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In this paper, we focus the attention on the operator placement problem in Wireless
Sensor Networks (WSN). This problem is very relevant for in-network query processing over
WSN, where query routing trees are decomposed into three sub-components that must be
processed at query time, namely operator tree, operator placement assignment scheme and
routing scheme. In particular, the operator placement assignment defines on which node of
the network each (query) operator will be hosted and executed. Hence, operator placement
plays a key role in the context of query optimization issues in WSN research. In line with
this main motivation, in this paper we present an optimal distributed algorithm to adapt
the placement of a single operator in high communication cost networks, such as a wireless
sensor network. Our parameter-free algorithm finds the optimal node to host the operator
with minimum communication cost overhead. Three techniques, proposed here, make this
feature possible: (1) identifying the special, and most frequent case, where no flooding
is needed, otherwise (2) limitation of the neighborhood to be flooded and (3) variable
speed flooding and eves-dropping. When no flooding is needed the communication cost
overhead for adapting the operator placement is negligible. In addition, our algorithm
does not require any extra communication cost while the query is executed. In our
experiments we show that for the rest of cases our algorithm saves 30%–85% of the energy
compared to previously proposed techniques. To our knowledge this is the first optimal
and distributed algorithm to solve the 1-median (Fermat node) problem. A comprehensive
experimental evaluation and the proposal of two solutions that are capable of dealing with
adaptive properties of the operator placement problem, which is an innovative perspective
of research in this scientific field, represent two further contributions of our research.

© 2012 Published by Elsevier Inc.

1. Introduction

1.1. Overview and motivations

Information is valuable and most technology applications invest in extracting valuable information from detailed readings
or input data. This is done using queries on data. The optimization of query processing has been a significant topic of the
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Fig. 1. (a) A wireless sensor network with a querying node and (b) a possible Query Routing Tree.

Fig. 2. Green nodes represent nodes that store data needed to answer a query Q . (a) An example of a universal query and (b) an example of a subset query.
(For interpretation of the reference to color in this figure legend, the reader is referred to the web version of this article.)

research community throughout the years as it allows to optimize objective functions that are vital to the efficiency of
applications.

Wireless Sensor Networks (WSN) are deployed to understand the physical world at a high fidelity using the numerous
readings from the sensors. Monitoring and controlling high performance office buildings is an example of a WSN application
of great interest to the industry (Fig. 3). A wireless sensor network is deployed throughout the building using various sensor
nodes, including light, particle, motion, temperature, humidity, RFID, camera and other sensors. The data collected can be
used to improve the Indoor Environmental Quality of the office space while minimizing the energy consumption of the
building. This WSN application will be used throughout the paper as a motivational example where various queries need to
be optimized.

An important objective function to optimize in WSN is the network lifetime. In WSN the transmission of data consumes
the most energy [26]. The foremost goal when optimizing query processing is to minimize the communication cost. We
propose techniques specifically designed for various query types that will minimize data transfers during query execution.

Various queries can be injected to the wireless sensor network of our high performance building application. Queries are
answered by constructing a Query Routing Tree (QRT) that determines how data will be routed through the network and
where it will be processed. Using sophisticated query routing trees the query execution can be optimized according to the
given objective function. Two are the main tasks for a sophisticated QRT: constructing a QRT and adapting a QRT to changes
in the network. We will present existing work and new techniques that efficiently complete both tasks. An example of a
query routing tree can be seen in Fig. 1.

To better study the possible optimization of a query routing tree we distinguish between two major types of queries:
universal and subset queries. Universal queries need data from all the nodes of the network to be answered and usually
involve a single aggregational operator that is applied to all the data sources. Subset queries only need data from a subset of
nodes and can involve various operators applied on different pairs/groups of data sources. A visual example of such queries
inside a sensor network can be seen in Fig. 2.

Consider the high performance building application (Fig. 3) and the need to look for association rules between the
different reading of the sensor nodes regarding possible light energy savings. In this example query we would like to stream
data from all the nodes in the network to a sink and process the readings there. This would be a universal query. It would
be a snapshot universal query if we just need the current readings that are stored at each node, i.e. take a snapshot of the
current readings in the network. A continuous query is if we need the readings over several epochs of new readings and



G. Chatzimilioudis et al. / Journal of Computer and System Sciences 79 (2013) 349–368 351
Fig. 3. An application example: Office building wireless sensor setup for monitoring Indoor Environmental Quality in respect to energy consumed by the
building.

transmission. In such case there can be some universal aggregation or compression operator that can be applied on the data
at every node where two data streams meet.

Universal queries are optimized mainly by balancing the data load or the node degree among the QRT nodes. Balancing
data load lets nodes share energy consumption equally and thus increases network lifetime. Balancing the degree among
the QRT nodes minimizes the chances of collision between data packet which requires the retransmission of the collided
packets.

An instance of subset queries is “Find the employees that were at room A, B and C”. Such a query is needed to identify
employee habits in order to make the workplace more productive by optimizing equipment and workstation arrangement
and floor planning. Similarly this query could be a snapshot query or a continuous, long-running query. In this example the
operator defined by the query is the intersection operator on the employee ID readings of the sensors responsible for rooms
A, B and C.

Subset queries have a greater potential for optimization. A query routing tree can be broken down into an operator
tree, an operator placement assignment and a routing scheme. The operator tree defines the order in which the operators
will be applied to the data and how the results will be pipelined from one operator to the other. The operator placement
assignment defines on which node of the network each operator will be hosted and executed. The routing defines how data
will be routed from a data source to an operator node, from an operator node to another operator node or to the sink.
Depending on the operators defined by a subset query all of the above can be optimized resulting in significant energy
savings.

The duration of a query also plays a significant role in the optimization techniques that can be used. Snapshot queries,
that are only executed instantaneously, need a good query tree construction algorithm since the QRT is going to be used
only once. Continuous queries are executed over several epochs, during which data and the network can change resulting
in degradation of the QRT efficiency. The longer the query needs to be executed the more query tree adaptation is more
important than a good initial tree construction algorithm.

Among the mentioned sub-components of a query routing tree, the operator placement assignment problem is, without
doubts, the most important one, and a lot of attention has been devoted to so-called operator placement operators for
WSN. This is due to the fact that, very often, network applications perform in-network query processing for efficiency
purposes. Sensor networks are being deployed in the physical or urban environment to benefit scientific research or security
surveillance. Another example of a query in a network (similar to the previous one on the high performance building
application), which is monitoring traffic in a busy downtown area, could be “How many cars took the same route of passing
through intersections A, B and C?”. To avoid the cost of communicating all the data lists from the nodes in regions A, B
and C to the querying node, the query must be executed in-network. Data lists generated on the source nodes are fed into
operators on intermediate nodes that combine several lists from different sources. The amount of data is reduced due to
the selectivity of the operators and the data that reaches the querying node is the final answer.

An operator, that is involved in the in-network processing, can be placed on a node of the network. It takes in elements
from source nodes, processes them, and sends the output to either another operator node or to the sink. Shipping elements
over an edge in the graph imposes a cost that is dependent on the weight of the elements. Therefore, the placement of an
operator can greatly affect the cost of answering a query since it affects the number of edges the elements have to travel
over and the weight of the elements, since usually the output weight is not the sum of the input weights.

