’ spatial distribution is performed in the intersecting
area of their spatial extent: that is, Greece. The intersection of
the spatial extent of two classes is computed as the intersec-
tion polygon (I ) of classes’ ConvexHulls and the comparison
of the classes’ spatial distribution summaries is restricted to
the QuadTree cells overlapping with I . Figure 3 illustrates
an example of comparing a Squares class with a Triangles
class. Let S and T represent the spatial distribution summary
sets of the two classes respectively, that include only the cells
overlapping with the I polygon; |S| and |T | corresponds to
their summaries set sizes in the I polygon, respectively. The
set of cells that are common in the S and T summaries is rep-
resented as C and the size of the set of common cells as |C |.
The set of the QuadTree cells overlapping with I is repre-
sented as Q and its size as |Q|. Notice that the number of two
classes summaries common cells is always less or equal to
the size of the smallest class summary (|C | ≤ Min(|S|, |T |))
and the size of the S and T summaries is always smaller or
equal to the number of the QuadTree cells (|S|, |T | ≤ |Q|).

3.3.1 The Simple Approach

The simplest way to measure the geospatial relatedness
between two classes is to count the number of cells that their
summaries have in common. The intuition behind this mea-
sure is that the more the common cells (thus, pairs of nearly
located instances), the more similar their spatial distribution.
The set of common cells C is the intersection of the S and T
summaries and its size is:

|C | = |S ∩ T | (1)

|C | does not take into account the size of summaries, which
is an important factor for assessing the geospatial relatedness
between classes. As a general rule, large summaries are more
likely to have more common cells than small summaries. For
example, two summaries that contain thousands of cells (e.g.,
a class containing the location of all museums in the world
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Fig. 2 Summarizing the spatial distribution of a class. a A hypothet-
ical Global QuadTree with the respective Cell IDs. b The location
of the fictional S class 12 instances. c overlaying instances on the
Quad Tree. The summary for the S class is represented by the set

S = {4, 5, 6, 8, 12, 13, 14, 19, 22, 24} with size of |S| = 10. We note
that if a cell contains more than one instances is maintained once in the
summary set

Fig. 3 Comparison of the spatial distribution of two fictional squares
and triangles classes. The comparison is performed in their Convex-
Hulls intersection polygon (I ). |S| is the number of S summary cells
(cells that contain square instances) in I polygon. |T | is the number of

T summary cells (cells that contain triangle instances) in I polygon.
|C | is the number of S and T common summary cells (cells that contain
both squares and triangle instances). |Q| is the number of QuadTree
cells included in I polygon

and a class containing the location of all banks in the world)
may have more common cells than two summaries that con-
tain just a few instances (e.g., an airports in Greece and a
major airports in Greece class). Next, we propose measures
taking into account the sizes of the summaries of the com-
pared classes.

3.3.2 The Set Similarity Approach

Since classes are represented by summaries, that is, sets
of cell IDs, we can compute a geospatial relatedness score
between classes by applying common set similaritymeasures

on their summaries. We can assume that the more similar
these summaries sets are, the more related the respective
classes are. A well-known set similarity measure, Jaccard
Index (J ), is defined as the size of the intersection of two
sets divided by their union. We compute Jaccard Index as
the intersection of two summaries (common cells) divided
by their union:

J (S, T ) = |S ∩ T |
|S ∪ T | = |C |

|S| + |T | − |C | (2)

Jaccard Index returns decimal values from0 to 1: 0means that
two summaries have no common cells and 1 that they have all

123



Recommending Geo-semantically Related Classes for Link Discovery 159

their cells common. A drawback of the Jaccard Index is that
it does not perform well when the sizes of two summaries
are significantly different; so, it fails in revealing relevant
classes when the first is a subset of the other. For exam-
ple, a class about CapitalCitiesAirports will contain several
sameAs instances with a class about WorldAirports; how-
ever, their J value is low because the intersection of their
summaries is small compared to their union. A more appro-
priate set similarity measure for comparing different-sized
sets is the overlap coefficient (O), which is defined as the
intersection of two sets divided by the size of the smaller
set. We compute O as the number of the intersection of two
summaries (common cells) divided by the size of the smaller
summary:

O(S, T ) = |S ∩ T |
Min(|S|, |T |) = |C |

Min(|S|, |T |) (3)

Overlap Coefficient returns decimal values from 0 to 1; 0
means that the summaries are completely disjoint and 1 that
a summary is a perfect subset of the other.

The presented measures so far, do not take into account
the frequency of instances in a geographic area, which is a
useful parameter for the calculation of a geospatial related-
ness score between classes. Neglecting this parameter can
result in misleading conclusions about the similarity of the
spatial distributions and thus about the semantic relevance
of two classes, for instance, when calculating the overlap
coefficient for dense classes. Illustrating this with an exam-
ple, a class about TrafficLightsInMadrid probably contain
instances in every QuadTree cell that overlaps with Madrid.
Thus, comparing any class with the TrafficLightsInMadrid
class will return high O value (because the compared class
is a subset of the TrafficLightsInMadrid class); In this case,
high O value is not an indication that the classes contain
related instances. In the following, we include the frequency
of class’ instances in a given area parameter to calculate the
geospatial relatedness score between classes.

3.3.3 The Probability Approach

The frequency of class instances in a geographic area is cal-
culated as the number of the class summary cells divided by
the total number of the QuadTree cells in this area. Using the
example of Fig. 3, the frequency of the “Squares” class in
the spatial area covered by I is:

fS = |S|
|Q| (4)

The frequency of the Triangles class for the same area
( fT ) is estimated accordingly by substituting in Eq. (4), |S|
by |T |. For any class (e.g., the Squares class), there are two
possible outcomes: Either a cell contains class instances or

does not contain class instances. Event S1 consists of all the
outcomes (cells) where the class has instances and is equal
to the class summary S; event S0 consists of the remaining
outcomes (cells in which the class has no instances) and is
equal to the set S′. In any given geographical area covered
by |Q| cells, events S1 and S0, and their respective sets, are
complementary, so |S|+|S′| = |Q|. Based on the assumption
that the probability of each of the two possible outcomes for
a given cell is equal, the probability of the S1 event is:

P(X = S1) = fS = |S|
|Q| (5)

The probability of the S0 event is the complement of S1
so:

P(X = S0) = 1 − P(X = S1) = 1 − |S|
|Q|

= |Q| − |S|
|Q| = |S′|

|Q|
(6)

Now that we have turned class frequencies into probabilities
of events, we can use the probability property that states that
two events, A and B, are independent when the occurrence
of A is not affected by the occurrence of B and, if two events
are independent, the product of their probabilities is equal to
their joint probability:

P(A)P(B) = P(A ∩ B) (7)

Let us suppose that we examine the relation between two
events: event S1 that an S class has instances in cells and
event T1 that a T class has instances in cells in a given area.
If the events S1 and T1 are independent, the occurrence of
the S1 cells is not affected by the occurrence of T1 cells, so
the location of the instances of the S class is not affected
by the location of the instances of the T class, and thus we
can deduce that the two classes are not related. Else, if the
events S1 and T1 are not independent, the occurrence of S1
cells affects the occurrence of T1 cells, so the location of
the instances of the S class is affected by the location of the
instances of the T class and we can assume that the classes
are to some degree related. We can also assume that the more
dependent event S1 and T1, the more related the classes S and
T are. The independence event formula (Eq. 7) will help us
determine the degree of dependency between the event S1
and T1, and therefore the degree of geospatial relatedness
between the two classes. We do this by comparing the dif-
ference between the number of the common cells (|C |) that
two classes, S and T , actually have, with the number of the
common cells that the two classes should have if the events
S1 and T1 were independent (Ci). We can suppose that the
bigger the difference between |C | and Ci, the more depen-
dent events S1 and T1 are. Since we already known |C |, we
only need to calculate Ci based on the Eq. (7):
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P(S1∩T1) = P(S1)P(T1)⇔ Ci

|Q| = |S|
|Q|

|T |
|Q| ⇔ Ci = |S||T |

|Q|
(8)

A straightforward way to compare |C | and Ci is to compute
their ratio R (Eq. 9). R is a positive decimal indicating how
much bigger |C | is from Ci . When R is close to 1, the num-
ber of actual common cells is almost equal the number of
common cells in case the events S1 and T1 were indepen-
dent, so the instances’ location of one class is not affected
by the instances’ location of the other class. The bigger the
R is, the bigger the difference between |C | and Ci , so the
more dependent events S1 and T1 are, and thus the instances’
location of one class is affected by the instances’ location of
the other class.