It is typical to have continuous queries that require an answer over a continuous period of epochs. In most applications
the sources and operators are not producing the same weight of elements in every epoch. Similarly, nodes in the network
might be mobile resulting in different hop-distances between nodes in every epoch. Therefore, the initial operator placement
might not be good enough for future epochs. It is a large overhead to re-run the algorithms for finding a good placement
for the operators of the query. Instead, the technique followed in literature is to update the placement of just the operators
that are affected by the weight change in order to keep the cost of query execution in the next epoch to a minimum. This
operator placement update needs to be done with the least amount of communication cost overhead possible.
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Fig. 4. Example of optimal operator placement: (a) Data flow during query execution before the operator placement is optimized, and (b) data flow during
query execution after the operator placement is optimized. The Fermat node is an external node. The cost represents the cost of our objective function, not
the actual communication cost. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 5. Example of optimal operator placement: (a) Data flow during query execution before the operator placement is optimized, and (b) data flow during
query execution after the operator placement is optimized. The Fermat node is a datanode. The cost represents the cost of our objective function, not the
actual communication cost.

In Figs. 4 and 5 let the nodes s1, s2 and q be the sources and the sink (henceforth called altogether datanodes) that
send/receive data from the binary operator hosted at node h. Let wi be the weight of the data to be sent from node ni .
We can see that by picking the right node to host the operator with the right distances from the datanodes, we can
reduce the objective function for the communication cost of executing the query (difference between Figs. 4(a), 5(a) and
4(b), 5(b)). Depending on the data loads and the path lengths, the optimal node to place the operator can be either an
external node (Fig. 4), or one of the datanodes, i.e. a source or sink (Fig. 5). Our algorithm finds the optimal new placement
for an operator while creating far less communication cost overhead than previous work. Note that we do not assume
that the communication cost can be computed by summing the data-load sent over each link. We just use this as an
objective function to estimate the actual communication cost. In our experiments we use a more accurate model for the
communication cost.

Especially in high communication-cost applications minimizing the communication cost is the key issue. High communi-
cation cost networks play an important role in real world applications, as much as they do in research. The communication
cost can be posed by monetary, temporal, resource or energy demands. As an example of a high communication cost net-
work we will use a wireless sensor network throughout the paper. Wireless sensors have very limited energy resources. The
task that has by far the highest demand in energy on a wireless sensor is the transmission and reception of data. Thus, the
cost to pay for communicating is in form of energy. Minimizing the total energy consumed makes the whole network more
energy sufficient, and minimizing the maximum energy consumption per node increases the network’s lifetime.

1.2. Contributions of our research

Our distributed Fermat node search algorithm (dFNS) achieves two goals: finding the best node to place an operator and
minimize communication cost doing so. To achieve this it (1) identifies the special case where no flooding is needed, (2) if
flooding is needed, it minimizes the flooding radius, and (3) uses variable speed flooding and eves-dropping. Our algorithm
is parameter-free, decentralized, optimal and outperforms previously proposed methods in minimizing communication cost
overhead.

As shown in our experiments, there is a high chance (56%–85%) that the optimal node to place the operator is a datanode
(source or sink), like in the example of Fig. 5. Such a case can be identified by our algorithm and the operator is simply
placed on the optimal datanode without any further communication cost to find the optimal operator node.

In any other case, dFNS finds the optimal operator node (Fermat node) by extending a flood from each of the datanodes.
We generate a set of possible distance combinations that the new hosting node can have to produce a smaller hosting cost.
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Using these candidate distance combinations dFNS calculates the minimum possible radius for each flood, guaranteeing that
the nodes that participate are kept to a minimum without compromising the optimality of the algorithm.

We adapt our proposed algorithm to existing work in WSN. Using an existing framework for answering multi-predicate
snapshot queries, we extend the framework to deal with continuous queries. The framework answers continuous queries in
epochs and adapts the operator placement to data load changes. In our experimental evaluation we compare against the
only other existing distributed algorithm for operator placement updates and show that using our proposed algorithm we
can save 30%–80% of the communication cost overhead.

In addition to this, we further extend the proposed framework as to deal with other important aspects of the operator
placement problem in adaptive environments. In particular, we find there is still better optimization techniques needed
for adapting the placement of multiple operators in a continuous subset query and propose a better algorithm. There is
also no technique proposed so far to adapt an operator tree of commutative operators. We propose the first technique to
adapt an operator tree in a distributed fashion that also incorporates operator placement. These extensions are significant
contributions of our research as well.

1.3. Paper organization

The remaining part of the paper is organized as follows. In Section 2, we formalize our system model and the basic
terminology that will be utilized in the subsequent sections, and we give formal definitions and proposition that we use in
our algorithms. In Section 3, we present previous work related to our research. We formulate our problem definition and
preliminary annotation in Section 4 to be able to describe our algorithm in detail in Section 5. In Section 6 the framework
in which our algorithm is implemented is described and in Section 7 we present our thorough experimental evaluation
that shows the efficiency of our algorithm. Furthermore, in Section 8 we provide meaningfully extensions of our framework,
mainly devoted to deal with adaptive properties of the operator placement problems. Finally, in Section 9 we provide
conclusions and future work of our research.

2. Formal definitions and system model

Let V denote a set of n sensing devices {v1, v2, . . . , vn}. Assume that vi (i � n) is able to acquire m physical attributes
{a1,a2, . . . ,am} from its environment at every discrete time instance t . This generates at each t and for each vi (i � n) one
tuple of the form {t,a1,a2, . . . ,am}. This scenario conceptually yields an n × m matrix of readings X := (vij)n×m for each
timestamp. This matrix is horizontally fragmented across the n sensing devices (i.e., row i contains the readings of sensor
vi and X = ⋃

i∈n Xi). Now let G = (V , E) denote the network graph that represents the implicit network edges E of the
sensors in V . The edges in E are implicit, because there is no explicit connection between adjacent nodes, but nodes are
considered neighbors if they are within communication range R (i.e., a fundamental assumption underlying the operation
of a radio network).

A user can run queries on a WSN. WSN can be viewed as a network of tiny distributed databases and queries can be posed
through a node of the network. To answer a query, data generated by the sensors needs to be collected and processed. The
processing is done centralized on the basestation or distributed on the nodes of the network (in-network processing). We
assume that nodes can pose queries over the sensor network. The sensor node that issues the query Q is called querying
node and is denoted as q. We will use the terms querying node and sink interchangeably throughout this work.

For simplicity let us adopt a declarative SQL-like syntax (similarly to [21,33]) to express the ideas presented in this work
in brevity. For instance, the following query declares that each sensing device should recursively collect the node identifier
and the temperature from its children every 31 seconds and communicate the results to the sink.
SELECT nodeid, temp
FROM sensors
EPOCH DURATION 31 seconds

Note that our model also supports continuous aggregate queries. For instance, the following query declares that each
sensing device should aggregate the average light measurement for each room from its children every 31 seconds and
communicate the results to the sink.
SELECT roomid, AVG(light)
FROM sensors
GROUP BY roomid
EPOCH DURATION 31 seconds

Continuous queries are answered in consecutive data acquisition rounds called epochs. An epoch is a small time period
in which the query is answered once, like a snapshot query. A user specifies a continuous query Q to be evaluated once
during the interval of an epoch (denoted as e), which is the time interval after which each si (i � n) will re-compute Q .

Assuming that the nodes have a restricted communication range data will have to travel over a multi-hop path toward
the querying node. In this case a routing tree T is created connecting every node over a multi-hop path with the sink. The
querying node q is the root of this tree and receives the information needed to answer the query. We will denote as dv the
depth of v in this tree.
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In order to process queries efficiently over a WSN, sensors need to be organized in a query routing tree T . A query routing
tree is an acyclic subset of the communication graph G (i.e., a spanning tree) which is denoted as T = (V ′, E ′), where
V ′ ⊆ V and E ′ ⊆ E . T can be constructed based on query semantics, power consumption, remaining energy and others.
A query routing tree provides each sensor with a path over which query answers can be transmitted to the querying node
and allows for waking window and data reduction techniques to optimize the energy consumption in the network. An
epoch can use the same query tree T as the previous epoch and save the overhead of tree construction. Otherwise, it can
be deemed more efficient to reconstruct or adapt the query tree for the new epoch.

Energy expenditure in data communication is far greater compared to data processing. The example described in [26],
effectively illustrates this disparity. Mixers, frequency synthesizers, voltage control oscillators, phase locked loops (PLL) and
power amplifiers, all consume valuable power in the transceiver circuitry. This involves both data transmission and reception.
It can be shown that for short-range communication with low radiation power (∼ 0 dbm), transmission and reception
energy costs are nearly the same.

In [27], the authors present a formulation for the radio power consumption (Pc) as

Pc = NT
(

P T (Ton + Tst) + Pout ∗ Ton
) + NR

(
P R(Ron + Rst)

)

where P T /P R is the power consumed by the transmitter/receiver; Pout , the output power of the transmitter; Ton/Ron , the
transmitter/receiver on time; Tst/Rst , the transmitter/receiver start-up time; and NT /NR , the number of times transmit-
ter/receiver is switched on per unit time, which depends on the task and medium access control (MAC) scheme used. We
can further say that Ton = L/R , where L is the packet size and R the data rate.

3. Related work

There is existing work that can be used or be adapted to solve most of the query types presented (e.g., [9]). We will
present previous work categorized according to the types of queries they optimize. First we present techniques that can be
used to optimize universal queries and expose their strengths and drawbacks. Then we present techniques that optimize
snapshot and continuous subset queries. Finally, we will focus the attention on operator placement literature, the main
context of our research.

To answer universal queries we need to acquire data from all the nodes of the network in order to compute the answer.
These are queries that perform a common operation on all the data. Optimizing universal queries has been tackled with
two different methods. There are works that aim at balancing the workload among nodes in an effort to minimizing the
maximum energy consumption per node [32]. These works create a query routing tree that balances the workload among
nodes in order to distributed the energy consumption evenly. For continuous universal queries that need adaptation, the
works propose some simple mechanisms to maintain a good workload balance in the query routing tree. These works
also have a simple way of adapting to data/network change using information acquired during the tree construction. The
candidate parents are stored and whenever a change occurs it is easy to connect to a different parent keeping the objective
function optimized.

The other method for optimizing universal queries used in literature is balancing the degree among nodes in an effort
to minimize the packet collisions during query execution [3,7]. These works construct a query routing tree that balances
the children among parents. It has been shown by Andreou et al. [3] that this leads to reduced collisions in the wireless
channel. Similarly, when adaptation is needed due to network or data changes both works use the information acquired
during tree construction to keep their objective function optimized. Other approaches propose to provide topology control
over the WSN for query optimization purposes (e.g., [10]).

To answer subset queries we need to acquire data from a specific regions of the network. These queries are also known as
multi-predicate queries [16]. The computation of the answer usually involves specific operators among different region data.
The operators to be used are defined by the query. Queries can have commutative and non-commutative k-ary operators.
If all operators are commutative, then query execution can be optimized by defining the right operator tree. An operator
tree is a tree that determines the sequence of the operators, and how their inputs and outputs are pipelined. If a query has
non-commutative operators then the operator tree is defined by the query.

Data acquisition inside a region can be seen as a local universal query and region data can be collected on one represen-
tative node for each region. Advantages for this technique are shown in works like [30,35]. These works propose techniques
on how to choose representative and adapt in order to maximize lifetime. Doing the data acquisition inside a region can
be optimized using the universal query optimization literature presented above. Subset queries can be seen as queries that
need data from a subset of nodes that are representatives of their region.

A query routing tree for subset queries can be broken down into an operator tree, an operator placement assignment,
and a routing algorithm. Optimizations can be done in all three parts. There is work optimizing one or two parts at a time.
As far as routing goes there is work like [17,13] that focus on optimizing routing in order to achieve energy savings while
answering subset queries and placing operators opportunistically, when there is a need for adaptation due to network or
data changes.

Works that do not focus on routing, including this one, regard routing as a separate part from query tree construction
or assume optimal shortest-path routing. Work that regards routing as a separate part does not take into consideration the
cost for maintaining and acquiring routes for the routing algorithm are not included in the experimental evaluations.
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For queries with commutative operators works like [8,6] propose algorithms for constructing sophisticated operator trees.
Both algorithms are centralized. The work of [8] is also using joins to reduce transmitted data. Their divide and conquer
heuristic algorithm is developed for uniform networks and requires queries that involve both ‘data reducing’ and ‘data
increasing’ join operators on different attributes in order to work. In our case we deal only with intersections which is
always ‘data-reducing’ and which is defined between the same common attribute over all relations. Using their algorithm in
our problem would return a random query tree. [6] uses a heuristic algorithm to come up with a near-optimal tree solution.

Now, let us focus the attention on operator placement literature in greater detail. The vast majority of the literature
on operator placement in WSN focuses on finding a good operator placement at query initialization as described in the
introduction. Those algorithms are centralized; i.e., the base-station knows the location of the sensors or has complete
knowledge about the network [28,18,2,23,6].

Ying et al. [34] propose a distributed algorithm to do the same task as above, namely static operator placement. Nodes
exchange information with their neighbors iteratively until they find the optimal placement for all given operators. Any
node that has found a better cost for routing data or placing the operator, broadcasts this information to its neighbors. This
algorithm is suited only for initial operator placement for queries with many operators, since it involves every node inside
the network. Further, using this technique, it is hard to guarantee convergence, optimality, and low communication cost
overhead.

Instead of sticking to a static plan, dynamic environments require adaptive query processing. A comprehensive survey on
adaptive query processing is presented by Deshpande et al. [13]. They categorize all techniques proposed that focus on using
runtime feedback to modify query processing in a way that provides better response time, more efficient CPU utilization or
network utilization. Our work would fall under the category of adaptive join processing with non-pipelined execution.

Next, we cite literature that deals specifically with operator placement adaptation, picking a new hosting node for one of
the operators. There are two categories here: algorithms that pick the best neighboring node as the new host and converge
to the optimal operator placement with time, and algorithms that find the best hosting node immediately. The former
method is also called operator migration and we will call the later method placement update.

An alternative to operator placement update is operator migration, where the operator is moved gradually from one node
to the next node towards the optimal placement. Algorithms following this principle are simple and their decision making
is only local. On the other hand, it takes several epochs of query execution to reach the optimal operator placement. For the
same reason, these methods suffer greatly from oscillating changes, that might force it to migrate an operator to a different
direction before even reaching the optimal placement. Further, they are prone to local minima and impose extra cost during
query execution in order to probe for a better operator host on every neighbor; [22,5,24] are works in this category.