R = |C |
Ci

(9)

Equation (10) shows that the logarithm of R is equal to the
pointwise mutual information (PMI) of the events S1 and T1,
PMI(S1,T 1). PMI is a measure of association between events
calculated as the logarithm of the probability of the actual co-
occurrence of two events, P(S1, T1), divided by the product
of their probabilities [6]. PMI results to zero when two events
are independent and large absolute PMI values imply strong
(negative or positive) correlation between events.

PMI(S1, T1) = log
P(S1, T1)

P(S1)P(T1)
= log

|C|
|Q|

|S|
|Q|

|T |
|Q|

= log
|C |

|S||T |
|Q|

= log
|C |
Ci

= logR

(10)

Another way to quantify the difference between |C | and Ci
is to estimate the probability for two summaries, S and T ,
to actually have |C | or more common cells knowing that if
they were independent, they should have Ci common cells.
A well-known probability distribution, the Poisson, calcu-
lates the probability of a number of events to occur in a
space where events are occurring at a constant and known
rate λ. Notice that Ci value also represents the expected (or
the mean) number of common cells between two randomly
generated classes (with the same summary size with S and
T respectively) in a given area. Then, the desired probability
follows a Poisson distribution where the random variable X
is the number of the common cells that two summaries have
in a given spatial area and λ = Ci represents the expected
number of common cells for two summaries in that area. The
probability of two summaries, S and T , to have C or more
common cells, is the inverse cumulative Poisson probability
P(X ≥ |C |) (Eq. 11) calculated as the sum of the individual
Poisson probabilities P(X = x) where x takes values from

Table 1 The 2 × 2 contingency table for the X and Y variables

Y1 Y0 Total

X1 n11 n10 n11 + n10

X0 n01 n00 n01 + n00

Total n11 + n01 n10 + n00 n11 + n01 + n10 + n00

|C | to Min(|S|, |T |) (we remind that |C | is always less or
equal to Min(|S|, |T |). High inverse cumulative probability
means that the actual number of common cells is likely to
be produced by two random classes and that |C | is close to
the expected number of common cells (Ci ). On the contrary,
a low probability means that having |C | or more common
cells is unlikely to be the product of two random classes, |C |
differs significantly from the expected number of common
cells (Ci ) and thus the two summaries, and consequently the
respective classes, are geospatially related.

P(X ≥ x) =
Min(|S|,|T |)∑

x=|C|
P(x) where P(x) = e−CiCi x

x !
(11)

3.3.4 The Association of Binary Variables Approach

A class summary can be also represented by a binary vec-
tor variable corresponding to cells where value 1 denotes
that the class has instances in a cell and 0 denotes that the
class has not instances in a cell. Then, the problem of esti-
mating the geospatial relatedness between two classes, can
be approached by calculating their respective binary vari-
ables association for the cells (observations) that intersect
in a given geographical area. If two binary variables present
strong positive correlation, the values of the first variable
are affected by the values of the second variable (that is, the
location of the instances of one class affects positively the
location of the instances of the other class), so the respective
classes are geospatially related.

A standard metric for estimating the association between
two binary variables is the phi coefficient (Φ) [39]. Φ is
calculated by constructing the contingency table for the two
variables X and Y , which displays the frequency counts (n)

for all outcome variable combinations (Table 1) such as n11 is
the number of observations where both X and Y are 1, n10 is
the number of observations where X is 1 and Y is 0 and so on,
and then by applying the Φ formula (Eq. 12). Phi coefficient
values ranges from − 1 to 1, where − 1 indicates strong
negative correlation, 0 no correlation and 1 strong positive
correlation between two variables.
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Table 2 The 2 × 2 contingency table for the S and T variables

T1 T0 Total

S1 |C | |S| − |C | |S|

S0 |T | − |C | |Q| − |S| − |T | + |C | |Q| − |S| = |S′ |
Total |T | |Q| − |T | = |T ′| |Q|

Φ = n11n00 − n10n01√
(n11 + n10)(n01 + n00)(n11 + n01)(n10 + n00)

(12)

To compute the association between the binary variables
for the S and T classes we construct the contingency table
(Table 2) where S1 represent the cells for which the S vari-
able takes the value 1 (S class has instances in the cell), S0
represent the cells for which the S variable takes the value 0
(S class has no instances in the cell) and T1 and T0 represent
the corresponding values for the T variable. The contingency
table is filled using the already known values: the number of
cells that both S and T are 1 is the number of their common
cells (|C |), the number of cells that S is 1, and T is 0 is the
size of the S summaryminus the number of the common cells
(|S| − |C |), the total number that S is 1 is the size of the S
summary (|S|) and so on. The total number of observations
(cells) equals to the total number of QuadTree cells that are
included in the given spatial area (|Q|), so S0 is equal to the
total number of QuadTree cells in the given area minus the
cells where S is 1 (|Q| − |S| = |S′|) and accordingly T0 is
equal to |Q|−|T | = |T ′|. Equation (13) presents the formula
for calculating Φ for the S and T variables after substituting
the variables of Eq. (12) with the corresponding values of
Table 2.

Φ = |C |(|Q| − |S| − |T | + |C |) − (|S| − |C |)(|T | − |C |)√|S|(|Q| − |S|)|T |(|Q| − |T |)
= |C | ∗ |Q| − |S| ∗ |T |√|S||S′||T ||T ′|

(13)

The second binary variable association metric is the
mutual information (MI). Previously, we calculated the asso-
ciation for one combination of S and T variable outcomes,
namely the PMI(S1, T1) where S1 corresponds to the event
that the S class contains instances in a cell and T1 corre-
sponds to the event that the T class contains instances in
a cell. Equation (14) presents the formula for calculating
the association between all possible S and T event com-
bination outcomes, that is, the MI of S and T variables,

calculated as the weighted sum of the PMI for all possi-
ble event combinations namely: PMI(S1, T1), PMI(S1, T0),
PMI(S0, T1) and PMI(S0, T0). Individual event probabilities
correspond to values in the marginal cells of Table 2 divided
by the total number of cells (e.g., P(S0) = |S′|/|Q|) and
joint event probabilities to the values in the inner cells of the
contingency table divided by the total number of cells (e.g.,
P(S1, T0) = |S| − |C |/|Q|). MI returns non negative deci-
mals, where values close to zero indicate that the variables
are independent and high values that variables, are correlated,
and thus classes are geospatially related.

MI =
1∑

x=0

1∑

y=0

P(Sx, T y)PMI(Sx, T y)

where PMI(Sx, T y) = log
P(Sx, T y)

P(Sx)P(T y)

(14)

To sum up, in this section we proposed seven measures,
which exploit class spatial summaries to calculate the degree
of geospatial relatedness between classes. These measures
are the: (a) number of common cells (Eq. 1), (b) Jaccard
Index (Eq. 2), (c) overlap coefficient (Eq. 3), (d) pointwise
mutual information (Eq. 10), (e) Poisson distribution prob-
ability (Eq. 11), (f) Phi coefficient (Eq. 13), and (g) mutual
information (Eq. 14). In Sect. 5, we evaluate each measure
effectiveness for accurately recommending relevant classes
for link discovery.