Finding directly the optimal hosting node is the approach adopted in this paper. This problem is the same as the 1-
median problem or single facility location problem in graphs. There is extensive literature on centralized algorithms for
this problem [25], but not on distributed algorithms. In a distributed environment we cannot adapt any of the centralized
algorithms, since they all require that a central authority knows the topology of the whole network.

Zoe Abrams and Jie Liu in their paper named “Greedy is Good” (GIG) [1] propose a decentralized solution for the 1-
median problem in graphs. They try to find the optimal hosting node of a single operator by flooding a small neighborhood
around each datanode. It follows the intuition that the optimal hosting node will be somewhere close to all the datanodes.
Their algorithm, GIG, aims to minimize the nodes involved in the flood by making use of some parameters set by the user.
Surprisingly, they do not aim to minimize the number of messages exchanged by those nodes and thus the communication
cost overhead is not minimized. Further, their algorithm does not guarantee to find the optimal operator node as we will
see in the example in Fig. 6.

We propose a parameter-free algorithm based on the same principles as GIG, but show how using the right techniques
the right heuristics we can achieve a 30%–100% energy reduction compared to GIG. Some extra points that distinguishes our
work from previous work are the following:

• our algorithm is distributed and we only collect a negligible amount of network information;
• we do not assume any location awareness for the nodes – it follows that we cannot use geographical routing to our

advantage;
• our algorithm does not impose any overhead during the query execution phase;
• our algorithm is parameter-free, thus its efficiency is independent of any user input;
• our algorithm guarantees optimality;
• our algorithm supports adaptive properties of WSN;

4. Distributed Fermat node search: Preliminaries

Assume that in the network seen in Fig. 4(a) the colored nodes are 3 customers s1, s2 and q. Each customer i needs
quantity wi from a commodity produced by a service that is currently hosted in node h. The cost of servicing customer i is
the cost of sending weight wi over the shortest path from node h to i. Find the node, that minimizes the cost of servicing
the customers, to host the service. This is also known as the 1-median problem and can be extended to an arbitrary number
of customers. Equivalently in WSN we have an operator that collects data from a number of sources and sends the result of
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the operation to a sink. In Figs. 4 and 5 we are dealing with binary operators (two sources s1 and s2, one sink q). Note that
there are no restrictions in the relation between the quantities wi , thus we can use any kind of operator.

We assume that sending data of weight w from node i to the operator host h and sending the same amount of data
from operator host h to node i imposes the same cost. This is why we generalize and call both, sources and sinks, datanodes.
Now the problem of finding the optimal operator placement is similar to the Fermat point problem [31], the three factory
problem [15], and to the 1-median problem or single facility location problem. We call the optimal node to place the
operator Fermat node and formulate our problem as follows:

Fermat node (or 1-median) problem definition. Given a weighted graph G(N, L) and a set of datanodes D ⊂ N, find the Fermat
node f in the graph that minimizes the cost of shipping data from the nodes in D to node f .

For the objective function that we use in our algorithm we assume that the cost of shipping data from node u to node
v is proportional to the data load wu to be shipped and the weight of the path used. The path weight W (u, v) is equal to
the sum of the weights of all links l ∈ L that make up path (u, v): W (u, v) = ∑

l∈links(u,v) wl , where wl is the weight of the
link l ∈ L. The cost of shipping data from node u to node v is defined as

t(u, v) = wu ∗ W (u, v)

This simplified version is used only as an objective function in our algorithm to estimate communication cost. Note
that the computation of the actual energy consumed by the network when transmitting a message over a path is more
complicated. In the network simulator we used to run our experiments the communication cost model is much more
realistic. It also takes into account the energy consumed by the neighbors of u and v since they also receive the packet.

To estimate the energy needed to answer a query Q over a query tree T once, we define T (i, j) as the function that
returns 1 whenever the edge (i, j) is used in the query evaluation:

T (i, j) = 1 if communication edge (i, j) is used (1)

The total communication cost C Q of answering query Q will be:

C Q =
m,m∑

i=1, j=1

c ∗ T (i, j) ∗ Bi (2)

where nodes i, j ∈ V . This does not include the cost of disseminating the query or constructing the tree T .
Hosting cost, c, is the cost of sending data from the nodes in D to the hosting node h. It is equal to

c =
∑

d∈D

t(d, f ) (3)

To minimize this cost we need to find the Fermat node and place the operator there. Finding the Fermat node involves a
number of nodes that need to exchange messages. This imposes a communication overhead. The problem we solve in this
paper is the following:

Our problem definition. Given a weighted graph G(N, L), with identical link weights, and a set of weighted datanodes D ⊂ N, solve
the Fermat node problem with minimum overhead.

The communication cost in a wireless sensor network is the energy consumed for performing communication. The total
communication cost is the sum of the energy consumed by each node in the network. The maximum communication cost is
the maximum energy consumed by a single node. By minimizing the number of nodes involved and the messages exchange
between them, we keep the total communication cost and the maximum communication cost per node to a minimum.

Networks are inherently distributed, thus no node has global knowledge about the network topology. This rules out the
application of one of many proposed algorithms in literature (Section 3), that solve the Fermat node problem. We propose
a fully distributed algorithm, that does not require the gathering of network information in order to compute the Fermat
node. In the rest of the paper we will make extensive use of the following notions, that are formally defined here.

Shortest path length is the length of the shortest path between two nodes, i.e. u and v , and is denoted as |(u, v)|. We
assume that the graph has bidirectional links, thus |(u, v)| = |(v, u)|.

Datanodes is the set of nodes D that either transmit data (source nodes) or receive data (sink node) to/from the node that
hosts the m-ary operator (hosting node). The opposite of the datanode set is the external nodes set X = (N − D). Leader node
is the node that decides on initiating and terminating the dFNS algorithm.

Note that we assume error-free readings, otherwise we would need specialized techniques for probabilistic or model-
base query execution [12]. We also do not assume any correlation between data that could assist us in saving energy during
query execution [11]. The only information we need is what nodes the data is coming from/going to and the size in bytes.
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Our framework operates independently of how an operator placement update is triggered or oscillating updates, due to the
rapid changes in the network, are avoided.

Distance combination, α, denotes the k-ary set of shortest path lengths from all datanodes in D to the hosting node h.

α = [α1,α2, . . . ,αk] = [∣∣(d1,h)
∣∣,

∣∣(d2,h)
∣∣, . . . ,

∣∣(dk,h)
∣∣]

where di ∈ D and k = |D|. Each distance combination α has its hosting cost cα . Note, when we have an m-ary operator it
means we have m inputs and one output. It follows that the number of datanodes is m + 1 and thus m + 1 = k.

Flooding is the task of broadcasting data from one node to all its neighbors and repeating this for each neighbor. Each
node broadcasts the data only once. By setting a restriction to the flooding radius, the broadcast message travels only radius
hops away (Hops-To-Live = radius). This limits the nodes in the network that are flooded.

5. A novel distributed Fermat node search algorithm

We assume that a node h, that hosts an operator with datanodes D , knows the shortest path distances between any
pair of datanodes in D . Note that the datanodes D of a single operator are only a very small subset of the nodes in the
network (|D| � |N|). This information can be piggy-backed from each datanode d ∈ D to node h, since there is direct unicast
communication between them. The task of retrieving this information for each datanode d can be performed with efficient
algorithms proposed in literature, such as doubling broadcast distance. Other than the datanodes of an operator, no other
node in the network need to know their distance to any other node.

Each datanode d has its own hosting cost cd . We call best datanode b the datanode with the minimum hosting cost
cb = min{cd}∀d∈D . Using b as the solution to the Fermat problem is called datanode solution. There are cases where it is
impossible for an external node to have better hosting cost than datanode b. Identifying those cases is simple and imposes
no communication cost. All our techniques make use of hosting cost cb of the best node.

5.1. Candidate nodes

Candidate nodes are called the nodes in the network that have a hosting cost less than the hosting cost cb of the best
datanode. We need to compare all candidate nodes in order to find the actual Fermat node. Minimizing the number of
candidate nodes is one of the key features of our algorithm. Note that there can be several nodes with the same minimum
hosting cost, thus there can be several Fermat nodes. We just need to pick one of them.

To be able to calculate the hosting cost of an external node, we need to know its distance to the datanodes. Although
external nodes might serve as relay nodes, they never communicate directly with any datanode, thus we cannot assume
that they know their distance to each datanode in advance. To find the distance from an external node to each datanode we
can initiate a flood from each datanode counting hops.

Nodes inside the intersection of all floods know the distance to all datanodes. This is true since we assume that the
flood reaches a node over the shortest path from the initiator. These nodes can now calculate their hosting cost and, if it
is smaller than cb , they become candidate Fermat nodes. Candidate nodes report their hosting cost to the leader node, that
decides what node is the actual Fermat node.

By reducing the number of candidate nodes, and therefore the messages (reports) sent to the leader node, we can save
on communication cost. dFNS includes the hosting cost cb of the best datanode in the initial flooding message as a cost
threshold. Nodes, that have a hosting cost higher than this cost threshold, are not considered candidate nodes. Nodes that
have a better hosting cost designate themselves as Fermat candidates and update the cost threshold inside the flooding
message before it gets forwarded. We also let candidate nodes eves-drop messages sent by their neighbors in order to
increase the probability that a message with a lower cost threshold is received to minimize the number of candidates.

5.2. Calculating all candidate distance combinations

Before looking for the actual candidate nodes in the network we calculate all possible distance combinations that would
qualify a node as a candidate node. These candidate distance combinations are calculated at the datanodes without any
communication with neighbors. This is done in order to be able to restrict the communication cost while searching for the
actual candidate nodes inside the network. Most of the notation used here is defined in Section 4.

The datanode computes all candidate distance combinations A and their respective hosting cost cα , α ∈ A. This is the
basic building block for our algorithm. To efficiently compute this set we use information about the shortest path lengths
between the datanodes D . The distance combinations that violate the shortest path length between the datanodes (triangle
inequality) and have a greater hosting cost than cb , the hosting cost of the best datanode b, are discarded. Formally the
restrictions for each distance combination α are:

∣∣(di,d j)
∣∣ � ai + a j, ∀i, j ∈ D

cα < cb (4)
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Fig. 6. GIG [1] is not an optimal algorithm. An example where GIG misses the optimal operator placement ( f ). This happens because the distances from
candidate nodes to the datanodes are overestimated.

The distance combination with the minimum hosting cost is called ideal distance combination and is denoted as ε .
Depending on the network, a node with the distance combination ε might exist or not. If a candidate node has the ideal
hosting cost cε , then no further action is needed to distinguish it as the Fermat node.

The algorithm we propose to compute the distance combinations is optimized to find the set fast and effectively, pruning
combinations that do not satisfy the constraints in Eq. (4) early. We start from the distance combination that corresponds
to picking the best datanode b as the Fermat node. In this distance combination the value for |(b, f )| will be 0. The other
distances start from the minimum value possible that satisfies the constraints. We recursively increment each distance by 1.
The pseudo-code is shown in Algorithm 1. This algorithm returns the set of all possible distance combinations that would
result in a smaller hosting cost than cb . It also designates the ideal distance combination ε .

Algorithm 1 CDCGenerator(distanceList, i)
Require: list of datanodes and their loads, distance between every pair of datanodes

1: lcurrent = minimumDistance(distanceList, i)
2: distanceList ← lcurrent

3: while (distanceList satisfies constraints AND lcurrent <maximumDistance(distanceList, i)) do
4: if distanceList.size == number of datanodes then
5: C ← distanceList
6: update bestCombination
7: else
8: C ← CDCGenerator(distanceList, i + 1)
9: end if

10: lcurrent = lcurrent + 1
11: remove last entry of distanceList
12: distanceList ← lcurrent

13: end while
14: return C

The function maximumDistance(distanceList, i) returns the maximum distance that a node can have from datanode di so
that it satisfies the constraints of Eq. (4) and does not exceed the maximum distance between di and d j , where j > i.

5.3. No flooding cases

If we get a distance combination set, that is empty when running the CDCGenerator() algorithm, it means that there
cannot exist an external datanode with better hosting cost than the best datanode b. In those special cases, no flooding
is needed to look for external candidate nodes. Node b is the optimal new operator host and our algorithm terminates by
placing the operator there. Contrary to their characterization as special, these cases comprise 56%–85% of the cases as shown
by experiments.

5.4. Flooding radius

Flooding the whole network from each datanode in D poses a very big communication cost. Our algorithm efficiently
restricts the flooding radius, guaranteeing at the same time that the Fermat node will be found. For this it uses the candidate
distance combinations.

The same intuition is used in the GIG algorithm [1], only they use a suboptimal method to restrict the flooding. In
addition, GIG cannot guarantee optimality since the distance from an external node to a datanode can be overestimated.
This can be seen in Fig. 6. According to GIG flooding is extended until all floods intersect, in this case node m. Then m
broadcasts a message to every node inside the flooding union, which would be every node in this example, counting hops
from m. This way the distance |(x,d)| from a node x to a datanode d is calculated as |(x,d)| = |(x,m)| + |(m,d)|, which is
clearly an overestimation. In our example the distance between node f and q is incorrectly estimated as |( f ,q)| = 5 by GIG
(following the solid edges) and correctly as |( f ,q)| = 4 by dFNS (following the dashed edges). As a result the GIG algorithm
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would choose node m as the new operator node, although the actual Fermat node and optimal new operator node is f . The
hosting costs estimated by GIG and our algorithm can also be seen in Fig. 6.

There is a maximum radius that each datanode has to flood in order to be able to reach every candidate distance
combination. The maximum radius is set to guarantee completeness, i.e. if there is an external node with hosting cost better
that cb of the best datanode it will be found. For the maximum radius of datanode di we use the maximum value of
αi ∀α ∈ A.

5.5. Flooding speed

Increasing the likelihood that the floods will intersect at the Fermat node first, increases the likelihood that more nodes
inside the flood intersection will receive a lower cost threshold. This in turn leads to fewer nodes reporting to the lead node
as Fermat candidates, thus saving on communication cost. We define a primary speed for each flood in order for them to
reach the ideal distance combination ε at the same time point.

After the floods reach the ideal distance combination ε they will keep expanding until they reach the maximum radius.
We define a secondary speed for the foods that will make their intersection grow faster toward the distance combinations
with the lower hosting costs.