4 Class Recommender Implementation

In this section, we present the implementation of a class
recommender for link discovery,10 which consists of the fol-
lowing components:

1. The Spatial Class Locator component identifies and
catalogs available spatial classes in the Web of Data
(Sect. 4.1).

2. TheQuadTreeConstruction component generates aQuadTree
upon which the summarization of classes spatial distribu-
tion is based (Sect. 4.2) and

3. The Spatial Class Summarization component creates
summaries for the catalogued classes (Sect. 4.3).

4. The Recommendation Algorithm component first filters
non-geospatially related classes and then recommends a
ranked list of classes for Link Discovery to a source class
(Sect. 4.4).

We note that the first three components are executed
offline and only the Recommendation Algorithm is executed

10 http://geo-aegean.aegean.gr:8080/WoDSpatialClassRecommender/.
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at runtime on user request (even though pre-generated lists
of relevant classes for the already summarized classes can
be created offline). However, if the input (source) class to
the Recommendation Algorithm is not selected from the list
of catalogued and summarized classes,11 the Spatial Class
Summarization component is also executed at runtime to con-
struct summaries for the not catalogued source class.

4.1 Spatial Class Locator

The goal of the Spatial Class Locator component is to iden-
tify as many as possible (if possible, all) WoD spatial classes
in order to form a large pool of target classes, that is, classes
which are candidates for recommendations. A rich source
of information about existing WoD datasets is data cata-
logs such as datahub.io,12 a CKAN-based online catalog
that preserves datasets’ metadata including title, descrip-
tion, and links to their data sources (e.g., SPARQL Endpoint
URLs). Datahub.io content is exposed though CKAN API,
which is exploited by the component to initially locate
WoD datasets provided through SPARQL Endpoints. Then,
Spatial Class Locator issues a SPARQL query to each
located dataset to retrieve the list of the spatial classes (if
any) that the dataset contains. The query returns classes
that contain spatial instances that have been geo-referenced
by reusing one of the most common spatial ontologies,
listed in LOV13 and LOV4IoT,14 and namely are the W3C
Basic Geo, NeoGeo,15 GeoSPARQL,16 OrdnanceSurvey,17

GeoNames18 and GeoRSS.19 The following SPARQL query
returns a list of a dataset’s classes that contain georeferenced
instances using the W3C BasicGeo ontology:20

SELECT DISTINCT ?class
WHERE {

?s <http : / /www.w3.org/2003/01/geo/wgs84_pos#long> ?x.
?s <http : / /www.w3.org/2003/01/geo/wgs84_pos#lat> ?y.
?s a ?class

}

Spatial Class Locator initially located 684 datasets pro-
vided through SPARQL endpoints. More than 50% of them

11 The implementation can be extended so as the source class to be any
point spatial dataset specified by the user (such as a personal shapefile,
a geoJSON file, a Web Feature Service or a spatial class from a non-
identified SPARQL endpoint).
12 https://old.datahub.io/.
13 http://lov.okfn.org.
14 http://lov4iot.appspot.com/?p=ontologies.
15 http://geovocab.org/.
16 http://www.geosparql.org/.
17 http://data.ordnancesurvey.co.uk/ontology.
18 http://www.geonames.org/ontology/.
19 http://www.georss.org/rdf_rss1.html.
20 The respective SPARQL queries for the rest ontologies are available
at https://github.com/vkopsachilis/WoDSpatialClassRecommender.

are not stable, no longer available or could not be parsed so
were not further considered. From the remaining datasets,
Spatial Class Locator identified 54 ones containing geo-
refernced instances in totally 20,640 spatial classes21 (Table
3). This number does not include classes that contain less
than five instances (because they contain a small number of
instances and therefore are not valuable recommendations for
link discovery) and classes that contain more than 100,000
instances (because these classes are few and usually corre-
spond to top-level classes such as owl:thing). Table 4 shows
the number of identified spatial classes per spatial ontology
used for instance georeference.We note that an instance loca-
tionmay be georeferenced bymore than one spatial ontology.
For example, in DBPedia the location of instances is repre-
sented by either W3C Basic Geo, GeoRSS or both spatial
ontologies. Classes that contain instances that use two spatial
ontologies are preserved twice, each containing the instances
of a particular spatial ontology because the set of instances
of a class that use the W3C Basic Geo ontology may be dif-
ferent from the set of instances of the same class that use the
GeoRSS ontology. Specifically, of the 11,692 distinct iden-
tified spatial classes, 8948 of them preserved twice but only
167 of them contain exactly the same instances using differ-
ent ontologies.

4.2 QuadTree Construction

The QuadTree Construction component is executed once to
generate the QuadTree upon which the summarization of
classes’ spatial distribution will be based. In Sect. 3.2, we
presented the algorithm for the construction of a QuadTree
without specifying any values for the required parameters. In
this section, we discuss the parameters that we set in order to
construct the QuadTree for the specific implementation. The
first parameter is the size of the cells of the initial Regular
Grid.Notice that this size is also the size of thefinalQuadTree
not split cells, that is, cells that cover extremely low-density
areas where few or no instances are located. Since we want
to cover these areas by large sized cells (in order to keep
storage and computational costs low), we set the initial Reg-
ular Grid cell size equal to an area of 2500 km2 (50 × 50
km edge size), which is approximately equal to the size of
a small country, such as Luxemburg. The next parameter is
the maximum QuadTree depth, that is, the maximum times
an initial cell is allowed to split. Notice that the size of the
cells of the initial Regular Grid and the maximum QuadTree
depth specify the possible sizes of the QuadTree cells. Since
high-density areas, such as city centers, should be covered
by small cells that cover areas of few hundred m2 (approx-
imately the size of a soccer stadium), we set the maximum

21 The full list of identified spatial classes is available at https://github.
com/vkopsachilis/WoDSpatialClassRecommender.

123

https://old.datahub.io/
http://lov.okfn.org
http://lov4iot.appspot.com/?p=ontologies
http://geovocab.org/
http://www.geosparql.org/
http://data.ordnancesurvey.co.uk/ontology
http://www.geonames.org/ontology/
http://www.georss.org/rdf_rss1.html
https://github.com/vkopsachilis/WoDSpatialClassRecommender
https://github.com/vkopsachilis/WoDSpatialClassRecommender
https://github.com/vkopsachilis/WoDSpatialClassRecommender


Recommending Geo-semantically Related Classes for Link Discovery 163

Table 3 WoD datasets and the number of the spatial classes that each dataset contains

Dataset Spatial classes Dataset Spatial classes

DBpedia 15,488 Social semantic web thesaurus 10

LinkLion 898 Lotico 10

DBpedia Wikidata 544 LOD for tourists in Castilla y Leon 9

URIBurner 523 EEA vocabularies 7

DBpedia in Greek 504 Environment agency bathing water quality 7

LinkedGeoData 349 ASCDC_LOD 6

DBpedia in French 305 Datos.bcn.cl 6

DBpedia in Dutch 206 OxPoints (University of Oxford) 6

Serendipity 180 linkedarc.net archaeological datasets 6

Open Data of Ecuador 180 Events calendar for the University Oxford 6

Universidad Técnica Particular de Loja 180 ISPRA—The Italian Data Buoy Network (RON) 5