The flooding speed is implemented by delaying the relay (broadcast) of the flooding message at every node. More specif-
ically, a timeout is defined at flood initialization, that each node should obey before re-broadcasting the flooding message.
This timeout is defined by multiplying the estimated time it takes for the message to travel over one hop by a delay factor.
Based on the ideal distance combination ε , we compute the primary delay factor pf of the flood for each datanode di ∈ D
as follows:

pf (i) = max{ei}∀i/εi − 1

When the delay factor is 0 then the flooding message gets forwarded immediately.
To calculate the secondary delay factor sf we reverse the order of the pf . The datanode di with the maximum pf will

have a secondary delay factor equal to the minimum pf . The datanode d j with the minimum pf will have a secondary delay
factor equal to the maximum pf and so on. The intuition about this is that the cheapest distance combinations will be the
ones with minimum values satisfying the triangle inequality between the datanodes.

5.6. The dFNS algorithm

Here we describe the dFNS algorithm as general steps taken inside the network. Assume each operator node has some
pre-specified criteria that decide whether an operator placement update is needed or not. These criteria could involve
monitoring the change in the data loads of the datanodes, the change in the location of the datanodes, the remaining
energy on the operator node, and estimations on whether an operator placement update would be worth the cost overhead
for a cheaper query execution in the next epoch. What happens after this decision is taken is described next and shown in
pseudo-code in Algorithm 2.

Assume there is an operator placed on node h, that sends/receives data from datanodes D . Thus, it knows the data
loads for every node in D . When the criteria of node h to update the operator are met, node h becomes the leader node
and initiates the dFNS algorithm (Algorithm 2). It calculates all candidate distance combinations using Algorithm 1. If the
candidate distance combination set is empty, the leader informs all datanodes that the new operator placement has changed
to b. Otherwise, if there are candidate distance combinations for external nodes, the leader computes the time-point to
initiate flooding for synchronization. Without synchronization variable speed flooding would not have the desired effect.
The leader sends a message to all datanodes in D containing the time point to initiate the flooding and the candidate
distance combinations.

Using the candidate distance combination set, datanode di can calculate the hosting cost cb of the best datanode. It also
can compute the minimum and maximum radius, and the primary and secondary speed of its flood, described in Section 5.5
and Section 5.4 respectively. di prepares a flooding message that contains the cost threshold set to cb , the timeout needed
to realize the primary speed, the timeout needed to realize the secondary speed, the minimum radius, and the maximum
radius of the food. di initiates its flooding at the given time-point broadcasting its flooding message. All the candidate nodes
send their report to the leader. After all reports are received, the leader calculates the best candidate node, informs the
datanodes about the new operator host and passes on any information regarding the operator to the new host node.

When an external node n receives a flooding message from datanode di for the first time it stores it and performs a
series of checks. If n is not beyond the minimum radius then it just forwards the message. Any consecutive receptions of
the same message are ignored. Otherwise, if n has received a message from all the datanodes in D it can calculate its
hosting cost cn . If cn is smaller than the cost threshold contained in any of the flooding messages, node n updates the cost
threshold inside every flooding message that was not yet forwarded and stores cn . Also, n sets a timeout to report to the
leader node as a candidate node. A final check that node n performs when receiving a message from datanode di is whether
it is not on the maximum radius so it can forward the message it received.
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Algorithm 2 The general dFNS steps

Steps taken by leader node:

1: A = CDCGenerator(�,0)
2: if A = � then
3: Place operator on b
4: else
5: Set timepoint t for initiating flood
6: m ← t, A
7: send message m to D
8: end if
9: timeout until all candidate nodes have reported

10: choose best candidate as new operator host
11: inform datanodes about new operator host
12: send operator information to new operator host

Steps taken by each datanode di ∈ D:

1: compute minimum and maximum radius
2: compute primary and secondary speed
3: initiate flood at timepoint t

Every candidate node that has not reported yet to the leader performs eves-dropping on its neighbors. When such
a candidate node receives a message containing a lower cost threshold than its hosting cost, it cancels the timeout for
reporting to the leader node and withdraws its designation as a candidate node. This way the number of candidate node
reports sent to the leader node are minimized. The pseudo-code is omitted due to lack of space.

5.7. Optimality of dFNS

Our algorithm always finds the node in the network that minimizes the hosting cost as defined in objective function (3).

The dFNS algorithm is optimal.

Proof. First, all possible distance combinations A, that have a better hosting cost than the best datanode, are found using
Algorithm 1. This is true since the algorithm is exhaustive. The radius for the flood of datanode di is set to the maximum
value of αi ∀α ∈ A. This guarantees that all possible nodes with distance combinations equal to the ones in the candidate
set A will be inside the intersection of all floods. This allows them to calculate their hosting cost and become candidate
nodes. �
6. Initial operator placement

Our distributed Fermat Node Search algorithm (dFNS) can be used in any framework that optimizes continuous queries,
to always keep the operator placement optimal. In addition, frameworks that are made to optimize snapshot queries can be
adapted for answering continuous queries by using dFNS. The query execution is divided in epochs. As soon as the query
execution terminates, an operator node checks whether its operator meets the placement update criteria. Details of these
criteria are orthogonal to this work. If those are met, dFNS is triggered and the operator placement is optimized before
the next epoch. Note, that dFNS has no overhead whatsoever during query execution. The overhead is most of the time
negligible even when an operator placement update takes place. We have a communication cost overhead only in the less
frequent cases, where a flood is needed to find the new optimal operator host.

Most of the previously proposed algorithms for initial operator placement (Section 3) are centralized, assuming global
knowledge of the network. When answering snapshot queries, the initial placement should be as optimized as possible,
which cannot be achieved without collecting network information. For continuous queries, however, the quality of the initial
operator placement is less of an issue, as the query executes for several epochs. A rough initial placement is calculated with
the information that is locally present or is collected locally without significant overhead, avoiding the collection of global
network knowledge. After the query execution in the first epoch is over, we can check the criteria for each operator and, if
they are met, run dFNS to optimize the operator placement for consecutive epochs.

We use the algorithm proposed in Chatzimilioudis et al. [6] for finding an initial operator placement. We exploit the
mandatory query dissemination to collect some information about the network with minimum overhead. Every node, that
receives the query dissemination and has data needed for answering the query, sends to the querying node its position and a
summary of its data. Techniques for building a summary of small size and high information have been previously proposed
in the literature [14,20,29,4]. Using this information the query node can roughly estimate the hop-distance between the
datanodes and the selectivity of each operator.
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Fig. 7. Number of nodes involved in the flooding process (minimum, average and maximum value) using the same load for each datanode. When lines are
missing it means there were no simulation runs possible for the combination of k and h values.

7. Experimental evaluation and analysis

The experiments were run on an Intel Core2 Duo CPU at 2.5 GHz with a 4GB RAM. We implemented the algorithms in
Java and used J-Sim [19] as our network simulator. We used the energy model of J-Sim to account for the energy spent by
the network when transmitting data.

Comparison is done against the algorithm proposed by Zoe Abrams and Jie Liu in [1], noted as GIG. The authors’ im-
plementation was not available, so we re-implemented GIG with clarifications from the authors. This algorithm needs two
parameters from the user in order to run: the radius α of the initial flood and a function G() defining how the radius is
increased for each consecutive flood. Its performance heavily depends on these parameters. For our experimental setup we
use the optimal values α = 1 and G(rnew) = rprevious + 1, which are the same as in the original paper. Those choices are
optimal since most of the resulting networks have the datanodes in close proximity and only a small flooding radius of 1 or
2 hops is needed. We also implemented the variable speed flooding function that is only suggested as a future optimization
in [1]. This function sets the flooding speed of datanode i to be inversely proportional to the data load of datanode i.