DBpedia in Portuguese 176 Isidore 4

DBpedia in Spanish 176 Indicators Academic Process 4

DBpedia in Japanese 172 OpenMobileNetwork 3

Alexandria Digital Library Gazetteer 143 DBpedia Commons 3

GeoLinkedData 117 Hellenic Fire Brigade 3

houses of culture Caceres 67 World War 1 as Linked Open Data 3

Perfil del Contratante Cáceres 67 Alpine Ski Racers of Austria 2

Influence Tracker Dataset 54 Enipedia—Energy Industry Data 2

transport.data.gov.uk 37 CRTM 2

education.data.gov.uk 36 Courts thesaurus 2

Linked Logainm 31 Hellenic Police 1

Shoah victims’ names 28 Imagesnippets Image Descriptions 1

Dutch Ships and Sailors 22 Linked Open Aalto Data Service 1

DBpedia in Basque 18 Geological Survey of Austria Thesaurus 1

Verrijkt Koninkrijk 14 Linked Crowdsourced Data 1

EIONET RDF Data 13 AEMET metereological dataset 1

Total number of spatial classes 20,640

Table 4 Number of spatial classes per spatial ontology

Spatial ontology Class frequency

W3C Basic Geo 11,316

GeoRSS 9249

Geonames 43

NeoGeo 31

GeoSPARQL 1

Total number of spatial classes 20,640

QuadTree depth to 9, which results in the QuadTree cell sizes
listed in Table 5. The smallest-sized cells covers an area of
0.04 km2 (200 × 200 m edge size).

The sample of classes parameter of the QuadTree con-
struction algorithm should be as large as possible in order
to precisely simulate the distribution of the WoD instances
(high- and low-density areas). Since QuadTree creation is a

Table 5 QuadTree cell sizes and their frequencies

SN Edge size (km) Area (km2) Frequency

1 50.00 2.500 233,301

2 25.00 625 59,922

3 12.50 156.25 102,347

4 6.25 39.06 197,988

5 3.12 9.76 262,953

6 1.56 2.43 304,635

7 0.78 0.61 329,864

8 0.39 0.15 315,120

9 0.20 0.04 250,880

Total cells 2,057,010

single-run offline process, we set this parameter as the maxi-
mum possible, that is, the 20,640 identified spatial classes
by the Spatial Class Locator component. The algorithm
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retrieves the list of longitude and latitude coordinates for each
class’ instances by issuing a SPARQL query to the associ-
ated SPARQL endpoint. For example, the following query
returns the coordinates of the instances of the “Fjord” class
(provided by the LinkedGeoData dataset) georefenced using
the W3C Basic Geo ontology.22

SELECT ?x ?y
WHERE {

?s <http : / /www.w3.org/2003/01/geo/wgs84_pos#long> ?x.
?s <http : / /www.w3.org/2003/01/geo/wgs84_pos#lat> ?y.
?s a < http : / / linkedgeodata . org /ontology /Fjord>

}

The last parameter is the cell split criterion, that is, the
maximum number of classes allowed to have instances in a
cell before triggering a split. Setting the maximum allowed
number of classes too low will result in many splits, con-
secutively in many and small QuadTree cells, and thus
in increased storage and computational costs. Setting this
parameter too high will result in few splits, consecutively in
few and large QuadTree cells, and thus in reduced summa-
rization precision. Knowing that a cell can contain instances
from a maximum of 20,640 classes, for this implementation
we set the cell split criterion value arbitrarily to 30 classes.

Running the QuadTree construction algorithm with the
above parameters, resulted in a QuadTree that covers earth
with approximately 2million cells (recall that a 10km×10km
cell Regular Grid covers earth with approximately 5 million
cells). Table 5 lists the QuadTree cells sizes along with their
respective frequencies, that is, number of cells per size. We
notice that a significant proportion of the QuadTree cells are
the not split cells that cover large and low-density areas and
that the frequency for the rest cell sizes is smoothly increasing
as the cell size decreases until reaching the highest frequency
which refer to cells covering an area of 0.61 km2. A snapshot
of the constructed QuadTree is depicted in Fig. 4.

4.3 Spatial Class Summarization

The Spatial Class Summarization component creates sum-
maries for the identified spatial classes based on the location
of their instances. First, it retrieves the list of longitude and
latitude coordinates for each class’ instances (as described
in Sect. 4.2) and then, based on these lists of coordinates, it
constructs and stores summaries for each class that capture
(a) class’ spatial extent by generating its ConvexHull and (b)
class’ spatial distribution by imposing these coordinates on
theQuadTree, according to the process described in Sect. 3.2.

22 The respective SPARQL queries for the rest ontologies are available
at https://github.com/vkopsachilis/WoDSpatialClassRecommender.

Fig. 4 Amagnified viewof theQuadTree overlayed on aBingBaseMap
in the area of Puglia, Italy. Low-density areas are covered by large cells
(e.g., sea) and high-density areas are covered by smaller cells (e.g.,
cities)

4.4 Recommendation Algorithm

The Recommendation Algorithm compares the summaries
of a source class, S, with the summaries of a set of target
classes, T = {T1, T2, . . ., Tn}, to recommend relevant classes
for LinkDiscovery, ranked by their degree of geospatial relat-
edness. The source class S can be selected from the list of
20,640 identified and summarized spatial classes. The set
of target classes consists of the rest identified WoD spatial
classes, so its size is |T | = 20,639 classes. However, T size
is reduced after excluding classes that are provided by the
same dataset as the S class, because we assume that the user
wants to get recommendation for classes that exist in differ-
ent datasets from the source class.We note that one could add
more preferences to the recommendation algorithm, such as
to not recommend classes that are already contain interlinked
instances or classes that are linked with, say, a parent/child
relation, but suggesting an exhaustive list of such preferences
is not the focus of this paper. TheRecommendationAlgorithm
is executed in two phases: the filtering and the ranking phase.

4.4.1 Filtering Classes

The goal of the filtering phase is to rule out “obviously”
irrelevant (to the source class) target classes so as to reduce
the search space and the size of the ranked recommendation
lists. The algorithm implements the following two spatial
filters.

Recall that two classes are not relevant if their spatial
extents are disjoint, so the first spatial filter states that:
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A target class is removed from T, if it’s ConvexHull
does not intersect with the ConvexHull of the source
class

For the implementation of the first spatial filter, we only
utilize the spatial extent class summaries to exclude all tar-
get classes that their ConvexHulls present a null intersection
polygon with the ConvexHull of the source class. However,
even if two classes’ ConvexHulls intersect, it may be the
case that all the instances of the source class are located
far from all the instances of the target class. Since there
are no nearly located instances between the two classes,
we can deduce that the pair is not good candidate to be
recommended. To assess whether two classes contain pairs
of nearly-located instances, we utilize the spatial distribu-
tion summaries, and particularly the number of common
cells. Thus, the general form of the second spatial filter
is:

A target class is removed from T, if its summary has less
than a minimum number of common cells with the summary
of the source class.

The minimum number of common cells is an algorithm
parameter that can be set depending on the user preferences.
A high value removes many target classes from T and results
in smaller lists of recommended classes with fewer irrelevant
classes but increased probability ofmissed relevant classes.A
low value results in larger lists of recommended classes with
more irrelevant classes but reduced probability of missed
relevant classes. For this implementation, we set the mini-
mum number of common cells parameter to two, so classes
with no or just one common cells are removed. In Sect. 5,
we experiment and discuss the impact of this parameter set-
ting.

4.4.2 Ranking Classes

In the ranking phase, the algorithm computes a geospatial
relatedness score between the source class and each of the
remaining target classes and ranks them accordingly. The
score is computed using any of the metrics (defined by the
user) presented in Sect. 3.3. To compute the geospatial relat-
edness score between two classes, S and Ti , the algorithm
calculates: (a) the polygon (I ), that is, the intersection poly-
gon of the source and target class ConvexHulls, (b) the
number of the common cells (C) of the source and tar-
get class summaries, (c) the number of cells of the source
class summary S contained in I , (d) the number of cells
of the target class summary |Ti | contained in I , (e) the
number of the QuadTree cells |Q| contained in I . The exe-
cution flow of the Recommendation Algorithm is presented
below.