For the experiments we create a network with 512 nodes randomly scattered in a physical space of size 1000 × 1000.
We randomly place the datanodes in a square region of size 200 × 200 at the center of the space. This is done so that the
flooding process can reach a large number of nodes without hitting the edge of the network, and we get more accurate
results regarding the efficiency of the algorithms. This is the same network setup as in [1].

We run experiments for m-ary operators with m = 2,3,4, thus we have k = 3,4,5 datanodes respectively, showing the
efficiency of the compared algorithms. For each value of k we run 80 simulations. The amount of the communication cost
overhead is immediately dependent on how far the datanodes are from each other, since the further apart the bigger the
floods will have to be. Therefore, our experiments are grouped by metric h. We sum the distances from the datanodes to
the Fermat node returned by the algorithm in the equation:

h =
∑

∀di∈D

∣∣(di, f )
∣∣

7.1. Reproducing experiments of GIG

For the first set of experiments we copied the operator migration experiments conducted in [1]. The authors used the
same data load w for all the datanodes and used three metrics: number of nodes involved in the flooding process (Fig. 7),
number of candidate nodes (Fig. 9) and quality of the first candidate (Fig. 10). All figures denoted as “same load runs”
belong to the first set of experiments. We got approximately the same results for the GIG algorithm as in [1]. Our proposed
algorithm (dFNS) outperforms GIG in this first set of experiments.

In Fig. 7 the minimum, average and maximum number of nodes involved in the flooding process is shown when running
each algorithm for k = 3,4,5 datanodes. The simulation runs are grouped by h, how far apart the datanodes are. For each
value of h the leftmost three lines belong to dFNS, whereas the rightmost three lines belong to GIG. Some lines are missing,
since not all combinations of k and h are possible. For example, when we have k = 5 distinct datanodes it is impossible to
find an operator node whose sum of distances to the datanodes is less than 4, h < 4. We can have h = k − 1 only if the
Fermat node returned by the algorithm is one of the datanodes itself and every other datanode is only 1 hop away from the
Fermat datanode.
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Fig. 8. Number of nodes involved in the flooding process (minimum, average and maximum value) using the variable load for each datanode. When lines
are missing it means there were no simulation runs possible for the combination of k and h values.

Fig. 9. Number of candidate nodes that report to the leader node. The less candidates the less communication needed. Beneath the x-axis the group [0,4]
is divided into more detailed groups to show the distribution for dFNS.

One would expect that GIG always involves less nodes in its flooding than dFNS, since it stops flooding as soon as
the floods intersect for the first time. As Fig. 7 shows, though, dFNS has a far smaller mean value of the number of
nodes involved in flooding than GIG. All this can be attributed to the fact that dFNS identifies the special cases where a
datanode is the Fermat node, and avoids flooding. Those are the frequent cases where the number of nodes involved is
zero.

For the second metric, we plot the number of candidate nodes produced by each algorithm in a histogram in Fig. 9. The
less candidate nodes, the fewer candidate node messages have to be sent to the leader node to decide on the best candidate.
We can see that dFNS has never more than 4 candidates. This happens because our algorithm looks for candidates only in
the intersection of its extended floods, whereas GIG looks for candidates inside the whole union of its floods. Below the
x-axis the group of [0–4] candidate is broken down just to show the distribution for our algorithm.

In Fig. 10 we can see the quality of the first candidate. The quality is expressed by the ratio λ equal to the hosting cost
of the actual Fermat node over the hosting cost of the first candidate node found. If λ = 1 it means the first candidate node
is the actual Fermat node. The first time all floods intersect, there are one or more candidate nodes inside the intersection,
which will all report to the leader. The one with the best hosting cost is called the first candidate node. This is how the first
candidate is defined for both algorithms. The quality of the first candidate depends solely on the variable speed flooding
function used. We can see that our variable speed flooding function has always a better first candidate.

The simulations described so far were conducted solely for the purpose of matching the experiments in [1], in order
to compare our algorithm head on against GIG. The second set of experiments is a fairer comparison between the two
algorithms, since in real world applications the datanodes usually have different data loads.
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Fig. 10. Quality of the first candidate node encountered while flooding (or the best of the first set). Quality is expressed by dividing the hosting cost of the
actual Fermat node to the first candidate. The closer the ratio is to 1 the better the variable speed flooding function of the algorithm used.

Fig. 11. Total energy consumed (minimum, average and maximum value). When lines are missing it means there were no simulation runs possible for the
combination of k and h values.

We run all of the above experiments again with variable data loads. We varied the loads of the datanodes slightly with
a Gaussian distribution around weight w used in the previous experiments. A greater variation in the loads would leave us
with only a few runs where no datanode is a Fermat node, which is the only case where we can study these heuristics. The
results regarding the first metric can be seen in Fig. 8. We excluded the results for the other two metrics because the result
were identical to the “same load” simulations seen in Figs. 9 and 10.

Apart from better efficiency, dFNS also finishes faster since it does not use incremental flooding, where the network is
flooded repeatedly until an intersection is found. dFNS floods once to a predefined restricted neighborhood.

7.2. Actual communication cost overhead

We also conducted our own experiments using as metrics the total energy and the maximum energy per node consumed
for finding the new Fermat node. After all, this is what we are trying to minimize with our algorithm. These are more
important metrics compared to the above and the ones that actually define the performance of the algorithms.

Figs. 11 and 12 show that dFNS clearly has a smaller energy overhead for determining the optimal hosting node. GIG’s
limited cost flooding results in reflooding the neighborhood incrementally, thus yields a very big total energy cost. In
addition it refloods the whole flooding union to look for candidate nodes. In our algorithm very often we do not need to
flood in the first place. This keeps the mean value of total energy low. In the case where flooding is needed, our algorithm
might use slightly larger flood radii, but it floods only once, and no further communication between nodes is needed to find
any candidate nodes.

To simulate the energy in the previous experiments, we used the following parameters for our sensors: power consump-
tion for transmission 0.660 Watts and power transmission for reception 0.395 Watts. The data rate of the radio is set to
19.2 kbps and the load of each transmission is 1Kb.
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Fig. 12. The maximum energy consumed by a single node (minimum, average and maximum value). When lines are missing it means there were no
simulation runs possible for the combination of k and h values.

Table 1
Percentage of simulation runs where a datanode is the optimal
node to place the operator and thus no flooding is needed.

k = 3 k = 4 k = 5

same load 85% 84% 83%
variable load 68% 66% 56%

Fig. 13. Total energy consumed (minimum, average and maximum value) only for simulation runs that needed to use flooding in order to find the Fermat
node. When lines are missing it means there were no simulation runs possible for the combination of k and h values.

These differences are affected by the fact that dFNS takes advantage of the cases where a datanode is a Fermat node in
order to save energy by avoiding flooding. We can see in Table 1 that the majority of cases have a datanode that is the
actual Fermat node and thus we do not need to look any further for the optimal operator placement.