Algorithm 2: Recommendation Algorithm
Input: A source class S, a set of target classes

T = T1, T2, ...Tn , the minimum number of common
cells m of the second spatial filter, and the metric M
(one of C, J, O, PD, Phi, PMI, MI)for the calculation
of the geospatial relatedness score between two classes

Output: A ranked list of relevant T classes to S, L
1 begin

/* Filtering Phase */
2 foreach Ti ∈ T do
3 Calculate the intersection polygon Ii of the S and Ti

ConvexHulls ;
4 if Ii == null then
5 Remove Ti from T ;

6 foreach Ti ∈ T do
7 Calculate the number of common cells Ci of S and Ti ;
8 if Ci < m then
9 Remove Ti from T ;

/* Ranking Phase */
10 foreach Ti ∈ T do
11 Calculate the number of S summary cells in Ii (|S|) ;
12 Calculate the number of Ti summary cells in Ii (|Ti |) ;
13 Calculate the number of QuadTree cells in Ii (|Qi |) ;

14 Calculate the geospatial relatedness score Mi by applying
the given metric M for S and Ti and add it to L ;

15 Rank L based on Mi ;
16 return L;

5 Evaluation

5.1 Spatial Classes Characteristics

In this section, we provide insights about the characteristics
of the 20,640 identified and summarized spatial classes that
will be helpful for the formation of the ground truth and the
discussion of the experiment results. First, we examine the
distribution of spatial classes according to their size, that is,
the number of instances they contain. We classify classes
in 7 bins, ranging from small (classes containing less than
50 instances) to large (classes containing more than 50,000
instances). Figure 5a presents the defined bins and the cor-
responding class frequencies and shows that about 78% of
the classes contain less than 200 instances while only 1.31%
contain more than 10,000 instances. Second, we examine the
distribution of the classes according to their summaries size,
that is, the number ofQuadTree cells that each class summary
contains. We classify classes using the same bins as previ-
ously, ranging from small class summaries (containing less
than 50 cells) to large class summaries (containingmore than
50,000 cells). Figure 5b presents the frequencies of classes
according to their summary size and shows that about 81% of
class summaries contain less than 200 cells and less than 1%
of class summaries contain more than 10,000 cells. Notice
that the class summary size distribution resembles the class
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size distribution. A class summary size (number of summary
cells) is equal to the class size (number of instances) if all
class instances are located in different cells and smaller if
some of the class instances are located in the same cells.
Figure 5c presents the distribution of classes according to
the rounded mean number of instances per cell (calculated
as the number of a class instances divided by the number
of its summary cells and rounded to the closest integer) and
shows that the vast majority of classes (about 86%) contain
approximately one instance per QuadTree cell.

Last, we examine the size of classes’ spatial extent, that
is, their convexHulls area in km2. Figure 5d presents the dis-
tribution of classes’ spatial extent classified in 5 bins each
representing an area roughly equal to a common geographi-
cal notion, ranging from small areas, covering medium sized
cities, to large areas, covering the whole world. Most classes
are “global” (about 34%), many classes cover areas approxi-
mately equal to continents, counties and regions (about 20%
each) and only a few classes are “local” (about 2%), cover-
ing small areas such as cities. We conclude, by mentioning
one more observation that we take into account in order to
form our ground truth: Class size (Fig. 5a) and spatial extent
distributions (Fig. 5d) are not strongly correlated (Pearson
Coefficient resulted in 0.30), meaning that the size of a class
does not strongly affect its spatial extent size and vice versa;
thus, in the WoD we meet a variety of spatial classes regard-
ing their characteristics such as classes with few instances
covering the whole earth, classes with many instances cov-
ering small geographical areas and so on.

5.2 Ground Truth

A usual approach to form a gold standard for evaluating
dataset recommenders for Link Discovery performance is
to extract metadata about existing links provided by data
catalogs, such as the LOD [3,4,12] or datahub [8,20,23].
Nevertheless, this approach presents the false positives prob-
lem; i.e., many pairs of datasets that actually contain related
instances are not included in the (usually manually created)
metadata. To overcome this problem, we formed our ground
truth by thoroughly examining a sample of the identified
classes. In order to reduce the bias of the sample, we took
into consideration the spatial class characteristics presented
inSect. 5.1; specifically,we selected randomly20 classes (out
of 20,640) that belong to various: (a) datasets, (b) class size
categories and (c) spatial extent categories, proportionally to
the frequencies listed in Table 3, Fig. 5a, d, respectively. The
selected classes are used in the experiments as source classes,
that is, classes for which we aim to get recommendations and
listed inTable 6 alongwith the dataset they belong, their num-
ber of instances, summary size and spatial extent area. We
note that we excluded classes provided by (English) DBpe-
dia (they represent about 75% of the total identified classes)

in order to avoid forming a sample containing many classes
from a single dataset.

For the annotation of pairs of relevant classes, we had
to examine each one of the 20 classes with the rest of the
identified spatial classes that would require 20 × 20,639 =
412, 870 manual examinations. However, after applying the
spatial filters presented in Sect. 4.4 this number is signifi-
cantly reduced to 2441. We note that the filtering step may
have removed relevant classes from the sample. However,
our results are not affected by this, since we don’t focus on
the recall of themethodology (that is, the effectiveness in rec-
ommending all related classes in theWeb of Data), but on the
effectiveness in recommending precise rankings of relevant
classes. Furthermore, an exhaustive manual examination of
related classes in WoD would be infeasible. The third col-
umn of Table 7 shows the number of remaining classes after
filtering for each source class, that is, the number of manual
examinations for each source class.

To examine whether a pair of classes is relevant (contain
related instances) or not relevant (does not contain related
instances), we manually inspected their contents. Specifi-
cally, we retrieved the instance set of each class (their labels
and point locations) and we search for related instances: two
instances are related if they refer to the same object (e.g.,
the same museum) or to semantically close objects (e.g.,
a university and its campus library). The judgment about
instances relatedness was based on their semantic character-
istics, that is, their labels and class names, and was aided
by the geographic context (by projecting the instances on a
Google basemap using the QGIS software). In this way, we
ensured that instances with the same label are not considered
to be related if they refer to different real-world objects (e.g.,
two different cities with the same name). We also annotate as
relevant a pair of classes, if it contains semantically related
instances with dissimilar spatial distribution (due to wrong
or vague georeference, or not containing inherently station-
ary instances, such as persons). Nevertheless, this was hardly
the case in our sample, because of the filtering phase. The
last column of Table 7 presents the number of the annotated
relevant classes for each source class. As an example of the
manual examination outcome, we provide the list of relevant
classes to the Fjord class (Table 8).23

5.3 Baselines

To evaluate the performance of the proposed spatial-based
measures we set up three simple non-spatial baselines. The
first generates lists of classes randomly ranked. Random
ranking provides an indication of how much the proposed
measures improve the average precision of the ranking in

23 The full ground truth list is available at https://github.com/
vkopsachilis/WoDSpatialClassRecommender.
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http://linkedgeodata.org/ontology/TricycleStation
http://linkedgeodata.org/ontology/Fjord
http://linkedgeodata.org/ontology/Newsstand
http://linkedgeodata.org/ontology/MineralSpring
http://linkedgeodata.org/ontology/GrouseButt
http://ns.ox.ac.uk/namespace/oxpoints/2009/02/owl#Room
http://opendata.caceres.es/def/ontomunicipio#ActividadDeportiva
http://schema.org/PlaceOfWorship
http://schema.org/TouristAttraction
http://schema.org/Festival
http://linkedgeodata.org/ontology/City
http://transport.data.gov.uk/def/naptan/FerryTerminalDockEntrance
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Fig. 5 a Histogram of classes based on number of instances. b Histogram of classes based on summary sizes. c Histogram of classes based on the
rounded mean number of class instances per cell. d Histogram of classes spatial extent

Table 8 Relevant classes for the “http://linkedgeodata.org/ontology/Fjord” class provided from the “Linklion” Dataset

Class Dataset

http://adl-gazetteer.geog.ucsb.edu/ontology/fjord Alexandria Digital Library (ADL) Gazetteer

http://adl-gazetteer.geog.ucsb.edu/ontology/bar_physiographic_ Alexandria Digital Library (ADL) Gazetteer

http://adl-gazetteer.geog.ucsb.edu/ontology/physiographic_feature Alexandria Digital Library (ADL) Gazetteer

http://dbpedia.org/class/yago/Fjord109281104 (W3C Basic Geo) DBPedia

http://dbpedia.org/class/yago/Fjord109281104 (GeoRSS) DBPedia

http://dbpedia.org/class/yago/Inlet109313716 (W3C Basic Geo) DBPedia

http://dbpedia.org/class/yago/Inlet109313716 (GeoRSS) DBPedia

http://linkedgeodata.org/ontology/NaturalThing LinkedGeoData

the specific experiment setting than no ranking at all. The
next two baselines, normalized Levensthein distance and
WordNet-based similarity, generate ranked lists based on the
textual and semantic similarity of class names respectively
andprovide an indication about the performance of the spatial
measures compared with simple non-spatial measures. The
input for these two baselines is the classes’ names, which
are extracted by parsing the last part of their URI, that is,
the part after the last “/” or “#”, and further edited by apply-
ing basic string cleansing, including removal of numbers and
special characters and conversion to lower case. For the cal-
culation of the WordNet-based Similarity between two class
names, we additionally appliedword segmentation and stem-
ming using the PorterStemmer. An example of the class name
extraction procedure for two class URIs is presented in Table
9.

Levensthein distance (LD) is a common string similarity
metric that calculates the number of transformations required
to transform one string to another.We normalize Levensthein
Distance (NLD) by dividing the LD of two strings, s1 and s2
(the cleaned class names) with the length of the larger string.

NLD(s1, s2) = LD(s1, s2)

MaxLength(s1, s2)
(15)

To calculate theWordNet-based similarity score of twowords
we use the WuPalmer similarity [45] implemented in the
WS4J library.24 If class names are phrases, that is, they
includemore thanoneword (e.g., “popul plac in the lesbopre-
fecture”), we calculate their similarity by dividing the sum

24 https://github.com/emir-munoz/ws4j.
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of pairwise word comparisons with the product of the two
phrases size (number of words). If C1 represent the word set
of a class and C2 represent the word set of a second class,
their WordNet-based similarity (WS) is calculated as:

WS =
∑|C1|

i=1

∑|C2|
j=1 WuPalmer(C1i ,C2 j )

|C1||C2| (16)

5.4 Experimental Setup

We evaluate the effectiveness of the proposed geospatial
approach in identifying semantically related classes and in
generating lists of recommended classes to a source class,
where the relevant classes are ranked higher than the irrele-
vant classes. The experiment is setup as follows: We run the
Recommendation Algorithm for each of the 20 source classes
selected in the ground truth. In the filtering phase, we main-
tain the default filters (Sect. 4.4). On Sect. 5.5.1, we evaluate
the reduction of the search space of the filtering step and on
Sect. 5.6 we examine the effect of the minimum number of
common cells parameter of the second spatial filter.

For each source class, we rank the remaining target classes
10 times: each, for the 7 proposed geo-semantic relatedness
measures (common cells (C), Jaccard Index (J ), overlap
coefficient (O), Poisson distribution (PD), Phi coefficient
(Φ), pointwise mutual information (PMI) and mutual infor-
mation (MI)) and for 3 baselines (random ranking (Rnd),
normalized Levensthein distance (NLD), and wordnet-based
similarity (WS)). We, then, evaluate each measure perfor-
mance by calculating themean average precision (MAP) [24]
of its resulted rankings for the 20 source classes. MAP is a
single value indicator of a measure’s effectiveness in produc-
ing rankings where relevant classes are ranked higher than
irrelevant classes and returns scores between 0 and 1 where 0
indicates a poor ranking and 1 a perfect ranking. TheMAP of
each measure is the average of all source classes average pre-
cisions (AP) where AP is the average of the precision values
at each relevant class position in a ranking and is expressed
as follows:

MAP =
∑N

s=0 AP(s)

N
where AP(s) =

∑n
k=1 (P(k)Rel(k))

Sr
(17)

s refers to a source class, N is the number of the total
source classes (in this experiment 20), Sr is the number of
total relevant classes to a source class, k represents a position
in the ranking list, P(k) the precision at k position and Rel(k)
is a flag equal to 1 when the class at k position is relevant and
0 otherwise.
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Fig. 6 Recommendation lists
precisions for each source class.
The numbers on the horizontal
axis refer to the serial number
(SN) of the source classes listed
in Table 7

5.5 Results

5.5.1 Filtering Phase

In the filtering phase, theRecommendationAlgorithm applies
spatial filters to remove non-geospatially related classes from
subsequent calculations, reducing thus the search space for
relevant classes and the size of the recommendation lists.
Using the default filter settings, it removes, on average for
each source class, 20,516 classes (99.4% of the total num-
ber of identified WoD classes) and thus it reduces the search
space (and the size of the recommendation lists), on aver-
age for each source class, to 123 classes (0.6% of the initial
pool of target classes). According to the ground truth (Table
7), on average for each source class, 21% of the remain-
ing classes after filtering were annotated as relevant classes;
therefore, the precision of each recommendation list is, on
average for each source class, 0.21. Figure 6 presents the
precision of each source class recommendation list, calcu-
lated as the number of relevant classes divided by the number
of the remaining target classes after filtering. The precision
of the recommendation list for the GrouseButt class (num-
ber 13) precision is 0 since no relevant classes found in the
ground truth. The precision for the Festival class (number
18) is 1, that is, all remaining classes after filtering are rel-
evant, which means that all classes that their spatial extent
intersects and their summaries have two or more common
cells with the Festival class, contain related instances. This
can be explained by taking into account the characteristics
of the Festival class, presented in Table 6. Festival is a very
small class regarding its size (it contains 18 instances) and a
very large class regarding its spatial extend (its instances are
distributed all over the world), and therefore a coincidence of
their instances in two or more common cells is an indication
that the classes are related.

5.5.2 Ranking Phase

The goal of the ranking phase is to rank the remaining (after
the filtering phase) classes, so as relevant classes are posi-
tioned higher than the irrelevant classes. The ranking order is
determined by the relatedness scores between the source and
each of the target classes calculated by one of the proposed
measures. Table 10 presents the average precisions (AP) of
the ranked lists for each source class and for each of the seven
spatial measures and the three baselines. The last row shows
the Mean average precision (MAP) value for each measure.
The bold underlined scores indicate the highest values for
each source class and measure. If, for a given measure, the
score of two target classes is the same, their ranking order
is resolved by their scores on the other measures with the
following order: (a) PD, (b) PMI, (c) Phi, and (d) Rnd for
a spatial measure and (a) NLD, (b) WS and (c) Rnd for a
baseline measure.