7.3. How good is dFNS in finding external Fermat nodes

It is clear that our algorithm successfully identifies the special cases where flooding can be avoided. Here we evaluate our
algorithm for the other case by collecting information only from the simulation runs where the Fermat node is an external
node and flooding is needed (floody runs). Figs. 13 and 14 show that dFNS still outperforms GIG, although the savings are less
significant compared to the cases where no flooding is needed. Fig. 13 shows the minimum, mean and maximum values of
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Fig. 14. The maximum energy consumed by a single node (minimum, average and maximum value) only for simulation runs that needed to use flooding
in order to find the Fermat node. When lines are missing it means there were no simulation runs possible for the combination of k and h values.

the total energy consumed for finding the external Fermat node. Similarly, Fig. 14 shows the minimum, mean and maximum
values of the maximum energy per node.

8. Dealing with adaptive properties of the operator placement problem

In this section, we provide two additional contributions on the operator placement problem, which extends the baseline
framework dFNS. These contributions deal with the adaptive properties of the main problem investigated in our research,
and, namely, treat the operator placement adaptation for multiple operators (OPA) (Section 8.1), and the operator tree adaption
(OTA) (Section 8.2), which is possible when commutative query operators over WSN are considered.

8.1. Operator placement adaptation

We present a novel placement adaptation framework for multiple operators (OPA). The algorithm’s efficiency is based on
the fact that the optimal operator host is usually a source/sink node itself as shown by the proposed framework dFNS. Recall
that dFNS achieves two goals: finding the best node to place an operator and minimize communication cost doing so. To
achieve this it (1) identifies the special case where no flooding is needed, (2) if flooding is needed, it minimizes the flooding
radius, and (3) uses variable speed flooding and eves-dropping. Our algorithm is parameter-free, decentralized, optimal and
outperforms previously proposed methods in minimizing communication cost overhead.

In any other case, dFNS finds the optimal operator node (Fermat node) by extending a flood from each of the datanodes.
We generate a set of possible distance combinations that the new hosting node can have to produce a smaller hosting cost.
Using these candidate distance combinations dFNS calculates the minimum possible radius for each flood, guaranteeing that
the nodes that participate are kept to a minimum without compromising the optimality of the algorithm.

The adaptation algorithm gets initiated at the lowest possible operator nodes that might need to be adapted. Those
operator nodes are the nodes that satisfy the following condition:

condition A = operator i has a change in its output data load AND there is no change its input.

The execution of the adaptation algorithm travels up the query routing tree as long the following conditions apply:

condition B = operator i has a change in its output data load OR changed its placement.

As the lower operator nodes complete the algorithm they send a relay message up to the next operator node up the tree.

condition C = operator i has a change in its input data loads AND i received a completion message from all its children.

When we reach an operator node that has no change in its output or when we reach the sink then we repeat the same
process top-down. This time we also complete all placement updates that need to search for the optimal operator host
inside the network.

The CDCGenerator() takes as input the distances between the datanodes. There are cases where we do not need to run
CDCGenerator in order to determine whether the optimal operator host is a data node. When we have two sources u and v
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Algorithm 3 OPA-upward
Event: Condition A or C holds
Actions:
1: compute best datanode b
2: cdc ← CDCGenerator(distancebetweendatanodes)
3: if cdc = � then
4: update operator placement
5: inform datanodes
6: end if
7: if Condition B holds then
8: send completion message to parent operator
9: end if

Algorithm 4 OPA-downward
Event: node i finished executing OPA-upward AND Condition B holds OR completion message received from parent operator
Actions:

1: compute best datanode b
2: cdc ← CDCGenerator(distancebetweendatanodes)
3: if cdc = � then
4: update operator placement
5: else
6: optimal host← FNS()
7: if optimal host = � then
8: update operator placement
9: end if

10: end if
11: if received a completion message from child operator during OPA-upward then
12: send completion message to children operators
13: end if

and it holds that 2 ∗ wu � w v then the optimal operator host is always data node u. Identifying those cases saves energy
from the adaptation process and there is no need to assume knowledge over the distances between the data nodes (source
and sink nodes of an operator).

8.2. Operator tree adaptation

Whenever a query involves only commutative operators we can also adapt the operator tree to network and data changes.
Even for queries with non-commutative operators, if there is an operator subtree that involves only commutative operators
the same technique can be used to adapt that subtree. To the best of our knowledge this is the first work to propose a
distributed algorithm for adapting an operator tree.

Our operator tree adaptation (OTA) algorithm is based on our placement adaption algorithm. Whenever two operators
are placed on the same node then we can initiate the tree adaptation algorithm. Until we get two operators on the same
node we just run our placement adaptation algorithm. We show that when a tree adaptation is needed then the operator
adaptation algorithm is guaranteed to place two operators on the same node.

Whenever a node hosts two operators it checks whether switching the operators’ inputs and outputs with each other
can yield a better communication cost during query execution. If a change is needed then it is performed on the operator
tree immediately. The placement adaptation algorithm is then called for both operators on this node to find their optimal
placement using their new datanodes. Placement update is performed immediately. The placement update naturally triggers
more changes in the tree. These changes are administered by the placement adaptation algorithm presented in the previous
section.

All of our proposed algorithms can have been presented using binary operators. This does not prohibit our algorithms to
optimize queries with k-ary operators. Any k-ary operator can be transformed into a sequence of (k − 1) binary operators
where their outputs are pipelined. Transforming k-ary operators to binary and optimizing the query routing tree using the
binary version of the operators give us more flexibility for optimization. Whenever two or more binary parts of the same
operator are placed on the same node, we can say that we place a k-ary operator on that node.

8.3. Remarks

Upon the same experimental framework presented in Section 7, the two proposed dFNS extensions OPA and OTA can
be easily implemented and tested as to observe principal variations. However, since both extensions make use of dFNS as
baseline algorithm, it is reasonable enough to assert that behaviors follow the ones presented in Section 7, which is a matter
of (further) contribution in addition to the (more relevant) capability of dealing with adaptive properties of the operator
placement problem ensured by the OPA and OTA solutions.
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9. Conclusions and future work

In this paper, we have presented an optimal distributed algorithm to update the placement of a single operator achieving
minimum cost for executing continuous queries. Our algorithm imposes minimal communication cost overhead for finding
the optimal node to host the operator. Previous work in WSN has only proposed approximate/heuristic algorithms. Be-
sides the advantage of optimality, our experiments show that the cost overhead of our algorithm is reduced by 50%–100%
compared to previously proposed techniques. Our distributed Fermat Node Search algorithm (dFNS) can be used in any
framework that optimizes continuous queries and has specific criteria for triggering operator placement updates. dFNS can
be seamlessly integrated to keep the operator placement optimal. Experiments have clearly proved the feasibility and the
reliability of our proposed framework. In addition to previous contributions, we have also provided two novel solutions,
namely OPA and OTA, which are capable of taking into account adaptive properties of the operator placement problems.

Future work is oriented towards developing novel optimization solutions for in-network query processing over WSN.
Sophisticated techniques to answer subset queries over a subset of regions should be optimized holistically. Constructing a
query routing tree that acquires data from inside a region to representative nodes and calculates in-network the answer to
the query while routing the data towards the sink will make even more optimization possible. It would also be of great
interest to optimize a query routing tree as a whole including all three of its subparts: operator tree, operator placement
and routing. Work so far, including this one, focuses either on one or two parts at a time.
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