Table 10 shows that AP is the same regardless the applied
measure for two source classes: the Festival class where all
classes in the ranked list are relevant (so all metrics achieve
AP equal to 1) and theGrousButt class where there are no rel-
evant classes (so all metrics achieve AP equal to 0). Random
ranking MAP equals to 0.30 that means that the most effec-
tive measure, PD (Poisson Distribution Probability) with
0.62 MAP, improve rankings more than 100% compared to
not ranking at all. Also, PD outperforms the more effective
baseline, NLD (Normalized Levensthein Distance) with 0.46
MAP, approximately by 35%. All spatial measures are more
effective for ranking relevant classes compared to the simple
textual or semantic baselines,which is an indication about the
effectiveness of the spatial approach compared to non-spatial
approaches.

Table 10 shows that all spatial measures perform worse
than random ranking for one class, NewsStand, while
for two classes, FerryTerminalDockEntrance and Miner-
alSpring, some spatial measures perform equal or worse
to random ranking. Normalized Levensthein Distance, and
Wordnet-Based Similarity perform better than spatial mea-
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Table 10 Average precision for each source class and measure and mean average precision for each measure

SN Class Spatial measures Baselines (with spatial filtering)
C J O Phi PD PMI MI Rnd NLD WS

1 Q44613 0.88 0.89 0.71 0.82 0.92 0.88 0.74 0.57 0.62 0.59

2 PopulatedPlacesInTheLesbosPrefecture 0.74 0.98 0.93 0.93 0.93 0.93 0.93 0.58 0.25 0.28

3 Library 0.54 0.69 0.63 0.66 0.78 0.74 0.62 0.19 0.54 0.55

4 Locomotive 0.79 0.96 0.79 0.95 0.89 0.95 0.89 0.33 0.38 0.38

5 Organ 0.48 0.34 0.29 0.33 0.42 0.48 0.32 0.23 0.12 0.13

6 IndependentSchoolType_Music 0.62 0.86 0.68 0.82 0.88 0.88 0.72 0.42 0.63 0.29

7 subdivisions 0.06 0.11 1.00 0.31 0.58 1.00 0.09 0.06 0.03 0.03

8 ChurchHall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.02 1.00 1.00

9 TricycleStation 0.30 0.30 0.30 0.29 0.30 0.11 0.30 0.04 0.57 0.27

10 Fjord 0.57 0.61 0.35 0.60 0.67 0.23 0.67 0.09 0.53 0.67

11 Newsstand 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.50 1.00 0.02

12 MineralSpring 1.00 1.00 0.83 0.83 1.00 0.83 1.00 0.83 0.83 0.67

13 GrouseButt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14 Room 0.37 0.39 0.56 0.73 0.68 0.53 0.57 0.16 0.23 0.29

15 ActividadDeportiva 0.52 0.78 0.49 0.76 0.83 0.71 0.69 0.27 0.62 0.56

16 PlaceOfWorship 0.59 0.48 0.67 0.57 0.59 0.55 0.57 0.32 0.24 0.24

17 TouristAttraction 0.38 0.32 0.66 0.47 0.59 0.72 0.45 0.26 0.27 0.35

18 Festival 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

19 City 0.15 0.25 0.19 0.25 0.22 0.23 0.25 0.12 0.23 0.41

20 FerryTerminalDockEntrance 0.09 0.13 0.07 0.12 0.16 0.19 0.11 0.11 0.10 0.13

MAP (Mean average precision) 0.51 0.56 0.56 0.59 0.62 0.60 0.55 0.30 0.46 0.39

sures for three classes: TricycleStation, Newsstand and City.
Spatial measures underperform for classes that contain large
real world objects, for instance, the City class, because the
summarization of instances on the QuadTree fails to index
related instances in the same cells. In such cases, different
providers may choose far locations for georeferencing the
same instance. For example, in one dataset the point of a city
maycorrespond to the locationof the townhall andonanother
dataset to the city’s polygon centroid. Spatial measures per-
form better than baselines for 13 source classes and are more
effective when relevant classes have different class names
(for example, many relevant classes to the Locomotive class
have names such as TramStop, Railing and Mean of Trans-
portation, which achieve low scores in the baseline metrics).
Table 10 reveals that the top 3 performing ranking measures
are PD (Poisson Distribution Probability), PMI (pointwise
mutual information) and Phi (Phi coefficient). These mea-
sures are also the more stable, since they achieve very low
average precision (below 0.3) fewer times compared to the
others measures: PD achieves very lowAP for 3 classes, PMI
for 5 and Φ for 4. Also, PD and PMI achieve higher AP the
most times, for 7 and 6 source classes respectively. An exam-
ple of the recommendation algorithm output is presented in
Table 11 that includes the Top 20 (of the total 89) recom-
mended classes to the “Fjord” class ranked according to the

PD (Poisson distribution probability) score. Note that the last
relevant class (out of 8 total) ranked at the 15th place.

Next, we examine the average precision of each measure
at various recall points (Fig. 7) by interpolating the average
precision at 11 recall points (0, 0.1, 0.2, …, 1) [24] for each
source class and calculating the average of each recall point
for the 20 source classes. Figure 7 shows that PD and PMI are
the most effective measures at all recall points. It also shows,
that all spatial measures achieve higher average precisions
at all recall points compared to the NLD and WS baselines,
and to the random ranking, which performs much worse at
all recall points.

We note that the above MAP values for the baseline mea-
sures are affected by the number of the remaining classes after
the spatial filtering step. In a slightly different experiment set-
ting, we calculate the MAP (mean average precision) of the
baselines, based on the same ground truth, without applying
spatial filters, thus the ranked lists of recommended classes
are comprised of all WoD classes minus the classes from
the same dataset with the source class. In this setting, the
MAP for random ranking, NLD and WS reduced to 0.002,
0.08 and 0.06 respectively because it was estimated on lists
comprised of approximately 20,640 classes for each source
class (instead of on average 123 classes after applying spatial
filtering). This finding strengthens our argument that spatial
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Table 11 Top 20 recommended classes for the Fjord class, ranked based on PD metric values

Rank Class Dataset PD

1 http://linkedgeodata.org/ontology/NaturalThing LinkedGeoData 0

2 http://adl-gazetteer.geog.ucsb.edu/ontology/fjord ADL Gazetteer 0

3 http://adl-gazetteer.geog.ucsb.edu/ontology/physiographic_feature ADL Gazetteer 0

4 http://adl-gazetteer.geog.ucsb.edu/ontology/valley ADL Gazetteer 0

5 http://adl-gazetteer.geog.ucsb.edu/ontology/cape ADL Gazetteer 0

6 http://linkedgeodata.org/ontology/Farm LinkedGeoData 5.55E−16

7 http://adl-gazetteer.geog.ucsb.edu/ontology/mountain_summit ADL Gazetteer 2.85E−12

8 http://adl-gazetteer.geog.ucsb.edu/ontology/reef ADL Gazetteer 7.18E−09

9 http://linkedgeodata.org/ontology/Ruins LinkedGeoData 1.36E−08

10 http://dbpedia.org/class/yago/Fjord109281104(W3CBasicGeo) DBpedia 5.29E−07

11 http://dbpedia.org/class/yago/Inlet109313716(W3CBasicGeo) DBpedia 5.29E−07

12 http://adl-gazetteer.geog.ucsb.edu/ontology/cliff ADL Gazetteer 5.61E−07

13 http://dbpedia.org/class/yago/Inlet109313716 (GeoRSS) DBpedia 9.40E−07

14 http://dbpedia.org/class/yago/Fjord109281104 (GeoRSS) DBpedia 9.40E−07

15 http://adl-gazetteer.geog.ucsb.edu/ontology/bar_physiographic_ ADL Gazetteer 1.66E−06

16 http://adl-gazetteer.geog.ucsb.edu/ontology/gap ADL Gazetteer 2.16E−06

17 http://www.geonames.org/ontology#V LinkedGeoData 3.72E−06

18 http://dbpedia.org/class/yago/Bay109215664 (W3C Basic Geo) DBpedia 1.09E−05

19 http://dbpedia.org/class/yago/Bay109215664 (GeoRSS) DBpedia 1.09E−05

20 http://adl-gazetteer.geog.ucsb.edu/ontology/shrubland ADL Gazetteer 1.18E−05

Classes in bold are the ground truth relevant classes

Fig. 7 Eleven recall points interpolated average precision for all measures. The horizantal axis contains the 11 recall point and the vertical axis the
corresponding precision levels
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information can be effectively used for recommending rel-
evant WoD classes for Link Discovery; more importantly,
highlights the importance of spatial filtering that significantly
reduces the search space for relevant classes, while at the
same time ensures that the subsequent ranking phase gener-
ate high precision recommendation lists.

5.6 Spatial Filtering Parameter

In Sect. 5.5.1, we presented the search space reduction, the
size of the recommendation lists and the recommendation
lists precision when the minimum number of common cells
parameter of the second spatial filter is set to two. Table
12 summarizes the respective values for different minimum
number of common cells settings. Setting lower parameter
values (for example, removing classes with less than one
common cells, that is, classes that do not have any com-
mon cells), results in bigger recommendation lists where
more irrelevant classes are included (lower precision) but
with decreased probability of removing relevant classes. On
the contrary, providing higher parameter values (for exam-
ple, removing classes with less than three common cells),
results in smaller recommendation lists where less irrelevant
classes are included (highest precision) but with increased
probability of removing some relevant classes.

6 Discussion

To the best of our knowledge, this work is the first that
exploits spatial information to recommend Web of Data
classes for link discovery. We built on the hypothesis that
pairs of classes with similar spatial distribution are more
related than pairs of classes with dissimilar spatial distri-
bution, in the sense that the former are more likely to contain
semantically related instances. To support our hypothe-
sis, we presented methods that summarize spatial classes
and measure the degree of geospatial relatedness between
classes.Recommended classes forLinkDiscovery are ranked
according their degree of geospatial relatedness with the
source class. Our evaluation results validate our hypothesis
that geospatially related classes contain semantically related
instances, and indicate that the proposed methods can pro-
vide high quality recommendations. Specifically, geospatial
relatedness measures achieve mean average precision up to
62%, when simple baselines based on the textual and seman-
tic similarity of class names achieve MAP up to 46% for
ranking a set of classes formed after applying spatial filter-
ing. A strong feature of the geospatial approach, which is
not possible without exploiting the geospatial information in
datasets, is the spatial filtering that reduces effectively and
efficiently the search space for relevant classes (about 99%)

by removing classes with not overlapping spatial extent and
with few pairs of nearly located instances.

Each dataset recommendation approach, discussed in
Sect. 2.1, can capture different aspects of datasets related-
ness. A contribution of the geospatial approach is that it
examines the topological relatedness of classes, which is
ignored by the other approaches; so, it can reveal relevant
classes described in different languages or classes that con-
tain instances related not only with sameAs links. Some
examples from our experiments include the reccomendation
of aUniversities and aLibraries class, anOrgan and aChurch
class, and a TouristAtrraction and aPark class. The proposed
geospatial approach is less effective than other approaches
when instances are vaguely or erroneous georeferenced; for
example, when classes contain large area real-world objects,
such as cities, which are represented as points, the spatial
approach is less effective in identifying their spatial distribu-
tion similarity.

In this work, we focused on presenting the building blocks
of an effective spatially enabled recommendation process,
leaving for future work aspects such as performance opti-
mization and experiments about the associated storage and
complexity cost. This paragraph sketches some issues that
should be taken into account. First, the main computa-
tional burden of our approach refers to the generation of the
QuadTree and the creation of the summaries for all WoD
classes. Roughly estimated, the execution of the QuadTree
construction algorithm and the class summarization compo-
nent for the 20,640 classes, in a single AMD 64-bit Windows
of 6GB RAM machine, requires about a week each. On the
positive side, both are executed once and offline, so there are
no runtime overheads. Runtime costs are associated with the
execution of the Recommendation Algorithm, which com-
pares a class with the rest WoD classes. However, runtime
costs are reduced because of the spatial filtering phase, which
rules out a large number of irrelevant classes; thus, sub-
sequent calculations, that is, the calculation of geospatial
relatedness score between classes, are performed for only
a small subset of the total WoD classes. Moreover, geospa-
tial relatedness score calculations are performed on class
summary sets (that is, sets of cell IDs), which is much
more efficient than calculating class similarity based on
distances (e.g., Euclidean) between the exact locations of
class instances. The execution time of the Recommendation
Algorithm depends on the remaining after filtering classes’
number and sizes, and, roughly estimated, on the above-
describedmachine, varies from few seconds to someminutes.

For the calculation of a geospatial relatedness score
between classes, we proposed seven measures that com-
pare class summary sets, including the common cells (C),
Jaccard Index (J ), overlap coefficient (O), Poisson distribu-
tion probability (PD), pointwise mutual information (PMI),
mutual information (MI), and Phi coefficient (φ). Overall, the
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Table 12 Mean number of
recommended classes, search
space reduction and
recommendation lists precision
(on average) for different
minimum number of common
cells parameter values

Minimum number of common cells Mean number
of recommended
classes

Search space
reduction (%)

Recommendation
lists precision

1 290 98.6 0.16

2 123 99.4 0.21

3 78 99.6 0.27

4 56 99.7 0.33

most effective measures are the “probability-based” PD and
PMI . However, each measure generates different rankings
for each source class and additionally, for different sources
classes, different measures perform better (for example, PMI
performs better for the subdivision class while PD performs
better for the Fjord class). Therefore, the effectiveness of the
Recommendation Algorithm can be further enhanced if the
generated rankings are the outcome of the combination of
two or more measures.

A limitation of the geospatial approach is that it can be
applied only on datasets that contain georeferenced point
instances. However, the number of WoD datasets is grow-
ing and many datasets contain geographically grounded but
not georeferenced instances that can be geo-annotated [29].
Moreover, our approach can support other geometry types
(i.e., lines andpolygons)withminor changes. Thus, a geospa-
tial approach can be still applied for a significant amount
of WoD datasets and classes. In this work, we identified
54 datasets that contain spatial instances and 20,640 spa-
tial classes by parsing only SPARQL Endpoints excluding
datasets provided through other means (e.g., RDF files).

7 FutureWork and Conclusion

As previously noted, further work needs to be done for
the performance optimization of the QuadTree construction
algorithm that will include the study of the effect of dif-
ferent parameter settings (e.g., number of classes allowed
for triggering a cell split) and experiments on the associated
maintenance and complexity costs. Another next step would
be to integrate all (or the most effective) spatial measures in
a single model (for example, a linear model or a supervised
classification model) that would produce enhanced recom-
mendation lists. Finally, a possible future work will examine
in depth the strengths and weaknesses of each dataset rec-
ommendation approach (i.e., keyword, graph, linkage and
spatial) aiming at the implementation of a dataset recom-
mender that will use complementary the above-mentioned
approaches in order to improve its overall effectiveness.

To conclude, classes with similar spatial distribution is
likely to contain semantically related instances and there-
fore are relevant for recommending them for LinkDiscovery.

The presented methods, which summarize classes spatial
extent (ConvexHull) and spatial distribution (based on a
QuadTree) and measure a degree of geospatial relatedness
between classes, support this hypothesis and provide high
quality ranked lists of recommended classes (up to 62%mean
average precision). Moreover, the search space for relevant
classes can be reduced up to 99% by applying simple spatial
filters. Therefore, the exploitation of the geospatial informa-
tion in Web of Data datasets can be regarded as a valuable
contributor in the dataset recommendation for the Link Dis-
covery domain.
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